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ABSTRACT 

We propose a leaky channel waveguide for large-mode-area extended single-mode operation. 

The proposed structure is characterized by specially designed guiding core and multilayer 

cladding. Specially designed cladding enables all the supported modes except fundamental 

modes leaky. Leakage loss of the higher-order mode which is key factor of single-mode 

operation is calculated by solving the profile by effective index method in conjunction with 

transfer matrix method. Dispersive cladding of the proposed design makes this design enable to 

show extended single mode operation in the entire wavelength range beyond 900 nm with a 

mode area as large as 100µm
2
. Such a large confinement area for mode propagation can 

effectively suppress non linear optical effects. The waveguide is expected to find application in 

the design of high power lasers and amplifiers. 
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 Chapter 1                                          

 INTRODUCTION 
 

1.1 Optical Waveguide  

An optical waveguide [1, 2, 3] is a physical structure that guides electromagnetic waves in 

the optical spectrum.Common types of optical waveguides include optical fiber and 

rectangular waveguides. Optical waveguides are used as components in integrated optical 

circuits or as the transmission medium in local and long haul optical 

communication systems. Optical waveguides can be classified according to their geometry 

(planar, strip, or fiber waveguides), mode structure (single-mode, multi-mode), refractive 

index distribution (step or gradient index) and material (glass, polymer, semiconductor). 

Optical fibers and optical waveguides consist of a core, in which light is confined, and a 

cladding, or substrate surrounding the core, as shown in Fig.1.1. The refractive index of the 

core 𝑛1 is higher than that of the cladding 𝑛0. Therefore the light beam that is coupled to 

the end face of the waveguide is confined in the core by total internal reflection. The 

condition for total internal reflection at the core–cladding interface is given by 𝑛1 (sin  𝜋/

2  − Φ) ≥ 𝑛0.Since the angle Φ is related with the incident angle θ by sin θ = 𝑛1 sin Φ 

≤ 𝑛1
2 − 𝑛0

2, we obtain the critical condition for the total internal reflection as 

                               θ ≤ 𝑠𝑖𝑛−1 𝑛1
2 − 𝑛0

2 = 𝜃𝑚𝑎𝑥                         (1.1) 

The refractive-index difference between core and cladding is of the order of 𝑛1-𝑛0 

=0.01.Then 𝜃𝑚𝑎𝑥 in Eq. (1.1) can be approximated by                                                                    

                                             𝜃𝑚𝑎𝑥 =  𝑛1
2 − 𝑛0

2                              (1.2) 

http://en.wikipedia.org/wiki/Optical
http://en.wikipedia.org/wiki/Optical_fiber
http://en.wikipedia.org/wiki/Integrated_optical_circuit
http://en.wikipedia.org/wiki/Integrated_optical_circuit
http://en.wikipedia.org/wiki/Integrated_optical_circuit
http://en.wikipedia.org/wiki/Optical_communication
http://en.wikipedia.org/wiki/Optical_communication
http://en.wikipedia.org/wiki/Optical_communication
http://en.wikipedia.org/wiki/Single-mode_optical_fiber
http://en.wikipedia.org/wiki/Multi-mode_optical_fiber
http://en.wikipedia.org/wiki/Refractive_index
http://en.wikipedia.org/wiki/Refractive_index
http://en.wikipedia.org/wiki/Refractive_index
http://en.wikipedia.org/wiki/Glass
http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Semiconductor
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           Fig.1.1 Basic structure and refractive-index profile of the optical waveguide 

                (source: Fundamental of Optical Waveguide: By KATSUNARI OKAMOTO[4] ) 

𝜃𝑚𝑎𝑥  denotes the maximum light acceptance angle of the waveguide and is known as the 

numerical aperture (NA). 

The relative refractive-index difference between  𝑛1 and  𝑛0 is defined as 

                           Δ = 
𝑛1

2−𝑛0
2

2𝑛1
2  ≅  

𝑛1−𝑛0

𝑛0
                          (1.3) 

Δ is commonly expressed as a percentage. The numerical aperture NA is related to the 

relative refractive-index difference Δ by 

                         NA =   𝜃𝑚𝑎𝑥 ≅ 𝑛1 2𝛥                                      (1.4) 

 

1.2  Single Mode Propagation 

Single mode propagation [4] has the advantage of low intermodal dispersion compared to 

multimode propagation. The number of guided modes depends upon physical parameters 

i.e. relative refractive index difference, core radius of the waveguide and wavelength used. 

The cut off frequency is equal to normalized frequency V for guided modes below which 

they cannot exist. However mode propagation does not stop below cut off. Modes may 

propagate as unguided or leaky modes and can travel considerable distances along the 

waveguide. However guided modes are of paramount importance in optical fiber 
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communications as these are confined to the fiber over its fall length. Total number of 

guided modes or mode volume for a step index fiber is given by the relation 

                                    M = 
𝑉2

2
                               (1.5) 

where V is normalized parameter  

                             V =  
2𝜋


 a𝑛1 2𝛥             (1.6)  

where a is core radius,  is the wavelength of operation, n1 is refractive index of core. 

For propagation of only single mode, normalized parameter must be in the range of 

0≤V≤Vc, where Vc = 2.405. 

 

1.3 Objectives and Organization of the Thesis 

This thesis is concerned with the design of a rectangular waveguide for Large-mode-area 

extended single mode operation. Integrated-optic waveguide lasers have drawn 

considerable attention for their compactness and possibility of integrating several 

components. Single mode waveguides are ideal choices for such waveguide lasers in order 

to prevent mode competition and intermodal dispersion. A conventional single mode 

waveguide however may give rise to unwanted nonlinear effects due to thin guiding region. 

There have been attempts to increase the mode areas for applications in high power fiber 

lasers. We have proposed a leaky cladding structure to provide large-mode-area single-

mode operation by introducing large leakage losses to higher-order modes and only a small 

loss to the fundamental mode. 

The thesis consists of five chapters. Each chapter has its own introduction.  This 

dissertation has been ordered in such a way that the process of constructing the rectangular 

waveguide for large-mode-area extended single mode operation is evident throughout. 

