LIST OF SYMBOLS & ABBREVIATIONS BMD = Bending Moment Diagram C = Damping matrix C_0 = Damping coefficient for bearing C_e = Linear effective damping CG = Centre of gravity CR = Centre of rigidity DBE = Design Basis Earthquake e = Eccentricity EDF = Electricide De France F = Force F^+ = Maximum force in positive direction F^{-} = Maximum force in negative direction $F_{max} = Absolute maximum force$ FPS = Friction Pendulum System g = Gravitational acceleration I = Moment of inertia K = Stiffness matrix $K_0 = Stiffness of bearing$ $K_b = Stiffness of base isolator$ K_{bx} = Base isolator stiffness in X – direction K_{by} = Base isolator stiffness in Y- direction $K_e = Linear \ effective \ stiffness$ K_x = Effective stiffness in X-direction K_y = Effective stiffness in Y-direction K_{Θ} = Effective torsional stiffness LRB = Laminated Rubber Bearing M = Diagonal mass matrix MCE = Maximum Capable Earthquake NL Link = Non Linear link NS Component = North South Component NZS = New Zealand System P-F System = Pure Friction System R = Response reduction factor r = Radius of gyration R-FBI = Resilient Friction Base Isolator RCC = Reinforced Cement Concrete S_a = Spectral Acceleration SR-FBI = Sliding Resistance Friction Base Isolator T = Fundamental Time period T_n = Fundamental Time period of structure $T_{nb} = Fundamental \ Time \ period \ of \ base \ isolator$ UBC = Uniform building Code X = Displacement matrix X' = Velocity matrix X" = Acceleration matrix X_i = Distance of i^{th} isolator from CR along X-axis $Y_i = Distance of i^{th} isolator from CR along Y-axis$ Z = Zone factor z = Internal hysteretic variable Δ = Deflection Δ^+ = Maximum deflection in positive direction Δ^{-} = Maximum deflection in negative direction $\Delta_{max} = Absolute \ maximum \ deflection$ μ = Coeffecient of friction $\xi_b = Damping of base isolator$ ω = Frequency ratio $\omega_n = Fundamental \ frequency \ of \ \ structure$ ω_{nb} = Fundamental frequency of base isolator ω_x = Lateral frequency in X-direction ω_y = Lateral frequency in Y direction ω_{Θ} = Torsional frequency