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ABSTRACT 

 

Data compression is a topic that has been researched upon for years and we have standard 

formats like zip, rar, gzip, bz2 in generic data; jpeg, gif in images; . In this age where we have lots 

of data with internet being ubiquitous, there is a strong need for fast and efficient data 

compression algorithm. Lempel-Ziv family of compression algorithms form the basis for a lot of 

commonly used formats. Some modified form of LZ77 algorithm is still used widely as a lossless 

run length encoding algorithm. 

Recently Graphics Processing Units (GPUs) are making headway into the scientific computing 

world. They are enticing to many because of the sheer promise of the hardware performance 

and energy efficiency. More often than not these graphic cards with immense processing power 

are just sitting idle as we do our tasks and are not gaming. GPUs were mainly used for graphic 

rendering but now they are being used for computing and follow massively parallel 

architecture. In this dissertation, we talk about hashing algorithm used in LZSS compression. We 

compare the use of DJB hash and Murmur Hash in LZSS compression. We compare it to the more 

superior LZ4 algorithm. We also look at massively parallel, CUDA enabled version of these 

algorithms and the speedup we can achieve with those at our disposal. 

We conclude that for very small file (of order of KBs) we should use the LZ4 algorithm. If we 

don’t have a CUDA capable device LZ4 is our best bet. But CUDA enabled versions of these 

algorithms outperform all the other algorithms easily and a speedup up to 10x is possible with 

GPU only of 500 series and even better with the newer GPUs. 
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1 INTRODUCTION 

 

Most modern systems are equipped with what many call a graphics card. The power of a 

Graphics Processing Unit (GPU) is not really unleashed until most are playing demanding 

graphic games. Technologies like the NVIDIA OPTIMUS [16] also put the graphics card to 

sleep when most of us are not playing games as it is not required then.  

With the advent of Common Unified Device Architecture (CUDA) by NVIDIA, it has 

attracted the attention of many computational scientists. More and more people are 

looking to exploit the latent power residing under their computer’s hood. NVIDIA’s CUDA 

is leading the way into general purpose GPU computing. But its adoption is hampered by 

the effort required for rewriting optimized code for CUDA. Plus the tools that are needed 

like debuggers, memory leak checkers are now maturing to a level that they can be used 

for enterprise software development. 

1.1 Problem Description 

 

Data Compression algorithms are ubiquitous. They operate on firmware, BIOS, chips and 

mainframe computer systems. In today’s world where everybody has an internet 

footprint and performs activities on the internet, data explosion is taking place. The web 

is a great example of it. Imagine the data that most search engines have to crawl and store. 

Imagine your email service like Gmail. How many emails have you received till date? And 

what is total length of data in your single account? Multiply that by the number of email 

accounts present on Gmail. That would probably be a very large number of Terabytes. A 

lot of storage space can be saved by applying a data compression algorithm.  
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We cannot use any data compression algorithm. We want the algorithm to be efficient and 

fast. Efficient in the sense that it must have a good compression ratio and be fast as the 

influx of data on servers is very large. 

1.2 Related Topics 

 

The Lempel Ziv family of algorithms has been around since 1970s have been the basis of a 

lot of modern algorithms. These are used the most common formats of data compression 

we use today for all sorts of files (data, image, video etc.). The concept of massively 

parallel processing via the GPU and the SIMD like architecture of the NVIDIA GPUs, they 

are perfect tools to get the job of data compression done and freeing up valuable clocks on 

the CPU for other processing. 

 

1.3 Proposed Work 

 

Lempel Ziv family of algorithms is the building block for many modern algorithms out 

there today. They have all the desired features we asked for. In this dissertation we first 

discuss the LZ77, LZSS algorithms and see its performance by using murmur hash in it. 

We will then have a look at more modern LZ4 algorithm that is again a LZ77 derivate. We 

then analyze the performance improvement by using the massively parallel (CUDA 

enabled) version of these algorithms: CuLZSS and CuLZ4. 
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2 RUN LENGTH ENCODING 

 

 

Run length encoding is representing data in terms of runs of data. A run of data is simply a 

sequence of contiguous bytes. For instance given the string: 

aaaabbbbccdeeeee 

Can be encoded most simply in the format: 

<literal><literal_length> 

And the resulting encoded string we would have is: 

a4b4c2d1e5 

The above means that ‘a’ is the first literal that is repeated 4 times. Followed by ‘b’ which 

is also repeated 4 times, ‘c’ is repeated 2 times and so on. It is interesting to note that the 

single occurrence of ‘d’ which would occupy 1 byte uncompressed is occupying 2 bytes in 

this arrangement. 
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3 DICTIONARY ENCODING 
 

 

 

This type of encoding is a type of substitution encoding and is also a form of lossless 

compression. Some set of strings are stored in a special data structure or ‘dictionary’. 

Occurrences of those are replaced by an index into the dictionary. 

There can be two types of dictionary encoding. 

a) Static :  

In this kind of dictionary encoding, the dictionary remains static and does 

not evolve or change during the entire process of encoding. This kind of 

encoding can be found where we want to represent a single kind of 

document and can have a fixed dictionary containing the words that are to 

be represented in it. 

b) Dynamic: 

In this kind of dictionary encoding, the dictionary is dynamic and is ever 

changing with new entries being created or deleted as more and more 

input text is passed to it. This is the ‘Huffman’ style coding where the tree 

is constructed as per the input text. 
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4 LEMPEL ZIV ALGORITHMS 

 

Lempel Ziv algorithms are lossless data compression algorithms that find wide use in 

today’s computing needs. In this family of algorithms LZ77 and LZ88 were published in 

papers by Abraham Lempel and Jacob Ziv in 1977 and 1978. Since then a lot of work has 

been done on them to improve on them and create algorithms like LZSS, LZW and LZMA 

etc. These form the core of modern compressors and decompressors.  