Proceeding in a logical manner, Chapter 2 deals with the ways by which LMA single 

mode operation can be done, that are known to the world. 
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Chapter 3 focus is placed on the Method of Analysis, which will include effective index 

method (EIM) in conjunction with the transfer-matrix-method (TMM). 

 

Chapter 4 deals with the result and simulations for LMA based leaky channel waveguide. 

 

Chapter 5 Finally, the conclusion and scope for the future work are given in this chapter. 
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Chapter 2 

Large-Mode-Area Waveguides and Fibers 

 

2.1 Introduction  

Integrated-optic waveguide lasers have drawn considerable attention for their compactness 

and possibility of device integration [5]. Single-mode waveguides are usually employed in 

such lasers to avoid mode competition and intermodal dispersion. Single-mode operation 

also ensures good beam quality, which is essential for engineering applications, especially 

when the laser is coupled to a single-mode optical fiber. A conventional optical waveguide 

requires a small core area to provide single-mode operation, where the tight light 

confinement can reduce the optical damage threshold and, at the same time, give rise to 

significant unwanted nonlinear optical effects. The preferred waveguide structure for high 

power applications should have a large single-mode core. In fact, there have been attempts 

to increase the mode areas in fibers for applications in optical communications and high 

power fiber lasers and amplifiers One can increase the effective mode area of a fiber by 

controlling the refractive index profile in the core or the relative index difference between 

the core and the cladding [6-7] .Another large-core design is the single material photonic 

crystal fiber [8],which is characterized by a distribution of air holes in the cladding running 

through the entire length of fiber. Large-mode-area fibers based on using azimuthally 

segmented cladding profiles have also been demonstrated [9-11], which do not rely on air 

holes and can offer mode areas comparable to those of large core holey fibers. In 

rectangular geometry, large-core single mode waveguides have been achieved by using 

small index contrast in polymer waveguides [12] and by deep etching in semiconductor 

waveguides [13]. Recently, we have proposed another principle of achieving large-mode-

area single-mode operation in a fiber [14] or a slab waveguide [15] based on creating a 

leaky graded-index cladding profile. In this chapter, we will be dealing with the ways by 

which LMA single mode operation can be done, that are known to the world. 
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2.2 Design Approaches and Limiting Factors for fiber 

A straightforward design approach to obtain large mode areas is to decrease the numerical 

aperture (NA), i.e., to decrease the refractive index difference between the core and the 

cladding, for a step-index fiber designs. However, there are severe limitations: the guidance 

(wave guiding) then becomes weak, and significant losses can arise from small 

imperfections of the fiber or from bending (→ bend losses). Therefore, the numerical 

aperture cannot be made smaller than approximately 0.06. To achieve relatively robust 

single-mode guidance at larger mode areas, there are several more refined design 

approaches with specially optimized refractive index profiles, which allow for mode areas 

up to the order of 1000 μm
2
. This is an order of magnitude higher than for ordinary single-

mode fibers. 

There are additional difficulties in applying this concept to rare-earth-doped fibers. 

Relatively high concentrations of additional dopants are often required, e.g. for reducing 

certain quenching effects, and these dopants often increase the numerical aperture. Even if 

the refractive index contrast can be reduced in some way, the precision of refractive index 

control may be decreased, and this affects the ability to realize very large mode areas. 

Somewhat larger mode areas can be achieved with fiber designs supporting a few 

propagation modes (→ multimode fibers). It may then still be possible to guide light 

dominantly in the fundamental mode, so that the output e.g. of a fiber amplifier is close to 

diffraction limited [16-18] .Stringent limitations arise from the more critical launch 

conditions and from mode mixing in the fiber, which can spoil the beam quality and lead 

to beam pointing fluctuations [19]. 

Various more sophisticated fiber designs (partly based on photonic crystal fibers) and 

techniques have been developed for addressing these challenges. In many cases, one 

attempts to introduce substantial propagation losses for any higher-order modes, making it 

easier to maintain robust single-mode propagation in a multimode fiber. Another important 

aspect is to minimize unwanted mode coupling. Some examples for possible strategies are: 

 One may strongly bend the fiber; depending on the fiber design, the induced bend 

losses may be substantial for higher-order modes at a point where they are not yet 

http://www.rp-photonics.com/numerical_aperture.html
http://www.rp-photonics.com/numerical_aperture.html
http://www.rp-photonics.com/numerical_aperture.html
http://www.rp-photonics.com/refractive_index.html
http://www.rp-photonics.com/fiber_core.html
http://www.rp-photonics.com/step_index_fibers.html
http://www.rp-photonics.com/bend_losses.html
http://www.rp-photonics.com/single_mode_fibers.html
http://www.rp-photonics.com/single_mode_fibers.html
http://www.rp-photonics.com/rare_earth_doped_fibers.html
http://www.rp-photonics.com/quenching.html
http://www.rp-photonics.com/numerical_aperture.html
http://www.rp-photonics.com/multimode_fibers.html
http://www.rp-photonics.com/fiber_amplifiers.html
http://www.rp-photonics.com/beam_pointing_fluctuations.html
http://www.rp-photonics.com/photonic_crystal_fibers.html
http://www.rp-photonics.com/bend_losses.html
http://www.rp-photonics.com/bend_losses.html
http://www.rp-photonics.com/bend_losses.html
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significant for the fundamental mode. Fiber designs can be optimized in that respect. Note 

that bending not only introduces losses, but also can reduce the effective mode area. This is 

particularly true for large mode area step-index fibers. For a fair comparison of fiber types, 

this effect definitely has to be taken into account [20]. It turns out that some fiber designs 

have a large mode area without bending, but a much reduced mode area with bending, 

whereas there are other designs (e.g. with a parabolic index profile) where the mode area 

starts with a somewhat smaller value but is much less sensitive to bending. 

 So-called chirally coupled core fibers [21,22] have a straight central core in which the 

signal propagates, plus another core which is helically wound around the central core. It is 

possible to obtain strongly selective coupling of the helical core only to higher-order modes 

of the central core, while leaving the fundamental mode essentially unaffected. The 

principle of this selective coupling is that the helicity affects the propagation constant in 

such a way that at least in some limited wavelength range phase matching occurs only for 

coupling to higher-order modes but not to the fundamental mode. 

