
 INTRODUCTION TO PROJECT

A Text-To-Speech (TTS) synthesizer is a computer-based system that should be

able to read any text aloud. Let us try to be clear. There is a fundamental

difference between the system we are about to discuss here and any other

talking machine (as a cassette-player for example) in the sense that we are

interested in the automatic production of new sentences. This definition still

needs some refinements. Systems that simply concatenate isolated words or

parts of sentences, denoted as Voice Response Systems, are only applicable

when a limited vocabulary is required (typically a few one hundreds of words),

and when the sentences to be pronounced respect a very restricted structure, as

is the case for the announcement of arrivals in train stations for instance. In the

context of TTS synthesis, it is impossible (and luckily useless) to record and store

all the words of the language. It is thus more suitable to define Text-To-Speech

as the automatic production of speech, through a grapheme-to-phoneme

transcription of the sentences to utter.

Text-To-Speech (TTS) systems aim to transform arbitrary1 textual input into

spoken output. At first glance, this may seem a relatively simple task of

determining the phonetic sounds of the input and outputting a corresponding

sequence of audible signals. However, it is in fact quite a difficult task to produce

intelligible and natural results in the general case. This is due to linguistic and

vocalization subtleties at various levels that human speakers take for granted

when interpreting written text.

The potential application of such functionality is varied, including its use for

language education, as an aid to handicapped persons, for implementing talking

books and toys, for vocal monitoring and other man-machine communication

facilities. The area is currently being explored in order to address its application

for the HINDI language as is being done in the project here.

INTRODUCTION TO SYNTHESIS

A Text-to-Speech system (or TTS system) is the process which converts text into

voice, spoken out loud. A TTS system does basically the same thing as when

you read a page of text. This may seem easy but it took you several years to

learn and you still make some mistakes from time-to-time.

Text-to-speech (TTS) is the ability of the operating system to play back printed

text as spoken words. An internal driver, called a TTS engine, recognizes the text

and using a synthesized voice chosen from several pre-generated voices,

speaks the written text.

The primary goal of a TTS system is to deliver the message contained in the text

in the best possible way in order to insure that the listener grasps the general

sense. The meaning of the text according to its context must also be conveyed.

This means a TTS system must be capable of analyzing the structure of the text,

abbreviations or the acronyms used, extract some indication about the way it

should be read, based on punctuation and text structure. It must also recognize

exceptions to the generic language rules. The system will then apply text to

phoneme conversion based on the language dependant rules.

The final stage of a TTS system is the part that generates audio signals. Several

options are possible to generate speech. There are 3 main technologies for

synthesizing speech, which produce different speech quality:

• Format synthesis Technology

• Concatinative Synthesis Technology

• Phrase Splicing Technology

Formant Synthesis Technology:

Formant is a speech synthesis technology which produces speech using

linguistic rules and knowledge of how the human vocal tract works. The vocal

tract has certain major resonant frequencies, which change as the configuration

of the vocal tract changes. These changes in frequency are known as "formants”.

With Formant technology, the resulting sound is all synthesized causing some to

criticize the technology as being mechanical sounding. However, the Formant

technology is very intelligible, and, because it is totally generated by the

computer, is very flexible. An unlimited number of voices can be created by

modifying voice characteristics such as gender, pitch, speed, and roughness.

Concatinative Synthesis Technology:

A Concatenative TTS system (also known as 3rd Generation) produces speech

from recordings of small snippets of actual human speech. These units (possibly

phonemes, syllables, words, or phrases) are then combined (or concatenated)

according to linguistic rules formulated from analyzed text. When these recorded

speech units are entire phrases or sentences, the output can be very natural,

human-sounding speech. If the recorded speech units are phonemes or words,

the output may sound a bit choppy. Because Concatenative TTS requires

prerecorded units of speech, it requires a significant amount of memory and disk

storage. In addition, applications that use this type of TTS are usually limited to

one voice and to a very specific domain. A Concatenative TTS system can only

produce audio output based on the words and phrases in its dictionaries. If it

cannot find a way to concatenate existing units to form a word, it falls back on the

Formant system to generate them.

Phrase Splicing Technology
 Rather than gluing together small snippets of sounds to comprise a word

(like Concatenative TTS), phrase splicing glues together whole words and

phrases to create a remarkably natural sounding voice. When the phrase splicing

system cannot find words and phrases in its dictionaries, it falls back on the

Concatenative system to generate the words. Phrase splicing is best suited for

customers with very limited amount of text to synthesize. It also requires

significantly more memory than Concatenative TTS.