These algorithms are dictionary based encoding algorithms. They rely highly on string 

factorization [5]. In other words strings are represented as compact form of other strings 

at some other points. 

 

4.1 LZ77 

 

Proposed in 1977 by Abraham Lempel and Jacob Ziv, this is a widely popular compression 

algorithm. It follows the ‘sliding window’ algorithm where a window slides over the input 

from the start to the end [21].  

 

Figure 1: Sliding Window Encoding 
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The first few characters are pushed into what is called a search window. This search 

window has a size limited by the size of offset field. This search window expands to the 

maximum size and then slides along the input text. The look-ahead pointer marks the end 

of search window and the window slides on till the look-ahead pointer reaches the end of 

input stream. All bytes are to be represented as a triple:  

<Offset><match_length><next_character> 

The whole concept is finding a match of the string starting at look-ahead pointer in the 

previously visited / encoded stream of characters [8]. The number of matched characters 

forms the match length and the distance from the look-ahead pointer to the start of match 

in search window is called the offset. The offset is thus measured from the end of search 

window to the start of match length. Once a match is found, the search window moves 

past the entire match length. The figure below shows how the movement of the window 

takes place. 

 

Figure 2: Movement of window 
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In LZ77 all entries are represented in the form of a triplet. Each triplet has 3 fields: the 

length, the distance and the next symbol that follows the match. The numbers shown in 

the figure are in bit width. 

 

Figure 3: LZ77 Format Specification 

It is clear from the above that the max values that we can have are: 

 

Field Max Value 

Offset / Search Window Size 12 bits = 4 KB 

Match Length 4 bits = 15 characters 

Next Character 8 bits = 1B 

Table 1: LZ77 Fields 

 

The above translated in simple English is that the maximum amount of data an entry can 

hold is of length 15 which may start at an offset that may be as far back as 4 KB from the 

start of end of the search window. 

The interesting thing to note here is that all non-matched characters will have offset and 

length zero and next character representing the desired character. This is in effect 

wasting a lot of space. The single character occupying 1B is occupying 3B. This is exactly 

the problem addressed in LZSS. 
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4.2 LZ78 

 

Proposed in 1977 by Abraham Lempel and Jacob Ziv, it uses a more dynamic dictionary. It 

starts with a dictionary of all characters used in the input text. The indexes are numbered 

such as to leave space for addition of entries at a later stage of the process. As unseen 

patterns of text are visited they are added to the dictionary and given an index for use at a 

later stage. Next time the same portion of text is seen, only its index is output. There is 

also a threshold on how many entries the dictionary can hold at time. If that limit is not 

set, the size of dictionary may explode very fast. 

4.3 LZW 

 

Lempel-Ziv-Welch algorithm is an improved version of LZ78 published by Lempel, Ziv and 

Terry Welch [14]. It believes in growing the input symbols in dictionary. If a match of a 

string S is found then the entry for that is written to output and the entry is removed and 

the new S followed by the next symbol in input. It is most suited for image files and is a 

standard for GIF files and is implemented in UNIX’s compress utility. 

4.4 LZMA 

 

Lempel Ziv Markov Chain Algorithm is again a lossless data compression algorithm. 

Unlike the others we discussed this is an entropy encoding algorithm [19]. It uses a 

scheme similar to LZ77, but uses a variable dictionary size. The LZ77 like output is 

encoded by a range encoder and uses sophisticated models and makes probabilistic 

prediction of each bit. The .7z format is based upon the LZMA algorithm. 
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5 RELATED ALGORITHMS 

 

5.1 DEFLATE / ZIP 

 

It is perhaps the most widely used algorithm. It is used in ZIP file formats, PNG image files 

and GZIP data compression. PKWARE owns the patent to the algorithm. However there 

are patent free implementations of the same. It is basically encoding with LZ77 followed 

by Huffman Coding. It has 2 main motives: Duplicate string reduction as we have seen 

with LZ77 and bit reduction with Huffman codes [2]. 

5.2 TAR 

 

TAR is a file format used widely in the UNIX world. Most of the algorithms discussed 

above address the problem of compressing a single file. But what if we have a complete 

folder or a group of files? That’s where TAR comes into scene. TAR is a store format that 

has specification for entries of multiple files and their metadata (relative paths). It 

provides no compression. 

5.3 GZIP 

 

It is often used in conjunction with tar and thus the famous format tar.gz is used. It is a 

compression format which uses LZSS followed by Huffman encoding. The interesting 

thing to note here is that the Huffman tree is not included with the compressed file as it 

can be reconstructed by the decoder as it has been specified to be right heavy [3]. If there 

is only a single child to any node it is the right child. It is very useful and a lot of UNIX 

packages are compressed using this method. UNIX utilities built around this algorithm are 

gzip and gunzip that is self-explanatory. 
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6 LZSS 

 

Lempel Ziv Storer Szymanski is a derivative of LZ77 published in 1982 by James Storer 

and Thomas Szymanski. It addresses a major problem of LZ77 that it forced everything to 

be encoded as triplets [4]. This meant that a mismatch (a string not occurring in search 

window), will occupy 3 bytes instead of 1. So they came up with a new format. They 

started outputting an encoded/decoded bit before each entry.  If we have the encoded bit, 

then what follows is a pair of offset and match length. If we have the decoded bit, it means 

the next byte is the un-encoded character as is. They also eliminate need for the third 

entry of the next character from the triple. Thus the entry now is only a pair and the start 

bit, which indicates the type of entry that follows. 

