
A

Dissertation

On

A Novel Heuristic Approach to the Mirrored

Travelling Tournament Problem

Submitted in partial Fulfilment of the requirement

For the award of the Degree of

Master of Technology

In

Computer Science & Engineering

Submitted By

Vipin Aggarwal

University Roll No. 2K11/CSE/21

Under the esteemed guidance of

Dr. Daya Gupta

HOD, Computer Engineering Department, DTU, Delhi

DELHI TECHNOLOGICAL UNIVERSITY

2011-2013

i

DELHI TECHNOLOGICAL UNIVERSITY

DELHI - 110042

CERTIFICATE

This is to certify that the dissertation titled “A Novel Heuristic Approach to the

Mirrored Travelling Tournament Problem” is a bonafide record of work done at

Delhi Technological University by Vipin Aggarwal, Roll No. 2K11/CSE/21 for

partial fulfilment of the requirements for degree of Master of Technology in

Computer Science & Engineering. This project was carried out under my

supervision and has not been submitted elsewhere, either in part or full, for the award

of any other degree or diploma to the best of our knowledge and belief.

Date: _____________ (Dr. Daya Gupta)

 HOD & Project Guide

 Department of Computer Engineering

 Delhi Technological University

ii

ACKNOWLEDGEMENT

I would like to express our deepest gratitude to all the people who have supported

and encouraged me during the course of this project without which, this work could

not have been accomplished.

First of all, I am very grateful to my project supervisor Dr. Daya Gupta for providing

the opportunity of carrying out this project under her guidance. I am deeply indebted

to her for the support, advice and encouragement she provided without which the

project could not have proceeded smoothly.

 I am highly thankful to Ms. Lavika Goel research scholar in department of computer

engineering, who enlightened me at every step of this project by giving helpful

directions and guidance. I am grateful to all my friends and family for their continued

support and encouragement throughout the research work.

 Vipin Aggarwal

 University Roll no: 2K11/CSE/21

 M.Tech (Computer Science & Engineering)

 Department of Computer Engineering

 Delhi Technological University

 Delhi - 110042

iii

Abstract

This project aims at applying a new hybrid heuristic approach to the mirrored

Traveling Tournament Problem (TTP). TTP is a tournament scheduling problem

which abstracts the tournament structure of Major League Baseball. In this type of

league, every team plays with every other team, once at its home and once away (at

opponent’s home). These type of tournaments are called Double Round Robin

(DRR) tournaments. Aim of TTP is to make a schedule which incurs minimum travel

distance for all the playing teams while conforming to some constraints like no team

can play consecutively more than n matches home or away. While number of teams

involved in standard benchmarks of TTP are no more than 32, still it is almost

impossible to get an optimal schedule (with minimum travel cost) for even 10-team

instance. TTP has been proved to be an NP-hard problem. Our aim is to apply

hybridize Biogeography based optimization and Simulated Annealing heuristics to

get good schedules of TTP. Simulated Annealing has shown its efficiency in tackling

TTP benchmark instances with good results. However its very computation intensive

technique and some instances take time even in number of days. Biogeography based

optimization (BBO) is relatively new and fast heuristic approach which has not yet

been applied to TTP. Although BBO itself is a global optimization technique, but

due to its fundamental philosophy of sharing features among solutions, we cannot

use it directly on TTP schedules because this can break the DRR structure of

schedules and make them invalid. We use state of the art techniques to generate

initial schedules fast. We modify these techniques so that their results can suitably

be used by BBO. We use BBO as an intermediate step for fast convergence of

solution to local optima. The best result produced by BBO is used as a starting point

iv

for simulated annealing heuristic. It has been suggested in literature that the

goodness of solutions produced by simulated annealing depends on its starting point.

We aim at giving a good solution to simulated annealing to start with, in very less

time. The performance of our hybrid approach is evaluated on standard National

League and Brazilian soccer league benchmarks of TTP. The results are compared

to the current best results. Our approach produces competitive results while

consuming much lesser time as compared to best techniques available.

v

TABLE OF CONTENTS

CERTIFICATE... I

ACKNOWLEDGEMENT ... II

ABSTRACT ..III

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION .. 2

1.2 PROBLEM STATEMENT .. 5

1.3 RELATED WORK ... 5

1.4 SCOPE OF WORK .. 7

1.5 ORGANIZATION OF THE THESIS ... 8

CHAPTER 2 PROBLEM DESCRIPTION & LITERATURE REVIEW .. 10

2.1 TTP TERMINOLOGIES ... 10

2.2 FORMAL DEFINITION OF TTP ... 11

2.3 TTP CONSTRAINS .. 12

2.4 TTP SCHEDULE REPRESENTATION ... 13

2.5 VARIANTS OF TTP ... 13

2.5.1 Non round robin scheduling .. 13

2.5.2 Relaxed TTP ... 14

2.6 LITERATURE REVIEW .. 14

CHAPTER 3 STATE OF THE ART TECHNIQUES FOR TTP .. 18

3.1 CONVENTIONAL METAHEURISTICS ... 18

3.1.1 Combined integer and constraint programming .. 19

3.1.2 Tabu Search .. 20

3.1.3 Simulated Annealing ... 20

3.1.4 Iterated Local Search .. 21

vi

3.2 NATURE INSPIRED ALGORITHMS: .. 22

3.2.1 Genetic Algorithm ... 22

3.2.2 Particle Swarm Optimization .. 23

3.2.3 Ant Colony Optimization ... 24

CHAPTER 4 BIOGEOGRAPHY BASED OPTIMIZATION AND SIMULATED ANNEALING 27

4.1 BIOGEOGRAPHY BASED OPTIMIZATION .. 27

4.1.1 Background ... 27

4.1.2 Biogeography .. 28

4.1.3 Operation in BBO .. 31

4.1.4 BBO Algorithm .. 35

4.2 SIMULATED ANNEALING ... 35

4.2.1 Background ... 36

4.2.2 The method ... 37

4.2.3 Strengths and Weakness of SA ... 37

4.2.4 Comparison with other methods .. 39

CHAPTER 5 DETAILED SYSTEM ARCHITECTURE ... 41

5.1 SYSTEM OVERVIEW .. 41

5.1.1 Inputs .. 41

5.1.2 Fast Constructive Heuristic improved with BBO .. 42

5.1.3 Simulated Annealing ... 43

5.2 DETAILED SYSTEM ARCHITECTURE .. 44

5.2.1 Unique permutation generator ... 44

5.2.2 Selection of appropriate distance matrix .. 44

5.2.3 Abstract schedule generation with polygon method .. 44

5.2.4 Abstract to real schedule converter .. 45

5.2.5 Stadium Assignment ... 46

5.2.6 Apply BBO on permutations .. 46

5.2.7 Simulated annealing ... 47

CHAPTER 6 PROPOSED APPROACH ... 48

vii

6.1 FAST CONSTRUCTIVE HEURISTIC FOR GOOD INITIAL SOLUTIONS. ... 48

6.1.1 Abstract Schedule Creation ... 49

6.1.2 Abstract to real team assignment .. 51

6.1.3 Stadium Assignment ... 52

6.2 ADAPTED BBO FOR FAST CONVERGENCE TO LOCAL OPTIMA ... 53

6.2.1 Get-Species-Count Algorithm .. 55

6.2.2 BBO Algorithm adapted for TTP .. 56

6.3 USING SIMULATED ANNEALING TO REFINE SOLUTION ... 60

CHAPTER 7 EXPERIMENTS AND RESULTS .. 65

7.1 EXPERIMENTAL SETUP USED IN THIS WORK .. 65

7.2 DATA SET USED FOR MTTP SCHEDULES GENERATION .. 66

7.3 RESULTS .. 68

CHAPTER 8 CONCLUSION ... 72

 REFERENCES ... 74

viii

LIST OF FIGURES

Figure 1: Example of an mTTP schedule for 6 teams ... 12

Figure 2: Species model of a single habitat .. 30

Figure 3: Comparison of two candidate solutions based on their λ and μ 32

Figure 4: Flow chart illustrating working of SA ... 38

Figure 5: Block diagram of proposed approach .. 42

Figure 6: Architecture of our proposed approach ... 45

Figure 7: Rotation in polygon method for n=6 ... 49

Figure 8: SRR schedule generated by polygon method .. 49

Figure 9: Abstract DRR obtained by appending SRR with itself 50

Figure 10: Example of permutation used for polygon method 50

Figure 11: Consecutive opponents matrix for n=16 .. 51

Figure 12: Migration operation in BBO-TTP ... 54

Figure 13: Algorithm to map cost to species count in BBO 55

Figure 14: BBO-TTP algorithm .. 57

Figure 15: Flow chart showing working of BBO-TTP ... 59

Figure 16: SwapHomes(S,2,5). Before move (upper), After move(lower) 60

Figure 17: SwapRounds(S, 3, 5). Before move (upper), after move (lower) 61

Figure 18: SwapTeams(S, 1, 4). Before move (upper), after move (lower) 62

Figure 19: Simulated Annealing algorithm for mTTP .. 63

file:///D:/My%20docs/My%20Box%20Files/Project/Thesis/mythesis/Vipin_Thesis.docx%23_Toc358839410
file:///D:/My%20docs/My%20Box%20Files/Project/Thesis/mythesis/Vipin_Thesis.docx%23_Toc358839423

ix

LIST OF TABLES

Table 1: Distance matrix of NL6 instance ... 11

Table 2: Simulated annealing parameters for mTTP ... 66

Table 3: Distance matrix of 8 team instance of National League 66

Table 4: Distance matrix of 10 team instance of National League 67

Table 5: Distance matrix of 12 team instance of National League 67

Table 6: Distance matrix of 14 team instance of National League 68

Table 7: Distance matrix of 16 team instance of National League 69

Table 8: mTTP schedule for NL8 ... 70

Table 9: mTTP schedules of NL10 ... 71

Table 10: Comparison of Results .. 71

1

Chapter 1

Introduction

Professional sports tournaments is among one of the major economic activities

around the world. In current era of globalization, major sports events happens in

successions of one, two, three and four years around the world. Many countries bid

for the rights to organize these events. These kind of events bring thousands of jobs

and economic opportunities to their hosts. A major sports event like Olympic attracts

large number of foreign tourists in form of spectators. They visit different places of

hosting counties thus contributing to the incremental economic benefits. Millions of

people around the world follow these sports events. They resorts to all those channels

which can provide real time information about their teams’ progress in each

competition. Fans accesses sources like newspapers, radio, smartphone apps,

television and Internet in their quest for information. Professional sport leagues like

Major League Baseball (MLB), National Basketball Association (NBA), and Indian

Premier League (IPL) etc. involve millions of fans. A huge investment is done in

preparing players for competition. Sources of income for these leagues are TV and

internet broadcasting rights, merchandising, stadium tickets. The accumulative

figures for all these things easily reaches to billions of dollars for popular events.

Many challenging combinatorial optimization problems are inherent to

these kind of leagues such as tournament scheduling, revenue maximization and

logistic optimization. Television broadcasting rights of a popular sporting event

brings in good proportion of the revenue earned from the event. For instance, In

United States, $400 million is paid every year for the national telecast of baseball

games and that much again is paid for local presentation [1]. Indian Premier League

2

garnered $ 1.6 billion as a 10 year contract of television broadcasting rights in four

countries. The UK football team Manchester United is worth £400 and it receives

£100 for overseas T.V. rights alone [1]. A good schedule can attract maximum

television viewers, thereby increasing the revenue, while a poor schedule could be a

reason of potential loss of income.

1.1 Motivation

Researchers of from a wide variety of fields such as operations research, scheduling

theory, graph theory, Evolutionary computing, constraint programming,

combinatorial optimization, and applied mathematics are being attracted to

challenging problem of sports scheduling. This can be seen from the flurry of

research work done in recent years. Example of recent research papers include

Scheduling the Italian football league [2] , scheduling New Zealand basketball

fixtures [3], County cricket timetabling using tabu search [4], Referee assignment is

sports leagues (Dinitz [5], Duarte [6]) etc. For a well-documented and updated

record on recent research in sports scheduling, see [7]. Because of the combinatorial

explosive nature of problems involved in sports scheduling and management, variety

of exact and approximate optimization techniques have been applied. These include

integer programming (IP), constraint programming, metaheuristics, hybrid methods

etc.

 Team owners and other stakeholders in the league want to optimize their

investments by playing on particular day and time in schedule at which they can get

maximum viewers on T.V. and audience in stadium. Good fixtures (predetermined

schedules) are important in order to have maximum revenue from tournament,

keep the interest of both media and fans and ensure the attractiveness of the games.