Here we have made use of concatenative synthesis technology and hence it is

discussed in detail:

TTS using Concatenative Technique

Figure 1 introduces the functional diagram of a very general TTS synthesizer. As

for human reading, it comprises a Natural Language Processing module (NLP),

capable of producing a phonetic transcription of the text read, together with the

desired intonation and rhythm (often termed as prosody), and a Digital Signal

Processing module (DSP), which transforms the symbolic information it receives

into speech. But the formalisms and algorithms applied often manage, thanks to

a judicious use of mathematical and linguistic knowledge of developers, to short-

circuit certain processing steps. This is occasionally achieved at the expense of

some restrictions on the text to pronounce, or results in some reduction of the

"emotional dynamics" of the synthetic voice (at least in comparison with human

performances), but it generally allows to solve the problem in real time with

limited memory requirements.

Fig: 1

THE NLP COMPONENT

Figure 2 introduces the skeleton of a general NLP module for TTS purposes.

One immediately notices that, in addition with the expected letter-to-sound and

prosody generation blocks, it comprises a morpho-syntactic analyser, underlying

the need for some syntactic processing in a high quality Text-To-Speech system.

Indeed, being able to reduce a given sentence into something like the sequence

of its parts-of-speech, and to further describe it in the form of a syntax tree, which

unveils its internal structure, is required for at least two reasons:

1. Accurate phonetic transcription can only be achieved provided the part of

speech category of some words is available, as well as if the dependency

relationship between successive words is known.

 2. Natural prosody heavily relies on syntax. It also obviously has a lot to do

with semantics and pragmatics, but since very few data is currently available on

the generative aspects of this dependence, TTS systems merely concentrate on

syntax. Yet few of them are actually provided with full disambiguation and

structuration capabilities.

Fig: 2

TEXT ANALYSIS

The analysis of the written text for speech conversion is done as described in he

steps described below:

• A pre-processing module, which organizes the input sentences into

manageable lists of words. It identifies numbers, abbreviations, acronyms and

idiomatics and transforms them into full text when needed. An important problem

is encountered as soon as the character level: that of punctuation ambiguity

(including the critical case of sentence end detection). It can be solved, to some

extent, with elementary regular grammars.

 • A morphological analysis module, the task of which is to propose all

possible part of speech categories for each word taken individually, on the basis

of their spelling. Inflected, derived, and compound words are decomposed into

their elementery graphemic units (their morphs) by simple regular grammars

exploiting lexicons of stems and affixes.

 • The contextual analysis module considers words in their context,

which allows it to reduce the list of their possible part of speech categories to a

very restricted number of highly probable hypotheses, given the corresponding

possible parts of speech of neighbouring words. This can be achieved either with

n-grams, which describe local syntactic dependences in the form of probabilistic

finite state automation, to a lesser extent with multi-layer perceptrons (i.e., neural

networks) trained to uncover contextual rewrite rules or with local, non-stochastic

grammars provided by expert linguists or automatically inferred from a training

data set with classification and regression tree (CART) techniques.

• Finally, a syntactic-prosodic parser, which examines the remaining

search space and finds the text structure (i.e. its organization into clause and

phrase-like constituents) which more closely relates to its expected prosodic

realization.

LETTER TO SOUND (LTS) MODULE

 The Letter-To-Sound (LTS) module is responsible for the automatic

determination of the phonetic transcription of the incoming text. It thus seems, at

first sight, that its task is as simple as performing the equivalent of a dictionary

look-up ! From a deeper examination, however, one quickly realizes that most

words appear in genuine speech with several phonetic transcriptions, many of

which are not even mentioned in pronunciation dictionaries namely:

1. Pronunciation dictionaries refer to word roots only. They do not explicitly

account for morphological variations (i.e. plural, feminine, conjugations,

especially for highly inflected languages, such as French), which therefore have

to be dealt with by a specific component of phonology, called morphophonology

2. Some words actually correspond to several entries in the dictionary, or more

generally to several morphological analyses, generally with different

pronunciations. This is typically the case of heterophonic homographs, i.e. words

that are pronounced differently even though they have the same spelling. Their

correct pronunciation generally depends on their part-of-speech and most

frequently contrasts verbs and non-verbs.