 

Figure 4: LZSS Format Specification 

The above figure shows the two types of entries possible. The field widths mentioned are 

in bits. The following table analyzes the limits of having such an entry. 
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Field Max Value 

Offset / Search Window Size 12 bits = 4 KB 

Match Length 4 bits = 18 characters 

Table 2: Limits in LZSS 

The table is similar to LZ77. But the most important thing to note is representing Match 

length of 18 in 4 bits. The whole concept is that since we have an encoded/decoded bit, 

we can represent match length as 3 + the value in match. Since if we are outputting this 

record we cannot have a match less than 3 (min match length). LZSS is widely popular 

and forms the basis of many algorithms. 

 

The pseudo code of the algorithm follows: 

LZSS(input,len) 

 rindex := 0 

 hash first 3 elements 

 write 3 un-encoded elements to output 

 lookAheadPtr := 3 

 while rindex < len 

look for a match of sequence starting at lookAheadPtr in 

the hash 

look at match lengths for sequences for the next 8 

characters and make the best choice 

  if found in hash 

output encoded bit and output offset and match 

length 

  else 

   output the un-encoded character 
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  // slide window 

  for i:=0 to match_length 

   if search window is full 

remove the entry from hash for lookAheadPtr – 

Max_Offset from the window 

add entry for sequence starting at lookAheadPtr + i 

in hash  

  lookAheadPtr += match_length 

  rindex += match_length 

 

It is clear from the above algorithm that the most challenging tasks for us in the algorithm 

are: 

1. Finding pattern match starting at look-ahead pointer in search window 

2. Hashing the sequences 

There is a lot of work done in how to improve speeds for pattern matching in LZ 

algorithms [7]. We can use any of those techniques like Hashing, Knuth-Morris-Pratt [11] 

Matching, Binary Search Trees, Tries and Suffix Trees etc. The standard implementation in 

GZIP and ZLIB use the standard DJB2 hash algorithm.  

6.2 DJB2 Hash Algorithm 

 

 

It was proposed by Daniel Julius Bernstein a professor in University of Illinois. It is still a 

very widely used algorithm mainly because of its high speed, simplicity and good enough 

distribution. The DJB2 hash algorithm’s XOR version is described below: 

 

DJB2_XOR_32(key,len,seed) 
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 hash := seed 

 for i:=1 to len 

  hash = (hash * MUL) ^ key[i]  

     return hash 

Good and known value for MUL is 33 and seed is 5381. These values are also called magic 

values [6]. 
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7 LZSS-MURMUR 

 

What we propose here is to use the more modern, fast and well distributed Murmur hash 

to be used. It was proposed by Austin Appleby in 2008 [13]. Major advantage of murmur 

hash is its distribution. For even small deviation of input, we get hashes that are way 

apart. This proves very useful to us as this means there are lesser collisions and thus it 

improves our searching for pattern time. 

 

7.1 Murmur Hash Algorithm 

 

 

It has gone through a few versions and the latest one as of 2013, Murmur3 is described 

below: 

Murmur3_32(key, len, seed) 

// Note: In this version, all integer arithmetic is performed with  

// unsigned 32 bit integers. 

// In the case of overflow, the result is constrained by the 

// application of modulo arithmetic. 

     

    c1 := 0xcc9e2d51 

    c2 := 0x1b873593 

    r1 := 15 

    r2 := 13 

    m  := 5 

    n  := 0xe6546b64 

  

    hash := seed 

 

    for each fourByteChunk of key 

        k := fourByteChunk 

 

        k :=  k * c1 

        k := (k << r1) OR (k >> (32-r1)) 

        k := k * c2 

 

        hash := hash XOR k 
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        hash := (hash << r2) OR (hash >> (32-r2)) 

        hash := hash * m + n 

 

    with any remainingBytesInKey 

        remainingBytes := SwapEndianOrderOf(remainingBytesInKey) 

// Note: Endian swapping is only necessary on big-endian machines. 

// The purpose is to place the meaningful digits towards the         

// low end of the value, so that these digits have the greatest  

// potential to affect the low range digits in the subsequent  

// multiplication.  Consider that locating the meaningful digits in 

// the high range would produce a greater effect upon the high digits  

// of the multiplication, and notably, that such high digits are  

// likely to be discarded by modulo arithmetic under overflow.   

// We don't want that. 

         

        remainingBytes := remainingBytes * c1 

        remainingBytes :=  

         (remainingBytes << r1) OR (remainingBytes >> (32 - r1)) 

        remainingBytes := remainingBytes * c2 

 

        hash := hash XOR remainingBytes 

    end for 

 

    hash := hash XOR len 

 

    hash := hash XOR (hash >> 16) 

    hash := hash * 0x85ebca6b 

    hash := hash XOR (hash >> 13) 

    hash := hash * 0xc2b2ae35 

    hash := hash XOR (hash >> 16) 

    return hash 
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8 LZ4 

The modern LZ4 algorithm is a newer algorithm proposed in 2012 that completely 

rewrites the Lempel Ziv format. It has gained a lot of popularity as of late and is used as 

back end Apache Hadoop, Rare logic: Real time data analysis, Apache Lucene search 

engine, GRUB boot loader, Enlightenment Desktop Environment, ZFS file system and 

FreeBSD etc.  

