A Dissertation on

"ASSESSMENT OF NITRATE CONTAMINATION IN GROUNDWATER OF DELHI USING MATHEMATICAL MODELLING"

Submitted in partial fulfillment of the requirement for the award of the degree of

> Master of Technology (Environmental Engineering)

Submitted by: ABHISHEK KUMAR SINGH Roll No: 01/ENV/2010

Under the esteemed guidance of:

Prof. S K SINGH Professor & Head & Dr. P ALBINO KUMAR Assistant professor

DEPARTMENT OF ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY, DELHI 2011-12

ACKNOWLEDGEMENT

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my supervisor **Dr. S. K. Singh**, Professor, Head of Department of Environmental Engineering, Delhi Technological University (Formerly Delhi College of Engineering), for his invaluable guidance, encouragement and patient reviews. His continuous inspiration only has made me complete this dissertation. Without his help and guidance, this dissertation would have been impossible. He remained a pillar of help throughout the project.

I express my sincere gratitude to the faculty, lab assistant and non teaching staff of Environmental engineering department and the library of Delhi Technological University for providing the relevant information and help when needed during the course of this project work.

I am also thankful to my classmates and my friends for their unconditional support and motivation during this work. I must pay my sincere regards to Sameer, Vijay, Ritika and Paritosh especially to keep me charged during the whole dissertation period.

Abhishek Kumar Singh

(01/ENV/2010)M.Tech, Environmental EngineeringDepartment of Environmental Engineering,Delhi Technological University

DECLARATION

I, hereby declare that the work being presented in the Project Report entitled **"ASSESSMENT OF NITRATE CONTAMINATION IN GROUNDWATER OF DELHI USING MATHEMATICAL MODELLING"** is an original piece of work and an authentic report of our own work carried out during the period of 4th Semester as a part of my major project.

The data's presented in this report was generated & collected from various sources during the above said period and is being utilized by me for the submission of my Major Project Report to complete the requirements of Master's Degree in Environmental Engineering, as per Delhi Technological University curriculum.

Abhishek Kumar Singh

(01/ENV/2010) M.Tech, Environmental Engineering Department of Environmental Engineering, Delhi Technological University

CERTIFICATE

This is to Certify that the work reported by **Mr. Abhishek Kumar Singh**, students of Master of Technology (M.Tech) in Environmental Engineering from Department of Environmental Engineering, Delhi Technological University, Delhi, in his major project work entitled **"ASSESSMENT OF NITRATE CONTAMINATION IN GROUNDWATER OF DELHI USING MATHEMATICAL MODELLING"**, is the bonafide work carried out by him under our guidance. This has not been submitted in any form for the award of any degree/diploma elsewhere and he has successfully completed his project work.

This project work is submitted in partial fulfilment for the award of M.Tech Degree in Environment discipline, required by Delhi Technological University under their present curriculum.

He has taken keen interest and has learnt a lot from the project and its various procedures to deal with various environmental issues. He was sincere and hard working.

(Dr. S K SINGH)

Professor Head of Department of Environmental Engineering. Delhi Technological University, Delhi.

(Dr. P. ALBINO KUMAR)

Assistant Professor Department of Environmental Engineering. Delhi Technological University, Delhi.

Table of Content

S. No.	Title	Page No.
	ACKNOWLEDGEMENT	Ii
	DECLARATION	Iii
	CERTIFICATE	Iv
	LIST OF FIGURES	Vii
	LIST OF TABLES	Viii
	ABSTRACT	1
	Chapter 1: INTRODUCTION	3
1.1	Introduction	3
1.2	Groundwater contamination	5
1.3	Objective of the Study	7
	Chapter 2: LITERATURE REVIEW	8
	Chapter 3: DEVELOPMENT OF THE MATHEMATICAL	
	MODELS	12
3.1	Type of Models	12
3.1.1	Analytical Models	12
3.1.2	Numerical Models	13
3.2	Development Of Model	14
3.2.1	Hydro-geological Characterization	15
3.2.2	Model Conceptualization	16
3.2.3	Modelling Software Selection	17
3.2.4	Model Design (Input Parameters)	20
3.2.5	Model Calibration	20
3.2.6	Sensitivity Analysis	23
3.2.7	Model Verification	25
3.2.8	Predictive Simulations	25
3.2.9	Performance Monitoring Plan	29
	Chapter 4: GROUND WATER QUALITY MODELLING	31
4.1	Governing Equations	33

4.1.1	Groundwater Flow Equation	33	
4.1.2	Seepage Velocity	36	
4.1.3	Solute-Transport Equation	36	
4.2	Solution Of Equations	42	
4.2.1	Finite-Difference Methods	47	
4.2.2	Finite-Element Methods	53	
4.2.3	Matrix Solution Techniques	54	
4.2.4	Boundary And Initial Conditions	55	
	Chapter 5: DEVELOPMENT OF MODEL FOR NITRATE	57	
	CONTAMINATION	57	
5.1	Conceptual Model For Unsaturated Water Flow	57	
5.2	Nitrogen transport and transformation in soil	58	
5.3	Initial Conditions And Boundary Conditions	61	
5.4	Model Parameters	62	
5.5	Numerical solution	63	
5.6	Solution of Model	63	
5.7	Results And Analysis	66	
5.7.1	Water Content	66	
5.7.2	Ammonia and Nitrogen Concentration	66	
5.7.3	Nitrate Nitrogen Concentration	68	
	Chapter 6: CONCLUSION & RECOMMENDATION	69	
6.1	Recommendations	70	
6.2	Applications of The Study	71	
6.3	Scope of The Study	71	
	REFERENCES	72	

LIST OF FIGURES

Figure No: Name Page No Flowchart of development process of a model Figure 3.1: 19 Figure 3.2: Comparison between computed and measured hydraulic head 22 Figure 3.3: **Calibration Targets** 23 Simulated change resulting from change in parameter Figure 3.4 24 Figure 3.5: Simulated uncertainty in hydraulic heads at calibration targets 26 Figure 3.6: Predicted range in hydraulic heads 27 Figure 3.7: Simulated wallhead protection area using range of hydraulic 28 conductivities Figure 3.8 Simulated contaminant concentration 29 Figure 4.1 Hypothetical application of finite-difference and finite-element 45 grids to an irregularly bounded aquifer Figure 4.2 Cross section through confined aquifer 49 Part of hydrograph showing that the slope at time t_n can be Figure 4.3 50 derived by approximation Figure 4.4 Grid stencils 51 Figure 5.1 Profile of Water Storage Pit Irrigation 59 Figure 5.2 Profile of two dimensional grid systems 63 Figure 5.3 Physiochemical Properties Of Sample 64 Figure 5.4 Particle Size Analysis 65 Figure 5.5 Sample Content Analysis 67

LIST OF TABLES

Table No.	Description	Page No.
Table 5.1	Physiochemical properties of sample	64
Table 5.2	Particle size analysis	65
Table 5.3	Sample content analysis	67