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Abstract

The proposed method designs a FIR filter with arbitrary frequency response and reduced
delay. The coefficients of this FIR filter are real and the delay is less than half of the filter
coefficients. The FIR filter in this approach has non linear group delay. The filter is designed
using multi-objective approach minimizing certain objective functions that are responsible
for generating a filter of lower delay and magnitude response of unity in the passband. The
multiobjective constraints are tailored by incorporating an evolutionary algorithm with
multiobjective approach. In this proposed approach Particle Swarm Optimization with
multiobjective optimization(MOPSO) produces a set of non-dominated solutions called
pareto optimals. The MOPSO takes a set of real coefficients of the FIR as the population and
using multiobjective error formulation of amplitude response and group delay gives optimal
FIR filters. The error formulation for magnitude response is to have a response of 1 in
passband and 0O in stopband, and for the group delay, it must be as close to linearity as
possible in passband. These solutions can tailor all types of requirements of the decision
maker. The proposed approach has been compared with weighed least square method and
the experimental results have shown that the magnitude response and delay characteristic

using proposed approach are better than those achieved by weighed least square approach.
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Chapter 1: Digital Filters

1.1 I ntroduction

Filters are the most essential elements in signatgssing and telecommunication systems.
These have various applications in control systesgstems for audio and video processing,
audio graphic equalizer, and communication systeraise reduction filters in Dolby systems,
systems for medical applications, image deblurrarg] image edge emphasis. Digital filters can
be implemented in both software as well as hardw&eme user-friendly programming
languages such as Matlab, helps to easily desiggpas of filters. A digital filter is a system,
which modifies a sampled discrete time signal blyageing or reducing certain aspects of the
signal, using various mathematical operations.

Today, digital filters have almost replaced anditigrs in many applications. Although digital
filters are far more expensive than analog filténst the digital filters have made some of the
design possible, which were impractical by analtigré. Furthermore, digital filters can process
real time signals, are more adaptive and stabledesign finite impulse response filters, have
better signal to noise ratio as compared to anfdtegs.

Some of the functions of filters are listed below:

a) To limit the signal within a particular frequen@nge.

b) To decompose a signal into various sub-bands.

C) To alter the frequency spectrum of a signal.

d) To model the input-output relationship of a system.



A filter can be modeled to limit the signal, basedthe application. The various forms are low-
pass, high-pass, band-pass and band-stop. Chahgifiggquency range changes the form of the
filter. A low-pass filter allows the low frequensygnal to pass through it. Similarly, high pass
allows a high frequency signal, and band-pass amtldstop allows certain frequency range
signals.

Digital filter are mainly grouped into two types|R-filters and IIR filters. This dissertation

focuses on FIR filters. The next section descrthes-IR filters in details.

1.2 FIR Filters

FIR filters are non- recursive digital filters wifinite impulse response. The non- recursive
nature of these filters is due to lack of feedbaukuitry. The filter is called finite impulse
response, as the impulse response is finitejtireaches zero in finite time.

Each filter has predefined order N and for a fikketh order N, the impulse response lasts for
N+1, samples and then reduces to zero.

FIR filters have following attributes:

. Linear phase due to symmetry of coefficients

high filter order (more complex circuits)

stability as poles exist only at origin

. No feedback required

Although with FIR filters the drawback is it hasgher filter order, thus large number of
coefficients required and increasing the compleaityl cost. As a result these filters are used
only when linear phase is desired. The order ofittez is defined by the number of delay lines,
and corresponding number of input samples musatbedsfor computing the output. FIR filters

are characterized by given equation:



V(=Y (KX - B) 0

Where, x(n) is the input signal, h(n) the impulssponse and y(n) is the output signal obtained

by summation of the convolution of x(n) and h(ngofilter order N.

The same can also be expressed in z-transform,

H(2)= X h(n) 2" @

FIR filters have linear phase due to symmetry oéfficients. Based on different types of

symmetry and number of filter coefficients FIRdil$ can be grouped as:

. Symmetric with even order: has impulse response h[n] = h[N-n-1] and the nemdj
coefficients in this filter are even.

. Symmetric with odd order: has impulse response h[n] = h[N-n-1] and the nemdd
coefficients in this filter are odd.

. Asymmetric with even order: has impulse response h[n] = -h[N-n-1] and the Inenof
coefficients in this filter are even.