3. Pronunciation dictionaries merely provide something that is closer to a

phonemic transcription than from a phonetic one (i.e. they refer to phonemes

rather than to phones).

4. Words embedded into sentences are not pronounced as if they were isolated.

 5. Finally, not all words can be found in a phonetic dictionary: the

pronunciation of new words and of many proper names has to be deduced from

the one of already known words.

Clearly, points 1 and 2 heavily rely on a preliminary morphosyntactic (and

possibly semantic) analysis of the sentences to read. To a lesser extent, it also

happens to be the case for point 3 as well, since reduction processes are not

only a matter of context-sensitive phonation, but they also rely on morphological

Structure and on word grouping, that is on morphosyntax. Point 4 puts a strong

Demand on sentence analysis, whether syntactic or metrical, and point 5 can be

partially solved by addressing morphology and/or by finding graphemic analogies

between words.

It is then possible to organize the task of the LTS module in many ways

(Fig. 3), often roughly classified into dictionary-based and rule-based strategies,

although many intermediate solutions exist.

 Dictionary-based solutions consist of storing a maximum of phonological

knowledge into a lexicon. In order to keep its size reasonably small, entries are

generally restricted to morphemes, and the pronunciation of surface forms is

accounted for by inflectional, derivational, and compounding morphophonemic

rules which describe how the phonetic transcriptions of their morphemic

constituents are modified when they are combined into words. After a first

phonemic transcription of each word has been obtained, some phonetic post-

processing is generally applied, so as to account for coarticulatory smoothing

phenomena.

 A rather different strategy is adopted in rule-based transcription systems,

which transfer most of the phonological competence of dictionaries into a set of

letter-to-sound (or grapheme-to-phoneme) rules. This time, only those words that

are pronounced in such a particular way that they constitute a rule on their own

are stored in an exceptions dictionary. Notice that, since many exceptions are

found in the most frequent words, a reasonably small exceptions dictionary can

account for a large fraction of the words in a running text.

PROSODY GENERATION

The term prosody refers to certain properties of the speech signal which are

related to audible changes in pitch, loudness, syllable length.Prosodic features

have specific functions in speech communication. The most apparent effect of

prosody is that of focus. For instance, there are certain pitch events which make

a syllable stand out within the utterance, and indirectly the word or syntactic

group it belongs to will be highlighted as an important or new component in the

meaning of that utterance. The presence of a focus marking may have various

effects, such as contrast, depending on the place where it occurs, or the

semantic context of the utterance.

Prosodic features create a segmentation of the speech chain into groups of

syllables, or, put the other way round, they give rise to the grouping of syllables

and words into larger chunks. Moreover, there are prosodic features which

indicate relationships between such groups, indicating that two or more groups of

syllables are linked in some way. This grouping effect is hierarchical, although

not necessarily identical to the syntactic structuring of the utterance. The prosody

generator, then, is responsible for identifying the intonational phrases

Corresponding to the text and assigning the appropriate prosody contour.

THE DSP COMPONENT
 Intuitively, the operations involved in the DSP module are the computer

analogue of dynamically controlling the articulatory muscles and the vibratory

frequency of the vocal folds so that the output signal matches the input

requirements. In order to do it properly, the DSP module should obviously, in

some way, take articulatory constraints into account, since it has been known for

a long time that phonetic transitions are more important than stable states for the

understanding of speech. This, in turn can be achieved in two ways viz:

• Explicitly, in the form of a series of rules which formally describe the

influence of phonemes on one another;

• Implicitly, by storing examples of phonetic transitions and co-articulations

into a speech segment database, and using them just as they are, as ultimate

acoustic units (i.e. in place of phonemes).

Two main classes of TTS systems have emerged from this alternative, which

quickly turned into synthesis philosophies given the divergences they present in

their means and objectives: synthesis-by-rule and synthesis-by-concatenation.

Rule based synthesis

Rule-based synthesizers are mostly in favor with phoneticians and phonologists,

as they constitute a cognitive, generative approach of the phonation mechanism.