3

Schedules can even interfere (for the bad or the good) in the performance of players

and can significantly affect the results and finances of every team participating in

the tournament. Constraints related to finding the best schedule generally makes

scheduling task very difficult. These constraints may arise due to the tournament

structure, occurrence of festivals/holiday season in between the tournament,

logistics, organizational, economical and fairness issues.

 Among all the mathematical problems involved in sports, the general

problem of scheduling the games is certainly the most studied area. It consists in

determining the date, time and the venue on which each game will be played.

Application of sports scheduling is common in popular league base sports such as

basketball, baseball, football, cricket, and hockey, rugby etc. Lots of published work

for scheduling of these sports can be found in literature [7]. However, there are also

other relevant scheduling problems in sports. One of them famous problem is that of

assigning referees to games. This problem also has multiple constrains and multiple

objectives. Many interesting mathematical problems are closely related to these

problems. Quadratic assignment problem is frequently encountered in tournament

scheduling [8]. Graph theory has been traditionally used in scheduling sports events

[9].

 Whilst above facts are sufficient to motivate mathematicians and

economists to do work in sports scheduling, our day to day involvement in sports

motivated us to explore this interesting field. Even if someone is not very keen to

follow sport leagues, one cannot avoid media coverage and madness associated with

Olympic Games, Football world cups and other major tournaments. It certainly

becomes interesting to understand how tournament organization is carried out

behind the curtains.

4

 Sports scheduling covers a wide area to be studied. It ranges from

mathematics to computer science, operations research to Economics. For example,

several researchers are interested in the underlying theoretical foundations (such as

graph theory, Latin squares or factorizations) of the problems, or in real world

applications of scheduling in different sports and leagues. We could also look at

different types of problems that are faced by different competitions (such as

maximizing gate receipts, scheduling fixtures and officials etc.). There are many

facets of sports scheduling each one having its own interesting challenges and own

unique benefits for the overall improvement of the game. Each individual and

research who is attracted to solve interesting problems in sports scheduling has

his/her own motivation.

The application of inexact methods to achieve unexpectedly good results for

the NP-complete and NP-hard problems particularly motivated us to sports

scheduling problems which are not only combinatorial explosive but are also so

closely related to our day to day life.

Nature-Inspired Algorithms have been gaining much popularity in recent years

due to the fact that many real-world optimization problems have become increasingly

large, complex and dynamic. The size and complexity of the problems nowadays require

the development of methods and solutions whose efficiency is measured by their ability

to find acceptable results within a reasonable amount of time, rather than an ability to

guarantee the optimal solution We have encountered a new upcoming metaheuristic

named biogeography based optimization (BBO) which is defeating many veteran

techniques like ACO, GA, PSO etc. for problems like TSP, path planning, land cover

feature extraction etc. We were motivated to use it for a standard sports scheduling

problem named traveling tournament problem (TTP) and see if its result could defeat

5

best published results in literature. To our amazement, we found combined BBO-

SA technique quite competitive and highly efficient compared to best metaheuristics

applied on TTP till date.

1.2 Problem Statement

TTP is a sports scheduling problem whose objective is to produce a double round-

robin tournament which satisfies sophisticated feasibility constraints (e.g., no more

than three away games in a row) and minimizes the total travel distances of the

teams.

Optimizing team travel can be economically rewarding as the cost

associated with air travel of a team crew along with their accommodation makes

significant portion of expenditure spent on a tournament.

We will use a novel hybrid approach to solve the mirrored version of this

NP-hard problem. We will exploiting the benefits of both conventional

metaheuristics and nature inspired algorithms. We intend to use combined

biogeography based optimization and simulated annealing to obtained least cost

mirrored TTP schedules in minimum possible time. In one statement, our problem

can be define as:

“To develop a novel heuristic by hybridizing biogeography based

optimization and simulated annealing for solving mirrored traveling

tournament problem”

1.3 Related work

Several algorithmic techniques have been applied to solve TTP. In her epic paper,

Easton [1] framed the TTP problem formally using her sports scheduling

6

experiences with Major League baseball. Benchmarks instances for the TTP are

available at [10]. These instances include abstract distance matrices obtained from

National League called NLn instances, circular instances called CIRCn instances,

and constant instances. Out of these three, first two were created by Easton [1] and

the third one by Urrutia [11]. For constant instances, objective is to maximize total

number of breaks, which is proved to be equivalent to minimizing total distance.

Easton et al [12] attempted to solve NLn instances of benchmarks using combined

Integer programming and constraint programming. They used 20 processors and ran

parallel code on them. Using these resources, 6-team instance was solved in few

minutes while 8-team instance took 4 days of computation. It is still the largest

instance which has been solved to optimality till date.

As soon as the problem was proposed, it became instantly popular among

sports scheduling enthusiasts and number of attempts to solve TTP followed.

Benoist et al. [13] combined Lagrange relaxation with constraint programming and

developed a hierarchical architecture to attack TTP. Constraint programming is the

main component of this architecture which captures the whole problem. Although

problem could also be solved using CP only, but using some global constrains,

bounds of the problem improved. Lagrangian relaxation provided these global

constrains. Value of Lagrangian multipliers were modified by solving one sub-

problem of each team. A sub-problem of TTP is a TSP problem for each team i.e.

how to minimize the individual distance that one team travels in the tournament

irrespective of other teams travel distance.

7

1.4 Scope of work

This project proposes a novel hybrid heuristic for the traveling tournament problem

by hybridizing two metaheuristics: Biogeography based optimization (BBO) and

Simulated annealing (SA). Simulated annealing has shown good results in the past

as a standalone heuristic for TTP. BBO has recently been very popular metaheuristic

and used for many combinatorial optimization problems, e.g. traveling salesman

problem (TSP) [14], [15] . Experimental results proved competitive advantage of

BBO over many popular metaheuristics.

As TTP is very closely related to TSP (in an optimal case, TTP contains n

TSP tours, where n is number of teams in tournament), we try to exploit benefits

offered by both metaheuristics. We implemented the hybrid algorithm and evaluated

our results on publically available benchmarks at [10]. Results are compared with

the best results known in literature.

Broadly scope of this work can be summarized as follows:

 To develop a fast constructive heuristic for developing good initial

mTTP schedules.

 Adapt Biogeography based optimization to be used with fast

constructive heuristic.

 Modify initial schedules using BBO and help in fast convergence to

local optima. This step generates seed for simulated annealing.

 Use simulated annealing to optimize schedules.

 Test simulated annealing with various parameters and choose the final

parameters empirically

 Evaluate our proposed approach on standard benchmarks for TTP

8

 Compare the results with the best results available in literature

1.5 Organization of the thesis

Remaining part of this thesis is organized in the following chapters:

Chapter 2: Problem Description & Literature Review

This chapter discusses the TTP problem in detail. It starts with illustrating the

terminologies specific to TTP thus helping us to understand the problem. Then we

present formal definition of TTP. All variants of this problem are also described with

examples of schedule representation. We then study in detail all the noteworthy work

that has been done on TTP till date.

Chapter 3: State of the art techniques for TTP

In this chapter, we explore the state-of-the-art techniques for TTP. We highlight their

achievement and the shortcomings. The purpose of this chapter is to acquaintance

ourselves with the latest developments in methodologies used for solving our

concerned problem.

Chapter 4: Biogeography Based Optimization and Simulated Annealing

From the analysis of previous two chapters, we chose two metaheuristics which are

suitable for our problem. This chapter explains these two metaheuristics while

discussing all the minute details that are necessary to know, to adapt these algorithms

for generic problem solving.

Chapter 5: Detailed System Architecture

This chapter explains what our system does. It is basically black box model of our

system. We first explain the system’s inputs and outputs in this chapter. Then we

9

explain the detailed system architecture along with the technical challenges faced in

implementation. Block diagrams are resented for easy understanding of the system.

Chapter 6: Proposed Approach

This chapter illustrates our hybrid approach for solving mTTP. It describes the

methods we choose to generate initial population of feasible mTTP schedules, the

application of BBO and SA to improve them. We give BBO & SA algorithms

adapted for mirrored TTP problem.

Chapter 7: Experiments and Results

This chapter illustrates the experimental setup used to obtain the results. All the data

used for result generation is presented. Parameter values used for algorithm are

discussed. Results of our hybrid approach are present and compared with best results

in literature.

Chapter 8: Conclusion

We conclude our work in this chapter. Scope of future result is discussed. Challenges

faced by our problem and where improved can be done is highlighted.

References

This section gives the reference details of sources used for studying and understating

the problem and approaches used in this thesis.

10

Chapter 2

Problem Description & Literature Review

The Traveling Tournament Problem (TTP) represents the fundamental issues

involved in creating a schedule for sports leagues where the amount of team travel

is an issue. For many of these leagues, the scheduling problem includes a myriad of

constraints based on thousands of games and hundreds of team idiosyncrasies that

vary in their content and importance from year to year, but at its heart are two basic

requirements. The first is a feasibility issue in that the home and away pattern must

be sufficiently varied so as to avoid long home stands and road trips. The second is

the goal of preventing excessive travel. For simplicity, we state this objective as

minimize total travel distance.

2.1 TTP Terminologies

Single Round Robin Tournament (SRR): Every team plays with every other team

once in complete tournament. In TTP, every team has to play with some team in

each round. So for n teams, n/2 matches are played in each round. So if n teams are

playing, then there will be total of n-1 rounds in which each team will be able to play

against every other team.

Double Round Robin Tournament (DRR): Every team plays every other team twice

in a complete tournament, once at home and once away (at opponent’s home). This

type of tournament is called a double round robin tournament. For n teams, a DRR

tournament consists of 2n-2 rounds.

Round Trip: The number of consecutive matches that a team plays outside of its

home town is called its round trip. In TTP, round trip limit is set to 3.

11

Home stand: As opposed to Round trip, Home stand is the number of consecutive

matches that a team plays at home. Its limit is also set to 3 in TTP.

In TTP, Distance matrix for 6-teams instance of TTP is shown in Table I. Row

heading and column heading tells the city name, and numerical values represent

distance between those cities.

Table 1:

 Distance matrix of NL6 instance

Team ATL NYM PHI MON FLA PIT

1 ATL 0 745 665 929 605 521

2 NYM 745 0 80 337 1090 315

3 PHI 665 80 0 380 1020 257

4 MON 929 337 380 0 1380 408

5 FLA 605 1090 1020 1380 0 1010

6 PIT 521 315 257 408 1010 0

2.2 Formal definition of TTP

An intuitive way of describing a problem is describing it in terms of its inputs and

outputs. Following this approach, the TTP is defined as follows:

Input: A set of n teams T = {t1,…,tn} with n even; D a symmetric n by n integer

distance matrix with elements dij ; L, U are integer parameters.

Output: A double round robin tournament on the teams in T such that – The length

of every home stand and road trip is between L and U inclusive, and – The total

distance travelled by the teams is minimized.

For U = n − 1, the maximum value for u, a team may visit every opponent

without returning home, which is equivalent to a traveling salesman tour. For small

U, a team must return home often, and consequently, its travel distance increases.

For U = 1, the objective becomes constant, and the problem is solely one of

12

feasibility. In practice, L = 1 and U = 3 or 2 are most commonly used. Additional

background on these parameters and a description of other instances appear in [1].

2.3 TTP Constrains

At-most: No team can play more than 3 home/away games consecutively. In

standard instances of TTP, L is taken as L and U as 3.

No-repeat: A game between Ti and Tj played at Ti’s venue must not be followed by

a game between Ti and Tj played at Tj’s venue.

Mirrored structure: Second half of the schedule must be exactly replica of first

half with the playing venues reversed. More formally, same teams play game with

each other in round t and in round t + (n-1) but with reversed venues. This constrain

guarantee that No-repeat constraint will never be violated.

Mirrored tournament structure is commonly followed in Latin America. It was first

formally defined by Urrutia [8]. An example of an mTTP is schedule is given in

Figure 1.

First Half Second Half

T\R 1 2 3 4 5 6 7 8 9 10

1 -5 -6 3 -2 4 5 6 -3 2 -4

2 3 5 -4 1 6 -3 -5 4 -1 -6

3 -2 4 -1 6 5 2 -4 1 -6 -5

4 6 -3 2 5 -1 -6 3 -2 -5 1

5 1 -2 6 -4 -3 -1 2 -6 4 3

6 -4 1 -5 -3 -2 4 -1 5 3 2

Figure 1: Example of an mTTP schedule for 6 teams

A small variation proposed in TTP is TTP with predefined values define by

Melo et al. [16]. In this variant, schedules are single round robin tournaments in

which we pre decide the venue of each game to be played in tournament.