It is based on LZ77 and follows the sliding window algorithm. The figure below describes 

the LZ4 format specification. 

 

Figure 5: LZ4 Format Specification 

The format has the following fields: 

1. Token: width 8 bits 

It is split into two 4 bit fields. The higher 4 bits represent the literal length. Lower 

4 bits represent the match length. 

 

2. Optional Literal Length Bytes: width variable 

If literal length nibble in token is 15 or 0xF (all 1s) then one byte entry of this will 

necessarily exist. If any of them is all 1s or 0xFF or 255 then another byte is used. 
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Total literal length is calculated as sum of all these entries till one entry where 

there are not all 1s. Thus size of this field is variable. 

 

3. Literals: width defined by literal length 

These include the characters that don’t have a match in the search window. The 

only thing to note is that these literals are contiguous. 

 

4. Offset: width 2 bytes or 16 bits 

This determines how far back the offset can be from the look-ahead pointer. Since 

this a 2 byte field so the max window size is 4KB. 

 

5. Optional Match Length Bytes: width variable 

If match length nibble in token is 15 or 0xF (all 1s) then one byte entry of this will 

necessarily exist. If any of them is all 1s or 0xFF or 255 then another byte is used. 

Total literal length is calculated as sum of all these entries till one entry where 

there are not all 1s. Thus size of this field is also variable. 

So let’s look at the max entries table: 

Field Max Value 

Offset / Window Size 16 bits = 4 KB 

Match Length 4 bits + 8 * x bits = variable 

Literal Length 4 bits + 8 * x bits = variable 

Table 3: Limits in LZ4 

 

The number of literals is defined by the literal length entry present before it. So, there can 

be three types of LZ4 entries. 
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a) Those that have only match length and no literals. Thus size of this entry is 1B 

token + 2B offset + variable match length. 

b) Those that have only literal lengths. The size of this entry is 1B token + variable 

Literal length + 2B offset (all 0s) 

c) Those that have both a literal length and match length. It means first expand the 

literals to output and then use the match length then. The size of this entry is 

largest: 1B token + variable Literal length + 2B offset + variable match length. 

Finally we can now describe the LZ4 algorithm, 

LZ4(input,len) 

 rindex := 0 

 hash first 13 elements 

 write type b) entry 

 lookAheadPtr := 13 

 while rindex < len 

look for a match of sequence starting at lookAheadPtr in 

the hash 

  if a match of at least 4 found in hash 

output relvant type entry a) or c) 

  else 

   add to current entries literal list 

  // slide window 

  for i:=0 to match_length 

   if search window is full 

remove the entry from hash for lookAheadPtr – 

Max_Offset from the window 
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add entry for sequence starting at lookAheadPtr + i 

in hash  

  lookAheadPtr += match_length 

  rindex += match_length 
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9 CUDA - COMPUTE UNIFIED DEVICE 

ARCHITECTURE 

9.1 Overview 

 

CUDA (aka Compute Unified Device Architecture) is a parallel computing platform and 

programming model created by NVIDIA and implemented by the graphics processing 

units (GPUs) that they produce [1]. CUDA gives developers access to the virtual 

instruction set and memory of the parallel computational elements in CUDA GPUs. Using 

CUDA, the latest Nvidia GPUs become accessible for computation like CPUs. Unlike CPUs, 

however, GPUs have a parallel throughput architecture that emphasizes executing many 

concurrent threads slowly, rather than executing a single thread very quickly. This 

approach of solving general-purpose (i.e., not exclusively graphics) problems on GPUs is 

known as GPGPU. 

CUDA has several advantages over traditional general-purpose computation on GPUs 

(GPGPU) using graphics APIs [9]: 

• Scattered reads – code can read from arbitrary addresses in memory 

• Shared memory – CUDA exposes a fast shared memory region (up to 48KB per 

Multi-Processor) that can be shared amongst threads. This can be used as a user-

managed cache, enabling higher bandwidth than is possible using texture lookups. 

• Faster downloads and readbacks to and from the GPU 

• Full support for integer and bitwise operations, including integer texture lookups 

Limitations of CUDA are: 

• Copying between host and device memory may incur a performance hit due to 

system bus bandwidth and latency (this can be partly alleviated with 

asynchronous memory transfers, handled by the GPU's DMA engine) 
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• Threads should be running in groups of at least 32 for best performance, with 

total number of threads numbering in the thousands. Branches in the program 

code do not affect performance significantly, provided that each of 32 threads 

takes the same execution path; the SIMD execution model becomes a significant 

limitation for any inherently divergent tasks. 

 

9.2 CUDA processing flow 

 

 

Figure 6: CUDA processing flow [10] 

The diagram above shows the flow of a typical CUDA program. The flow is four fold: 

1. Copy the data to be processed to GPU DRAM. 
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2. Instruct the processing and launch a CUDA kernel to do something with 

the data you copied earlier. 

3. Executes the CUDA kernel in parallel using the GPU’s SIMD model. Multiple 

kernels can also be scheduled in parallel to increase the utilization on the 

GPU. 

4. Copy the result back to the system RAM. 

 

9.3 Architecture 

 

We know that in CUDA the threads run in parallel on each core. This means that all 

branching synchronization instructions are very crucial. We know that there are CUDA 

Blocks, each of which contains a group of CUDA threads. Certain numbers of CUDA 

threads are also clubbed to form what is called a Warp [20]. There can be no diversion in 

a Warp. A Warp goes for data parallelism. If there is branching or threads in a Warp are to 

diverge then the total Warp is serialized. This is the biggest challenge in CUDA [17]. 