 In leakage channel fibers [23,24], the core is surrounded by a small number of large holes, 

making all propagation modes leaky in a very selective way, such that all higher-order 

modes but not the fundamental mode experience substantial propagation losses. While 

earlier versions of such fibers have been made as photonic crystal fibers with air holes, 

solid all-glass designs are also possible [25]. 

 The best fiber designs reach an effective mode area of several thousand μm
2
. There is not a 

strict limit, but designs with larger mode areas exhibit less robust single-mode propagation 

and often can tolerate only very slight bending. It appears that no kind of design can offer a 

further substantial expansion of the mode area with robust single-mode propagation. The 

reason for this is essentially that a mode involves some balance of diffraction and wave 

guiding, and as diffraction inevitably becomes weaker at larger mode areas, this balance 

becomes more and more sensitive to any disturbances. 

In high-power fiber lasers and amplifiers based on large mode area fibers, thermal 

lensing can lead to changes of mode properties, in particular to a reduction in effective 

mode area [26].The problem of refractive index control can in some situations be mitigated 

http://www.rp-photonics.com/step_index_fibers.html
http://www.rp-photonics.com/propagation_constant.html
http://www.rp-photonics.com/phase_matching.html
http://www.rp-photonics.com/leaky_modes.html
http://www.rp-photonics.com/photonic_crystal_fibers.html
http://www.rp-photonics.com/effective_mode_area.html
http://www.rp-photonics.com/high_power_fiber_lasers_and_amplifiers.html
http://www.rp-photonics.com/thermal_lensing.html
http://www.rp-photonics.com/thermal_lensing.html
http://www.rp-photonics.com/thermal_lensing.html
http://www.rp-photonics.com/effective_mode_area.html
http://www.rp-photonics.com/effective_mode_area.html
http://www.rp-photonics.com/effective_mode_area.html
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by using a multifilament core, where the fiber core is realized as a two-dimensional array of 

filaments [27].As each single filament exhibits only weak guidance, the overall structure 

can exhibit single-mode guidance. This concept is particularly interesting for erbium-

ytterbium-doped fibers. 

 An interesting concept described recently [28,29] is first to couple light from the 

fundamental mode to a particular higher-order mode, using a long-period fiber Bragg 

grating, then to propagate the light in this higher-order mode in the amplifying fiber, and 

then finally to convert the light back to the fundamental mode with another fiber Bragg 

grating. The claimed advantage of using a higher-order mode is twofold: such modes have 

larger effective mode areas, and they exhibit a weaker coupling to other modes. The power 

losses associated with coupling to and from this higher-order mode can be small, and the 

fiber design can be optimized for a broad bandwidth for this coupling. However, difficulties 

can arise from the very uneven intensity distribution. This can lead to fiber damage even in 

a regime where the overall nonlinearity is moderately strong, so the approach may solve 

problems with nonlinearities but not those with damage. Also, the mode field significantly 

extends into the cladding (the inner cladding in the case of a double-clad fiber), which is 

not ideal for amplification. 

                   Another novel concept is that of the gain-guided, index-antiguided single-mode 

fiber [30-33], which is a type of active fiber. Here, the unpumped fiber is not guiding (even 

antiguiding), as the refractive index of its core is lower than that of the cladding. For 

sufficiently strong pumping, however, gain guiding can stabilize a leaky mode with high 

beam quality. As the losses of such a mode rapidly decrease for increasing core size, a 

fairly moderate laser gain can be sufficient to achieve propagation with positive net gain if 

the core is large. Higher-order modes also exist, but would require a significantly higher 

gain. That level of gain is not reached when the lower-order mode saturates the gain, as it 

easily happens in a laser, but not necessarily in a high-gain amplifier. The greatest 

challenge of this concept is efficient pumping. Note that the pump light is not guided and 

even expelled from the doped core by the index structure and the absorption. A diode-

pumped fiber laser has been demonstrated with this concept, but novel pump arrangements 

will have to be developed to allow for efficient operation. 

http://www.rp-photonics.com/higher_order_modes.html
http://www.rp-photonics.com/fiber_bragg_gratings.html
http://www.rp-photonics.com/fiber_bragg_gratings.html
http://www.rp-photonics.com/fiber_bragg_gratings.html
http://www.rp-photonics.com/double_clad_fibers.html
http://www.rp-photonics.com/rare_earth_doped_fibers.html
http://www.rp-photonics.com/refractive_index.html
http://www.rp-photonics.com/fiber_core.html
http://www.rp-photonics.com/gain_guiding.html
http://www.rp-photonics.com/leaky_modes.html
http://www.rp-photonics.com/lasers.html
http://www.rp-photonics.com/amplifiers.html
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2.3 A General Difficulty 

A general problem with the use of large mode area fibers is that these fibers are not 

compatible with standard fiber components. (Many fiber-optic components are only 

available with standard mode sizes.) When a large mode area fiber is fusion spliced to a 

standard fiber, the large mismatch in mode areas leads to an excessive power loss at the 

joint. There are two solutions to this problem, which however are both not fully satisfying: 

 One can use a tapered fiber as a mode converter between the two fibers. The tapered fiber 

must be made such that the mode size matches that of the large mode area fiber on one end 

and that of the standard fiber on the other hand. One then has to do two splices instead of 

one, but each one can have very low losses. The main difficulty with that method is that a 

tapered fiber is needed, which may not be easy to obtain. 

A frequently used solution for laboratory experiments is to use free-space coupling 

from and to the large mode area fiber. A laser resonator may then be made with bulk 

components only, apart from the active fiber. This leads to flexible laboratory setups, 

which however are not very suitable for commercial use, as they involve sensitive 

alignment and are sensitive to dust, particularly to dust deposited on the fiber ends. 

 

2.4 RECENT DEVELOPMENTS 

High power fiber lasers and amplifiers have of course been a very important topic at 

various conferences throughout the world. Quite a number of talks addressed the quest for 

larger mode areas, as this issue has been recognized as the central bottleneck which has to 

be overcome in order to continue the recent enormous performance enhancements. Quite 

some creativity has been unleashed in the context of attempts to tackle this problem. These 

are: 

 Sandia National Labs is optimizing refractive index profiles for very large mode 

areas. Some combined power-law design was found to exhibit better performance 

than e.g. square-law or triangular profile fibers [33]. 

http://www.rp-photonics.com/fusion_splicing_of_fibers.html
http://www.rp-photonics.com/laser_resonators.html
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 Fitel reported on distributed mode filtering in a cladding-pumped amplifier. This 

technique makes it possible to suppress higher-order modes as well as to filter out 

ASE [34]. 