For historical and practical reasons (mainly the need for a physical interpretability

of the model), rule synthesizers always appear in the form of formant

synthesizers. These describe speech as the dynamic evolution of up to 60

parameters [Stevens 90], mostly related to formant and anti-formant frequencies

and bandwidths together with glottal waveforms. Clearly, the large number of

(coupled) parameters complicates the analysis stage and tends to produce

analysis errors. What is more, formant frequencies and bandwidths are inherently

difficult to estimate from speech data. The need for intensive trials and errors in

order to cope with analysis errors, makes them time-consuming systems to

develop (several years are commonplace). Yet, the synthesis quality achieved up

to now reveals typical buzzyness problems, which originate from the rules

themselves: introducing a high degree of naturalness is theoretically possible, but

the rules to do so are still to be discovered. Rule-based synthesizers remain,

however, a potentially powerful approach to speech synthesis. They allow, for

instance, studying speaker-dependent voice features so that switching from one

synthetic voice into another can be achieved with the help of specialized rules in

the rule database. Following the same idea, synthesis-by-rule seems to be a

natural way of handling the articulatory aspects of changes in speaking styles (as

opposed to their prosodic counterpart, which can be accounted for by

concatenation-based synthesizers as well). No wonder then that it has been

widely integrated into TTS systems.

Concatenation based synthesis

 As opposed to rule-based ones, concatenative synthesizers possess a

very limited knowledge of the data they handle: most of it is embedded in the

segments to be chained up. This process utilizes a speech database consisting

of prerecorded elementary speech elements (typically diphones, two sequential

phoneme units) as the basis for synthesis. In practice, the output is generated by

concatenating a sequence of elementary speech elements corresponding to the

phoneme sequence identified by the NLP block. DSP algorithms are then applied

in order to smooth the resulting waveform and apply the intended prosody. By

the contrast to the rule-based approach, concatenative synthesis is strictly

speaker dependent, as the speech database is generated from recordings of

appropriately chosen text by a professional speaker.

Database Preparation

A series of preliminary stages have to be fulfilled before the synthesizer can

produce its first utterance. At first, segments are chosen so as to minimize future

concatenation problems. A combination of diphones (i.e. units that begin in the

middle of the stable state of a phone and end in the middle of the following one),

half-syllables, and triphones (which differ from diphones in that they include a

complete central phone) are often chosen as speech units, since they involve

most of the transitions and co-articulations while requiring an affordable amount

of memory. When a complete list of segments has emerged, a corresponding list

of words is carefully completed, in such a way that each segment appears at

least once (twice is better, for security). Unfavorable positions, like inside

stressed syllables or in strongly reduced (i.e. over-co-articulated) contexts, are

excluded. A corpus is then digitally recorded and stored, and the elected

segments are spotted, either manually with the help of signal visualization tools,

or automatically thanks to segmentation algorithms, the decisions of which are

checked and corrected interactively. A segment database finally centralizes the

results, in the form of the segment names, waveforms, durations, and internal

sub-splittings. In the case of diphones, for example, the position of the border

between phones should be stored, so as to be able to modify the duration of one

half-phone without affecting the length of the other one.

 fig:4

Figure 4. shows a general concatenation-based synthesizer. The upper left

hatched

block corresponds to the development of the synthesizer (i.e. it is processed

once for all). Other blocks correspond to run-time operations. Segments are then

often given a parametric form, in the form of a temporal sequence of vectors of

parameters collected at the output of a speech analyzer and stored in a

parametric segment database. The advantage of using a speech model helps in

the fact that:

• Well chosen speech models allow data size reduction, an advantage

which is hardly negligible in the context of concatenation-based synthesis given

the amount of data to be stored. Consequently, the analyzer is often followed by

a parametric speech coder.

• A number of models explicitly separate the contributions of respectively

the source and the vocal tract, an operation which remains helpful for the pre-

synthesis operations : prosody matching and segments concatenation.

Indeed, the actual task of the synthesizer is to produce, in real-time, an adequate

sequence of concatenated segments, extracted from its parametric segment

database and the prosody of which has been adjusted from their stored value,

i.e. the intonation and the duration they appeared with in the original speech

corpus, to the one imposed by the language processing module. Consequently,

the respective parts played by the prosody matching and segments

concatenation modules are considerably alleviated when input segments are

presented in a form that allows easy modification of their pitch, duration, and

spectral envelope, as is hardly the case with crude waveform samples.

