LIST OF FIGURES	Page No
Chapter 1: INTRODUCTION AND LITERATURE REVIEW	
Fig. 1.1) Deformation before base isolation	2
Fig.1.2) Deformation after base isolation	3
Fig 1.3)Typical effect of base-isolation on demand & capacities	4
Fig. 1.4) Period shifting in case of base isolation	7
Fig.1.5). A prototype view of bearing used in GTB Hospital, at Dilshadgarden Delhi	10
Fig.1.6).Internal construction of rubber bearing	10
Fig. 1.7) Schematic diagram of (a) LRB (b) NZ System	11
Fig.1.8) Low friction bearing device	12
Fig.1.9)Metallic Bearing	13
Fig. 1.10 schematic diagram of (a) P-F & (b) R-FBI system	13
Fig. 1.11 diagram depicting mechanism of FPS	15
Fig. 1.12 schematic diagram of (a) EDF & (b) SR-F system	16
Fig. 1.13a) Additional foundations	17
Fig.1.13b) Additional shear walls	17
Fig. 1.13c) Jacketing	18
Fig.1.13d) Additional column	18
Fig. 1.14 Installation of temporary steel props	22
Fig 1.15: Saw cut through the concrete column	23
Fig 1.16: Removal of concrete block	24
Fig 1.17:Steel jackets replacing the discontinued reinforcing bars	25
Fig 1.18: Fireproofing insulation	26
CHAPTER 3. EXECUTION OF BASE ISOLATION AND ITS ANALYSIS METHODS AND PROCEEDINGS:	
Fig. 3.1) Idealized Force Deflection behaviour of an Isolator	29
Fig. 3.2) Force Deflection curve for a Linear Base Isolator	30
Fig. 3.3.)Force Deflection curve for non linear Isolator	31
Fig. 3.4) Spectral Plot for different damping ratios (according to IS 1893-2002)	33
Fig.3.5) Nonlinear Behaviour of NLlink element in SAP 2000	39
Fig 3.6 Approximate solution for base isolation preliminary design	42
CHAPTER 4. NUMERICAL STUDY	
Fig. 4.1: Plan of the Rectangular frame showing Xi & Yi	45
Fig. 4.2:Isometric view of 4,6 & 9 Rect.frame structure represented by A,B & C	47
Fig. 4.3:Top view of the Rectangular Building	48
Fig 4.4:Elevatuin of Isolator Bearing (RUB 1)	
Fig 4.5: Plan of Isolator Bearing (RUB1)	
Fig 4.6: Elevation of Isolator Bearing (RUB 2)	
Fig 4.7: Plan of Isolator Bearing (RUB2)	

Fig 4.8: Elevation of Isolator Bearing (RUB 3)	
Fig 4.9: Plan of Isolator Bearing (RUB3)	
Fig. 4.10: Elevation of the isolated(ZY View) 4,6 & 9 storey Building shown	51
by A,B &C	
Fig. 4.6: Plot of El-Centro time history NS component -1940	52
CHAPTER 5. RESULTS & DISCUSSION	
Fig.5.1 : plan specifying location of where S.F & B.M. values entered in observation Tables	54
Fig 5.2: 1 st mode shapes for fixed base & Base-Isolated with equal stiffness isolators ,4 storey building	62
Fig 5.3: 1 st mode shapes for fixed base & Base-Isolated with equal stiffness	63
isolators ,6 storey building	
Fig 5.4: 1 st mode shapes for fixed base & Base-Isolated with equal stiffness isolators ,9 storey building	64
Fig 5.5: 5 th mode shapes for fixed base & Base-Isolated with equal stiffness isolators ,4 storey building	65
Fig 5.6: 5 th mode shapes for fixed base & Base-Isolated with equal stiffness	66
isolators ,6 storey building Fig 5.7: 5 th mode shapes for fixed base & Base-Isolated with equal stiffness	67
isolators ,9 storey building Fig 5.8: 7 th mode shapes for fixed base & Base-Isolated with equal stiffness	
isolators ,4 storey building	68
Fig 5.9: 7 th mode shapes for fixed base & Base-Isolated with equal stiffness isolators ,6 storey building	69
Fig 5.10: 7 th mode shapes for fixed base & Base-Isolated with equal stiffness isolators ,9 storey building	70
Fig 5.11:S.F. Diagrams for fixed base & Base-Isolated with equal stiffness isolators ,9 storey building	71
Fig 5.12:S.F. Diagrams for fixed base & Base-Isolated with equal stiffness isolators ,6 storey building	72
Fig 5.13:S.F. Diagrams for fixed base & Base-Isolated with equal stiffness	73
isolators ,4 storey building Fig 5.14:B.M. Diagrams for fixed base & Base-Isolated with equal stiffness	74
isolators ,9 storey building Fig 5.15:B.M. Diagrams for fixed base & Base-Isolated with equal stiffness	
isolators ,6 storey building	75
Fig 5.16:B.M. Diagrams for fixed base & Base-Isolated with equal stiffness isolators ,4 storey building	76
Fig 5.17:Performence Points of fixed base & Base-Isolated with equal stiffness isolators ,4 storey building	77
Fig 5.18:Performence Points of fixed base & Base-Isolated with equal stiffness	78
isolators ,6 storey building Fig 5.19:Performence Points of fixed base & Base-Isolated with equal stiffness	79
isolators ,9 storey building Fig 5.20:B.M.Diagrams comparison of RSP & TH Cases of fixed base ,4	80
storey building	00

Fig 5.21: B.M. Diagrams comparison of RSP & TH Cases of fixed base ,6 storey building	81
Fig 5.22: B.M. Diagrams comparison of RSP & TH Cases of fixed base ,9	
storey building	82
Fig 5.23 (a) Top displacements (mm) time history for frame resting on fixed	83
base.	83
Fig. 5.23 (b) Top displacement (mm) time history for frame resting on isolators	83
of uniform stiffness	85
Fig. 5.23 (c) Top displacement (mm) time history for frame resting on isolators	84
of randomly different stiffness.	04
Fig. 5.23 (d) Top displacement (mm) time history for frame resting on isolators	84
of different stiffness in proportion to load coming on the column.	04
Fig 5.24 A view of base-isolated 9 storey building constructed in	85
Dilshadgarden GTB Hospital Delhi	05
Fig 5.25 A prototype view of lead rubber bearing used in GTB Hospital Base-	86
isolated building at Delhi Dilshadgarden	00
Fig 5.26 A view of Lead Rubber bearing Installed in Basement at the junction of beam-	87
column in base-isolated GTB Hospital Dilshadgarden Delhi	
Fig 9.1 Out-line of the "Flat Slab base-isolated System	94
Fig 9.2 Internal construction of Flat Slab Base-Isolated Building.	95
Fig 9.3 A view of "Moto-Azabu 1-Crome Plan" Japan	97
Fig 9.4 Elevation of "Moto Azabu-1 crome Plan" Japan	98
Fig 9.5 A view of NSC beam used in "Moto-Azabu 1-Crome Plan "Japan	98
Fig 9.6 A view oh "High Strength Bearing" used in 'Moto-Azabu 1 crome Plan'	98