 Researchers at the University of Michigan, collaborating with the company Nufern, 

have demonstrated a fiber with chirally-coupled core. This contains a second core 

wound around the central core. The idea is basically to obtain phase-matched 

coupling e.g. of the LP11 mode to the lossy chiral core, hoping to suppress all 

higher-order modes of the multimode core even at large mode areas [35]. 

 IMRA reported an impressive mode area of about 3000 μm
2
 in an ytterbium-doped 

leakage channel fiber. This is a photonic crystal fiber made so that the core supports 

several modes, but higher-order modes are strongly attenuated by leakage through 

gaps between the air holes [36]. 

 Femlight uses a 60-cm long rod-type photonic crystal fiber which has to be kept 

straight. The concept is essentially to live with a very weakly guiding core by 

avoiding any bending. Quite short pulses with up to 50 W average powers are 

generated with high efficiency. However, such a device is actually no more used 

like a normal fiber; it is more like a long bulk crystal with some built-in weak 

guiding mechanism. 

 The probably most radical approach is based on a concept developed by the famous 

Anthony E. Siegman: abandon the generally used method of index guiding 

altogether and replace it with gain guiding. He presented the first experimental 

demonstration of this concept, using a neodymium-doped fiber which is anti-

guiding when being unpumped but nevertheless exhibits well-behaved modes due to 

gain guiding. This was demonstrated with the rather unconventional experimental 

approach of pumping the fiber with a Xenon flash lamp. While the results are 

certainly encouraging, with an apparently already rather large mode area, the 

researchers are not yet able to fully assess the potential of their method [37]. 
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2.5 Design for LMA operation for Waveguides 

There are many ways by which LMA operation for waveguides can be done. In all the 

proposed structure there will be less or no leakage loss for the fundamental mode, whereas 

there will be significant leakage loss for the higher order modes. One such structure is 

shown in figure 2.1. Figure 2.1 shows the cross-sectional view of the channel waveguide, 

which consists of a rectangular core and a geometrically shaped cladding [38]. The core has 

a high refractive index 𝑛1, thickness h, and width 2a, and is formed on a substrate with a 

lower refractive index 𝑛2. The region on each side of the core consists of a gradually 

shaped profile of the same core material. The entire structure is covered by another material 

with a low index n3. As shown in Fig.2.1, the shaped profile starts from a height t at y = ±a 

and reaches a height equal to the core thickness h at y = ±b. To facilitate discussion, the 

shaped profile is described by a power-law expression: 

𝑥2 𝑦 = ℎ2 −  ℎ2 − 𝑡2   
𝑏−𝑦

𝑏−𝑎
 
𝑞
  , for a ≤ y ≤b;         (2.1) 

              

                       Figure 2.1 Cross-section of a leaky channel waveguide 
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 Figure 2.2 Thickness of the cladding varies according to the power-law expression 

where q(> 0) is a parameter characterizing the geometric shape of the profile, as shown in 

Fig 2.2. A similar expression can be written for −a ≥ y ≥−b. Because the high-index region 

of the effective cladding eventually reaches the same height as the core, all the modes are 

leaky. The cladding parameters q, b, and t control the leakage losses of the modes. As will 

be shown below, such a cladding structure allows single mode operation with a large core 

and over an extended range of wavelengths. In practice, it is easier to fabricate a step-wise 

cladding than a gradually shaped cladding. Figure 2.3 shows a stair-case design that 

consists of four cladding steps with increasing heights. 

 

                Figure 2.3 Stair-case design of a leaky channel waveguide 
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Similarly, planar waveguides can also be made to work in single mode operation [39]. One 

such structure is shown in fig. 2.4. The proposed structure has a uniform substrate, a 

uniform core and a leaky cladding. The cladding is characterized by a refractive-index 

profile that increases with the distance from the core. Such a structure supports leaky 

modes. 

 

 

 Figure 2.4 Leaky planar waveguide with a graded-index cladding for different values of 

profile parameter q. 

In practice, it is easier to fabricate a waveguide with a small number of homogenous layers 

than one with a continuous graded-index profile. This can also work for a step-wise profile 

as shown in fig.2.5. 

Another proposed structure consists of a uniform substrate, a uniform guiding core and a 

multi-layer cladding as shown in Fig. 2.5 [40]. The core of width a has the refractive index 

𝑛1, while the cladding of width (b-a) is formed by alternate low and high index regions. 

The high-index cladding regions have the same refractive-index as that of the core and the 

refractive-index of the depressed region is subjected to power-law variation given by 
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Figure 2.5 Leaky planar waveguide with only a few cladding layers. 

 

Figure 2.6 Refractive index profile of multilayer planar waveguide for three different 

values of profile parameter q. 



15 
 

 

n2(x) = n1
2  1 − 2Δ  

b−x

b−a
 

q
     ; for  a < x < b           (2.2) 

Where q (> 0) is called the profile shape parameter. Δ = 
𝑛1

2−𝑛0
2

2𝑛1
2  is the relative index 

difference between guiding core and the first cladding layer, 𝑛2 being the refractive index 

of the first depressed layer of the cladding. The NA of the waveguide can, thus, be defined 

as 𝑛1 2∆. d represents the width of depressed cladding layer while the periodicity of the 

low- and high- index cladding layers is defined by Λ. 
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Chapter 3 

Method of analysis 
 

3.1 Introduction 

Ongoing developments in the area of optoelectronic design have required accurate, reliable 

and powerful tools for the analysis of its constitute wave guiding elements as well as for 

entire circuits. Typical dielectric waveguides which have been developed for 

optoelectronics are shown in Fig.3.1 and include slab waveguides, buried waveguides, air-

clad rib and buried rib waveguides, diffused waveguides and buried diffused waveguides. 