Since segments to be chained up have generally been extracted from different

words, that is in different phonetic contexts, they often present amplitude and

timbre mismatches. Even in the case of stationary vocalic sounds, for instance, a

rough sequencing of parameters typically leads to audible discontinuities. These

can be coped with during the constitution of the synthesis segments database, In

practice, however, this operation, is restricted to amplitude parameters: the

equalization stage smoothly modifies the energy levels at the beginning and at

the end of segments, in such a way as to eliminate amplitude mismatches (by

setting the energy of all the phones of a given phoneme to their average value).

In contrast, timbre conflicts are better tackled at run-time, by smoothing individual

couples of segments when necessary rather than equalizing them once for all, so

that some of the phonetic variability naturally introduced by co-articulation is still

maintained. In practice, amplitude equalization can be performed either before or

after speech analysis (i.e. on crude samples or on speech parameters). Once the

parametric segment database has been completed, synthesis itself can begin.

SPEECH SYNTHESIS

 A sequence of segments is first deduced from the phonemic input of the

synthesizer, in a block termed as segment list generation in Fig. 4, which

interfaces the NLP and DSP modules. Once prosodic events have been correctly

assigned to individual segments, the prosody matching module queries the

synthesis segment database for the actual parameters, adequately uncoded, of

the elementary sounds to be used, and adapts them one by one to the required

prosody. The segment concatenation block is then in charge of dynamically

matching segments to one another, by smoothing discontinuities. Here again, an

adequate modelization of speech is highly profitable, provided simple

interpolation schemes performed on its parameters approximately correspond to

smooth acoustical transitions between sounds. The resulting stream of

parameters is finally presented at the input of a synthesis block, the exact

counterpart of the analysis one. Its task is to produce speech.

 The efficiency of concatenative synthesizers to produce high quality

speech is mainly subordinated to:

The type of segment chosen

 Segments should exhibit some basic properties. They should allow

accounting for as many co-articulatory effects as possible.Given the restricted

smoothing capabilities of the concatenation block, they should be easily

connectable. Their number and length should be kept as small as possible. On

the other hand, longer units decrease the density of concatenation points,

therefore providing better speech quality.

 Similarly, an obvious way of accounting for articulatory phenomena is to

provide many variants for each phoneme. This is clearly in contradiction with the

limited memory constraint. Some trade-off is necessary. Diphones are often

chosen. They are generally not too numerous for any language including hindi.

The model of speech signal, to which the analysis and synthesis

algorithms refer

 The models used in the context of concatenative synthesis can be roughly

classified into two groups, depending on their relationship with the actual

phonation process. Production models provide mathematical substitutes for the

part respectively played by vocal folds, nasal and vocal tracts, and by the lips

radiation. Their most representative members are Linear Prediction Coding

(LPC) synthesizers, and the formant synthesizers. On the contrary,

phenomenological models intentionally discard any reference to the human

production mechanism. Among these pure digital signal processing tools,

spectral and time-domain approaches are increasingly encountered in TTS

systems. Two leading such models exist: the hybrid Harmonic/Stochastic (H/S)

model and the Time-Domain Pitch-Synchronous-Overlap-Add (TD-PSOLA) one.

The latter is a time-domain algorithm: it virtually uses no speech explicit speech

model. It exhibits very interesting practical features: a very high speech quality

(the best currently available) combined with a very low computational cost (7

operations per sample on the average). The hybrid Harmonic/stochastic model is

intrinsically more powerful than the TD-PSOLA one, but it is also about ten times

more computationally intensive. PSOLA synthesizers are now widely used in the

speech synthesis community. The recently developed MBROLA algorithm even

provides a time-domain algorithm which exhibits the very efficient smoothing

capabilities of the H/S model (for the spectral envelope mismatches that cannot

be avoided at concatenation points) as well as its very high data compression

ratios (up to 10 with almost no additional computational cost) while keeping the

computational complexity of PSOLA.

 MATLAB 6.1

 MATLAB is a high-performance language for technical computing. It

integrates

computation, visualization, and programming in an easy-to-use environment

where

problems and solutions are expressed in familiar mathematical notation. Typical

uses include:

Math and computation

Algorithm development

Modeling, simulation, and prototyping

Data analysis, exploration, and visualization

Scientific and engineering graphics

Application development, including graphical user interface building

 MATLAB is an interactive system whose basic data element is an array

that does not require dimensioning. This allows you to solve many technical

computing problems,

especially those with matrix and vector formulations, in a fraction of the time it

would

take to write a program in a scalar non interactive language such as C or Fortran.

