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CHAPTER -5   

MULTILINEAR ALGEBRA 

This chapter aims at discussing the basic concepts of tensor algebra along with their notations and 

symbols.  As our method 3D-ITSL is itself a tensor based, so understanding tensors is an indispensable 

requirement. Section 5.1 introduces the tensor by providing its mathematical representation. The 

notations are discussed in section 5.2 and the concept of rank is considered in section 5.3. The chapter is 

concluded with a review of other tensor decomposition techniques in section 4. 

5.1 Definition 

A tensor is a multidimensional array. More precisely, an N-way or Nth-order tensor is an element of the 

tensor product of N vector spaces, each of which has its own coordinate system.  

The tensor concept that has been employed in our work is different from the conventional one which is 

used in physics and engineering and are generally referred to as tensor fields in mathematics. A third-

order tensor has three indices as shown in Figure 5.1. A first-order tensor is a vector, a second-order 

tensor is a matrix and tensors of order three or higher are called higher-order tensors. A p
th 

- order tensor 

 ̂ can be defined as a multi-way array with p indices. A third-order tensor, for example, is written 

                                                                        ̂  (    )                                                                          (5.1)                                                     

                                                                                                    

 

 

                 

Figure 5.1 A third order order tensor   ̂                 

Thus, a third-order tensor can be viewed as a “box,” and so forth. If x and y are real-valued vectors, it is 

well known that       = x o y    is a rank-one matrix (“°” denotes the outer product).  

j=1, . . . , J 

k=1, . . . , K 

i=1, . . . , J 
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Similarly, if                    are real-valued vectors, then   ̂= x
(1)

 o x
(2) 

o ….. o x
(p)

    is a rank-one 

tensor with  ̂ (          )      

   
   

   
    

   
  

5.2 Glimpse of the notations 

The order of a tensor is the number of dimensions, also known as ways or modes. Scalars are denoted by 

lowercase letters, e.g., a. Vectors are denoted by boldface lowercase letters, e.g., a. Matrices (tensors of 

order two) are denoted by boldface capital letters, e.g., A. Higher-order tensors (order three or higher) 

are denoted by a bold accented capital  letters, e.g.,  ̂. The i
th

 entry of a vector a is denoted by ai, 

element (i ; j) of a matrix A is denoted by aij , and element (i; j; k) of a third-order tensor  ̂ is denoted by 

xijk. Indices typically range from 1 to their capital version, e.g., i = 1; : : : ; I. The nth element in a 

sequence is denoted by a superscript in parentheses, e.g., A(n) denotes the nth matrix in a sequence. 

Subarrays are formed when a subset of the indices is fixed. For matrices, these are the rows and 

columns. A colon is used to indicate all elements of a mode. Thus, the j
th

 column of A is denoted by a:j , 

and the i
th

 row of a matrix A is denoted by ai: . Alternatively, the j
th

 column of a matrix, a:j , may be 

denoted more compactly as aj .  Fibers are the higher order analogue of matrix rows and columns. A 

fiber is defined by fixing every index but one. A matrix column is a mode-1 fiber and a matrix row is a 

mode-2 fiber. Third-order tensors have column, row, and tube fibers, denoted by x:jk, xi:k, and xij:, 

respectively; see Figure 5.2. When extracted from the tensor, fibers are always assumed to be oriented as 

column vectors 

.  

a) Model-1 (column) fibers: x :jk                          b) Mode-2 (row) fibers: xi:k          c) Mode-3 (tube) fibers: xij: 

Figure 5.2 Fibers of a 3
rd

 order tensor 
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Slices are two-dimensional sections of a tensor, defined by fixing all but two indices. Figure 5.3 shows 

the horizontal, lateral, and frontal slides of a third-order tensor  ̂, denoted by Xi:: , X:j:, and X::k, 

respectively. Alternatively, the k
th

 frontal slice of a third-order tensor, X::k, may be denoted more 

compactly as Xk.  

 

a)  Horizontal slices: Xi::                           b) Lateral slices: X:j:                                 c) Frontal slices: X::k  (or Xk) 

Figure 5.3 Slices of a 3
rd

- order tensor 

The norm of a tensor  ̂                         is the square root of the sum of the squares of all its 

elements, i.e 

                                               || ̂||  √∑ ∑    ∑            
   

    
  
    

  
                                                       (5.2) 

This is analogous to the matrix Frobenius norm, which is denoted ||A|| for a matrix A. The inner product 

of two same-sized tensors  ̂  ̂                          is the sum of the products of their entries, i.e., 

                                           ̂  ̂     ∑ ∑    ∑                        
  
    

  
    

  
                          (5.3)   

 

5.2.1 Rank-1 Tensors 

An N-way tensor  ̂                         is rank one if it can be written as the outer product of N vectors, 

i.e.,                       . The symbol “o” represents the vector outer product. This means that each 

element of the tensor is the product of the corresponding vector elements 

                                                                

   
   

   
   

   
  For all 1≤    ≤                                          (5.4) 
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5.2.2 Symmetry 

A tensor is called cubical if every mode is the same size, i.e., ̂                        , X               . A 

cubical tensor is called supersymmetric if its elements remain constant under any permutation of the 

indices. For instance, a three-way tensor   X             is super symmetric if  

                                                             For all i, j, k = 1,…,I                               (5.5) 

Tensors can be symmetric in two or more modes as well. For example, a three-way tensor       

              is symmetric in modes one and two if all its frontal slices are symmetric, i.e.,  

                                             
    for all k= 1,. . . , K                                                                        (5.6) 

5.2.3 Diagonal Tensor 

A tensor  ̂                         is diagonal if          
     only if          . Figure 5.4 

illustrates a cubical tensor with ones along the super diagonal. 