The analysis of the above mentioned waveguides means finding the propagation constants 

and field profiles of all the modes that the waveguide supports.  

With improvements in computer capabilities there is strong interest and demand for 

CAD applications that would enhance analysis and play an important part in the design 

process. Therefore, developing a CAD application package that can provide exact, fast and 

efficient analysis of the aforementioned components is an area of great interest and 

research. Unfortunately, with the exception of the simple structure of a slab waveguide, for 

which exact closed form solutions exist, most practical structures are more complex and 

exact analytical solutions do not exist. Solution is then sought by solving Maxwell’s 

equations using either numerical or semi-analytical methods. The accent will be put on the 

semi-analytical methods which form the basis of the present work and on numerical 

methods that are used to provide results for comparison purposes. 

We will be studying both numerical and semi analytical methods in detail in this 

chapter, while we have taken Effective Index Method (EIM) for analyzing waveguide 

structures. 
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Fig.3.1.   Typical dielectric waveguides: (a) slab waveguide, (b) buried waveguide, (c) 

air-clad rib waveguide, (d) buried rib waveguide, (e) diffused waveguide, (f) buried 

diffused waveguide 
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3.2 Numerical methods 

Numerical methods solve Maxwell’s equations exactly and the results they provide are 

often regarded as benchmarks. Numerical methods, such as the Finite Difference (FD), 

Finite Elements (FE) and Finite Difference Beam Propagation (FDBPM) methods are 

robust, versatile and applicable to a wide variety of structures. Unfortunately, this is often 

achieved at the expense of long computational times and large memory requirements, both 

of which can become critical issues especially when structures with large dimensions are 

considered or when used within an iterative design environment. In this section, a short 

overview of these numerical methods is given. 

 

 

3.3 Finite Element method 

The Finite Element (FE) method is well established numerical technique for solving 

boundary value problems. The method is based upon dividing the problem region into non-

overlapping polygons, usually triangles, as shown in Fig.3.2. The field over each element is 

then expressed in terms of low-degree interpolating polynomials weighted by the field 

values at the nodes of each element. The total field is found as a linear summation of the 

fields over each element [41,42]. The FE method uses a variational expression which is 

formulated from Maxwell’s equations. By differentiating the variational functional with 

respect to each nodal value, the eigen value problem is obtained of the form 

                                        [A][x]-[B][x]=0                                                         (3.1) 

where [A] and [B] are sparse matrices, usually symmetric, [x] is the nodal matrix and is 

the natural eigenvalue of the problem. Eq.(3.1) is solved for all eigenvalues using iterative 

techniques. Solution of the problem can be in terms of its natural frequency or in terms of 

the propagation constant β, depending on the variational formulation[42] .The former case 

is less preferred since an initial guess for βis required which can be especially difficult in 

situations where βhas a complex value. 

 The accuracy of the FE method can be increased by using a finer mesh or by 

employing higher order polynomials. A finer mesh increases the size of the matrices [A] 
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and [B], and higher order polynomials reduce their sparsity involving increased 

programming effort. 

 

 

 

 

 
 

 

                   Fig.3.2. Modeling of a buried waveguide using a Finite Element mesh 

 

The appearance of spurious solutions is a serious downside of the method and is caused by 

not satisfying the divergence condition (∇H=0). Formulating the variational expression in 

terms of various field components has been tried to avoid spurious solutions. The number 

of formulations have been proposed, out of which the full H-field formulation is the most 
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commonly used in modeling optical waveguides due to a much easier treatment of 

boundary conditions. However, the occurrence of spurious solution is still present. Until 

now, only a formulation in terms of the transverse components of the E or H field does not 

give spurious solutions but it produces dense matrices instead [43-45].Suppression of 

spurious solutions can be alternatively achieved by introducing a penalty term into the 

variational expression with a penalty parameter defined heuristically [46], or by checking 

the zero divergence condition for each obtained mode and discarding ones that do not 

satisfy it [47]. These methods are only partially successful since spurious solutions may 

appear in the whole frequency spectrum and distinguishing them from physical modes can 

be a very difficult task. A more successful approach is to use edge elements that force 

spurious solutions exactly at zero frequency [48,49]. In this approach, the interpolating 

functions are defined as vectors and the continuity of tangential components across 

elements is satisfied. The continuity of normal field components is not satisfied which 

gives rise to a non-zero divergence. However, all spurious solutions are forced to zero 

frequency and hence easily identifiable.  

Modeling of the open problem space within the FE method was at first done by 

truncating the computational window and imposing an artificial electric wall around it, a 

technique which as with the FD method, gives erroneous results for waveguides operating 

near cut-off [45] .Much better results were obtained by introducing infinite elements in 

which the field is forced to decay exponentially (the decay rate being defined heuristically). 

The infinite elements, (Fig.3.2), do not increase the size of the matrices [50] but on the 

other hand can treat only nonradiating structures [42, 51] .A better approach is by using an 

impedance boundary condition where the appropriate radiation condition of the fields at the 

fictitious boundary (the boundary that separates the interior (guiding) region from the 

exterior (decaying) region), is assumed and approximately satisfied and from which the 

condition at the infinity is derived. This approach can also treat the radiation modes by 

simply allowing complex values of propagation constant. In modeling of complex 

geometries, the FE method is considered more flexible than the FD method, due to the 

greater flexibility of triangular elements. The modeling of curved boundaries is additionally 

eased by use of isoparametric elements, (Fig.3.2), that allow curved edges [52]. However, 
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for simple geometries, the FD method is reported to be more efficient than the FE method 

[53]. 

 

 

3.4 Finite Difference Beam Propagation Method 

Unlike the above methods, the Beam Propagation method (BPM) describes the evolution of 

the total field propagating along a guide. The BPM method was first applied to 

optoelectronics in 1980 [54]. The original BPM represented the total field as a 

superposition of plane waves that propagate in a homogeneous medium. The propagation 

was modeled using a paraxial wave equation, which assumes that the wave vector is 

inclined by a small angle with respect to the axis of propagation [55]. The field that 

propagates in an inhomogeneous media was calculated by integrating the fields in the 

spectral domain and applying the phase correction in spatial domain at each propagation 

step. The Fast Fourier Transform (FFT) was used to relate the spatial and spectral domains, 

so the method is referred to as FFT-BPM. 