__syncthreads()  function is used to synchronize the Warp at a point and do the remaining 

tasks in parallel(SIMD) from that point on. 

Also in CUDA we have few different types of memory and their access times are thus 

ordered as per their location. There are temp caches and registers of each CUDA thread 

which are accessed the fastest. Next we have the shared memory [18]. Each kernel can 

define a certain amount of shared memory which then can be accessed very quickly. Then 

data from the DRAM on GPU is slower than the two listed above. Lastly, if you need data 

from the CPU RAM, it is the slowest as it has to be copied to GPU DRAM and then used 

from the DRAM. 
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Figure 7: Vector Addition CUDA 

 

The standard vector addition is the simplest way to explain SIMD CUDA architecture. Here  

C[i] = A[i] + B[i] 

Therefore there is no issue in synchronizing the Warp for such a kernel and a lot of 

speedup can be achieved with this kind of tasks. But, unfortunately, most of our daily 

tasks involve a higher level of divergence and CUDA cannot be used in a straight forward 

manner. 
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10 CULZSS AND CULZ4 

 

These are the CUDA enabled versions of serial algorithms. CuLZSS is the massively 

parallel LZSS Murmur while CuLZ4 is the massively parallel LZ4. What having the GPU at 

our disposal does is that we can use memory hungrily in the DRAM of the GPU without 

worrying about running out of memory in RAM or affecting the performance of other 

running programs. What we want to do here is to divide the file into chunks and process 

them together in parallel [12]. This is similar to the behavior of a download manager. It 

would cause a slight loss in the compression ratio with the loss of 4 KB window that could 

have been continuous, but now would belong to a different thread in a different thread. 

Thus, the chance of a match in the starting portion of a file is reduced. Such losses can be 

neglected when looking at large files and compressed file sizes. 

 

10.1 Algorithm 

The following describes in very high level pseudo code, the working of the algorithm for 

CuLZSS / CuLZ4. 

CuLZ(input,length) 

 Divide the input into chunks 

 For each chunk that will be processed in parallel 

Copy chunk to GPU 

Hash triples via massively parallel CUDA kernel 

Search for maximum match in a new CUDA kernel for each thread 

based on thread ID 
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Store entries in GPU 

If chunk done 

 Move output entries to RAM 

 Write the entries to file 

End if 

End for 
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11 EXPERIMENTAL SETUP 

 

Here we look to compare using the DJB2 hash and the Murmur hash in LZSS. Both of these 

are just serial implementations of LZSS with one using DJB2 hash and other Murmur hash. 

We will use the following standard files to clock our performance. 

File Type Size (MB) 

BibTex 0.009773 

Text (Homer’s Illiad) 0.804038 

Image (Bitmap) 4.1 

C Source Code 21.9 

Dictionary 27.6 

Linux Kernel Tarball 178.7 

Table 4: Sample File Sizes 

 

11.1 Performance metrics 

 

We will measure the performance on the basis of following criteria: 

11.1.1 Time taken 

This represents the time taken to compress the chosen sample files using a particular 

algorithm. 
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11.1.2 Throughput 

This represents the rate at which the compression took place. It is the total time it took to 

read the file to memory and back to disk as compressed file. It will be measured in Kilo 

Bits per Second (Kbps). 

11.1.3 Compression Ratio 

It gives a good idea of the amount of compression we have achieved.  

  Compression Ratio = Size Original / Size Compressed 

  

11.1.4 Speedup 

This represents the relative improvement we see in the throughput of both algorithms. 

  Speedup = Time taken in LZSS DJB2 / 

    Time taken in target algorithm 

 

11.1.5 Collisions in Hash 

This represents the number of collisions in the respective hashes, taking place for each 

file. They will give us a clue to which hash function is better distributed. 

 

11.2 Hardware Used 

 

 

The machine from which all the result data is collected is equipped with 8GB DDR3 RAM, 

which is not used much as most algorithms here use a small memory footprint. It has the 

Intel I7 2630-QM processor with a maximum clock speed of 2.90 GHz which has 4 cores 

and can process 8 threads at a time. The GPU used to test our algorithms is a NVIDIA 
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525M GPU with 1GB DRAM and 96 cores. None of the devices used are overclocked. The 

CUDA toolkit version 5 is used with Arch Linux kernel 3.10. The proprietary version of the 

NVIDIA driver is used in conjunction with the toolkit. 
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12 RESULTS 

12.1 Serial LZSS v/s Serial LZSS-Murmur 

12.1.1 Time Taken 

 

 

Figure 8: Time Taken: LZSS DJB v/s LZSS Murmur 

 

The graph represents the time taken by each file to be compressed. So we want the line to 

be as low as possible. The graph above clearly shows that performance of Murmur hash is 

better than DJB2 hash. 
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12.1.2 Throughput 

 

 

Figure 9: Throughput: LZSS DJB2 v/s LZSS Murmur 

 

We expect that since Murmur hash is performing faster than DJB hash, the throughput of 

Murmur hash algorithm will be better which is illustrated by the above graph. 
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12.1.3 Compression Ratio 

 

 

 

Figure 10: Compression Ratio: LZSS DJB2 v/s LZSS Murmur 

 