. Asymmetric with odd order: has impulse response h[n] = -h[N-n-1] and the Ipemnof

coefficients in this filter are odd.

Impulse response # coefs | H (w) Type
h(n)=h(M—-1-n) Odd e Iw(M=1)/2 (l (M 1) + 22,\” D2 (‘1_1 - k) cos (w}\)) 1
h(n)=h(M—-1-n) | Even eIe(M-1)/29 51 (M=9)2 (& — k) co ( (k-1)) 2
h(n)=—-h(M —-1-n) | Odd e~ Ilw(M=1)/2=7/2] (22 (M=1)/2 ( L)Sm(wk)) 3
h(n)=—-h(M —1-n) | Even e~ Ilw(M-1)/2— "/)]QZM 1 2 (Tl—k)qm( (k—1%)) 4




Table 1: frequency response of filters withfiornt symmetry
The table 1 above shows the frequency responsal fiypes of FIR filter. Some of the
observations derived for above four types of fitare:
» Type lare most versatile of all others.
» Type 2 has frequency response which is alwayss3a and is not suitable as a high-pass.
* Type 3 and 4 introducesw#? phase shift and the frequency response is al@/aye=0 and

not suitable as a high-pass.

1.2.1 Filter Specifications
Almost all FIR filters are based on ideal approxioa of the filter. Increasing the order of the
filter tends to more ideal approximation. FIR filta figure 1 below is a low-pass filter.

IGlc.j(')) I

|—— Passband—3 Stopband

Transiton
band

Fig 1: A low pass filter with all the specifigans
op — normalized cut-off frequency in the passband 6s — maximum ripple in the stopband
®S — normalized cut-off frequency in the stopband—sampling frequency

® — normalized frequency dp — maximum ripples in the passband

In the pass-band < w< w, we require thap(ei“)‘ 01 with a deviationtd,

1-8,<[G(e”)<1+5,, |d<w, @3)



In the stop-band w, < w< 7 we require tha.G(ej‘")‘ [JO with a deviationd,

‘G(ej“’)‘sé's, w,<|ld<sm (4)
Each filter is characterized by magnitude respopkase response, phase delay and group delay.

The magnitude response denoted as |H(eMjw)| is lmedf frequency filter response or the

transfer function of the filter H(z). The figure #low shows the ideal low-pass, band-pass,

band-stop, high-pass filters

Hip(e/®) Hup(el®)
1 — 1 —
t } W } w
-T —wc 0 wc T - —wc 0 wc )
(a) (b)
Hgp (e1?) Has(el®)

1 1

t t w ' t

— Tl —Wc2~Wwcl wcl wec2 TT —TT —Wc2 —Wwcl wcl we2 m

(© (d)

Figure 2: Ideal filters; a) Lowpass b) Highpas8ahdstop d) Bandpass



1.2.2 FIR Filter Design

Most filters are designed to approximate the ideaponse. An ideal response characteristic is
impossible to achieve, although various methodsehlaeen devised to attain almost ideal
response.

These are the four most common approaches uséittdodesign:

1. Least square error minimization

2. Windowing technique

3. Frequency sampling method

4, Computer based optimization approach

In this dissertation we have used least square emeimization method and computer based
optimization method.

. Least square error minimization: The least square error minimization works by
approximating the magnitude response to the desimadnitude response of the filter. This

method requires specifying the desired magnitudpa®se, given as:

Ha (€))7, 2 ha€™ )

And the filter coefficients can be obtained usiggation 6, given below:

hon = | Hy(e) é o

o 277 - (6)

Although, the filter obtained from above equatiennion-casual and of infinite length. So to
make the filter finite, truncation is required an®e point. As a criterion for truncation, the

difference between desired response and truncasgbmse is minimized. Thus, aiming to find



such an impulse response which is of finite duragod the DTFT of such impulse response

approximates the desired frequency response.

The magnitude of the frequency response of thettea filter is given as:

H (€)= h, & ™
n=L

Where, L and U are the lower and upper point ortibiendaries at which the pulse response is

truncated to get a pulse with finite response.