 The name MATLAB stands for matrix laboratory. MATLAB was originally

written to provide easy access to matrix software developed by the LINPACK and

EISPACK projects. Today, MATLAB uses software developed by the LAPACK

and ARPACK projects, which together represent the state-of-the-art in software

for matrix

computation.

MATLAB has evolved over a period of years with input from many users. In

university environments, it is the standard instructional tool for introductory and

advanced courses in mathematics, engineering, and science. In industry,

MATLAB is the tool of choice for high-productivity research, development, and

analysis.

 MATLAB features a family of application-specific solutions called

toolboxes. Very important to most users of MATLAB, toolboxes allow you to

learn and apply

specialized technology. Toolboxes are comprehensive collections of MATLAB
functions (M-files) that extend the MATLAB environment to solve particular

classes of

problems. Areas in which toolboxes are available include signal processing,

control

systems, neural networks, fuzzy logic, wavelets, simulation, and many others.

 CONCLUSION

Let us bow to the facts : there is still a long way to the brilliant talking computer. A

number of advances in the area of NLP or DSP, however, have recently boosted

up the quality and naturalness of available voices, and this is likely to continue.

 The particular module give to us is working fine. The given wave files are

concatenated effectively. The Speech Synthesis Process is completely analyzed

and concatenation of wave files is put into effect. Testing has been done and

everything has gone according to our requirements. Further, the concatenated

files are to be filtered and smoothened using TD-PSOLA and other filtering

options. Also the approach whether to be Syllable based or Diphone based is to

be decided for preparing the data base. Ours is just a step in the direction of

‘Multilingual Text to Speech Analysis and Synthesis’ and a lot still needs to be

done for developing an efficient system.

 BIBLIOGRAPHY

SITES REFERRED

http://www.mathworks.com

http://www.google.co.in

BOOKS REFERRED

MATLAB Programming for engineers Chapman j. Stephen

Getting Started With MATLAB Pratap Rudra

Speech Synthesis Streetmann

PAPERS REFERRED

A Short Introduction to Text to Speech Synthesis Dutoit T.

Durational Characteristics of Hindi Consonant Clusters Agrawal S. S.

A Wavelet-Domain PSOLA Approach M. Holzapfel

TABLE OF CONTENTS

1. Introduction to Project

2. Introduction to Synthesis

• Format Synthesis Technology

• Concatinative Synthesis Technology

• Phrase Splicing Technology

3. TTS Using Concatenative Technique

4. The NLP Component

5. LTS Module

6. Prosody Generation

7. The DSP Component

8. Database Preparation

9. Speech Synthesis

10. Tools used

11. Overview of the Current Project

12. Conclusion

13. Bibliography

 MAJOR PROJECT REPORT ON

 MULTILINGUAL TEXT TO SPEECH ANALYSIS & SYNTHESIS

 SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENT
 FOR THE AWARD OF THE DEGREE

MASTER OF ENGINEERING

 IN

 ELECTRONICS & COMMUNICATION
 OF

DELHI COLLEGE OF ENGINEERING

 DELHI

 UNDER THE SUPERVISION OF

DR. ASOK BHATTACHARYA MR. O.P. VERMA
 H.O.D (E& C) DCE ASTT. PROFESSOR

(E&C) DCE

DEVELOPED BY: - JITENDER KADIAN

 (17/E&C/2001)

 DEPARTMENT OF ELECTRONICS & COMMUNICATION
 DELHI COLLEGE OF ENGINEERING

ACKNOWLEDGEMENT

 The satisfaction and euphoria that accompanies the successful

completion of any task would be incomplete without a mention of the people who

made it possible, whose constant guidance and encouragement crown all the

efforts with success.

 I am grateful to Dr. ASOK BHATTACHARYA (HOD, ECE Deptt.)

for providing us an opportunity to undertake this project. I am highly indebted to

Mr. O.P. VERMA (Astt.Professor ECE Deptt.), my project guide for taking keen

interest in my work and for his constant monitoring and invaluable guidance and

support throughout the course of my project. I profusely thank him for having

patience to clear our doubts and channelise my efforts his cheerful disposition

made my work all the more enjoyable.

 I would be failing in my duty if I do not thank my family

members, friends and above all the lord almighty on whom I have relied on, for

help and encouragement during my project work.