Initially, the FFT-BPM was developed for the case of weakly guiding structures, 

neglecting the vectorial properties of the field. The use of the paraxial approximation 

limited the method to structures where the beam propagates in directions that make small 

angle with respect to the axis of propagation. In order to avoid the use of the FFT, the 

paraxial wave equation was solved through the appropriate variational expression using the 

FE method [56] and later using the FD method [57] from which the Finite Difference Beam 

Propagation Method (FD-BPM) evolved. Comparisons between the FFT- and the FD-BPM 

show that for comparable accuracy the FD-BPM employs larger propagation step size. Also 

the computational time per propagation step in the FD-BPM is much lower which makes it 

a more efficient tool for the analysis of complex structures [58]. 

         With the FD implementation, the BPM was soon extended to include vectorial 

properties for 2D and 3D propagation [59-64]. Recently, FD-BPM schemes based on 

structures related co-ordinate schemes that naturally follow the geometry of a structure 

have been described and shown to be particularly useful when the angle between the 

waveguide and propagation direction increases [65]. From the aspect of modeling the open 
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boundary condition at the edge of the problem work space, absorbing boundary conditions 

(ABC) were first applied [66]. These have subsequently been replaced by efficient 

transparent boundary conditions (TBC) [67]. In the ABC approach unwanted reflections are 

absorbed by a lossy material that is placed at the edges of computation window. The major 

disadvantage of the ABC is that the lossy material is problem dependent and fields at the 

boundary must have zero value so that a large computational time and computer memory 

are frequently required. In the TBC approach the outgoing wave is let pass at a particular 

incident angle. This method is less problem dependent, more robust and does not require 

large memory resources. Still, the window size should be sufficiently large as not to cause 

power attenuation of the part of the field that propagates in the core region [68]. Also, the 

effectiveness of the TBC approach is limited for structures with wide angle propagating 

waves.  

Recently, a new boundary condition, the perfectly matched layer (PML) boundary 

condition, has been proposed and reported to be the most effective[69,70]. The PML 

approach is based on introducing a fictitious layer of certain electric conductivity that is 

able to absorb and exponentially attenuate the outgoing wave at any angle or frequency. 

The Finite Difference Beam Propagation Method (FD-BPM) is one of the most popular 

methods for analysis of field propagation in inhomogeneous optical guides like tapers, Y-

junctions, bends and gratings. 

 

 

3.5 Analytical Methods 

This section will present an alternative approach to the numerical methods discussed in the 

previous section. The analytical methods are widely used in the modeling of optoelectronic 

waveguides such as buried waveguides, rib waveguides, tapers and directional couplers. 

Unlike numerical methods, semi-analytical methods make certain approximations to the 

structure under consideration and then solve the resulting, simplified problem analytically. 

This group of methods has always been very popular with the optoelectronic circuit 

designer, especially before the advent of modern computers. Since they are very efficient, 

often provide accuracy comparable with that of numerical methods and are also easily 
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implemented, they are still highly valuable for the design of a particular device or even 

entire circuits. Unfortunately, each semi-analytical method is usually limited to a certain 

type or class of problem. The number and scope of semi-analytical methods is rapidly 

increasing, with both the development of new methods and the improvement of existing 

ones. Methods such as the mode-matching method, transverse resonance methods, 

perturbation methods, the method of lines, the Effective Index method, and the Spectral 

Index method all belong to the class of semi-analytical methods[45,71]. To give a proper 

account of every method is beyond the scope of this thesis and therefore this section will 

only focus on those methods which are closely related to this work. 

 

 

3.6 Effective Index Method 

Effective Index (EI) method [72] is one of the most popular methods for the analysis of 

optical waveguides. In this method, the effective index of the structure is obtained by 

successively solving two transcendental slab equations. If the example of a rib waveguide 

is considered, Fig.3.3(a), then the method in the first step solves transcendental equations 

for three vertical slabs, Fig.3.3(b). The effective indices (𝑛𝑒𝑓𝑓1) so obtained become the 

refractive indices for a horizontal slab waveguide, as shown in Fig.3.3(c). Solving the 

transcendental equation for the horizontal slab gives a good approximation to the effective 

index of the original rib waveguide structure. The advantage of the EI method is that it can 

be applied to a wide variety of structures. The weakness of the method is that it does not 

give good results when the structure operates near cut-off or when the outer slab of a rib 

guide is not a guiding slab [45]. Moreover, the field profiles obtained from the method is of 

limited use. The simplicity and speed of the method have encouraged many engineers to 

search for different approaches that will improve the accuracy of the EI method. 

Consequently, many different variants of the EI have been developed such as the EI method 

based on linear combinations of solutions [73, 74], the EI method with perturbation 

correction [75], or the variational EI method developed specifically for rib waveguide 

analysis. 
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Fig.3.3 The Effective Index method for the rib waveguide (a) the original rib waveguide, 

(b) solving the vertical slab problem to define 𝑛𝑒𝑓𝑓1  and 𝑛𝑒𝑓𝑓2  (step 1), (c) solving the 

equivalent horizontal slab problem for 𝑛𝑒𝑓𝑓  of the whole structure (step 2). 

 

We will be using EIM in conjunction with TMM (Transfer Matrix Method). Leakage loss 

of higher order modes and the guiding property of the fundamental mode have been 

analyzed by calculating the propagation constant, leakage loss and the modal field profile 

of the modes by using TMM. TMM is a powerful tool to analyze the propagation 

characteristics of fiber and waveguides having arbitrary shape. Being a scalar method, it is 

fast and easy to implement. This method is particularly useful for analyzing a multilayer 

structure such as the one proposed in this paper. By applying suitable boundary conditions 

at the interface of two consecutive layers, the field coefficients in the layers can be related 

by a 2 ×2 matrix, usually referred to as a transfer matrix. The field coefficients of the first 

and the last layer of the profile can be connected by simply multiplying all the intermediate 

matrices of each interface. A suitable boundary condition in the first and last layer would 

lead to a complex eigenvalue equation. Any suitable root searching algorithm can be used 

to solve the complex roots of the equation. The real part of the propagation constant gives 
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information about the effective index of a mode while the leakage loss can be estimated 

from the imaginary part.                  
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Chapter 4 