. Frequency sampling method: The frequency sampling method samples the frequency
response producing N samples. The sampling is dbregually spaced frequencies. Frequency

responseH (w) is continuous in nature, thus sampling of freqyeresponse gives the DFT of

H (w) . Performing the IDFT gives the filter coefficients

h(r) = ﬁz[ H(K) éN]kJ ®

This method can be used for any magnitude respaise, unlike the window method. Also, the

frequency response only at sampled points is équigsired response.

. Window method:

Window method uses a finite weighing sequence wéiied window. In this method, the infinite
impulse response is multiplied by window w(n), giyithe Fourier coefficients. This method
converts an infinite response to finite responsi¢h whe help of these window functions. This
method is very simple and easy to implement, aljhduas a drawback like frequency sampling

method as it cannot be used for any magnitude nsgpealue.



The most popular and widely used window functioms; &Rectangular window, Hanning
window, hamming window and Kaiser window.

Some of the common windows are given below in eqnat9-12:
I Hanning window function

0.5- 0.5*co:{§—’mlj &n<N- 1

0 otherwise

w(n) = )

il. Hamming window function

27m
0.54- O.46*CO€—) En<sN-
w(n) = - (10)
0 otherwise
iii. A Generalized Hamming window function
. 2rm
a-(1-a)*cos] —— OsnsN-1
w(n) = -1 (11)
0 otherwise
2 Rectangular window
w(n) 1 O<sns N-1
= . 12
0 otherwise (12)
. Computer based optimization approach: This is one the most recent methods of FIR

filter design. Increasing use of optimization algon has made this method more popular over
other methods. Also, it produces more efficienultssby reducing the error as in frequency
sampling method. In this method, a set of coefficier coefficient vectors used to characterize
an FIR filter is obtained by iteratively reducinbet error (such as magnitude response).

Although, this method is very complex but is higldfficient. Whereas, the FIR filter using



window method can be easily designed but are not e#icient. It is based on the designer to
choose accuracy of approximation or ease of deklgder computer based optimization, one of

the most common filter designed is arbitrary resediiiters.

13 Literature Survey

Some of the design methods most commonly used ilter design have been reported in
literature. Some of the earliest methods were ushgbyshev approximation to design analog
filters. Various such attempts were made during01960 design such filter using this
approximation. Very few were successful in desigrsach filters. One of them was the design
of equiripple filter with restricted band edges ®fto Herrmann. Later, Ed Hofstetter using the
design developed a FIR filter with as many ripplEsen in 197Z2Parks and M cClellan together
proposed a new approach of designing FIR filtengishebyshev approximation iteratively [1].
It designs an optimal FIR filter which was efficietompared to other FIR filter designs. The
algorithm gives optimal design by reducing the exrm both stopband as well as passband.
Later various other techniques were proposed ferdissign of FIR. Some of the optimization
methods were incorporated along with Parks-Mc @fellgorithm. Some of them are Hui Zhao
and Juebang Yu design neural network-based digjital. V. Ralph Algazi design Finite
duration filters using least-square method. Somé¢hefdesign methods were proposed using
single objective evolutionary algorithms [2-6]. egtother design methods using multi objective
evolutionary algorithm were given [7]. Also, a leasjuare approach for non-recursive filters,
with arbitrary magnitude and phase was proposeS. ity Kidambi and R. P. Ramachandran [8].
M. Lang gave Algorithms for the Constrained DesifiiDigital Filters with Arbitrary Magnitude

and Phase Responses [9].



Chapter 2. Multiobjective Optimization

2.1 Introduction

In current real world scenario, almost all optiniiza problems are multi-objective in nature.
Satisfying more than one objective at the same, tthre multi-objective optimization technique
produces a set of optimal solutions (pareto-optisodlitions). The decision maker has to select
from the set depending on the application. Althqugis incorrect to say that a particular pareto-
optimal solutions is better than other set. Thos,a particular problem the user must run the
optimization problem many times and get as manytpasptimal solutions as possible. The
ability to generate pareto-optimal solutions is teason to extend multi-objective optimization
to various evolutionary algorithms. Multi-objectivaptimization has been applied in various
fields such as science, logistics, economics amahfie.

Single Objective Optimization:

An optimization problem which consists of singlgeative function and the problem of finding

an optimal solution is called single-objective aptation.