13

2.4 TTP Schedule Representation

We use Anagnostopoulos [17] representation of schedule. Column number

represents round number. Row number represents a teams and value inside table in

corresponding row represents its opponent team. Thus opponent of a team Ti in

round k is given by value (i, k) in schedule. If (i, k) is positive, match is played at

Ti’s home else at its opponent’s home. Each team starts its journey from its home

site and travels to its destined venue as given in schedule. After the last round, team

returns to its home site (if last game was away). Travel cost of team 1 as per schedule

given in Fig 1 is:

dist (T1) = d15 + d56 + d61 + d12 +d21 + d13 + d31 + d14 + d41

Here dij represents the distance between home venues of teams Ti and Tj. Total cost

of schedule is calculated as sum of the distances that each team travel to play all of

its matches. Thus cost of schedule will be as follows:

Cost (S) = ∑ 𝑑𝑖𝑠𝑡(𝑇𝑖)

𝑛

𝑖=1

2.5 Variants of TTP

A number of researchers have developed variants of the Traveling Tournament

Problem. This section contains a list of those variants.

2.5.1 Non round robin scheduling

This problem is a variant of the Traveling Tournament Problem proposed by

Douglas Moody. In this variant, teams do not play a double round robin tournament

but rather there is a "Matchups" value between teams i and j, which gives the number

14

of times i must visit j. The (regular) TTP is a Non-RR TTP with a matchup value of

1 for all i not equal to j.

2.5.2 Relaxed TTP

This problem is a variant of the Traveling Tournament Problem and is proposed by

Renjun Bao and Michael Trick. In this variant, the schedule is not compact: teams

have byes in their schedule. The number of byes is controlled by a parameter K, the

number of byes per team in the schedule. K=0 corresponds to the normal TTP.

Byes are ignored in determining the length of a homestand or roadtrip, and in

determining whether a repeater has occurred.

2.6 Literature Review

TTP is quite a popular problem in fields of operations research and Evolutionary

computing. It’s an optimization problem very closely related to traveling salesman

problem which raises interest in every research as she found herself familiar with

the problem even looking it first time. Many successful attempts have been recorded

in literature solving TTP with good results. We discuss some of the most prominent

of those here in this section.

Using Simulated Annealing Anagnostopoulos et al. [17] could beat all the

previous best results (at the time of writing his paper) of TTP. He used complex

neighbourhood moves to explore a large solution space. He explored both feasible

and infeasible reasons and this decision translated in to better results. Strategic

oscillation and reheats were used to avoid local optima. His work is still citied by

most authors because of the path breaking results he achieved with a very simple

approach using a simple algorithm.

15

Costa et al. [18] proposed an iterated local search (ILS) heuristic for TTP with

predefined values. In their approach they used two types of perturbations and two

local moves to explore neighbourhood. They did not use well known polygon

method that most other researchers use as a tool to generate initial solutions. Instead

they resorted to canonical-1 factorization method. This method was applied on sub-

graphs and main graph of tournament to get initial feasible solutions. With their

numerical results they proved ILS is much better than integer programming.

Ribeiro et al [8] proposed a hybrid heuristic based on the principles of

GRASP (Greedy randomized adaptive search procedure) and ILS metaheuristics for

mirrored TTP (mTTP). For generating initial schedules, they proposed a fast

constructive heuristic using polygon method. This method first created an abstract

schedule based on an initial random permutation. Then this abstract schedule is

converted to a real schedule by mapping abstract teams to real teams considering

distances among the cities of real teams. This helped in improving the schedule.

After that, stadiums are assigned to teams by trying to keep road trips to maximum

length. Obtained schedules were of much better quality than those of random

schedules. They used four different neighbour structures to be used with ILS and

GRASP. Some of them were complex, so ejection chains had to be used with them.

Their results were competitive with best results available at the time of writing and

took at most 15 minutes for the largest instance of problem. Some results of this

hybrid result even beat the best results and marked themselves as new standards to

be challenged.

 Urrutia et al. [19] again came back with their new methodology to propose

new lower bounds for the TTP proposed by Easton et al. [1]. He considered the

difference between minimum numbers of road trips that each team needs to travel

16

for completing the tournament with the optimal solutions which were known before

hand for equivalent size constant instances.

 The work of Gaspero et al. [20] is also among the most cited heuristic work

for TTP. He used tabu search to generate approximate solutions for TTP. He made

use of complex neighbourhood structures and combined them to explore

systematically a large solution space to reach competitive solutions. He compared

the results with best results mentioned in literature and improved upon some

instances.

 There have been previous attempts to hybridize simulated annealing (SA)

with other heuristics due to the path breaking results that SA achieved. One such

work much appreciated in literature is by Lim et al. [21]. In his work, he proposed a

hybrid algorithm by combining simulated annealing with hill-climbing for TTP. The

search space is divided into a team assignment space and a timetable space. The

team assignment space is explored by hill-climbing algorithm while simulated

annealing explores the timetable space. A controller assigns teams to game slots and

calls the simulated annealing component. Simulated annealing component helps in

generating better timetables. Now the timetable with best schedule (in terms of

lowest travel cost) is transferred to the hill-climbing component for further

processing, which tries to improve schedule by better team assignments. This

module returns those mapping of team assignments to simulated annealing

component which generates the best schedule. This process of refinement continues

until the schedules do not stop improving for a specified fixed number of consecutive

iterations or when a predefined time limit is reached. The whole idea of this hybrid

approach boils down to this: Try to improve team assignments if and only if their

17

associated timetables have a higher chance of giving better schedules thereby saving

unnecessary computation.

 While discussing the remarkable work done for TTP, it becomes absolutely

essential to discuss the approach taken by Hentenryck et al. [22]. It is because most

of the current best results for mirrored TTP that no one could challenge till date were

achieved by Hentenryck. He improved upon the approach taken by Anagnostopoulos

et al. [17]. He modified the objective function considering mirrored constraint as a

soft constraint, and kept a penalty for its violation. This modification helped in

exploring a large solution space while making it easier to return to feasible region

once the search goes in to infeasible space. His results improved upon most of the

best results which existed at the time of writing.

Cheung KKH [23] proposed a two-phase method based on generating

timetables from 1- factorizations and finding optimal home/away assignments solves

the mirrored traveling tournament problem benchmark instances NL8 and CIRC8.

In this chapter, we gave a detailed literature survey which throws light on

the various efforts that have been done to solve TTP efficiently till date. Now let us

discuss the various mathematical techniques and metaheuristics that produced

exceptional and record breaking results when they were first applied to TTP. We try

to find state of the art technologies so that we can put efforts in right direction by

not using outdated idea or technology.

18

Chapter 3

State of the art techniques for TTP

This chapter contains the brief description of most successful and state of the art

techniques which have been applied to solve TTP generating good results. The work

on TTP started in 2001. In past 12 years, there have been numerous attempts to lower

the bounds of this NP-hard problem. Many have achieved remarkable results for

small instances but tackling the large instance problems (team size 12 or more) is

still a big challenge.

We can broadly classify the approaches, which have been used to solve TTP

so far, in to two categories:

1. Conventional metaheuristics

2. Nature inspired Algorithms

In following sections, we explain these approaches and define the state-of-the-art

techniques which have been successfully applied on TTP

3.1 Conventional metaheuristics

These techniques include the approximate algorithms which have been around for

quite some time and are either originated from mathematics models directly

(constraint programming, integer programming, tabu search) or by inspiration from

other engineering principle, like simulated annealing emerged using idea of

metallurgy process. These methods have been applied to a wide range of problems

and lots of theoretical work can be found on them. Below we given few of them

which when introduced for TTP showed record breaking results.

19

3.1.1 Combined integer and constraint programming

This was the first solution posted for TTP by its creators Easton et al. [12]. Their

solution methodology for the TTP is a branch-and-price (column generation)

algorithm in which individual team tours are the columns. In branch and price, the

linear programming (LP) relaxation at the root node of the branch and bound tree

includes only a small subset of the columns. To check the LP objective, a sub

problem, called a pricing problem, is solved to determine whether there are any

additional columns available to enter the basis. If the pricing problem returns one or

more columns, the LP is re-optimized. If no more columns can be found to enter the

basis and the LP solution is fractional, the algorithm branches.

Branch-and-price is a generalization of branch-and-bound with LP

relaxations. In their combined integer programming-constraint programming

approach, they used constraint programming to solve the pricing problem.

Shortcomings of Combined Constrained and integer programming approach

Instances with n = 4 were nearly trivial to solve. Instances with n = 6 are more

challenging. They explored several models that can solve these instances in a

reasonable amount of time without parallel programming. When 20 processors are

used to solve instances with n = 6, the computation time is on the order of minutes.

Finally, they found it is necessary to use parallel programming to solve instances

with n = 8 teams. On 20 processors, these problems take approximately 4 days.

Thus it is evident that the computation time needed by this approach is enormous

even for small instances.

20

3.1.2 Tabu Search

Tabu search reignited the research in TTP in 2006 when Di Gaspero [20] used it

with recording breaking results at their time of writing. In their work, a family of

tabu search solvers for the approximate solution of the TTP is proposed. They make

use of complex combinations of many neighborhood structures. The different

neighborhoods are thoroughly analyzed and experimentally compared. The solvers

are evaluated on three sets of available benchmarks and their outcomes are compared

with previous results presented in the literature.

Shortcomings of tabu search

Di Gaspero found that due to the exhaustive exploration of the neighborhood, tabu

search is intrinsically much slower than simulated annealing to perform each single

iteration. In order to be competitive with the other techniques, tabu search needs to

be implemented efficiently. In their case, many points still need to be improved,

especially regarding the computation of the cost difference of two neighbor states

3.1.3 Simulated Annealing

Proposed by Anagnostopoulos [17] and further improved in [22], simulated

annealing proved to be quite successful in solving TTP. Anagnostopoulos proposed

a hybrid algorithm for the TTP is proposed, based on the simulated annealing

metaheuristic and exploring both feasible and infeasible schedules. The heuristic

buys some principles from other metaheuristics: it uses a large neighborhood with

complex moves and includes advanced techniques such as strategic oscillation and

reheats to balance the exploration of the feasible and infeasible regions and to escape

local minima at very low temperatures. It matches the best-known solutions on the

small instances and produces significant improvements over previous approaches on

21

the larger instances. The algorithm is claimed to be robust, because the worst

solution value it produced over 50 runs is always smaller than or equal to the best

known solutions.

Shortcomings of Simulated Annealing

Although most of the best results present in literature for TTP and its variants are

produced by simulated annealing approach, but the main drawback in this approach

lies in the computation time it takes. The computation requirement of this technique

makes it infeasible to be used as real life problem solving technique. It took around

54 hours i.e. more than 2 days to find good results for 16 team instance of TTP using

SA.

3.1.4 Iterated Local Search

This approach was used by Urrutia et al. [8]. In their work, a hybrid heuristic

combining principles from the GRASP and ILS metaheuristics is proposed for the

mirrored TTP. A three-step constructive heuristic is used to build good initial

solutions. In the first step, the canonical 1-factorization is used for constructing a

timetable with placeholders. Next, a greedy heuristic is used to assign teams to

placeholders. The venues of the games are set round by round and local search is

used to repair possible infeasibilities in the last step of the constructive heuristic. The

hybrid heuristic makes use of four simple neighborhoods for local search and one

ejection chain neighborhood for perturbations. The results obtained by the hybrid

heuristic were even better than the best known at the time of writing for some

instances of the less constrained TTP, with execution times limited to 15 min. State-

of-the-art algorithms at the time of writing usually reported up to several days of

computation time. It is also shown that the constructive algorithm is very quick and

22

produces good initial solutions that improve the quality of the best solution found

by the hybrid heuristic.

Shortcomings of Iterated Local Search

This technique was able to produce results reasonably quickly than previous known

techniques for TTP but again trade off lies here in the cost of schedules which it

generates. The maximum difference between the cost of its best schedule and best

known schedule in literature reached 17%. This is unacceptable as more scope of

improvement lies in cost optimization which was main objective of TTP.

3.2 Nature inspired algorithms:

These methods have been recently discovered and are based on various phenomenon

in nature that makes organisms find their food (Ant colony, bee colony), help in

existence and evolution (biogeography, genetics), develop social behaviours (bird

flocking, fish schooling) etc. Although these algorithms have shown remarkably

good results on numerous optimization problems, much less theoretical work has

been published on them compared to conventional metaheuristics. Nevertheless,

they achieve the objective very well which is to find a near optimal solution for a

given problem. In sections given below, we discuss few problem which have been

applied on TTP and their results have shown noteworthy improvement over results

that were existing in literature.