JITENDER KADIAN

 (17/E&C/2001)

INTRODUCTION

TOOLS USED

 BIBLIOGRAPHY

GLOSSARY

Overview

 Cool Edit Pro is a comprehensive multi track digital audio editor for

Windows 95 and Windows NT. To use it, one needs only a PC compatible

computer running one of these operating systems, one or more Windows-

compatible sound cards, and some imagination.

 Designed as a complete audio environment, Cool Edit Pro puts

all of the functionality needed for taking an audio project from conception to

completion in one package, eliminating the need for separate applications, or

"plug-ins". From recording to mix down, you'll find everything to do the job in Cool

Edit Pro, such as session notes for planning and sketching out your session and

the flexibility of unlimited multiple sound card support, for complete freedom in

routing your audio. Once one have recorded (…up to 64 tracks!), one can apply

Cool Edit Pro's unmatched DSP and editing power. Tweak EQ, and other effects

in real-time to get things just right. Arrange your tracks with drag and drop, down-

to-the-sample or frame precision; snap-to guides, cross fades, and images will

help you get it done. When you're ready to mix, there's separate level, pan, mute,

solo, and routing for each track.

 While Cool Edit Pro does provide an all in one audio solution, it

also works with the rest of your audio tools as part of your studio. Support for

Microsoft's DirectX/ActiveMovie means you can use DSP modules from leading

manufacturers like Waves and Tools from within Cool Edit Pro. If you're needs go

beyond audio to include working with MIDI or video, one find Cool Edit Pro's

MIDI/SMPTE synchronization provides seamless integration with these mediums.

 Though Cool Edit Pro is loaded with features, its layout is

such that you're not encumbered by excess windows; you won't need a 20-inch

monitor to get the job done. Get at just the features you want. You'll find this

under-the-hood Architecture throughout Cool Edit Pro. Above all, Cool Edit Pro
is fun! Once one played with it for a while, you'll see how it got its name!

Cool Features

Cool Edit Pro's combination of digital recording and editing features includes:

· Multi-track editing and mixing—up to 64 tracks!

· 30 distinct effects modules, including Delay and Echo effects,

Noise/Hiss/Click-and-Pop Reduction, Reverberation, Pitch and Tempo

Adjustment, Graphic and Parametric Equalizers, and more

· Support for more than 16 distinct file formats (not including sub formats)

· Noise, Tone, and DTMF Tone generation
· 32-bit sample resolution support and full 32-bit internal processing
· “Phrase" recognition (auto cue generation) (will change somewhat)

· Cue and Play List support for multiple files and for segments within files

· Scientific filters, text export capability, and file-statistics gathering

Functions for data analysis

· Scripting and Batch-Processing capability

· Waveform and Spectral View options
· Multi-track SMPTE/MTC chase locking synchronization

With Cool Edit Pro and any Windows sound card, you have the power of a

Complete digital recording studio under your fingertips!

Notes on how to navigate your way around the manual

· The icon gives hints on "noteworthy" information.

· The icon alerts you to hints that are just too cool to pass up!

· The icon alerts you to a short simple exercise that can be used to

Quickly learn about a specific Cool Edit Pro option or function.

 Glossary

CONCATENATION: - Addition of two or more equal or unequal sized sound
waves in time domain is termed as concatenation.

COOL EDIT: - Cool Edit Pro is a comprehensive multi track digital audio editor
for Windows 95 and Windows NT. To use it, one needs only a PC compatible
computer running one of these operating systems, one or more Windows-
compatible sound cards, and some imagination.

INTONATION: - The patterns of variation of the pitch of the voice (i.e the way in
which the pitch varies) constitute the intonation of language.

NLP: - In addition with the expected letter to sound and prosody generation
blocks, it comprises an analyzer the need for syntactic processing in a high
quality TTS system.

PROSODY: - The term prosody refers to certain properties of the speech signal
which are related to audible changes in pitch, loudness and any syllable length.

PSOLA: - Pitch synchronous overlap and add.

SYLLABLE: - While analyzing speech, we will have to consider units higher than
individual speech sounds. The unit that is next in hierarchy to the speech sound
is the syllable. A word is made up of one or more syllable.

SPLICING:- Splicing glues together whole words and phrases to create a
remarkably natural sounding voice.

TTS: - Text to speech as the automatic production of speech , through a
grapheme to phoneme transcription of the sentences to utter.