2.2 Multiobjective Optimization

The Multiobjective Optimization Problem (also cdllanulti-criteria optimization, multi-
performance or vector optimization problem) camtbe defined (in words) as the problem of
finding [24]:

“A vector of decision variables which satisfies styaints and optimizes a vector function whose
elements represent the objective functions. Thesetibns form a mathematical description of

performance criteria which are usually in conflath each other. Hence, the term, “optimize”



means finding such a solution which would give the@ues of all the objective functions
acceptable to the decision maker.”[24]

It involves optimizing k-objective functions simaiteously and generating a set of solutions
(pareto-optimal solutions) instead of a unique sotu The decision maker selects the solution
from the solution set. The selection involves coonpising one complete solution over another
solution. The optimization problem may involve eithminimization or maximization of k
objective function or the combination of maximipatior minimization of k such functions.

Mathematically, it is defined as:

Minimizing (or Maximizing) F(x)=(f(X),....... f. (X))
subject to 0(x<0,i={,....... ,m}
and h(¥=0,j={,.... P} (13)

Here, F(x) is a vector of k-objective function, »iieh may be continuous or discrete is n-
dimensional decision variable vector x={x1....xn}. &ter F(xX) components are minimized or
maximized based on the constraints gi€x® and hj(x) = 0. The k-objective function may be

linear or non-linear.

2.2.1 Pareto Terminology

With multi-objective optimization the notion of fimg an optimum solution changes, as it
becomes finding tradeoff rather than single sofutio

. Non-dominated Set: Of the solution set P, the non dominated set solation set P’
whose any member is not dominated by other menftsetd.

. Global Pareto Optimality Set: The solution set of non-dominated solution witkie

feasible search space S is the globally Paretorapset.

10



. Par eto-optimality: A solution x € Q is said to be Pareto optimal with respect to
universeQ if and only if there is no»e Q for which v=F(x) =( f(X),........ f (x") dominates
u=F(x)=(f(X9,....... f. (x)). The above definition explains that, if x* is par@ptimal then

there is no feasible vector x which may increasgoime criteria without causing a simultaneous
decrease in at least one another criterion (asgumaximization). The pareto optimal is with

respect to decision variable space.

. Pareto-dominance: A vector u=(U,......,l ) is said to dominate another vector

V=(V,...... ) (denoted by < V) if and only if u is partially less than v, i.e.

i 4L, ... K}:u <v

AL O, ... K}u <v (14)
. Par eto Optimal set: For a given MOP, F(x), the Pareto Optimal Set,i®tefined as:
P:={xO0Q -IXOKR X <K % (15)

Pareto optimal solutions are solutions belongingabof solution. The set is represented as P*.
Within this set all solutions have the best possdijective values and cannot be simultaneously
improved further for all objective values. Thesdusons are efficient solutions and are non-
inferior. Therefore these solutions are termed@sdominated solutions. Although, these non-
dominated solutions belong to same set, but havelatonship to each other.

These pareto optimal solutions are plotted agamasibus objective function along different
dimensions. A curve as shown in Fig 3 is obtairkeath point on the curve represents a solution
obtained in the set. These solutions can work iféerént applications, based on the requirement.
In Fig 3, for a two objective function, a decisioraker can also use solutions for application

requiring better objective value for any one ohyaxtunction. The leftmost points on the curve,

11



serve for low cost and high efficiency applicati®ightmost solutions can be used for high cost
and low efficiency applications. The centre of tueve contains solution having moderate cost

and efficiency.

N
T

Efficiency

] R

o

Fig 3: tradeoff between two objective functions

. Pareto Front: For a given MOP, F(x), and Pareto Optimal set,tRé&, Pareto Front PF*
defined as:

PF*={u=K | xd P} (16)
The pareto front PF* contains the vector for eagluteoon in pareto optimal set P*. The vector
components are evaluated objective values for monitated solutions. To generate a pareto-
front, the points in the universe are evaluatedtii@r objective functions. Then a set of non-
dominated solutions are determined, producing atpdront. The mapping from decision space
to objective function space is shown in Fig 4. Ehesints on the curve in objective function

space give the pareto-front.