3.2.1 Genetic Algorithm

Evolutionary computation was first used by Biajoli et al. [24] to solve TTP. The

methodology used to solve the problem is based on the use of Genetic Algorithms

in association with the metaheuristic Simulated Annealing. The idea is to use the

23

Genetic Algorithm as construction phase, generating new solutions starting from the

individuals' crossing and the Simulated Annealing to improve the local search in

those new solutions.

In this work, Genetic Algorithm was implemented that uses the Simulated

Annealing metaheuristic to address new individuals to a local optimum. The

application of local search in the individuals can be related with the combination of

learning and evolution. In general, the learning is a search for the near viable solution

and the modifications will be incorporate for the individual. The use of the SA

metaheuristic leaves the stage of local search more aggressive, resulting in

individuals more and more adapted inside of the population. A compact

representation of the chromosomes (individuals) was proposed for the application of

the GA. The chromosomes are submitted to an algorithm of code expansion, which

decodes them in scales of games.

Shortcomings of Genetic Algorithm

This approach for TTP was inconsistent throughout out the standard problem

instances. For some instances, it produced very good results, for NL10, the gap

percentage reached up to 12% showing poor quality of solution generated. Thus it

proved to be unreliable technique for real life problem solving.

3.2.2 Particle Swarm Optimization

Alireza Tajbakhshl et al. [25] proposed a hybrid PSO-SA approach for TTP. In the

proposed algorithm, two metaheuristic methods are used: Particle Swarm

Optimization (PSO) and Simulated Annealing (SA). This hybrid algorithm applies

0-1 version of PSO in the first phase and generates many schedules rapidly. In the

second phase of the hybrid algorithm, an SA approach applies the best schedules

24

achieved in the first phase as initial schedules and improves them. The proposed

algorithm leads to an optimal solution for the National League (NLn) instances of

the TTP with 4, 6, and 8 teams.

Shortcomings of PSO

Work of Tajbakshi provided an alternative mathematical model for TTP (the first

was given by Easton). Their results where comparable to most results in literature

with a new approach but still they could not beat the heavy computation involved

for TTP schedules generation. They took 7200 seconds, i.e. 2 hour for generating

results for smallest of the instances.

We can conclude from this chapter that in recent years, a trend of applying

nature inspired algorithms to TTP is gaining popularity. This is due to their

exceptional abilities in producing near optimal results in much lesser time than

conventional techniques. Now let us explore various nature inspired algorithms and

choose the best fit for our problem.

3.2.3 Ant Colony Optimization

In Ant Colony Optimization (ACO), a set of software agents called artificial

ants search for good solutions to a given optimization problem. To apply ACO, the

optimization problem is transformed into the problem of finding the best path on a

weighted graph. The artificial ants (hereafter ants) incrementally build solutions by

moving on the graph. The solution construction process is stochastic and is biased

by a pheromone model, that is, a set of parameters associated with graph components

(either nodes or edges) whose values are modified at runtime by the ants.

25

Chen et al. [26] used an ant based hyper heuristic for solving TTP. In their proposed

model they constructed a network in which every vertex represents a low-level

heuristic. A number of ants, each of which represents a hyper-heuristic agent, are

located uniformly among the vertices of the network and carry initial solutions. Each

ant traverse particular edges and reach the next vertex. Once an ant arrives at a new

vertex it applies the low-level heuristic at that node. They allowed the ants to visit

the same node many times. Indeed, ants can cycle back to the same vertex so that

the same heuristic is repeatedly applied to the current solution. In addition to the

pheromone trails, they used the concept of ‘visibility’. Visibility represents how

quickly the heuristic at a potential vertex takes to compute. This is on the assumption

that short, good quality heuristics are to be preferred to good quality heuristics that

take a long time to compute.

Shortcomings of ACO

1. Theoretical analysis is difficult

2. Sequences of random decisions (not independent)

3. Probability distribution changes by iteration

4. Research is experimental rather than theoretical

5. Time to convergence uncertain

Although using ACO as a hyper heuristic, Cheng et al. could find solutions for all

NLn instances of TTP, but their results were far from optimal. They were even worse

than results available at their time of writing. With ACO, they could just invent an

approach suitable enough to give results (good or poor) for all instances.

In this chapter, we explored various techniques that have been applied on TTP and

have produced good results. While studying various nature inspired techniques, we

26

came across BBO as a general metaheuristic to optimize combinatorial problems

with good success rate [14], [15]. We will explore BBO and simulated annealing in

detail in next chapter. We’ll try to study all minute details of these two

metaheuristics so that we can adapt them to our concerned problem. Then we will

go ahead and hybridize these two techniques and will evaluate our hybridized

approach on publically available standard benchmarks.

27

Chapter 4

Biogeography Based Optimization and

Simulated Annealing

This chapter contains the detailed discussion of two metaheuristics that we used for

solving TTP: Biogeography bases optimization and Simulated Annealing. We will

study their origin, algorithmic techniques, their strengths and weakness and compare

them with related algorithms. We will first start off with BBO and then explain

simulated annealing.

4.1 Biogeography Based Optimization

4.1.1 Background

Scientific work to understand biogeography started long back in 19th century. But

the first mathematical model describing biogeography only came out after the

revolutionary work of Robert MacArthur and Edward Wilson in 1967. They were

mainly focused on how species distribute among neighboring islands, how and why

species migrate, reasons of their evolution and extinction. Although there had been

quite an enthusiasm after research work of MacArthur and Wilson in field of

biogeography, no computer science papers taking advantage of biogeography were

ever published till 2008.

In his seminal paper in 2008, Dan Simon [27] used the mathematical models

developed by MacArthur and Wilson and invented a new metaheuristics called

Biogeography-Based Optimization (BBO). Since its inception, there have been

various improvement proposed to improve BBO ([28], [29], [30], [31]). Simon and

his colleagues have published lots of research work to prove the competiveness of

28

BBO with other main stream metaheuristics like genetic algorithm, ant colony

optimization etc. with mathematical theory and experimental results.

4.1.2 Biogeography

In the original biogeography models developed by MacArthur and Wilson, term

island was used to define a habitat geographically isolated from other habitats.

Simon instead used the term habitat in place of island considering its more generic

meaning and contextual accuracy. Geographical areas that are well suitable to live

and evolve for animals have high suitability index (HSI). Features that are

responsible for HSI includes rainfall, biological diversity, vegetation, temperature,

land area etc. Variables that represents these features are effects HSI are called

suitability index variables (SIVs). SIVs are independent variables, while HSI can be

considered as a dependent variable.

Habitats having high HSI tends to have more number of species while with

low HSI will have less count of species. If number of species on a habit rises, some

migrates to nearby habitats. It is not that all the members of an emigrating specie

disappears from the previous home. Just few representative members move. So

emigrating specie has its existence on both emigrating and home habitats. Thus high

HSI habitats have high emigration rate. Now as the number of species are high on

these habitats, there is little space of new species that might come from neighboring

habitats. So high HSI habitats tends to show low immigration rate and therefore high

HSI habitats are resistant to change because of very less probability of accepting

new species.

Contrary to that, low HSI habitats have high immigration rate due to their

sparse population. The species which tries to immigrate to low HSI islands have

29

better chances to find space due to less competition. As the population grows on low

HSI habitats, their HSI tends to increase as suitability of a habitat is directly

proportional to its biological diversity. But in case, HSI of a habitat remains low for

long time, species on it are likely to go extinct which further open the doors for

immigration by reducing competition. These facts make us believe that low HSI

habitats are more dynamic in species distribution.

Relating biogeography to problem solving

Now let’s come to the point how nature’s way of species distributing species can

help us in problem solving. Suppose we have a problem and some of its possible

solutions. Problem can be of any field (sports, business, urban planning, engineering,

science etc.). For biogeography concepts to apply on a problem, there must exist

some quantifiable mechanism to measure the suitability of a solution. Relating

problem to our biogeography model, a good solution is analogous to a habit with

high HSI and a bad solution represents a habit with low HSI. High HSI solution

tends to be more resistant to change and they won’t easily change until some better

candidate solutions emerge in the population. Low HSI solutions will get some traits

of high HSI solutions to improve themselves. This addition of new features may rise

the HSI of poor solutions thereby improving their quality probability of acceptance

as final solution. This approach of problem solving was christened as Biogeography-

Based optimization (BBO) by Simon [27].

Similarities and differences of BBO with PSO and GA

BBO share its problem solving attributes with many popular biology based

metaheuristics. Like particle swarm optimization (PSO) and genetic algorithm (GA),

BBO share features among its candidate solutions. In GA, solutions ‘die’ at the end

of each generation while BBO and PSO solutions never actually ‘die’ although they

30

may modify as optimization process progress. PSO solutions may form groups based

on similarities and this may have a significant impact on how features are shared.

But GA and BBO algorithms do not put any mandatory requirement to form cluster

of solutions, although they do not restrict it too.

Figure 2: Species model of a single habitat

Figure 2 illustrates how species move in a habitat based on their numbers.

Emigration rate µ and immigration rate λ are functions of number of species present

in the habitat. We will explain the different parts of curve shown above one by one.

Highlights of Immigration curve

 Maximum possible immigration rate for a habitat is I.

 Value of immigration rate is I only when number of species in a habitat is

zero.

 Immigration rate decreases as number of species increases due to crowded

space and competition.

 When the number of species reaches to its maximum value that a habitat can

support, immigration rate reduces to zero.

31

Highlights of emigration curve

 If no species exist in habitat then emigration rate becomes zero.

 Emigration rate increases with increase in population of species as more of

them are able to leave their habitat to explore other habitats.

 There is limit to the emigration rate which is given by E. It happens when a

habitat contains maximum number of species which it can support.

The state of Equilibrium

 S0 is the equilibrium number of species. When count reaches to S0,

immigration and emigration rate becomes equal.

 Every habitat eventually reaches to the state of equilibrium after a particular

period.

 Curve may deviate from point of equilibrium once it reaches there because

of following two reasons.

o Positive excursions: It could be due to sudden of speciation or due to

sudden spurt of immigration because of some catastrophic event on

neighboring island.

o Negative excursion: It may happen due to epidemic or due to

introduction of some ravenous predator.

4.1.3 Operation in BBO

The two operations that are fundamental to BBO are migration and mutation [27].

Both operations with their problem independent algorithms are explained below.

1. Migration

Emigration and immigration constitutes the migration process. They are actually

inversely proportional to each other. For clarification see Figure 3. It is illustrated

32

there that we have two candidate solutions one bad (S1) and one good (S2). Number

of species on habitat S1 are lower than that of number of species on S2. Fitness or

HSI of a solution is directly translated to the number of species it contains. So the

poor one (S1) will have higher immigration rate than better one (S2) i.e. λ1 > λ2 and

will have lower emigration rate than better one i.e. μ1 < μ2.

Figure 3: Comparison of two candidate solutions based on their λ and μ

So we come to the conclusion that if we have fitness of a solution, we can calculate

its number of species relative to other solutions. And we have number of species, we

can calculate λ and μ.

In BBO, we modify each habitat with a probability of Pmod. If a habitat Hi is

selected to be modified, the immigration rate λi probabilistically decides among all

the SIVs of a habitat, which ones will be modified. If some SIV is selected to be

modified from habitat Hi, then emigration rate μ of all other habitats probabilistically

decides which habitat will give its SIV (selected randomly or using some problem

dependent predefined rule) to Hi. A general algorithm of migration is given below.

33

In BBO, as with other population based metaheuristics, we use concept of elitism to

prevent best solutions from getting corrupted by migration process. By keeping

probability of modification, Pmod to zero for best solutions, we can prevent them

from modification.

