
I 

ENHANCEMENT OF POWER OSCILLATION 

DAMPING IN A SMIB SYSTEM USING FUZZY LOGIC 

BASED POWER SYSTEM STABILIZER 

     A dissertation submitted in partial fulfillment of the requirement for  

the degree of 

MASTER OF TECHNOLOGY 

IN 

POWER SYSTEM 

by 

Shankar Rao                                                                         
(Roll No. : 2K11/PSY/17) 

Under the guidance of 

Dr Suman Bhowmick and Mr Ram Bhagat 

 

DEPARTMENT OF ELECTRICAL ENGINEERING                 

DELHI     TECHNOLOGICAL     UNIVERSITY     

DELHI-110042                                                                                  

MAY 2013 

 

//upload.wikimedia.org/wikipedia/en/b/b5/DTU,_Delhi_official_logo.png


II 

CERTIFICATE 

 

This is to certify that the work contained in this dissertation entitled "ENHANCEMENT OF 

POWER OSCILLATION DAMPING IN A SMIB SYSTEM USING FUZZY LOGIC BASED 

POWER SYSTEM STABILIZER" by Shankar Rao has been carried out under our supervision 

for the award of the degree of "Master of Technology" in Power System of Delhi 

Technological University, Delhi. 

 

 

 

 ( Ram Bhagat)                    (Dr Suman Bhowmick) 

 Assistant Professor                 Associate Professor 

           Project Co-Guide                  Project Guide 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



III 

ACKNOWLEDGEMENT 

 

 

First and foremost, I express my sense of gratitude  to my supervisors  viz. Dr Suman 

Bhowmick, Associate Professor and Shri Ram Bhagat, Assistant Professor , Department of  

Electrical Engineering , Delhi Technological University for their  constant supervision and 

valuable suggestions for my thesis work entitled " ENHANCEMENT OF POWER 

OSCILLATION DAMPING IN A SMIB SYSTEM USING FUZZY LOGIC BASED POWER 

SYSTEM STABILIZER".  

 

I wish to take this opportunity to express my gratitude to Prof. Narendra Kumar, Ex-Head of  

Department and Prof. Madhusudan Singh, Head of Department of Electrical Engineering 

Department  for their constant encouragement during the conduct of the project work. I express 

my gratitude to all the faculty members of Electrical Department for their motivations time to 

time. My special thanks to Prof. Pragati Kumar for his inspiration and unfailing support during 

the entire period of my M Tech. course.  

I also thank all the non-teaching staff of the Electrical Engineering Department for their fullest 

cooperation. 

I would like to thank all those who have directly and indirectly helped me in completion of thesis 

well in time. 

It would not be appropriate on my part if I do not mention the names of some of my batch-mates  

who have contributed a lot to complete the thesis work. Mr Shoeb Hussain and Miss Sangeeta 

Deora helped me in learning fuzzy logic. Miss Bhavna Rathore and Miss Shagufta Khan assisted 

me in making figures and curves contained in the report.    

 

Finally, I wish to thanks my family members for their moral support and confidence showed in 

me to pursue M. Tech at advanced stage of my academic career. 

        

 

             

          

Delhi, May 2013        Shankar Rao 



IV 

ABSTRACT 

 

Power systems are subjected to low frequency disturbances that might cause loss of synchronism 

and an eventual breakdown of entire system. The oscillations, which are typically in the 

frequency range of 0.2 to 3.0 Hz, might be excited by the disturbances in the system or, in some 

cases, might even build up spontaneously. These oscillations limit the power transmission 

capability of a network and, sometimes, even cause a loss of synchronism and an eventual 

breakdown of the entire system. For this purpose, Power system stabilizers (PSS) are used in 

conjunction with the excitation system in order to damp these low frequency power system 

oscillations. 

 

The use of power system stabilizers has become very common in operation of large electric 

power systems. The conventional PSS (CPSS) which uses lead-lag compensation, where gain 

settings designed for special operating conditions exhibits poor performance under different 

loading conditions. The constantly changing nature of power system makes the design of CPSS a 

difficult task. Therefore, it is very difficult to design a stabilizer that could present robust 

performance at all operating conditions of electric power systems. To overcome the drawback of 

conventional power system stabilizer (CPSS), many techniques such as fuzzy logic, genetic 

algorithm, neural network etc. have been proposed in the literature. 

 

In an attempt to cover a wide range of operating conditions, fuzzy logic based technique has 

been suggested as a possible solution to overcome the above problem. Using this technique, 

complex system mathematical model can be avoided, while giving good performance  under 

different operating conditions. Fuzzy Logic has the features of simple concept, easy 

implementation and computational efficiency. The fuzzy logic based power system stabilizer 

model is evaluated on a single machine infinite bus (SMIB) power system, and then the 

performance of Conventional power system stabilizer (CPSS) and Fuzzy logic based Power 

system stabilizer (FLPSS) are compared. Results demonstrate that fuzzy logic based power 

system stabilizer  gives better performance than the Conventional Power system stabilizer. It has 

been shown that both the magnitude of oscillation and the setting time of the oscillation in 

FLPSS is much less than that of CPSS. 
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