12



Dominated
___________ Solution

Non-dominated
Solution

v
v

Xi f

Fig 4: Mapping from decision variable space to otiye function space

2.2.2 Multiobjective Problem Solving Approaches

These approaches define various ways in which ohpctive problems can be solved. These
are the basic 3 techniques used:

1) Weighted Sum Approach: in this approach weights assigned to each objective

function. The sum of weights is always equal to.dh@erforms the sum of the product of the
weights with corresponding objective functions

2) Lexicography Approach: In this approach it priaes the objective function. Each

objective function is assigned a priority and based based the priorities objectives are
optimized.

3) Pareto Approach: Only one Pareto optimal solutian be expected to be found in one
simulation run. All algorithms require some probldmowledge, such as suitable weights,
epsilon, or target values, etc. Some of the paegtproach in the domain of evolutionary

algorithms

. VEGA (Vector Evaluated Genetic Algorithms) contriéd by David Schaffer in 1984.

. VOES (Vector Optimized Evolution Strategy) contiiéah by Frank Kursawe in 1990.

. MOGA (Multi-objective GA) introduced by Fonseca aAeéming in 1993.

. NSGA (Non-dominated Sorting GA) introduced by Sras and Deb in 1994.

13



2.3 Multiobjective Particle Swarm Optimization

The first multiobjective evolutionary algorithm wasplemented by David Schauffer in mid
1980’s [25]. After his work, lot of effort has beanade in this field, now referred to as
Multiobjective evolutionary algorithm (MOEA). In pg a number of multiobjective algorithm
have been proposed [10-13]. Various evolutionagpithms such as genetic algorithm[23,24]
has been enhanced to solve multiobjective probleMsiti-objective particle swarm
optimization (MOPSQO) [14] is multi-objective probfe with enhanced problem solving
capability of evolutionary algorithm (PSO). It irporates pareto-dominance to particle swarm
optimization giving pareto-optimal solution storinbe non-dominated solution, rather than
unique solution as in PSO.

Particle swarm optimization (PSO) is a populaticasdrl stochastic optimization technique
developed by Dr. Eberhart (electrical engineer) BndKennedy (social-psychologist) [15] in
1995, inspired by social behaviour of bird flocking fish schooling. The algorithm starts by
initializing the population with a set of randomiig@mns. These particles or potential solutions
move in search space on the basis of current opsiahations. After performing fixed number of
iteration (number of iterations equal to numbergeherations) it reaches to a unique optimal
solution at the end. This requires no evolutionrapmes like crossover or mutation. The updation
is done based on the inertia of the particle moungearch space. In this each particle is treated
as a point in an N-dimensional space. These pastiatljust its “flying” according to its own
flying experience as well as the flying experientether particles.

Each particle has memory, storing its best posgimfiar achieved by the particle, this position is
called the pbest (personal best). These storedigmusiof the particle are obtained from the

coordinates in the solution space. The PSO keapk of another position, the position achieved

14



so far by any particle in solution space, this posiis refered to as the gbest (global best). The
PSO objective is to accelerate each particle tosvaingse best positions. Fig 5 depicts the

complete concept of how PSO works.

A
>
Fig.5: Concept of modification of a searching pdigtPSO
S°: current searching point & modified searching point
V¥ current velocity %+ modified velocity
Vpestvelocity based on pbest Vgbesi Velocity based on gbest

In PSO potential solutions fly through the hyperspahus increasing the convergence towards
global best solution. This high speed convergerideS® for single objective optimization, thus
makes it best suitable for mutiobjective optimiaati[16]. Also in PSO the individuals are
benefited from their past experience and have f@typarameters that need to be adjusted. The
objective function in PSO can be both linear and-lwear. Also, PSO can handle both discrete

and continuous type functions.

15



M ultiobjective particle swarm optimization description: The multiobjective optimization can
be best handled by use of pareto ranking scheme aiidhive or the repository records contain

the non dominated solutions and the PSO with glattghction mechanism directs the solution

towards the global best non-dominated solutions.

The flowchart is shown below in fig. 6

Initialize Panicles with Random
Position and Vekocity

Evaluate Fitness of Particles
v

Initialize the Archive

\| A

Evaluawe Fitness of the
Archive Members
\Vi
Select gbest from the
Archive
V
Compute Velocity and
Position of each Partick

v

Update Memory (pbest)
of each Panicle

v

Maximum No
Numbgrof

Generation

Output the Archive
Members

End

Fig 6: flowchart of multi-objective particle swaroptimization
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231 Main Algorithm

The algorithm of MOPSO is the following.