2. Mutation

Habitats can drastically change by random cataclysmic events. These events are rare

but they do happen and must be reflected in BBO model. These events causes the

state of a habitat to shift from its equilibrium. Mutation is the process by which

cataclysmic events are reflected in BBO. Probability of mutation is kept to a very

small value for the fact that these events are very rare. By looking at Figure 3, we

analyse that probability of occurrence of very low number of species and very high

number of species is fairly low. Natural habitats are likely to evolve over time

steadily and gradually. Among any set of habitats, most of them have number of

species with in some range of equilibrium. This state is achieved after a long time

since the habitat came in to existence. Thus at any given point in time, each

population member has an associated probability which tells that it was expected as

a solution. If a habitat Hi with probability Ps has currently very low number of

34

species or very high number of species then it is surprising that it exists. We assume

that it is due to some cataclysmic event and thus we like to mutate it. So the

probability of mutation is high for very good and very poor solutions and low for

mediocre solutions. Mutation probability is guided by the equation

𝑚(𝐻) = 𝑚𝑚𝑎𝑥 (
1 − 𝑃𝐻

𝑃𝑚𝑎𝑥
)

(1)

Here m(H) is the mutation probability, mmax is the user defined parameter (maximum

value that mutation can take. 0 ≤ mmax ≤1. Pmax is the apriori probability of occurrence

of the best habitat, while PH is the apriori probability of occurrence of habitat H.

The whole motive of mutation is to increase diversity in population. Without this,

high HIS solutions tend to be dominant. Mutation give chance of improving to low

HSI solutions. Good solutions also have chance to improve further using mutation.

So mutation scheme is applicable to good and poor solutions equally. Average

solutions may have been improving already. So they are less likely to mutate.

Although with this approach best solutions of our population may get corrupted. But

as with migration, we can set elitism approach here to prevent corruption of few best

solutions. Mutation concept is common to GA, and all different types of mutation

that are applicable in GA can be used here also.

 Mutation general algorithm is given below.

35

4.1.4 BBO Algorithm

Working of BBO can be summarized in following sequence of steps [27]

1. Initialize parameters of BBO. It includes:

a. Mapping problem’s solutions to SIVs and habitats.

b. Initialize maximum species count Smax, maximum immigration

rate. λmax, maximum emigration rate μmax and maximum species

count Smax

2. Initialize a random set of habitats (solutions) where each habitat

corresponds to a quantifiable solution of given problem.

3. For each habitat, calculate λ and μ using its species count.

4. Use immigration and emigration rates to probabilistically modify each

non-elite member of habitats.

5. Re-compute HSI of habitats. Update species count using HSI. Then

mutate each non-elite member using (1).

6. Go to step 3. This loop will be terminated if either predetermined

number of iterations have reached or required quality solution has been

found.

It is to be noted here that after modification of a habitat after migration and

mutation operations, it might become infeasible according to solution

constraints of problem. So feasibility must be verified of each solution in

every iteration.

4.2 Simulated Annealing

Simulated annealing (SA) is a random search process which is analogous to the

annealing process used in metallurgy. In metallurgy, heating and cooling to a metal

36

is done in a controlled way to minimize the energy of its molecules and convert it

into a uniform crystalline structure with minimum defects. In the same way, in SA,

slow cooling is imitated by slowly decreasing the probability of accepting worse

solutions during the search process.

SA is used to find an approximate global optimum for a problem which has

discrete and large search space. It is proved to be better than exhaustive enumeration

when search space is huge objective is to find near optimal solution rather than

optimal solution.

4.2.1 Background

SA was first introduced by Kirkpatrick et al. [32] in 1983 to deal with nonlinear

problems. Approach of SA for global maximization is similar to that of a bouncing

ball which bounces over mountains (local optima) from valley to valley. The process

begins at a high "temperature" which powers the ball to take very high bounce and

allow it be in valleys surrounding mountains (search exploration region). As the

temperature declines the bouncing power of ball decreases and the range of valleys

it can explore. But due it slow cooling, we hope that SA has crossed all local optima

that might have been appeared in its search space. A generating distribution is a set

in SA which gives a valley or states to be explored. Similar to that is set called

acceptance distribution. Based on the differences in value of present valley being

explored and the last explored valley, it probabilistically decides whether to stay in

the present valley or bounce over it to explore some other. Temperature controls the

generating distribution and acceptance distribution. It has been proved

mathematically that SA can find the global optima by carefully controlling the

temperature. However, this requires infinite time.

37

4.2.2 The method

Simulated annealing’s exceptional ability to avoid local minima sets it apart from

other rival neighborhood based metaheuristics. If the aim of SA’s objective function

f is to minimize some solution, then SA not only accept changes that minimize it,

but also those changes that increases its value. Although the acceptance of latter is

associated with some probability shown by (2).

𝑃 = exp (−𝛿𝑓/𝑇) (2)

where δf is the non-desired change in function value and T is a control parameter

better known as ''temperature". It works independent of the objective function. The

implementation of the basic SA algorithm is straightforward. Flow chart showing

basic working of SA is shown in Figure 4.

Following are essential elements of Simulated Annealing:

1. Representation of possible solution of problem

2. A generator function which modify solutions to generate new ones.

3. A fitness/cost evaluation function which gives measure to compare solutions

4. An annealing schedule: It contains an initial temperature at which search

starts and rules to modify that temperature as search progresses.

4.2.3 Strengths and Weakness of SA

Strengths

 SA can deal with noisy and chaotic data with many constraints, it can

computer near optimal solutions of highly non-linear models efficiently.

 Compared to other local search methods, if offers flexibility in reaching to

global optimal solutions.

 Versatile in nature as does not have any restrictive properties

38

Figure 4: Flow chart illustrating working of SA

 SA methods are ‘tuneable’. Strategic oscillation and reheats can be used for

to enhance its performance if more computational power is at disposal.

Weakness

 Since it’s a metaheuristic, lots of modification needs to be done to adapt it to

a particular problem

39

 There exists a tradeoff between quality of solution and computational time

required to find it.

 Fine tuning the parameter require empirical knowledge which comes with

experience. Thus it require experience with SA for best results with a

problem.

 The precision of parameter values used in SA can have significant impact on

the final solution.

4.2.4 Comparison with other methods

Any efficient optimization algorithm must be good at two techniques to find a global

maximum: investigate new and previously undiscovered areas in the search space,

make use of knowledge gained during the search process till current time to explore

better directions in search space. A tradeoff exists between these two techniques and

a better metaheuristic must make better tradeoff choices than other.

Neural nets (NN)

 Learning is mandatory in neural networks but not in SA.

 SA is a flexible random search method while NN flexible function

approximators.

 NN are adaptive in nature which makes the suitable for dynamic

environments. SA is power hungry algorithm so cannot be used in real time

applications.

Genetic Algorithms

 GA does not give any statistical gurantee to global convergence while it has

been proved SA can find global optima if infinite time is given to it.

40

 Adaptive simulated annealing (ASA) has outperformed GA on a test suit

adopted for both of them for a common problem.

Gradient methods

 These methods are applicable to only continuous because derivative needs to

be computed to find gradient.

 These methods are often called as hill climbing methods. They are good for

single peak functions but for many peak functions, SA outperform them.

Iterated Search

 It is the combination of gradient method with random search. The

combination can be termed as iterated hill climbing because in each iteration

a random point is chosen as starting point to discover the hill.

 It is good if function contains few hills.

 It does not give the overall picture of domain space searched while SA

searches in domain in very systematic and connected manner.

41

Chapter 5

Detailed System Architecture

This chapter contains the design details of the system that we developed for finding

minimum cost mTTP schedules. Designing of a system is critical part before a

retractable solution can be obtained. Thus we focused on developing our system in

modules which are independent of each other. The architecture is explained in fairly

detailed way in this chapter. This would help the reader to understand our proposed

approach given in next chapter.

We will first discuss the basic system overview. Then we will delve in to

the detailed system design. After than we will explain the challenges and solution of

each smallest module which is part of our project.

5.1 System Overview

Out system can be broadly understood by diagram given in Figure 5. It is a three

step process. In first step, a population of feasible solutions is created. In second

step, BBO is applied on the population to improve them and make them converge to

a local optima quickly. In final step, simulated annealing is used to find near optimal

solution using best solution of BBO. Below we describe the purpose of inputs, how

they are utilized and which modules make use of them.

5.1.1 Inputs

We need following two inputs

1. Team size: We need to know the number of teams playing in tournament

for two reasons

42

a. It lets us create the permutation of integers which will be used as

input for polygon method to generate abstract schedules

b. It lets us choose the appropriate distance matrix for our problem

Figure 5: Block diagram of proposed approach

2. Distance matrix: This input also has two purposes

a. It is used to calculate the cost of a schedule. In our work, cost is

the only metric on which our schedules are compared.

b. It is used by fast constructive heuristic to covert abstract schedules

in to real schedules

5.1.2 Fast Constructive Heuristic improved with BBO

The idea of fast constructive heuristic is adapted from [8]. This uses polygon method

to construct abstract (can also be though as random) schedules.

Most of work on mTTP before 2007 used only abstract schedules as input. But it had

the drawback that distances among the team cities was completely ignored. Thus the

43

random schedules do not provide good starting point for optimizing metaheuristic

which can have significant effect on its performance. Urrutia [8] introduced the

concept of using distance for improving initial schedules and got significant

improvement in cost minimization using just this single fact. He did not try to apply

any further optimization on initial schedule generation. We carried this task further

and applied BBO on Fast Constructive method of [8].

Because of the design of polygon method, out of infinitely many schedules possible

for a give input, only limited number of schedules can be created. The flaw lies in

rigid design of clockwise rotation. Thus number of unique schedules for a team size

of n that can be created by using polygon method is (n-1)!.This is actually a very

small number compared to all the possible schedules i.e. 2𝑛2𝑛−2
. As it seems, it is

impossible to explore this much large search space so we tried to find the optimal

solutions among the (n-1)! schedules which can be created by polygon method using

BBO. BBO worked on the permutations used as input to polygon method which can

be at most (n-1)! for an integer vector of size n.

5.1.3 Simulated Annealing

Simulated annealing has shown its mettle for generating near optimal solution for

mTTP. TTP has double round robin (DRR) constraint. It is not easy for a population

based heuristic like (GA, BBO, PSO etc.) to directly modify mTTP schedules as it

can make them invalid. Once a schedule becomes invalid, it is impossible to make

it valid in further iterations. DRR constraint is very rigid and difficult to follow. But

neighborhood based algorithms like SA, tabu search, iterated hill climbing can

explore the search space of mTTP schedules without breaking DRR constraint using

predefined neighborhood moves. Thus even if a schedule becomes infeasible (breaks

44

At-most or No-repeat constraint), it can be resorted to a feasible one. But DRR

structure is preserved by all the moves of SA. So we chose SA as final refinement

algorithm. We just pass the best solution of BBO to SA to get the near optimal

solution.

5.2 Detailed System Architecture

Figure 6 describes each and every small module of our proposed approach. Each

module is moderately complex in itself thus we required to create multiple functions

to implement one module. What follows is the description of these modules

5.2.1 Unique permutation generator

It is actually no so trivial to generate unique and random permutations from 1 to n,

for any given value of n. We used the idea of Ged Ridgway [33]. Although there are

n! permutations possible, we just use the 100 out of them. It is because, we use 100

members in our population for BBO algorithm.

5.2.2 Selection of appropriate distance matrix

Based on the value of input variable n, we append it with string ‘NL’ to create a new

string ‘NLn’. For example is input team size is 10, this module makes a string

‘NL10’. We have stored the NLn instances data in text files. This module selects the

appropriate text file based on above formed name.

5.2.3 Abstract schedule generation with polygon method

We follow the approach described in detail in section 6.1.1. The output of this

module is a plain double round robin schedule. We have not assigned stadiums (signs

to integers of matrix) yet. We try to make feasible and valid schedule in this step.

45

.

5.2.4 Abstract to real schedule converter

We need to do mapping to for this conversion to take place. If most of the team plays

with two particular teams of the league in consecutive rounds, then it is rational to

Figure 6: Architecture of our proposed approach

46

assign closest distance real teams to those abstract teams as it would save travelling

distance of many teams of tournament. Major steps involved in this module are:

1. Make a list of pair-of-teams which appear most frequently in abstract

schedule.

2. Sort above list in ascending order

3. Make a list of size n, where each index of each element represents a

id real team and value represents id of its closest team.

4. Assign list 2 teams to list 1 teams according to algorithm given in

section 6.1.3

5.2.5 Stadium Assignment

We try to keep the road trip length (consecutive away matches) as long as possible

because the previous step ensured that consecutively appearing teams in schedule

have least possible distance. Thus in optimal case, we try to assign negative signs to

three consecutive integers in a row, then one positive sign, then again three negative

signs and so on. To ensure that we do not break the mTTP constraints while

assigning stadiums, we follow the algorithm given in section 5.2.5

5.2.6 Apply BBO on permutations

Pervious step gives us a full-fledged and feasible mTTP schedule. With step, we

begin our improvisation. We believe the abstract schedule is as good as the

permutation from which it was formed. So we apply metaheuristic BBO on

permutations to improve them which in return abstract schedules. This improvement

is seen when we get abstract schedules whose consecutive opponent matrix has non

uniform values throughout. A better real team assignment is possible for this kind of

abstract schedule.

