ENHANCEMENT OF POWER OSCILLATION DAMPING IN A SMIB SYSTEM USING FUZZY LOGIC BASED POWER SYSTEM STABILIZER

A dissertation submitted in partial fulfillment of the requirement for

the degree of

MASTER OF TECHNOLOGY

IN

POWER SYSTEM

by

Shankar Rao (Roll No. : 2K11/PSY/17)

Under the guidance of

Dr Suman Bhowmick and Mr Ram Bhagat

DEPARTMENT OF ELECTRICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY DELHI-110042 MAY 2013

CERTIFICATE

This is to certify that the work contained in this dissertation entitled "ENHANCEMENT OF POWER OSCILLATION DAMPING IN A SMIB SYSTEM USING FUZZY LOGIC BASED POWER SYSTEM STABILIZER" by Shankar Rao has been carried out under our supervision for the award of the degree of "**Master of Technology''** in **Power System** of Delhi Technological University, Delhi.

(**Ram Bhagat**) Assistant Professor Project Co-Guide

(Dr Suman Bhowmick)

Associate Professor Project Guide

ACKNOWLEDGEMENT

First and foremost, I express my sense of gratitude to my supervisors viz. Dr Suman Bhowmick, Associate Professor and Shri Ram Bhagat, Assistant Professor, Department of Electrical Engineering, Delhi Technological University for their constant supervision and valuable suggestions for my thesis work entitled " ENHANCEMENT OF POWER OSCILLATION DAMPING IN A SMIB SYSTEM USING FUZZY LOGIC BASED POWER SYSTEM STABILIZER".

I wish to take this opportunity to express my gratitude to Prof. Narendra Kumar, Ex-Head of Department and Prof. Madhusudan Singh, Head of Department of Electrical Engineering Department for their constant encouragement during the conduct of the project work. I express my gratitude to all the faculty members of Electrical Department for their motivations time to time. My special thanks to Prof. Pragati Kumar for his inspiration and unfailing support during the entire period of my M Tech. course.

I also thank all the non-teaching staff of the Electrical Engineering Department for their fullest cooperation.

I would like to thank all those who have directly and indirectly helped me in completion of thesis well in time.

It would not be appropriate on my part if I do not mention the names of some of my batch-mates who have contributed a lot to complete the thesis work. Mr Shoeb Hussain and Miss Sangeeta Deora helped me in learning fuzzy logic. Miss Bhavna Rathore and Miss Shagufta Khan assisted me in making figures and curves contained in the report.

Finally, I wish to thanks my family members for their moral support and confidence showed in me to pursue M. Tech at advanced stage of my academic career.

Shankar Rao

ABSTRACT

Power systems are subjected to low frequency disturbances that might cause loss of synchronism and an eventual breakdown of entire system. The oscillations, which are typically in the frequency range of 0.2 to 3.0 Hz, might be excited by the disturbances in the system or, in some cases, might even build up spontaneously. These oscillations limit the power transmission capability of a network and, sometimes, even cause a loss of synchronism and an eventual breakdown of the entire system. For this purpose, Power system stabilizers (PSS) are used in conjunction with the excitation system in order to damp these low frequency power system oscillations.

The use of power system stabilizers has become very common in operation of large electric power systems. The conventional PSS (CPSS) which uses lead-lag compensation, where gain settings designed for special operating conditions exhibits poor performance under different loading conditions. The constantly changing nature of power system makes the design of CPSS a difficult task. Therefore, it is very difficult to design a stabilizer that could present robust performance at all operating conditions of electric power systems. To overcome the drawback of conventional power system stabilizer (CPSS), many techniques such as fuzzy logic, genetic algorithm, neural network etc. have been proposed in the literature.

In an attempt to cover a wide range of operating conditions, fuzzy logic based technique has been suggested as a possible solution to overcome the above problem. Using this technique, complex system mathematical model can be avoided, while giving good performance under different operating conditions. Fuzzy Logic has the features of simple concept, easy implementation and computational efficiency. The fuzzy logic based power system stabilizer model is evaluated on a single machine infinite bus (SMIB) power system, and then the performance of Conventional power system stabilizer (CPSS) and Fuzzy logic based Power system stabilizer (FLPSS) are compared. Results demonstrate that fuzzy logic based power system stabilizer gives better performance than the Conventional Power system stabilizer. It has been shown that both the magnitude of oscillation and the setting time of the oscillation in FLPSS is much less than that of CPSS.

CONTENTS

CERTIFICATE	ii
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
LIST OF ABBREVIATIONS	vii
LIST OF FIGURES	Х
CHAPTER-1: INTRODUCTION	01
1.1: Power System Stability	01
1.1.1: Power System Oscillations	02
1.1.2: Low Frequency Oscillation	03
1.1.3: Conventional Power System Stabilizer	04
1.1.4: Fuzzy Logic based Power System Stabilizer	05
1.2: Review of Literature	05
1.3: Outline of the Thesis	08
CHAPTER- 2: MODELLING OF SMIB SYSTEM	10
2.1: Equation of Motion	11
2.2: Classical Model of Generator	13
2.3: Effect of Fields Circuit Dynamics	16
2.4: Effect of Excitation System	28
2.5: Effect of AVR on Torque Components	32
CHAPTER-3: CONVENTIONAL POWER SYSTEM STABILIZER	36
3.1: Components of a conventional PSS	36
3.2: State space model of PSS	39
3.3: System State-Space model including PSS	43