Design and Analysis of Leaky 

Channel Waveguide 
 

For large mode area design, we have proposed a leaky design so that only fundamental 

mode experiences no loss while other mode experiences loss. Hence by this design 

fundamental mode propagates through the core. The structure is shown in the figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                Figure 4.1: Proposed Leaky structure 

The proposed structure channel waveguide is characterized by uniform rectangular core; 

namely central and side core; and a leaky cladding. The central core has a high 

refractive index 𝑛1, a thickness ℎ1, and a width a, while side core which is placed on the 

each side of central core has same refractive index 𝑛1, thickness ℎ2 and width 𝑑1. Both 

the cores are formed on a substrate with a lower index 𝑛2. The region on each side of 

the core consists of a stair-case profile of the same core material. The stair stops at a 

  a 

h1 

h2 

t 

d1 

d3 

d2 

n3 

n1 

   n2 
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height equal to the side core thickness t. The entire structure is covered by another 

material with a low index 𝑛3. 

Proposed channel waveguide is designed in such a way that it supports that it supports 

several modes out of which only fundamental mode is perfectly guiding rest others are 

leaky in nature. A 20dB leakage loss to the first higher order mode can strip off all the 

higher order to ensure the effective single-mode operation is calculated by solving the 

structure by using Effective Index  method in conjunction with Transfer Matrix Method. 

All the parameters play a crucial role in designing the waveguide for large mode area 

effective single-mode operation. 

In EIM, since the proposed structure is two dimensional structures, hence analysis can 

be done through EIM method in conjunction with TMM method. The analysis can be 

done in either of two ways i.e. y- method or x-method. We will solve it using x- method. 

Under this method, first the given structure is solved in y –axis and then it is solved in x- 

axis, hence making two- dimensional structure into one – dimensional structure and 

then we will apply TMM method. 

We have now optimized the values of different parameters in such a way that only 

fundamental mode is able to propagate, while other mode experiences loss. In this we 

have observed the variation of losses with change in: wavelength, a, d1, d2,, t. 

We have carried out numerical simulation for the following parameters unless stated 

otherwise, which are typical for silica on silicon waveguides n1= 1.542, n2= 1.444, n3= 

1.512; 

 a = 5µm, d1 = 5µm, d2 = 1µm, d3 = 10µm, h1 = 10µm, h2 = 7µm, t = 3µm. 

Contour plot and field plot of 𝐸11
𝑥  and 𝐸21

𝑥 is shown below. In the same way field plot of 

𝐸11
𝑦
𝑎𝑛𝑑  𝐸21

𝑦
is also shown. With the help of contour and field plot, losses of desired 

modes can be found easily among undesired and number of modes. 

To make the complete study of the proposed design, we have studied the effect of all 

design parameter for single mode operation. 
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Fig.4.2: Contour plot of 𝐸11
𝑥  

 

Fig.4.3: Contour plot of 𝐸21
𝑥  
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Fig.4.4:  Field plot of 𝐸11
𝑥  

   

                Fig.4.5:  Field plot of 𝐸11
𝑦
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Fig.4.6:  Field plot of 𝐸21
𝑦

 

 

Fig.4.7:  Field plot of 𝐸21
𝑥  
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We have optimized the different parameters of the design.  

Firstly optimizing the value of d1 in which value of d1 is changed from 1 micron to 5 

micron, keeping all the parameter constant at λ= 1.55 µm. Variation of leakage loss of 

higher order modes with change in value of d1 is shown in fig.4.8. 

Fig.4.8: Variation of leakage loss of 𝐸21
𝑥  𝑎𝑛𝑑 𝐸31

𝑥  with change in value of d1 

As seen from the graph that as the distance d1 increases, leakage loss decreases. In 

addition to this, leakage loss increases as the mode order increases. It is because as the 

distance of high refractive index region from low refractive index region increases, 

hence less loss will be experienced due to abrupt change in refractive index region. In 

another words, when less distance is there between high index region and low index 

region, it makes higher order modes to leak out hence, making leakage loss increased 

for higher order modes. It can be observed from graph that at d1=5 micron loss 

  d1 (µm) 

𝐸31
𝑥  

𝐸31
𝑥  

 
𝐸21
𝑥  

 



32 
 

experienced by 𝐸21
𝑥 is approximately 20dB/mm, hence 1mm of distance is required to 

leaked out higher order modes.  

Variation of mode area of 𝐸21
𝑥 is shown in figure 4.9. 

 

  Fig.4.9: Variation of mode area of 𝐸21
𝑥  with change in value of d1 

From the graph it can be observed with increase in value of d1, mode area of 

𝐸21
𝑥 decreases, since larger mode area shows that mode will be spread in leaky region, 

and hence loss increases. It was seen that mode area at d1= 5 micron is 905 µm
2
.   

Now the value of d2 is optimized, hence for this the value of d2 is varied from 0.5 

micron to 2.5 micron at λ= 1.55 µm. It can be seen from the graph as d2 increases, 

leakage loss decreases. It is because for small values of d2, there will be abrupt change 

in refractive index profile, hence experiencing more leakage loss. Whereas when large 

value of d2 is observed, there will be smooth transition from high index region to low 

index region. Therefore less loss is experienced. It is to be further noted that loss 

experienced by the higher order modes are large compared to that of lower order modes. 

It was seen that leakage loss of 𝐸11
𝑥 was experiencing no loss, whereas losses of higher 
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order modes were significant, which could be verified by the graph of leakage loss 

of 𝐸21
𝑥  with change in value of d2 as shown in fig.4.10.  

 

Fig.4.10: Variation of leakage loss of  𝐸21
𝑥  with change in value of d2 

 

It can be seen from the figure that at d2 =1.5 µm, loss experienced by higher order 

modes was approximately 8dB/mm, which in turn shows that higher order modes will 

require 3mm of length of waveguide, to completely leaked out higher order modes. It 

means that a waveguide of length 3mm can efficiently show single mode operation. 