47

5.2.7 Simulated annealing

We apply standard simulated annealing with modified parameters (decided

empirically) to the best solution of previous step. This helps us reaching to near

optimal solution in less time as we give SA a better direction in the very first stage.

The results confirmed the fact (which is yet to be proved mathematically) that a good

starting point indeed makes the searching process of simulated annealing better and

faster

The breakdown of the proposed system is presented in this chapter. All the inputs

and outputs of each small and independent part of the system are discussed. The

purpose of this chapter was to acquaintance the reader with the system as a black

box i.e. what the system does, not how it does. The next chapter contains algorithms

in details illustrating how the system actually works using the metaheuristics of our

choice. In that, we will discuss our proposed approach and describe how the

metaheuristics are adapted to suit our problem needs.

.

48

Chapter 6

Proposed Approach

In this chapter, we shall present a BBO based model for finding near optimal solution

for mTTP. For doing this, we have adapted BBO to suit our application.

In chapter 5, we gave overview of the detailed architecture of our proposed

system. Purpose of each module was described. In this chapter, we will give the

inner working details of each module.

A good initial point for simulated annealing can improve its performance

dramatically [8]. Thus we strive to have as good starting point as we can combining

fast constructive heuristic and BBO. The three step process of our proposed

approach is described with their algorithms. Following sections define each of those

steps in detail.

6.1 Fast constructive heuristic for good initial solutions.

This process has three steps. First we create single round robin (SRR) abstract

schedules using “polygon method” [34]. We can get the double round robin schedule

by simple appending the above found SRR schedule with same SRR schedule having

inverted signs. The abstract schedules created in first step are improved by assigning

real teams to abstract teams based on distance matrix and frequency of consecutive

matches played in abstract schedule. Stadiums are then assigned in step three by

assigning signs to integers in mTTP schedule matrix. In each step, emphasis is done

to minimize the cost. Following section describes above mentioned steps in detail.

49

6.1.1 Abstract Schedule Creation

To make an abstract schedule, we first generate an initial integer vector of n random

and unique positive integers from 1 to n, example of which is shown in Figure 10.

Figure 7: Rotation in polygon method for n=6

T\R 1 2 3 4 5

1 5 6 4 3 2

2 3 4 5 6 1

3 2 5 6 1 4

4 6 2 1 5 3

5 1 3 2 4 6

6 4 1 3 2 5

Figure 8: SRR schedule generated by polygon method

50

T\R 1 2 3 4 5 6 7 8 9 10

1 5 6 4 3 2 5 6 4 3 2

2 3 4 5 6 1 3 4 5 6 1

3 2 5 6 1 4 2 5 6 1 4

4 6 2 1 5 3 6 2 1 5 3

5 1 3 2 4 6 1 3 2 4 6

6 4 1 3 2 5 4 1 3 2 5

Figure 9: Abstract DRR obtained by appending SRR with itself

As we need to use BBO to refine schedules generated in this step, we have

to make a population of permutations. Thus we generate P number of random

permutations initially, where P defines the number of population members to be used

in BBO. Each permutation must be unique. The permutation from which SRR of

Figure 8 is obtained is given in Figure 10 below.

6 3 5 1 2 4

Figure 10: Example of permutation used for polygon method

We place integers from this permutation on the n-1 nodes of a regular

polygon consecutively as shown in Figure 7. The nth integer is placed outside of

polygon. In each round k from 1 to n -1, team at node l = 2,4….n/2 plays with the

team at node n+l-1. This way, each team plays with a team located symmetrically

opposite to it in the polygon. After a round is completed, each of the n-1 teams are

rotated clockwise to take immediate next location in polygon. Thus in n-1 rounds,

we get a SRR schedule shown in Figure 8. We duplicate this schedule to get a

mirrored DRR illustrated by Figure 9. Now we need to convert this abstract schedule

to a schedule whose entries reflects real team numbers.

51

6.1.2 Abstract to real team assignment

The mirrored DRR schedule generated in step 1 does not consider distances among

teams. We strive to turn these abstract schedules into good quality schedules by

assigning those pair of abstract teams to real teams who play consecutive matches

maximum times in abstract schedule.

Figure 11: Consecutive opponents matrix for n=16

Thus the overall travelling cost of tournament will decrease as maximum

consecutive matches will be played between teams having smaller distance between

their venues. To make this possible, we first need to generate a consecutive opponent

matrix. Value (i,j) of opponent matrix (example of which is shown in Figure 11) tells

the number of times abstract team Ti and Tj play against each other consecutively

during the whole tournament. For example, during whole tournament, some team

plays with team 4 and team 2 in consecutive rounds 25 times.We keep a list L1 of

size n(n-1)/2 containing values in upper half triangle of opponent matrix in

ascending order. A list L2 containing n(n-1)/2 unique pair of teams is used in which

52

each pair has a distance associated with it which represents home distance between

pair. This list is sorted in ascending order. Then according to following algorithm,

we assign abstract to the real team [8].

Let t1 be the next real team which is to be assigned to an abstract team and let t2 is

the team having closest distance from t1:

 If t2 is already assigned to an abstract team, then find the first pair (a, b) of

abstract teams such that a is assigned to t2 and b is not yet assigned to a real

team. In this case, assign the abstract team b to the real team t1.

 If t2 is not yet assigned to an abstract team, then find the first pair (a, b) of

abstract teams such that none of them is assigned to a real team. In this

situation, assign either the abstract team a to the real team t1 and the abstract

team b to the real team t2 or vice versa.

6.1.3 Stadium Assignment

In this round we assign the stadiums to matches i.e. from the two participating teams,

at which team’s venue match will be played. It basically means assigning signs to

integers in scheduled generated so far. Step 2 tried to minimize the travel distance

for a team if all its matches were played on road trip. A road trip means consecutive

number of matches that are played away. Home stand is vice versa. Thus we try to

schedule maximum matches on a road trip to keep the travel cost lower without

breaking the At-most feasibility constraint. We use following strategy to assign

stadiums to our schedule [8].

Stadiums are randomly assigned to the games of first round. As first round

contain n teams, n/2 negative signs are assigned randomly to n integers of first

column. From round 2 to n-2, we use the following strategy to assign a stadium to

53

the game between t1 and t2. We denote by ni the number of games that team i has

consecutively played in the previous rounds, either in a home stand or in a road trip.

Case I: nt2 > nt1

 if team t2 played its last game at home, then schedule the game to the stadium

of team t1;

 Otherwise, schedule the game to the stadium of team t2.

Case II: nt2 < nt1

 if team t1 played its last game at home, then schedule the game to the stadium

of team t2;

 Otherwise, schedule the game to the stadium of team t1.

Case III: nt2 < nt1

 if team t1 played its last game at home and team t2 away, then schedule the

game to the stadium of team t2;

 if team t2 played its last game at home and team t1 away, then schedule the

game to the stadium of team t1;

 Otherwise, schedule the game randomly to the stadiums of t1 or t2.

6.2 Adapted BBO for fast convergence to local optima

We apply BBO on the permutations that are used to generate abstract schedules. A

good permutation is able to generate an abstract schedule which when converted to

a real will have lesser travel cost. We treat each integer in the permutation as an SIV

and travel cost of schedule generated from this permutation as HSI. As a first step

54

of applying BBO, we sort the habitats from best to worst based on their HSIs. Then

we get the species count by using the Algorithm 1 given in Fig 6.

Based on species count, immigration rate λ and emigration rate μ are calculated

using (3) and (4).

𝜇𝑖 =
𝐸

𝑁
 (𝐸 ∗ 𝑘)

(3)

𝜆𝑖 = 𝐼 ∗ (1 −
𝑘

𝑁
)

(4)

Here E is maximum emigration rate, I is maximum immigration rate, k is number of

species on ith habitat and N is total number of species in the population [11]. In our

model, I and E are chosen to be 1.

 For each habitat, its SIV is modified with probability λ. Let’s say based on

λ, only one SIV is selected to be modified in ith habitat. Its position in ith habitat is k.

Then with probability μ we choose a habitat which will give its kth SIV to the ith

habitat. The emigrating habitat then copies its kth SIV at the kth position in ith habitat.

Figure 12: Migration operation in BBO-TTP

55

Rest of the SIVs of ith habitat are adjusted to meet the feasibility requirement of

permutation i.e. all integers must be unique and from 1 to n only. A good habitat

tends to be more resistant to change than a bad habitat. Figure 12 shows how

migration process occur in BBO for TTP

The explanation of migration operation depicted above (in Figure 12) is given below:

1. Using λ of habitat 2, its SIV5 is chosen to be modified.

2. Now using roulette wheel selection method on µ of all habitats, we try to find

the habitat which will emigrate its SIV5 to habitat 2. Here, it comes out to be

habitat 1.

3. So habitat 1 replaces SIV5 of habitat 2 with value 6. As two integers with

same value cannot exist in our permutation, SIV3 of habitat 2 is replaced with

older SIV5 of habitat 2 i.e. value 1. Habitat 1 is not modified in this process.

BBO for TTP is given in Figure 14.

6.2.1 Get-Species-Count Algorithm

The algorithm used for mapping cost of a solution to its species count is at the heart

of BBO. It is important because species count is used to find out HSI, immigration

rate and emigration rate. BBO relies on these three values for migration process

which helps in improving solution.

Algorithm 1: GetSpeciesCount(P)

1. totalCost = Calculate total cost by adding costs of all schedules in population.

2. currentCost = totalCost

3. P(1).speciesCount = currentCost

4. for i = 2 to sizeof(P)

5. currentCost = currentCost – P(i).cost

6. P(i).speciesCount = currentCost

7. end for

Figure 13: Algorithm to map cost to species count in BBO

56

Below we explain the get species count algorithm adapted for mirrored traveling

tournament problem. This algorithm assumes that population is already sorted from

best to worst.

Explanation of GetSpeciesCount Algorithm given in Figure 13

1. Find the total cost by summing traveling costs of all the schedules in

population.

2. We find the species count of a member by subtracting cumulative cost of

members better than it from the total cost calculated in step one. For this to

implement, we keep a variable current cost and initialize it with total cost.

This cost keeps on decreasing when we iterate through the population from

best to worst.

3. Give the total cost value as species count to 1st (and the best one) member of

population.

4. Iterate from 2nd member till end of members list.

5. Modify current cost by subtracting current schedule cost from variable

CurrentCost.

6. Assign current cost value as species count to member in consideration

7. Go to step 4. Repeat this until all members are explored.

6.2.2 BBO Algorithm adapted for TTP

In Figure 14, the adapted BBO for traveling tournament problem is illustrated. As in

our proposed approach, BBO and fast constructive heuristic (FCH) works in

collaboration, schedule generation, wherever needed, is done by FCH in this

algorithm. All data structures with their purpose are described in comments and each

step of the algorithm is explained point wise below Figure 14.

57

Algorithm 2: BBO-TTP

1. Generate the random population, P, of habitats

2. Calculate HSI of each habitat in P

3. for i = 1 to MaxGen

4. Sort the population from best to worst

5. For each habitat, map HSI to species count.

6. Calculate immigration rate λ and emigration rate μ for each habitat

7. ReplaceableIndices = [] % Stack containing indices of current habitat to

 % be replaced by emigrating habitat

8. PreviousHabitat = P(i) %save habitat before modifying it

9. for j = 1 to length of Population member

10. If ith SIV of current habitat, CH, is ready for immigration according to member’s λ

11. Push j to ReplaceableIndices

12. end for
13. Choose the emigrating habitat, EH, from population using µ

14. while stack ReplaceableIndices is not empty

15. j = pop(ReplaceableIndices)

16. Migrate jth SIV of EH to CH

17. end while
18. Try to get new schedule using modified CH

19. If it is not feasible to generate schedule using modified CH or if cost of CH schedule is

more than PreviousHabitat’s cost

20. Replace newly formed habitat with PreviousHabitat

21. end if

22. end for

Figure 14: BBO-TTP algorithm

Abstract working of BBO in solving TTP is shown in Figure 15. Below we give step

wise explanation of BBO-TTP algorithm

1. Use fast constructive heuristic (FCH) proposed by [8] to develop initial

schedules. We have to call FCH p times for p random permutations where p

is the number of members in population that we intend to have.

2. Calculate the cost of each habitat. It corresponds to the traveling cost of

schedules generated in step 1.

