A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE

OF

MASTER OF ENGINEERING (CONTROL & INSTRUMENTATION)

SUBMITTED BY

Kumari Shipra (University Roll No. 13961) (Class Roll No. 04/C&I/09)

UNDER SUPERVISION

PROF. PRAMOD KUMAR DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI COLLEGE OF ENGINEERING

(UNIVERSITY OF DELHI) DELHI-110042 2009 – 2012

CERTIFICATE

This is to certify that the work presented in this project entitled "Distributed Controllers system", is partial fulfilment of the requirements for the award of Degree of Master of Engineering in Electrical Engineering (Control & Instrumentation) submitted by Kumari Shipra (University roll no. 13961) to the Department of Electrical Engineering, is a record of the student's work carried out under my supervision and guidance.

(Dr. Pramod Kumar)

Professor Electrical Engineering Department Faculty of Technology, University of Delhi Delhi-110042

ACKNOWLEDGEMENT

I would like to thank all the people involved in the preparation of this thesis. Especially, I wish to thank the supervisor of the thesis, Professor Pramod Kumar (Department of Electrical Engineering, Faculty of Technology, University Of Delhi) for his valuable guidance, encouragement and patient review. I would also like to thank Mr. Karan Singh (Sr. Lab Technician, DTU) and colleagues at IPEC college, Ms. Amita Agnihotri , Ms. Shilpa Gupta, Ms. Bindoo Mishra for their fruitful and constructive ideas. Finally, a special thank you to my Spouse Deepak Kumar and my family for his endless support and encouragement.

Kumari Shipra University Roll No: 13961 Class Roll No: 04/C&I/09

CONTENTS

CERTIFICATE		ii
ACKNOWLEDG	EMENT	iii
CONTENTS		iv
LIST OF FIGURE	ΞS	vi-vii
LIST OF ABBRE	VIATIONS	viii
Chapter 1 :	INTRODUCTION	
1.1	Background	1
1.2	Objective of Project	8
1.3	Scope of Project	8
1.4	Outline of Thesis	8
1.5	Conclusion	
Chapter 2 :	Literature Review	
2.1	Introduction	10
2.2	Control System	10
2.3	Distributed Controllers System	11
2.4	Programmable Logic Controllers	12
2.5	Micro-controllers	14
2.6	8051 Micro-controller	16
2.6.1	Features	16
2.7	AVR Micro-controller	17
2.7.1	Features	18
2.8 C	Conclusion	19
Chapter 3 :	Communication Protocol & Field Bus	
3.1	Introduction	20
3.2	Communication Protocol	20
3.3	Network Topology	22

3.4	Field Buses23
3.4.	1 Profi Bus24
3.4.2	World FIP
3.4.3	CAN
3.5	Ethernet Bus
3.6	Mod bus
3.7	MACRO
3.8	Communication protocol functional description31
3.9	Conclusion
Chapter 4 :	Methodology
4.1	Introduction
4.2	DC Drives
4.2.	1 Algorithm for DC Drive control
4.3	Algorithm for AC Drive
4.3	.1 Direct & quadrature-Axis transformation
4.3.	2 Direct torque control45
4.4	Conclusion49
Chapter 5 :	Implementation and testing of Distributed controller
system	
5.1	Introduction50
5.2	8051 Microcontroller51
5.2.	1 Pin configuration & description
5.2.	2 Internal architecture
5.3	AVR Microcontroller
5.3.	1 Internal architecture
5.3.	2 Pin configuration & description
5.4	AVR studio4 integrated development environment59

5.5	Distributed micro-controller system application61
5.6	Conclusion61
Chapter 6 :	Conclusion and Further Scope of Work 62

References

LIST OF FIGURES

Figure No.	Figure Description	Page No.
1.1	Delta V Structure	4
1.2	Smart DCS	6
1.3	System Architecture	7
3.1	Industrial Communications for the example of PROFIBUS	21
3.2	PROFIBUS medium access control	26
3.3	Block diagram of world FIP medium access mechanism	27
3.4	MACRO ring network consists of group of a master and slave stations	31
4.1	Equivalent circuit of a separately excited DC motor	35
4.2	Block dia. Of DC drive	37
4.3	Clark transform vector diagram	41
4.4	Park transform vector diagram	42

4.5	Position of the rotor flux vector	42
4.6	Block dia. Indirect vector control method	43
4.7	Block dia.Direct vector control method	43
4.8	Basic structure of direct torque and stator flux vector	46
4.9	Axis of rotation for various quantities	48
5.1	Block diagram of DCS	50
5.2	Pin configuration of 8051 Microcontroller	51
5.3	Block dia. of 8051 Microcontroller	54
5.4	Block dia. of AVR Microcontroller	57
5.5	Pin configuration of AVR Microcontroller	58

LIST OF ABBREVIATIONS