1) Initialize the population, POP :

a) For counter from 1 to MAX ; where MAX is number pdirticles

b) Initialize POP[counter]

2) Initialize the speed of each particle, VEL.:

a) For counter from 1 TO MAX

b) VEL[counter]=0

3) Evaluate objective functions for every partidlepopulation POP.

4) From the repository REP, the position of theipla representing non-dominated vectors are

stored.

5) Next, a hypercubes is generated for the se@atesanalyzed till now, and using the values of

the objective functions these particles are locatedhis hypercube. These hypercubes are

coordinate systems with objective functions aloagous dimensions.

6) Memory (past) stored in repository is initializr each particle and these particles moving in

the search space are guided using them:

a) For counter from 1 TO MAX

b)  Set PBEST[i|=POPIi]

7) WHILE maximum number of cycles has not beenlieddO

a) Compute the speed of each patrticle using the fatigwexpression:
VEL[i]=W*VEL[i]+R1*(PBEST][i]-POPIi])+R2*(REP[h]-POP]i]) (17)

Where W (inertia weight) takes a value of 0.4; Rt &2 are random numbers in the range

[0...1] ; PBEST]i] is the best position that the jpae i has had; REP[h] is a value that is taken

from the repository;
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Selecting index h is done as follows: the seleci®rbased on the fitness value. For each
hypercube the fitness value is obtained by dividingumber x (where x is any number greater
than 1, i.e., x>1) by the number of particles corgd in that hypercube. Thus hypercubes with
large number of particles tend to have lower fignddext, a selection method called roulette-
wheel selection, selects the hypercubes and thmartecles corresponding to those hypercubes
are selected randomly.
b) New position of particle is computed as follows

POPIi]=POP[i]+VEL]i] (18)
The speed obtained in the previous step is addedrtent position of the particle, giving the
updated position of the particle.
C) The particles in the search space should remaimmwihe boundaries. All the particles
should lie within valid search space. In case,ddesion variable does not lie within boundary,
then following must be done: 1) the decision vdeatakes the value of its corresponding
boundary (either the lower or the upper boundany) 2) its velocity is multiplied by (-1) so that
it searches in the opposite direction.
d) Each of the patrticle in population POP is evaluated
e) Once each of the particle has been evaluatedhytpercube is updated along with the
repository. the updation takes place by finding own-dominated particles in the new
population. These new particles are updated areftets into the repository. The position (i.e.,
their geographical location) of the new particlehe hypercube is updated. Since the repository
is of limited size, the dominated particles needéoconstantly removed from the repository.
Once, the repository is full the particles withdedose neighbours in the objective space are

given priority over others placed in high populatgpace.
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f) Whenever better current position of a particle cared to the position stored in the
memory, then the position of the particle is updats:

PBESTSIi]=POPIJi] (19)
The decision of updating the particle positionasiel based on the pareto-dominance concept. In
which, if the current position dominates the pasitstored in memory, then particle position in
memory is replaced with the current position; ¢leeposition in the memory is retained; if none
dominates the other, then one of them is randoelbcted.
0) Increment the loop counter; counter = counter + 1

8) END WHILE

2.3.2 External Repository
There are historical records corresponding to @achdominated vector. The external repository
store these records for each non dominated vectordf during the search process. It has two

parts: the archive controller and the adaptive. ¢fid]

Archive controller: In this method, the archive controller acts as eisien maker, taking a
decision regarding the acceptance of new solutiorthe archive. An archive is a vector
containing non dominated solutions. The decisimtess is as follows:

Initially if the repository or the external archive empty, then current non-dominated vector
found is simply added to the archive. If some sohd already exist in the archive then the
current nondominated vector found at each iteratisncompared with the contents of the
archive. During comparison following cases may occu

Casel: New solution is dominated by the contentserarchive; discard the new solution.
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Case2: New solution is not dominated by any satuiiothe archive; new solution is added to
the archive

Case3: New solution dominates some of the solutiche archive; replace them with the new
solution.

Case 4: if external population reaches its maximimit, then adaptive grid procedure is

adopted.
> > >
Nsl Ns
¢ Ns | Nsg | S Sy Ns< | Sy Sy
Casel Case 2 Case 3
Se Se
S, Ss
S S =
Ss > Ns S > S
Ns< { S Sa S; S,
5, 25 S S
L Ns
Case 4 Case5

Fig. 7(a): the behavior of archive controller, whreaw solution is added.