3. Iterate steps 3rd to 22nd MaxGen times where MaxGen is the number of

iterations (generations) for which we will run BBO

4. Sort the population of schedules based on their traveling cost

58

5. Call GetSpeciesCount algorithm for each of the current population member

(current habitat) CH to map cost to species count.

6. Calculate immigration rate and emigration rate of each member based on

species count. We use equations (3) and (4) for it.

7. Keep a stack named ReplacableIndices that would contain the indices of

SIVs chosen to be replaced my immigration from current habitat.

8. Save data of current population member before modifying it.

9. Scan all SIV’s of current population member

10. If according to its λ, current SIV is ready to be replaced then

11. Push its index in to the ReplacableIndices stack

12. Go to step 10 until all SIV’s of current population are scanned.

13. Using roulette wheel selection method based on their μ choose the

emigrating habitat (EH) among the population which will give its SIV’s to

current population member.

14. Iterate through the stack

15. Pop value at top of the stack in to a variable ‘j’

16. Migrate jth SIV of EH to CH

17. Go to step 14 until stack gets empty

18. Try to generate new schedule using FCH from permutation modified by BBO

59

19. If it is not feasible to generate schedule using modified permutation or if cost

of new schedule if more than PreviousHabitat’s schedule, then

20. .Replace modified member with PreviousHabitat

21. Close step 19th if logic

22. Go to step 3rd.

Figure 15: Flow chart showing working of BBO-TTP

BBO works on the permutations used to generate abstract schedules. It tries

to improve abstract schedules by migrating SIVs of good habitats to habitats having

low HSI. This process is carried out for each habitat of population in each generation

until the generation count reaches to MaxGen. After each generation, some habitats

60

improve so their HSI are recalculated before applying BBO in next generation.

Algorithm given in Figure 13 is used to get species count from cost of the schedule.

6.3 Using Simulated Annealing to refine solution

Simulated annealing is a local search heuristic which has been applied on TTP earlier

and achieved good results [17], [22].

We use following three simple neighborhood structures on the best solution of BBO.

A neighborhood of a TTP schedule S is a schedule which can be obtained by

applying any of the three types of simple moves defined by Anagnostopoulos [17]:

1. SwapHomes(S, Ti, Tj): Say if team Ti plays home with team Tj in round k, and at

Tj’s home in round l, then by applying this move, we will get a schedule in which

Ti plays home with Tj in round l and at Tj’s home in round k. For this move, we

need to modify four values in S. Example is shown in Figure 16.

First Half Second Half

T\R 1 2 3 4 5 6 7 8 9 10

1 -5 -6 3 -2 4 5 6 -3 2 -4

2 3 5 -4 1 6 -3 -5 4 -1 -6

3 -2 4 -1 6 5 2 -4 1 -6 -5

4 6 -3 2 5 -1 -6 3 -2 -5 1

5 1 -2 6 -4 -3 -1 2 -6 4 3

6 -4 1 -5 -3 -2 4 -1 5 3 2

 First Half Second Half

T\R 1 2 3 4 5 6 7 8 9 10

1 -5 -6 3 -2 4 5 6 -3 2 -4

2 3 -5 -4 1 6 -3 5 4 -1 -6

3 -2 4 -1 6 5 2 -4 1 -6 -5

4 6 -3 2 5 -1 -6 3 -2 -5 1

5 1 2 6 -4 -3 -1 -2 -6 4 3

6 -4 1 -5 -3 -2 4 -1 5 3 2

Figure 16: SwapHomes(S,2,5). Before move (upper), After move(lower)

2. SwapRounds(S, rk, rl): This move simply swap teams of rounds rk with teams of

round rl in S. It modifies 2*n values in S. Example is shown in Figure 17

61

 First Half Second Half

T\R 1 2 3 4 5 6 7 8 9 10

1 -5 -6 3 -2 4 5 6 -3 2 -4

2 3 5 -4 1 6 -3 -5 4 -1 -6

3 -2 4 -1 6 5 2 -4 1 -6 -5

4 6 -3 2 5 -1 -6 3 -2 -5 1

5 1 -2 6 -4 -3 -1 2 -6 4 3

6 -4 1 -5 -3 -2 4 -1 5 3 2

 First Half Second Half

T\R 1 2 3 4 5 6 7 8 9 10

1 -5 -6 4 -2 3 5 6 -4 2 -3

2 3 -5 6 1 -4 -3 5 -6 -1 4

3 -2 4 5 6 -1 2 -4 -5 -6 1

4 6 -3 -1 5 2 -6 3 1 -5 -2

5 1 2 -3 -4 6 -1 -2 3 4 -6

6 -4 1 -2 -3 -5 4 -1 2 3 5

Figure 17: SwapRounds(S, 3, 5). Before move (upper), after move (lower)

3. SwapTeams(S, Ti, Tj): The schedules of Teams Ti and Tj are swapped using this

move expect for two rounds in which they play with each other. This move

modifies 2*(2n-4) values in S. Example is shown in Figure 18.

Three moves given above always produce a valid double round schedule.

Although At-most and No-repeat constraints may get violated by these moves.

Schedules produces by violation of these constraints are called infeasible schedules

although they are still valid DRR schedules. SA balances time between exploration

of infeasible and feasible regions using reheats and strategic oscillations.

 First Half Second Half

T\R 1 2 3 4 5 6 7 8 9 10

1 -5 -6 3 -2 4 5 6 -3 2 -4

2 3 5 -4 1 6 -3 -5 4 -1 -6

3 -2 4 -1 6 5 2 -4 1 -6 -5

4 6 -3 2 5 -1 -6 3 -2 -5 1

5 1 -2 6 -4 -3 -1 2 -6 4 3

6 -4 1 -5 -3 -2 4 -1 5 3 2

62

 First Half Second Half

T\R 1 2 3 4 5 6 7 8 9 10

T1 6 -3 2 5 4 -6 3 -2 -5 -4

T2 3 5 -1 4 6 -3 -5 1 -4 -6

T3 -2 1 -4 6 5 2 -1 4 -6 -5

T4 -5 -6 3 -2 -1 5 6 -3 2 1

T5 4 -2 6 -1 -3 -4 2 -6 1 3

T6 -1 4 -5 -3 -2 1 -4 5 3 2

Figure 18: SwapTeams(S, 1, 4). Before move (upper), after move (lower)

 Number of violations play a role in determining cost of schedule S. By

considering violations in cost function, time spent in infeasible and feasible region

can be balanced.

𝐶(𝑆) = {

𝑐𝑜𝑠𝑡(𝑆) 𝑖𝑓 𝑆 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒,

√𝑐𝑜𝑠𝑡(𝑆)2 + [𝑤. 𝑓(𝑛𝑏𝑣(𝑆))]2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5)

Here cost(S) is the travel cost of schedule, w is weight parameter nbv(S) are number

of At-most and No-repeat violation is S and f is a sub-linear function which is chosen

to be:

𝑓(𝑥) = 1 + (√𝑥 ln 𝑥) (6)

 Local optima which might occur at very low temperature is avoided using reheats

and strategic oscillations. Simulated annealing algorithm for TTP is given in Figure

19.

63

Figure 19: Simulated Annealing algorithm for mTTP

64

Simulated annealing procedure returns our solution, i.e. best mTTP schedule

that our hybrid approach could find. The majority of time our approach take is

consumed by SA. But as the starting point of SA was very good, we avoided a large

part of not-so-useful search space from the huge search space that SA needs to

explore. This helped in finding better solution in smaller time. We will now give the

results our approach took on standard benchmarks in next chapter.

65

Chapter 7

Experiments and Results

This chapter contains the discussion of the environment setup used to find results for

our mirrored traveling tournament problem. We describe the input data used by our

algorithm, the data it produce as output. We will compare our results with the current

best known heuristics and analyse our work.

The proposed hybrid algorithm is applied on National League (NL)

instances and real world instance of Brazilian soccer league (BRA24) available on

[10]. The NLn instances are based on Major League Baseball (MLB) are were

derived by Easton et al. [1]. BRA24 instance is real life data of Brazilian soccer

league gathered by Urrutia et al. [8]. These are the standard datasets for TTP. The

best results of all time in chronological order is given on [10]. Anyone can challenge

the best solutions with his/her by mailing his/her schedule to the author of TTP

website [10].

7.1 Experimental setup used in this work

For each instance 50 generations of BBO each with 100 population members are

used. We used Intel Pentium IV 3.0 Giga hertz machine with 1 GB of RAM.

Although better machines are available today, we chose these parameters to set fair

comparison basis for our results with results in literature. Simulated annealing

parameters for solving TTP and are given in Table 2.

.

66

Table 2:

Simulated annealing parameters for mTTP

7.2 Data set used for mTTP schedules generation

In this section we give the distance matrices of National League (NLn) instance

which were used to generate mTTP schedules. These matrices represents air-to-air

distance from the center of cities which are part of the Major League Baseball

(MLB).

Table 3:

Distance matrix of 8 team instance of National League

 1 2 3 4 5 6 7 8

1 0 745 665 929 605 521 370 587

2 745 0 80 337 1090 315 567 712

3 665 80 0 380 1020 257 501 664

4 929 337 380 0 1380 408 622 646

5 605 1090 1020 1380 0 1010 957 1190

6 521 315 257 408 1010 0 253 410

7 370 567 501 622 957 253 0 250

8 587 712 664 646 1190 410 250 0

67

Table 4:

Distance matrix of 10 team instance of National League

 1 2 3 4 5 6 7 8 9 10

1 0 745 665 929 605 521 370 587 467 670

2 745 0 80 337 1090 315 567 712 871 741

3 665 80 0 380 1020 257 501 664 808 697

4 929 337 380 0 1380 408 622 646 878 732

5 605 1090 1020 1380 0 1010 957 1190 1060 1270

6 521 315 257 408 1010 0 253 410 557 451

7 370 567 501 622 957 253 0 250 311 325

8 587 712 664 646 1190 410 250 0 260 86

9 467 871 808 878 1060 557 311 260 0 328

10 670 741 697 732 1270 451 325 86 328 0

Table 5:

Distance matrix of 12 team instance of National League

 1 2 3 4 5 6 7 8 9 10 11 12

1 0 745 665 929 605 521 370 587 467 670 700 1210

2 745 0 80 337 1090 315 567 712 871 741 1420 1630

3 665 80 0 380 1020 257 501 664 808 697 1340 1570

4 929 337 380 0 1380 408 622 646 878 732 1520 1530

5 605 1090 1020 1380 0 1010 957 1190 1060 1270 966 1720

6 521 315 257 408 1010 0 253 410 557 451 1140 1320

7 370 567 501 622 957 253 0 250 311 325 897 1090

8 587 712 664 646 1190 410 250 0 260 86 939 916

9 467 871 808 878 1060 557 311 260 0 328 679 794

10 670 741 697 732 1270 451 325 86 328 0 1005 905

11 700 1420 1340 1520 966 1140 897 939 679 1005 0 878

12 1210 1630 1570 1530 1720 1320 1090 916 794 905 878 0

68

Table 6:

Distance matrix of 14 team instance of National League

 1 2 3 4 5 6 7 8 9 10 11 12 12 14

1 0 745 665 929 605 521 370 587 467 670 700 1210 2130 1890

2 745 0 80 337 1090 315 567 712 871 741 1420 1630 2560 2430

3 665 80 0 380 1020 257 501 664 808 697 1340 1570 2520 2370

4 929 337 380 0 1380 408 622 646 878 732 1520 1530 2430 2360

5 605 1090 1020 1380 0 1010 957 1190 1060 1270 966 1720 2590 2270

6 521 315 257 408 1010 0 253 410 557 451 1140 1320 2260 2110

7 370 567 501 622 957 253 0 250 311 325 897 1090 2040 1870

8 587 712 664 646 1190 410 250 0 260 86 939 916 1850 1730

9 467 871 808 878 1060 557 311 260 0 328 679 794 1740 1560

10 670 741 697 732 1270 451 325 86 328 0 1005 905 1846 1731

11 700 1420 1340 1520 966 1140 897 939 679 1005 0 878 1640 1300

12 1210 1630 1570 1530 1720 1320 1090 916 794 905 878 0 947 832

13 2130 2560 2520 2430 2590 2260 2040 1850 1740 1846 1640 947 0 458

14 1890 2430 2370 2360 2270 2110 1870 1730 1560 1731 1300 832 458 0

7.3 Results

Comparison of results obtained by our hybrid approach are given in Table 10.