The graph above illustrates that compression ratio is not affected by change in hash 

algorithm. If we look at the algorithms described earlier, we also know for a fact that 

compression ratio should remain the same. 
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12.1.4 Speedup 

 

 

Figure 11: Speedup LZSS DJB2 v/s LZSS Murmur 

 

This graph shows that for very small files murmur hash is showing better distribution 

than DJB2 hash. Murmur hashing algorithm is faster than DJB2 hash and thus there is a 

1.02x to 1.3x speedup achieved by using the Murmur hash algorithm. Overall, simply by 

using murmur hash algorithm we can achieve a little speedup over the standard 

algorithm. 
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12.1.5 Collisions in hash 

 

 

Figure 12: Collisions in hash: LZSS DJB2 v/s LZSS Murmur 

 

 

The above graph illustrates the reason for speedup in BibTex file. The reason is that 

Murmur hash is just a little bit more distributed and hence lesser collisions lead to faster 

throughput for BibTex. But for all the rest we can say that, collisions are roughly the same 

using any hash algorithm (only murmur hash performing a little better). 
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12.2 LZSS Murmur v/s Parallel CuLZSS 

 

12.2.1 Time Taken 

 

 

Figure 13: Time taken LZSS Murmur v/s CuLZSS 

 

The plot above shows that for very small files time CuLZSS is costlier. As file size is 

growing the parallelism for CuLZSS comes into effect. We can see CuLZSS performing a lot 

better for significant file sizes. 

 

 

BibTex Text: Illiad Image C Source Dictionary

Linux

Kernel

Tarball

LZSS Murmur 0.0179 1.3052 4.0793 43.5972 42.241 302.219

CuLZSS 0.1047 0.6442 1.8127 9.009215101 10.6442 76.7788

0.01

0.1

1

10

100

1000

T
im

e
 T

a
k

e
n

 (
S

e
cs

)

Time Taken



Page | 35  

 

 

12.2.2 Throughput 

 

 

Figure 14: Throughput LZSS Murmur v/s CuLZSS 

 

 

As in the previous graph, here also for smaller files we get lower throughput, but for 

significant size files we get a better throughput. 

 

BibTex Text: Illiad Image C Source Dictionary
Linux Kernel

Tarball

LZSS Murmur 4472.759777 5046.490346 8233.569485 4115.05326 5352.600554 4843.872821

CuLZSS 764.6838586 10224.5874 18528.82441 19913.47726 21241.53999 19066.59651

0

5000

10000

15000

20000

25000

T
h

ro
u

g
h

p
u

t 
(K

b
p

s)
Throughput



Page | 36  

 

 

12.2.3 Compression Ratio 

 

 

Figure 15: Compression Ratio LZSS Murmur v/s CuLZSS 

 

The compression ratio is roughly the same but tilting towards LZSS Murmur as the 

parallel one cuts into the window for parallel threads. 
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12.2.4 Speedup 

 

 

Figure 16: Speedup LZSS Murmur v/s CuLZSS 

 

 

Again for very small files, the CUDA version will not perform better but as the file size 

becomes significant, the CUDA version does go 2x to 4x speedup on the serial version. 
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12.3 LZ4 v/s Parallel CuLZ4 

 

12.3.1 Time Taken 

 

 

 

Figure 17: Time taken LZ4 v/s CuLZ4 

 

We see that again for smaller files like BibTex, LZ4 is lightning fast but as file size goes up 

we get better performance with CUDA. 
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12.3.2 Throughput 

 

 

Figure 18: Throughput LZ4 v/s CuLZ4 

 

Same reason as the previous graph, we have better throughput for CuLZ4. 
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12.3.3 Compression Ratio 

 

 

Figure 19: Compression Ratio LZ4 v/s CuLZ4 

 

Because of losing on the 4 kb window, we get roughly similar, but lower compression 

ratio with CuLZ4. 
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12.3.4 Speedup 

 

 

Figure 20: Speedup LZ4 v/s CuLZ4 

 

We get a 2x to 5x speedup for significant size files in CuLZ4. 
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12.4 Overall 

 

12.4.1 Time Taken 

 

 

Figure 21: Time taken comparison 

 

The above figure retraces the flow of this dissertation. The standard DJB2 takes the 

longest and CuLZ4 turns out to be best one out of the ones discussed. 
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12.4.2 Throughput 

 

 

Figure 22: Throughput Comparison 

 

 

This builds on the previous graph illustrating, for smaller file size we should use LZ4 and 

for significant sizes, we should go to the more powerful CuLZ4. 
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12.4.3 Compression Ratio 

 

 

Figure 23: Compression Ratio Comparison 

 

We see the compression ratio of LZ4 edging others. As file size is increasing the ratio is 

getting higher and higher as compared to others. 
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12.4.4 Speedup 

 

 

Figure 24: Speedup Comparison 

 

 

This paints a clear picture of the performance of the algorithms. For very small files we 

get a speedup of up to 23x using the serial LZ4. Using the CUDA enabled version for 

significant file sizes we get a good speedup up to 10x the standard algorithm used today. 
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13 CONCLUSION 

 

 

From the above results we can conclude that the standard LZSS algorithm with DJB2 hash 

can be improved serially with Murmur hash without a change in format specification. Also 

we can afford to change the format specification LZ4 performs a whole lot better than the 

LZSS format. LZ4 also provides a better compression ratio.  