Adaptive grid: An adaptive grid is formed from various hyperculpésced adjacent to each
other forming a grid. Each hypercube has variouspmnents, equal to the number of objective
functions. Now if new individual inserted lies owles the grid bounds, then being an adaptive

grid, the complete grid is recalculated and eadividual within the grid space is relocated.
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Ns = New solution
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Fig 7(b): New solution belongs within the grid boanies

Here, as the new solution arrives, it is positiondd the hypercube based on its optimization
values, a solution belonging to hypercube with tié@isess is removed. Thus maintaining the

number of solution same before and after addinglatien within the adaptive cube. As shown

in fig. 7(b).
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Fig 7(c): New solution lies outside the grid bounes
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In Fig 7(c) the solution does not lie within theubdaries of the hypercube. Thus, the grid being
adaptive changes the size of each hypercube, nmangasame number of hypercubes within the

grid, so that the new solution can be accommodattin the grid.
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Chapter 3: Proposed Approach

The proposed approach for the design of real aoeffi filter with arbitrary frequency response
is explained below:

FIR filters generally have linear phase and lingewup delay. The linearity occurs due to
symmetry of coefficients [20, 21]. The proposedrapph generates a filter with reduced non-
linear group delay and uses optimization functimnsiake the group delay approximately linear.
The lack of symmetry reduces the group delay. [18]

In this approach, the optimization algorithm givas optimized FIR filter coefficients, by
minimizing a set of predefined objective functionEhe objective function minimizes the
amplitude response error in passband and stopband.

A FIR filter of length N in z-transform is repreded as:
N -1

H(z)=> h(nz" (20)
n=0

and the frequency response is represented as:

. N_l .

H(E) =2 Nne* (21)

n=0

The frequency response can be expressed as a @iiobiof real and imaginary parts making it

a complex frequency response as:
_ N-1 N-1
H(e') =) h(ncosm+>  h(r)sin w
n=0 n=0

=h"c(w) + jh" (@) (22)

23



where, h, c and s are vectors of coefficients,m@and sine respectively. These vectors are given

as:

3.1 Objective Functions

The objective functions used for optimization usitfgO are as follows:
1) The Magnitude Response Error

For passband it is given as:
F, = max‘ 1—‘|-| e ﬂ fol < w< w, (23)

For stopband error is given as:
ka
Fa=2
k=1

Under the constraint thay, < 0, for w, < w< w, /2

2
H (ejw)‘ for W, <wsw,/2 (24)

2) Group Delay:

G=max(group delay)-average(group delay)/averagefpdelay)
if Oy is max group delay and, is min group delay, then the equation for G becme

_0,70,
G==——= 25
g,t0; (3)

Using above three objective functions, the MOPS®@nupes the coefficients and produces an
almost linear group delay.

3.2 Parameters Values
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a. The initial values of the parameters of MOPSO ateas follows:
b. The number of swarms, swarm_size = 50
C. Maximum number of iterations, itr= 100

d. Repository size, rep= 70

e. Inertia weight, w = 0.72

f. Grid Inflation Parameter, alpha = 0.01

g. Number of Grids per each Dimension, ngrid = 10
h. Leader Selection Pressure Parameter, beta = 4

I. Extra (to be deleted) Repository Member Selecti@ms§ure, gamma = 2
J- Inertia Weight Damping Ratio, wdamp =1
K. Personal Learning Coefficient, c1 = 1.5

l. Global Learning Coefficient, c2 = 1.5

33 Proposed M ethod Description

First, initialize the position and velocity of tiparticle and the external repository. The position
values represent the coefficients. The three aldtnctions have been explained previously.
With the pareto dominance concept, non dominateiicfgs are separated from the universe and
stored in the repository. in the hypercube, theiealf the objective functions of non dominated
particles are located. Initialize the iteration aedeat the following till max iteration is reached

The fittest particle called the leader particldasated from the repository. Update the velocity

and position of the particle. Update the repositaygin with new set of particles.
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Chapter 4: Results