 

 

 

 

Figure5.4 Three way tensor of size IxIxI with ones along the superdiagonal 

5.2.4 Matricization 

Matricization is also known as unfolding or flattening and is the process of reordering the elements of an 

N- way array into a matrix. For instance, a 2 x 3 x 4 tensor can be arranged as a 6 x 4 matrix or a 3 x 8 

matrix, and so on. Each order of a tensor is associated with a “mode”. By unfolding a tensor along a 

mode, a tensor’s unfolding matrix corresponding to this mode is obtained. For example, the mode-n 

unfolding matrix 

                                                                                                                                       (5.7) 

1 
1 1 

1 

1 
1 1 
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 of  ̂  consists of In-dimensional mode-n column vectors which are obtained by varying the nth-mode 

index in and keeping indices of the other modes fixed, i.e. the column vectors of A(n) are just the mode-

n vectors. Figure 5.5  shows the process of unfolding a 3-order tensor  ̂ into three matrices: the mode-1 

matrix A(1) consisting of I1-dimensional column vectors, the mode-2 matrix A(2) consisting of I2-

dimensional column vectors, and the mode-3 matrix A(3) consisting of I3- dimensional column vectors. 

The inverse operation of the mode-n unfolding is the mode-n folding which restores the original tensor 

 ̂ from the mode-n unfolding matrix A(n) , represented as                 . The mode-n rank Rn of  ̂ 

is defined as the dimension of the space generated by the mode-n vectors:              . 

 

 

 

 

 

 

 

 

 

Figure 5.5 Illustration of unfolding a 3-order tensor [6] 

5.2.5 Tensor Multiplication 

Tensors can be multiplied together, though obviously the notation and symbols for this are much more 

complex than for matrices. Here we consider only the tensor n-mode product, i.e., multiplying a tensor 

by a matrix (or a vector) in mode n.  N-mode multiplication The n-mode (matrix) product of a 

tensor                            with a matrix              In is denoted by        and is of size        

                            . Element-wise, we have        
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                                                                    ∑             

  

    
                                             (5.8) 

Each mode-n fiber is multiplied by the matrix U. The idea can also be expressed in terms of unfolded 

tensors:    

                                                                                                                                         (5.9) 

The n-mode product of a tensor with a matrix is related to a change of basis in the case when a tensor 

defines a multi-linear operator.  The operation of mode-n product of a tensor and a matrix forms a new 

tensor. The mode-n product of tensor Â and matrix U is denoted as            . Let matrix U           

Then,                                      and its elements are calculated by: 

                                                                      =     ∑
 

             

 

  

                                        (5.10) 

Of course, ,            can be obtained by calculating U · A(n) first where the operation “.” represents 

matrix multiplication, and then operating mode-n folding on U · A(n). 

Given a tensor Â                          and three matrices C          , D            and E                

   , tensor’s mode-n product has the following properties: 

1. (           )           (           )                                                                          (5.11) 

2. (           )                                                                                                                 (5.12) 

 

The scalar product of two tensors Â and ˆB with the same set of indices is defined as: 

                                 ̂  ̂    ∑ ∑    ∑                        
  
    

  
    

  
                         (5.13) 

There are other tensor multiplication techniques eg: Matrix Kronecker, Khtri-Rao, Hadamard products 

5.3 Tensor Decomposition 

In context of matrices the singular value decomposition of a matrix A is a well-known, rank-revealing 

factorization. If the SVD of a matrix A is given by A = U Σ V
T
, then we write 



MULTILINEAR ALGEBRA 

 

62 

 

 

                                           A =∑     
            

   
)                                           (5.14) 

 Where u(i) and v(i) are the i
th

 columns of U and V, respectively, the numbers σi on the diagonal of the 

diagonal matrix Σ are the singular values of A, and R is the rank of A. A matrix is a tensor of order 2. 

Analogous to above the tensor decomposition is higher-order SVD which is a generalization of the 

conventional matrix SVD. The SVD of a matrix X   Rm×n can be represented as X = U Σ V
T
, where 

matrix U R
m x m

 matrix Σ R
m x n

  and matrix V Σ R
n x n

  . The column vectors in U are the eigenvectors of 

     and  is a diagonal matrix containing the singular values of X. The tensor decomposition of a N-

order tensor   which lies in N vector spaces involves N orthonormal matrices                   to 

generate these N spaces respectively: the orthonormal column vectors of U(N) span the column space of 

the mode-n unfolding matrix A(N) (1 ≤ n ≤ N). Then, the tensor Â is decomposed in the following way: 

                                                                                                  (5.15) 

Where  ̂ is the core tensor controlling the interaction between the N mode matrices U(1), . . . , U(N).  

In this way, each mode matrix U(n) (1 ≤ n ≤ N)  is computed by finding the SVD for themode-n 

unfolding matrix:  and setting the mode matrix U(n) as the orthonormal     
         .                                                                                                                                                                                                      

                                                   (5.16) 

 Such a decomposition can only be achieved offline, i.e. it cannot be used for incremental tensor 

subspace learning. In real applications, dimension reduction is necessary for a compact representation of 

a tensor. Lathauwer et al. [57] proposed a rank-(R1,R2, . . . , RN) approximation algorithm for the 

dimension reduction. The algorithm applies the technique of alternate least squares to find the dominant 

projection subspaces of a tensor. Given an N-order tensor,                            , a rank – (R1, R2,…, 

RN)  tensor is found to minimize the square of the Frobenius norm of the error tensor. 

 