CHAPTER-4: FUZZY LOGIC BASED POWER SYSTEM STABILISER	
4.1: Basic Concept of Fuzzy Logic	47
4.2: Fuzzy Inference System	48
4.3: Design of Fuzzy Logic Based PSS	49
CHAPTER-5: CASE STUDY AND RESULTS	57
5.1: System under Consideration	57
5.2: Result without AVR	58
5.3: Result with AVR only	59
5.4: Result with Conventional PSS	60
5.5: Result with Fuzzy Logic Based PSS	64
5.6: Conventional Vs. Fuzzy Logic Based PSS	66
CHAPTER-6: CONCLUSION AND SCOPE FOR FURTHER WORK	69
6.1: Conclusion	69
6.2: Scope for Future Work	69

REFERENCES	70
APPENDIX	74

LIST OF SYMBOLS

<u>Symbols</u>	<u>Quantity</u>
E _B	Infinite Bus Voltage in pu
Pe	Air gap power in pu
Р	Active power in pu
Ι	Line current in pu
Q	Reactive power in pu
R _a	Armature resistance per phase in pu
р	Differential operator
Н	Inertia constant in MW-s/MVA
K _S	Synchronizing torque coefficient in pu torque/rad
K _D	Damping torque coefficient in pu torque/pu speed deviation
T _a	Accelerating torque in N-m
T _m	Mechanical torque in N-m
δ	Rotor angle
S	Laplace operator
ω _r	Rotor speed in electrical rad/s
T _e	Electromagnetic torque in N-m
J	Combined moment of inertia of generator and turbine in Kg-m ²
Δδ	Rotor angle deviation
$\Delta \omega_r$	Speed deviation in pu
ω_n	Undamped natural frequency , rad/s
ΔT_{m}	Deviation in mechanical torque
ξ	Damping ratio
$\mathrm{E_{fd}}$	Exciter output voltage

Ψ_{fd}	Field circuit flux linkage
I _{fd}	Field current
R _{fd}	Field circuit resistance
Ψd	Direct-axis flux linkage
ψ_{q}	Quadrature axis flux linkage
I _d	Direct-axis component of line current
Iq	Quadrature axis component of line current
L _{ads}	Saturated values of d axis mutual inductances
L _{aqs}	Saturated values of q axis mutual inductances
L' _{ads}	Saturated values of d-axis transient inductances
L' _{aqs}	Value of q-axis transient inductances
Ψ_{ad}	Air gap flux linkages (d-axis)
Ψaq	Air gap flux linkages (q-axis)
R _E	Transmission line resistance in pu
R _T	Total resistance in pu
X_E	Transmission line reactance in pu
X _T	Total reactance in pu
A_{sat} , B_{sat}	Constants defining saturation characteristics of
	machine
K _A	Exciter gain
K ₁ , K ₂ , K ₃ , K ₄ , K ₅ , K ₆	K-constants of Phillip Heffron model
T ₃	Time constant of field circuit
K _{STAB}	Stabilizer gain
T _w	Time constant of washout
T ₁ , T ₂	Phase compensation time constants

LIST OF FIGURES

Figure Nos. / Description	Page Nos
2.1 General Configuration of SMIB system	10
2.2 Classical model of synchronous generator	13
2.3 Block diagram of a SMIB system with classical generator model	15
2.4 Equivalent circuit showing the flux linkage and current	17
2.5 Block diagram representation with constant E_{fd}	23
2.6 Thyristor Excitation system with AVR	29
2.7 Composite BD of SMIB with AVR	31
3.1 Thyristor excitation system with AVR and PSS	39
3.2 Composite BD representation of SMIB with AVR and PSS	41
4.1 Block diagram of Fuzzy logic controller	48
4.2 Basic Structure of Fuzzy logic Controller	50
4.3 Membership function for speed deviation	51
4.4 Membership function for acceleration	52
4.5 Membership function for voltage	52
4.6 Rule Editor	54
4.7 Block diagram representation with fuzzy Controller	55
5.1 Test system (SMIB) for FPSS	57
5.2 Variation of angular speed without AVR	58
5.3 Variation of angular position without AVR	58
5.4 Variation of angular speed with AVR only	59

5.5 Variation of angular position with AVR only	59
5.6 Variation of angular speed with CPSS ($P = 0.9$)	60
5.7 Variation of angular position with CPSS ($P = 0.9$)	60
5.8(a) Variation of angular position with CPSS ($K_{STAB} = 2$)	61
5.8(b) Variation of angular position with CPSS ($K_{STAB} = 10$)	61
5.8(c) Variation of angular position with CPSS ($K_{STAB} = 40$)	62
5.8(d) Variation of angular position with CPSS ($K_{STAB} = 80$)	62
5.8(e) Variation of angular position with CPSS ($K_{STAB} = 100$)	63
5.9 Variation of angular speed with CPSS for positive K_5 (P = 0.4)	63
5.10 Variation of angular position with CPSS for positive K_5 ($P = 0.4$)	64
5.11 Variation of angular speed with FPSS	64
5.12 Variation of angular position with FPSS	65
5.13 Comparison in speed between two different fuzzy rule bases	65
5.14 Comparison in angular position between two different fuzzy rule bases	66
5.15 Comparison in variation of angular speed with CPSS & FLPSS	66
5.16 Comparison in variation of angular position with CPSS and FLPSS	67