4.1 Proposed Method Results

The proposed method is used for designing an optiifa filter whose magnitude response
approximates an ideal response. The approach leasitn@lemented in MATLAB. Performance
of the algorithm depends on the parameters: popge@tions, number of coefficients, cutoff
frequency, size of repsitory. For different typés$-tR filters, value of certain parameters need to
be changed. These parameters are: cutoff frequ@asgband frequency, stopband frequency.
The approach generates output for all types depgndn the cutoff frequency. Also, the
approach produces better results when the popnlaize is large and the number of iteration is
more. The response of FIR filter depends on the bmunof coefficients used for FIR filter
design. Increasing the number of coefficients ilmpeothe magnitude response and also the
phase linearity. The outputs shown are magnitudpomse, group delay and plot showing
multiobjective functions values. These outputs sirewn in figures 8-10 for lowpass, highpass
and bandpass.

Fig 8 shows the output for a lowpass filter. Fig)8thows the position of particles in objective
function space, showing the particles take thetjposas required in multiobjective algorithms.
Fig 8(b) shows the magnitude response, which iscpately 0(dB) in passband and a very
low attenuation in stopband. The values for thesegaven in table 2. Fig 8(c) shows the group
delay, which approximates to linearity in passbaAdcomparison of these results with a
previous approach, the WLS approach, has beenrdtes in next section. Similarly, fig 9 and

10 shows the output for highpass and bandpass.
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4.2 Comparision Between the Proposed Approach and WL S Approach
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A comparision of the proposed approach with a meviapproach (WLS) [8,19] approach has
been discussed in this section, giving a theoretiescription of how the proposed method
outperforms the WLS method. The amplitude respof$®th the methods along with the group
delay is shown. The comparison for both methodseas shown for filter length of 28, and the

following passband and stopband edges.

For lowpass passband edge: 0.25 and stopband etiyje 0

For highpass passband edge: 0.75 and stopbanddige

For bandpass passband edge: 0.35 and 0.65, artistbpdge 0.40

Fig 11-16 show the comparison for the results oletiby WLS and proposed method. The
comparison has been made on the basis of the tbpeetive values viz. passband ripple,

stopband attenuation and group delay.
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Table 2-4 below shows the value of passband riggttband attenuation and group delay for
lowpass, bandpass and highpass filters of lengtiss#® WLS and proposed approach, showing

the comparison of the two approaches.

Table 2: Values for lowapass filter of : Passbathgee 0.25; Stopband edge: 0.40; Length: 28

WLS Proposed
method
Passband Ripple 0.686 0.669
Stopband attenuation 44.01 43.17
Group delay in 1.2 0.8
passband
Table 3: Values for bandpass filter of : Passbatyke0.35 and 0.65; Stopband edge : 0.25 and Derigth : 28
WLS Proposed
method

Passband Ripple 0.598 0.45
Stopband attenuation 43.5 43.07
Group delay in 1.31 0.9
passband
Table 4: Values for highpass filter of : Passbatigkee 0.75; Stopband edge : 0.65; Length : 28

WLS Proposed

method

Passband Ripple 0.265 0.243
Stopband attenuation 49.04 48.39
Group delay in 0.987 0.86
passband

The comparision of the proposed approach with tHeSWhethod shows that the amplitude
response in the passband has less ripples fortpeged method. Also the magnitude response
has steep curve at the passband edge frequencygrdbp delay is much more linear in the
passband for the proposed approach as comparedptoaad. The value shown in table 2, 3, 4,
show the amplitude response and group delay vétuwdsoth the methods, from those values it

can be seen that the proposed approach outpertbenWLS method.
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Chapter 5. Conclusion

The proposed work focuses on reducing the delayewkducing the ripple in passband of the
amplitude response. It uses multiobjective partsharm optimization to minimize the error
functions for amplitude response and group deldye @rror function for amplitude response is,
to reduce the ripple in passband and attenuatiostdpband. The group delay error function
reduces the non linearity in group delay. Also, panmson with a previous approach shows,

reduced ripple in passband of the amplitude respand linearity in group delay.

The performance of the approach depends on vapatmmeters alpha, beta, gamma, cl, c2,

wdamp ,rep and w, contributing to the success@ptioposed method.

The future scope of the work is to obtain optimuiters using the other evolutionary algorithms
with multiobjective problem solving capability. Als to extend the proposed method for

multiband pass filters and IIR filters.
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