Variation of mode area of  𝐸21
𝑥  with change in d2 is shown in figure 4.11. It can be seen 

that as d2 increases, mode area of  𝐸21
𝑥  decreases and at d2= 2 micron mode area is equal 

to 874µm
2
. On further increasing d2 value, mode area gets constant hence making it 

optimized for the value of d2.  
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Fig.4.11: Variation of mode area of 𝐸21
𝑥  with change in value of d2 

After optimizing the value of d1, d2 we will be optimizing values of a and t. Here value 

of t is optimized. This is done by varying the value of t from 1 to 5 micron, while 

keeping all the parameters constant. 

Fig.4.12: Variation of leakage loss of 𝐸21
𝑥  with change in‘t’ 
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As seen from the graph that as the t increases, so is the loss associated with it. Loss 

associated with higher order modes was large as compared to lower order modes. An 

increase in the value of t effectively decreases the core-cladding index contrast and thus 

increases the losses of the modes. At t =5 micron, loss associated with 𝐸21
𝑥  is 15 dB/mm, 

hence approximately 1.4 mm of distance is required to completely leak out 𝐸21
𝑥 , which 

makes waveguide to efficiently work as single mode operation. It is also to be noted that 

at t = 5 micron, loss also becomes constant, optimizing the value for t. 

Variation of mode area of 𝐸21
𝑥  with change in t is shown in figure 4.13.It increases as 

value of t increases. At t=5 micron mode area is equal to 942µm
2
. 

Fig.4.13 Variation of mode area of 𝐸21
𝑥  with change in t 

Now ‘a’ is optimized by varying the length from 5 micron to 9 micron, keeping all the 

parameters constant. As observed from the graph as ‘a’ increases, leakage loss 

decreases. Leakage loss of higher order mode is high as compared to 𝐸21
𝑥 . An increase in 

the core width leads to a tighter light confinement in the core and hence a lower leakage 

loss. Hence a must be around 7 micron to leak out higher modes, which is having loss 

of 8 dB/mm. Therefore it will require length of 2.5 mm to completely leak out higher 

order modes. 
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Variation of mode area with change in a is shown in fig.4.15. It can be seen from the 

graph that as a increases, mode area also increases. At a = 9 micron, mode field area is 

equal to 1085µm
2
. 

 

Fig.4.14: Variation of leakage loss of 𝐸21
𝑥  with change in ‘a’ 

 

Fig. 4.15: Variation of mode area of 𝐸21
𝑥 with change in a 
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After optimizing the parameters of the structure, spectral analysis is being observed. 

Fig.4.16 shows the effective-index profiles 𝑛𝑒𝑓𝑓 (𝑦) calculated for two different 

wavelengths λ = 633 nm and λ =1550 nm. 

 

 

Fig.4.16: One-dimensional effective refractive-index profiles obtained by the effective-

index method for the wavelengths 633 nm (dashed) and 1550 nm (solid) 

As shown in Fig.4.16, the index of the cladding increases monotonically in the x-

direction and eventually reaches the same value of the core index. In such a structure, 

the effective index of each mode is lower than the cladding index at a certain distance 

from the core and thus becomes leaky. If the leakage losses of all the high-order modes 

are significantly larger than that of the fundamental mode, the structure operates 

effectively as a single-mode waveguide. 

y (µm) 

𝒏𝒆𝒇𝒇(𝒚) 
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Fig.4.17:𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝐸11
𝑥  𝑎𝑛𝑑 𝐸21

𝑥 (𝑠𝑜𝑙𝑖𝑑), 𝐸11
𝑦

and 𝐸21
𝑦

 (dashed) 

with change in value of wavelength 

 

As seen by the graph as the wavelength increases effective index decreases. It is 

because as wavelength increases normalised parameter decreases, which in turn show 

that wave, will be less confined in core and will spread in leaky region, hence effective 

index decreases. It is further to be noted that effective index of the fundamental mode 

i.e. 𝐸11
𝑥   is high as compared to that of higher order mode 𝐸21

𝑥 . In the same way graph of 

effective index of 𝐸11
𝑦

and 𝐸21
𝑦

with change in wavelength is also plotted in fig.4.17. It 

was observed that loss of  𝐸11
𝑦
𝑎𝑛𝑑  𝐸21

𝑦
was less as compared to that of 

𝐸11
𝑥  𝑎𝑛𝑑 𝐸21

𝑥 .Hence by analyzing graph of for both x and y polarization, it can be said 

that both show approximately same characteristics while changing the value of 

parameters. 

Higher order 

mode 

Fundamental 

mode 

mode 

 (µm) 
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Chapter 5 

Conclusion and Scope for Future Work 
 

We propose a new class of channel waveguides that can potentially offer single-mode 

operation with a large core area. The waveguide is characterized by a uniform rectangular 

core and a geometrically shaped cladding to provide leakage for all the modes. When all the 

modes, except for the fundamental mode, are stripped off sufficiently in the waveguide, 

effective single-mode operation is ensured. Single mode operation is made possible with 

the help of certain design parameters due to which higher order modes are leaked out. Due 

to large core area it can support large power and is also less fragile. This is a great 

advantage. 

In thesis we came upon following conclusion: 

Firstly, as the distance ‘d1’ increases, the loss associated with it decreases. In addition to 

this, leakage loss increases as the mode order increases. Secondly, as ‘d2’ increases, leakage 

loss decreases. Similarly, as ‘t’ increases, so is the loss associated with it. Loss associated 

with higher order modes was large as compared to lower order modes. And finally, as ‘a’ 

increases, leakage loss decreases, since an increase in the core width leads to a tighter light 

confinement in the core and hence a lower leakage loss. For the wavelength, as the 

wavelength increases, loss associated with also increases. 

Our numerical example with typical design parameters shows that such a waveguide can 

provide single-mode operation with a core area as large as 100 μm
2
 over an extended range 

of wavelengths, which can effectively suppress nonlinear optical effects and increase the 

power-handling capacity of the waveguide. Waveguide would be effectively single mode 

after travelling a distance of ≈ 2.5 mm. This class of waveguide is expected to find 

applications in high-power waveguide lasers and amplifiers. 
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It was seen that for extended single mode operation a/h1 ratio must be between 0.5 to 1[76], 

which is also verified as our ratio came out to be 0.7. 
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