The GPU can be utilized to really make compression fast. For files of size of a couple MBs 

and up, we should use the more powerful CuLZSS and CuLZ4. For smaller files (of a few 

hundred KBs in size) it takes the CUDA versions longer due to the time spent in transfer of 

data from RAM to DRAM on the graphics processor. Thus, for most systems that stores 

user data online, The CUDA enabled versions would be definitely a huge time saver. Also 

for the home users, they can get more out of their existing hardware with CUDA enabled 

compression.  

Serially LZ4 is shown to be better algorithm both speed wise and compression ratio wise. 

If given a choice into parallel, the CUDA enabled version of LZ4 is really fast. In today’s 

multitasking and demanding computing requirements, the CuLZ4 can be a boon. It can be 

coupled with some cloud storage software to increase storage (compression) and access 

times. 
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14 FUTURE WORK 

 

 

We have seen how using the untapped potential of the dormant graphics card under the 

hood of our computers can be used to help speedup data compression. General purpose 

graphics processing unit computing is a highly researched topic today. We are still in its 

early days, with NVIDIA leading from the forefront. As more advanced and powerful 

graphics processing units come into existence like the NVIDIA Kepler which has dynamic 

parallelism and Hyper-Q and clock speeds reaching memory clocks of 6GHz and 1536 

processing cores with a clock speed of 1058 MHz, paves the way for more complex 

algorithms that are more GPU friendly and compute intensive [21]. The only concern that 

remains is the heat that is generated from the GPU. However, the energy efficiency of GPU 

is generally very high as compared to the processing power to generated, but still its use 

in enterprise environments is limited by this factor. A deviation from the standard Lempel 

Ziv formats can come into place which may be more SIMD and CUDA favorable. Data will 

continue to explode as more people create more footprints the web and elsewhere. Ergo, 

data compression will always be of interest for many scientists. More generic 

implementations of day to day software can be created with OpenCL or such languages 

which are not limited to NVIDIA GPUs but can be used with just about any GPU. With CPU 

clock speeds peaking, the GPUs are the future to a faster computing environment and 

more and more algorithms need to be made CUDA friendly. 
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16  APPENDIX 
 

16.1 Hashing CUDA Kernel 

 

/** 

 * hash on device specific to thread 

 */ 

__device__ unsigned int hash(int i,int index,byte *dreadBuf,int dreadBufSize) 

{ 

 const uint c1 = 0xcc9e2d51; 

 const uint c2 = 0x1b873593; 

 const uint r1 = 15; 

 const int len = 3; 

 uint hash = 0; 

 uint b1 = dreadBuf[index*oneMB + i]; 

 uint b2=0; 

 if(i + 1 < dreadBufSize) 

  b2 = dreadBuf[index*oneMB + (i + 1)]; 

 uint b3=0; 

 if(i + 2 < dreadBufSize) 

  b3 = dreadBuf[index*oneMB + (i + 2)]; 

 uint remainingBytes=(b1<<16) | (b2<<8) | b3; 

 

 remainingBytes = remainingBytes * c1; 

 remainingBytes = (remainingBytes << r1) | (remainingBytes >> (32 - r1)); 

 remainingBytes = remainingBytes * c2; 

 

 hash = hash ^ remainingBytes; 

 

 hash = hash ^ len; 

 

 hash = hash ^ (hash >> 16); 

 hash = hash * 0x85ebca6b; 

 hash = hash ^ (hash >> 13); 

 hash = hash * 0xc2b2ae35; 

 hash = hash ^ (hash >> 16); 

 return hash % HASH_SIZE; 

} 

/** 

 * insert the sequence of 3 in the hash 

 */ 

__device__ void insertHash(int i,int index,byte *dreadBuf,node *dhashTable,int dreadBufSize) 

{ 

 uint key=hash(i,index,dreadBuf,dreadBufSize); 

 int j; 

 for(j=0;j<MAX_CHAIN_LENGTH;j++) 
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 { 

  if(!dhashTable[index*HASH_SIZE*MAX_CHAIN_LENGTH + 

                 (MAX_CHAIN_LENGTH*key) +j].valid) 

  { 

   dhashTable[index*HASH_SIZE*MAX_CHAIN_LENGTH + 

                 (MAX_CHAIN_LENGTH*key) +j].valid = true; 

   dhashTable[index*HASH_SIZE*MAX_CHAIN_LENGTH + 

                 (MAX_CHAIN_LENGTH*key) +j].indexInReadBuf = i; 

  } 

 } 

} 

 

/** 

 * remove the sequence of 3 from the hash 

 */ 

__device__ void removeHash(int i,int index,byte *dreadBuf,node *dhashTable,int dreadBufSize) 

{ 

 uint key=hash(i,index,dreadBuf,dreadBufSize); 

 int j; 

 for(j=0;j<MAX_CHAIN_LENGTH;j++) 

 { 

  if(dhashTable[index*HASH_SIZE*MAX_CHAIN_LENGTH + 

                 (MAX_CHAIN_LENGTH*key) +j].valid && 

dhashTable[index*HASH_SIZE*MAX_CHAIN_LENGTH + 

                                                          (MAX_CHAIN_LENGTH*key) 

+j].indexInReadBuf==i) 

  { 

   dhashTable[index*HASH_SIZE*MAX_CHAIN_LENGTH + 

                 (MAX_CHAIN_LENGTH*key) +j].valid = false; 

   dhashTable[index*HASH_SIZE*MAX_CHAIN_LENGTH + 

                 (MAX_CHAIN_LENGTH*key) +j].indexInReadBuf = -1; 

