LIST OF SYMBOLS & ABBREVIATIONS

BMD = Bending Moment Diagram

C = Damping matrix

 C_0 = Damping coefficient for bearing

 C_e = Linear effective damping

CG = Centre of gravity

CR = Centre of rigidity

DBE = Design Basis Earthquake

e = Eccentricity

EDF = Electricide De France

F = Force

 F^+ = Maximum force in positive direction

 F^{-} = Maximum force in negative direction

 $F_{max} = Absolute maximum force$

FPS = Friction Pendulum System

g = Gravitational acceleration

I = Moment of inertia

K = Stiffness matrix

 $K_0 = Stiffness of bearing$

 $K_b = Stiffness of base isolator$

 K_{bx} = Base isolator stiffness in X – direction

 K_{by} = Base isolator stiffness in Y- direction

 $K_e = Linear \ effective \ stiffness$

 K_x = Effective stiffness in X-direction

 K_y = Effective stiffness in Y-direction

 K_{Θ} = Effective torsional stiffness

LRB = Laminated Rubber Bearing

M = Diagonal mass matrix

MCE = Maximum Capable Earthquake

NL Link = Non Linear link

NS Component = North South Component

NZS = New Zealand System

P-F System = Pure Friction System

R = Response reduction factor

r = Radius of gyration

R-FBI = Resilient Friction Base Isolator

RCC = Reinforced Cement Concrete

 S_a = Spectral Acceleration

SR-FBI = Sliding Resistance Friction Base Isolator

T = Fundamental Time period

 T_n = Fundamental Time period of structure

 $T_{nb} = Fundamental \ Time \ period \ of \ base \ isolator$

UBC = Uniform building Code

X = Displacement matrix

X' = Velocity matrix

X" = Acceleration matrix

 X_i = Distance of i^{th} isolator from CR along X-axis

 $Y_i = Distance of i^{th} isolator from CR along Y-axis$

Z = Zone factor

z = Internal hysteretic variable

 Δ = Deflection

 Δ^+ = Maximum deflection in positive direction

 Δ^{-} = Maximum deflection in negative direction

 $\Delta_{max} = Absolute \ maximum \ deflection$

 μ = Coeffecient of friction

 $\xi_b = Damping of base isolator$

 ω = Frequency ratio

 $\omega_n = Fundamental \ frequency \ of \ \ structure$

 ω_{nb} = Fundamental frequency of base isolator

 ω_x = Lateral frequency in X-direction

 ω_y = Lateral frequency in Y direction

 ω_{Θ} = Torsional frequency