  } 

 } 

} 

/** 

 * the kernel init point 

 */ 

__global__ void kernel(byte *dreadBuf,int *dreadBufSize,node *dhashTable, 

  byte* dOutput,int *dOutputSize,byte *dliterals,entry *dtheEntry) 

{ 

 int index = blockIdx.x * blockDim.x + threadIdx.x; 

 if(index < WORK_SIZE) 

 { 

  int i,j,lookahead,start=0,sl; 

  pii p; 

  //printf("My WorkLoad: %d\n",dreadBufSize[index]); 

  for(i=0;i<13 && i<dreadBufSize[index];i++) 

  { 

   dtheEntry[index].countLiterals++; 

   dliterals[index*MAX_LITERALS +i] = dreadBuf[index*oneMB +i]; 

   //printf("Read: %c\n",dreadBuf[index*oneMB +i]); 
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   insertHash(i,index,dreadBuf,dhashTable,dreadBufSize[index]); 

  } 

  //printf("index: %d %p %p\n",index,dtheEntry,dliterals[index]); 

  writeEntry(index,dtheEntry,dliterals,dOutput,dOutputSize); 

  lookahead=13; 

  for(;lookahead + dtheEntry[index].countLiterals<dreadBufSize[index];) 

  { 

   //printf("Read: %c\n",dreadBuf[lookahead + 

dtheEntry[index].countLiterals]); 

   //printf("loop::%d",lookahead + dtheEntry[index].countLiterals); 

   p=getMaxMatchLength(lookahead + 

dtheEntry[index].countLiterals,index, 

     dreadBuf,dhashTable,dreadBufSize[index]); 

   if( p.first >=4 ) 

   { 

    dtheEntry[index].matchLength = p.first; 

    dtheEntry[index].offset = lookahead - p.second; 

    //theEntry.offset = pii.second; 

    sl = dtheEntry[index].countLiterals + 

dtheEntry[index].matchLength; 

    writeEntry(index,dtheEntry,dliterals,dOutput,dOutputSize); 

    //slideWindow(sl); 

    i += sl; 

    while( i - start >= MAX_OFFSET) 

    { 

    

 removeHash(start,index,dreadBuf,dhashTable,dreadBufSize[index]); 

     start++; 

 

    } 

    for(j=0;j<sl;j++) 

    { 

    

 insertHash(lookahead,index,dreadBuf,dhashTable,dreadBufSize[index]); 

     lookahead++; 

    } 

   } 

   else 

   { 

    //add to literal list 

    dliterals[index*MAX_LITERALS + 

dtheEntry[index].countLiterals] = dreadBuf[index*oneMB + lookahead + 

dtheEntry[index].countLiterals]; 

    dtheEntry[index].countLiterals++; 

   } 

   if(dtheEntry[index].countLiterals == MAX_LITERALS) 

   { 

    sl=dtheEntry[index].countLiterals; 

    writeEntry(index,dtheEntry,dliterals,dOutput,dOutputSize); 

    //slideWindow(sl); 

    i += sl; 
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    while( i - start >= MAX_OFFSET) 

    { 

    

 removeHash(start,index,dreadBuf,dhashTable,dreadBufSize[index]); 

     start++; 

    } 

    for(j=0;j<sl;j++) 

    { 

    

 insertHash(lookahead,index,dreadBuf,dhashTable,dreadBufSize[index]); 

     lookahead++; 

    } 

   } 

  } 

  if(dtheEntry[index].countLiterals) 

   writeEntry(index,dtheEntry,dliterals,dOutput,dOutputSize); 

 } 

} 

 

 

16.2 DJB Hash Implementation 

 

/** 

 * Assumes the 3 indices starting at I are valid in 

 * read buffer. 

 * @i represents the index in readBuf to start hashing from 

 */ 

int hash(int i) 

{ 

 int key = 5381; //Magic Number 

 for (int j = 0; j < 4; j++) 

 { 

     key = (key *33) ^ readBuf[(j+i) % READ_BUFFER_SIZE]; 

     key %= HASH_SIZE; 

 } 

 return key; 

} 

 

 

16.3 Murmur Hash Implementation 

 

/** 

 * Assumes the 3 indices starting at I are valid in 

 * read buffer. 

 */ 

int hash(int i) 



Page | 54  

 

{ 

 // Note: In this version, all integer arithmetic is performed with unsigned 32 bit integers. 

 //       In the case of overflow, the result is constrained by the application of modulo  

arithmetic. 

 

 const uint c1 = 0xcc9e2d51; 

 const uint c2 = 0x1b873593; 

 const uint r1 = 15; 

 const int len = 3; 

 uint hash = 0; 

 uint b1 = readBuf[i]; 

 uint b2 = readBuf[(i + 1)% READ_BUFFER_SIZE]; 

 uint b3 = readBuf[(i + 2)% READ_BUFFER_SIZE]; 

 uint remainingBytes=(b1<<16) | (b2<<8) | b3; 

 

 remainingBytes = remainingBytes * c1; 

 remainingBytes = (remainingBytes << r1) | (remainingBytes >> (32 - r1)); 

 remainingBytes = remainingBytes * c2; 

 

 hash = hash ^ remainingBytes; 

 

 hash = hash ^ len; 

 

 hash = hash ^ (hash >> 16); 

 hash = hash * 0x85ebca6b; 

 hash = hash ^ (hash >> 13); 

 hash = hash * 0xc2b2ae35; 

 hash = hash ^ (hash >> 16); 

 return hash % HASH_SIZE; 

} 

 

 

 

 

 

 

 

 