The values in columns (2 to 4) represent the traveling cost of best mTTP schedule

obtained. Results are quite encouraging because it took significantly less time to

reach to almost equal cost solutions from other methods. Our results have been

verified from validator available official TTP website. None of the generated mTTP

schedules show violation of any of the TTP or mTTP constrains.

69

Table 7:

Distance matrix of 16 team instance of National League

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 745 665 929 605 521 370 587 467 670 700 1210 2130 1890 1930 1592

2 745 0 80 337 1090 315 567 712 871 741 1420 1630 2560 2430 2440 2144

3 665 80 0 380 1020 257 501 664 808 697 1340 1570 2520 2370 2390 2082

4 929 337 380 0 1380 408 622 646 878 732 1520 1530 2430 2360 2360 2194

5 605 1090 1020 1380 0 1010 957 1190 1060 1270 966 1720 2590 2270 2330 1982

6 521 315 257 408 1010 0 253 410 557 451 1140 1320 2260 2110 2130 1829

7 370 567 501 622 957 253 0 250 311 325 897 1090 2040 1870 1890 1580

8 587 712 664 646 1190 410 250 0 260 86 939 916 1850 1730 1740 1453

9 467 871 808 878 1060 557 311 260 0 328 679 794 1740 1560 1590 1272

10 670 741 697 732 1270 451 325 86 328 0 1005 905 1846 1731 1784 1458

11 700 1420 1340 1520 966 1140 897 939 679 1005 0 878 1640 1300 1370 1016

12 1210 1630 1570 1530 1720 1320 1090 916 794 905 878 0 947 832 830 586

13 2130 2560 2520 2430 2590 2260 2040 1850 1740 1846 1640 947 0 458 347 654

14 1890 2430 2370 2360 2270 2110 1870 1730 1560 1731 1300 832 458 0 112 299

15 1930 2440 2390 2360 2330 2130 1890 1740 1590 1784 1370 830 347 112 0 358

16 1592 2144 2082 2194 1982 1829 1580 1453 1272 1458 1016 586 654 299 358 0

The mTTP schedules for NL12 and above instances have more than 22 columns and

are difficult to present in the limited space available here. Below we compare our

results with the best results and the results of popular metaheuristic Genetic

Algorithm hybridized with simulated annealing. Results are quite competitive with

best results in literature with cost margin barely crossing 5 percent. The result in

bold represents the second best results up to the knowledge in literature [10]. Column

T (sec) represents the time taken by BBO-SA to produce results. Mostly the current

70

best results are obtained in [22]. The maximum gap in schedule’s cost between theirs

and ours approach is just 5.4 %. The longest time our approach took was 10508

seconds for largest NLn instance while in [22] longest computation time reached

70898.90 seconds. Our hybrid approach produced competitive results in much lesser

time. Fast convergence of solution using BBO helped in reaching to better solutions

using simulate annealing in less time.

Table 8:

mTTP schedule for NL8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 8 7 -5 3 2 4 -6 -8 -7 5 -3 -2 -4 6

2 4 8 6 -7 -1 -5 3 -4 -8 -6 7 1 5 -3

3 -6 4 -7 -1 -5 8 -2 6 -4 7 1 5 -8 2

4 -2 -3 8 6 -7 -1 -5 2 3 -8 -6 7 1 5

5 7 6 1 -8 3 2 4 -7 -6 -1 8 -3 -2 -4

6 3 -5 -2 -4 8 7 1 -3 5 2 4 -8 -7 -1

7 -5 -1 3 2 4 -6 8 5 1 -3 -2 -4 6 -8

8 -1 -2 -4 5 -6 -3 -7 1 2 4 -5 6 3 7

Cost of the schedule given above in Table 8 is 42802.

The mTTP schedules for NL12 and above instances have more than 22 columns and

are difficult to present in the limited space available here. Below we compare our

results with the best results and the results of popular metaheuristic Genetic

Algorithm hybridized with simulated annealing. Results are quite competitive with

best results in literature with cost margin barely crossing 5 percent. The result in

bold represents the second best results up to the knowledge in literature [10]. Column

T (sec) represents the time taken by BBO-SA to produce results. Mostly the current

best results are obtained in [22]. The maximum gap in schedule’s cost between theirs

and ours approach is just 5.4 %. The longest time our approach took was 10508

seconds for largest NLn instance while in [22] longest computation time reached

71

70898.90 seconds. Our hybrid approach produced competitive results in much lesser

time. Fast convergence of solution using BBO helped in reaching to better solutions

using simulate annealing in less time.

Table 9:

mTTP schedules of NL10

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 -9 -8 10 4 2 -3 -7 -6 5 9 8 -10 -4 -2 3 7 6 -5

2 3 -4 -6 7 -1 -5 -9 8 10 -3 4 6 -7 1 5 9 -8 -10

3 -2 6 4 -5 7 1 -10 -9 8 2 -6 -4 5 -7 -1 10 9 -8

4 6 2 -3 -1 -5 7 8 10 -9 -6 -2 3 1 5 -7 -8 -10 9

5 -10 -9 -8 3 4 2 -6 -7 -1 10 9 8 -3 -4 -2 6 7 1

6 -4 -3 2 -8 -9 -10 5 1 -7 4 3 -2 8 9 10 -5 -1 7

7 8 10 9 -2 -3 -4 1 5 6 -8 -10 -9 2 3 4 -1 -5 -6

8 -7 1 5 6 -10 9 -4 -2 -3 7 -1 -5 -6 10 -9 4 2 3

9 1 5 -7 10 6 -8 2 3 4 -1 -5 7 -10 -6 8 -2 -3 -4

10 5 -7 -1 -9 8 6 3 -4 -2 -5 7 1 9 -8 -6 -3 4 2

Cost of schedule given above in Table 9 is 6663

Table 10: Comparison of Results

Instances
Best

Known
GA-SA BBO-SA T (sec) Gap (%)

NL8 41928 43112 42805 1435 2.09

NL10 63832 66264 66331 2425 3.76

NL12 119608 120981 121070 8665 1.20

NL14 199363 208086 210132 5609 5.40

NL16 278305 290188 291394 10503 4.70

BRA24 500756 511256 513543 42869 2.55

72

Chapter 8

Conclusion

In this work we tried to solve benchmark instances of mTTP while keeping the

computation time low. Often in real world situations, we need a number of

alternative schedules quickly so as to give lucrative time slots to popular teams. An

approach taking time in number of days would not be feasible to use in these

situations.

BBO takes very less time to reach to local optima. Although BBO is itself a global

optimization technique, but because of its fundamental philosophy of sharing

features among solutions, it is very difficult to apply it directly to mTTP schedules

without breaking DRR constraint. Nevertheless, its application helped in improving

the fast constructive heuristic schedules to a great extent. With just simple

neighborhood moves of SA, we could get these competitive results. We could get

the result of every instance tested which is not so easy for all metaheuristics. Our

approach provided a strong alternative as a general sports scheduling technique.

With more complex moves, a much larger neighborhood can be explored that might

help in fine tuning the results.

Although our hybrid approach looks promising, but it did not performed well on

large instances. When the search space is large, a huge penalty is paid for every

wrong decision in searching. Our limited number of neighbourhood exploration

moves restricted us to explore several good solutions. Also we did not consider

mTTP as a soft constraint but a hard constraint in our approach. If we allow to break

it during search process, we might reach at better solutions. A more complicated

neighbourhood structure and a more liberal approach towards constrains is needed

73

to explore the best spots in search space. Although it sounds simple, to apply them

with currently available metaheuristic and sport scheduling techniques is rather

difficult.

To be used as a real life sports scheduling technique, more constraints can be added

to our technique. We leave it for future work.

74

References

[1] K. Easton, G. Nemhauser and M. Trick, "The traveling tournament problem:

Description and benchmarks," in Principles and Practice of Constraint

Programming, Lecture Noes in Computer Science, vol. 2239, T. Walsh, Ed.,

Springer, 2001, pp. 580-584.

[2] F. D. Croce and D. Oliveri, "Scheduling the Italian football league: an ILP-

based approach," Computers and Operations Research, vol. 33, no. 7, pp.

1963-1974, July 2006.

[3] M. Wright, "Scheduling fixtures for basketball New Zealand," Computers &

Operations Research , vol. 33, p. 1875–93, 2006.

[4] M. Wright, "Timetabling county cricket fixtures using a form of tabu search,"

Journal of the Operational Research, vol. 45, no. 7, pp. 758-770, 1994.

[5] J. Dinitz and D. Stinson, "On assigning referees to tournament schedules,"

Bulletin of the Institute of Combinatorics and its Applications, vol. 44, pp. 22-

38, 2005.

[6] A. Duarte and C. Ribeiro, "Referee assignment in sports leagues: approximate

and exact multiobjective approaches," in 19th international conference on

multiple criteria decision making, Aukland, 2008.

[7] G. Kendall, S. Knust, C. Riberio and S. Uruttia, "Scheduling in sports: An

annotated bibliography," Computers and Operations Research, vol. 37, pp. 1-

19, 2010.

75

[8] C. Ribeiro and S. Urrutia, "Heuristics for the Mirrored Traveling Tournament

Problem," European Journal of Operational Research, vol. 179, pp. 775-787,

2007.

[9] V. A. Weert and J. Schreuder, "Construction of basic match schedules for

sports competitions by using graph theory," in The 2nd international

conference on the practice and theory of automated timetabling, Lecture notes

in computer science, vol. 1408, E. Burke and M. Carter, Eds., Berlin, Springer,

1998, pp. 201-210.

[10] M. Trick, "Challenge Traveling Tournament Instances," [Online]. Available:

http://mat.gsia.cmu.edu/TOURN/. [Accessed 10 May 2013].

[11] C. Riberio and S. Urrutia, "Maximizing breaks and bounding solutions to the

mirrored traveling tournament problem," Discrete Applied Mathematics, vol.

154, pp. 1932-1948, 2006.

[12] K. Easton, G. Nemhauser and M. Trick, "Solving the Travelling Tournament

Problem: A Combined Integer Programming and Constraint Programming

Approach," in Practice and Theory of Automated Timetabling IV, Lecture

Noes in Computer Science, vol. 2740, E. Burke and P. Causmaecker, Eds.,

Springer, 2003, pp. 100-109.

[13] T. Benoist, F. Laburthe and B. Rottembourg, "Lagrange relaxation and

constraint programming collaborative schemes for traveling tournament

problems," in International Workshop on Integration of AI and OR

Techniques, Ashford, Kent, 2001.

76

[14] M. Hongwei, "Biogeography based optimization for Traveling Salesman

Problem," in International conference of natural computation, Yantai,

Shandong, 2010.

[15] y. Song, M. Liu and Z. Wang, "Biogeography-Based Optimization for the

Traveling Salesman Problems," in International Joint Conference on on

Computational Science and Optimization (CSO), Huangshan, Anhui, China,

2010.

[16] R. Melo, S. Urrutia and C. Ribeiro, "The traveling tournament problem with

predefined venues," Journal of Scheduling, vol. 12, no. 6, pp. 607-622, 2009.

[17] A. Anagnostopoulos, L. Michel, P. V. Hentenryck and Y. Vergados, "A

simulated annealing approach to the traveling tournament problem," Journal

of Scheduling, vol. 9, no. 2, pp. 177-193, 2006.

[18] F. Costa, S. Urrutia and C. Riberio, "An ILS heuristic for the traveling

tournament problem with fixed venues," in Proceedings of the 7th

International conference on the practice and theory of automatic timetabling,

Montreal, 2008.

[19] S. Urrutia, C. Ribeiro and R. Melo, "A new lower bounds to the traveling

tournament problem," in IEEE symposium on computational intelligence in

scheduling, Honolulu, 2007.

[20] L. DiGaspero and A. Schaerf, "A composite-nighbourhood tabu search

approach to the traveling tournament problem," Journal of Heuristics, vol. 13,

pp. 189-207, 2007.

77

[21] A. Lim, B. Rodrigues and X. Zhang, "A simulated annealing and hill climbling

algorithm for the traveling tournament problem," European Journal of

Operations Research, vol. 174, pp. 1459-1478, 2006.

[22] P. V. Hentenryck and Y. Vergados, "Traveling tournament scheduling: A

systematic evaluation of simulated annealing," in Integration of AI and OR

techniques in constraint programming for combinatorial optimization

problems, Lecture Notes in computer science, vol. 3990, Berlin, Springer,

2006, pp. 228-243.

[23] K. Cheung, "Solving mirrored traveling tournament problem benchmark

instances with eight teams," DiscreteOptimization, vol. 5, pp. 138-143, 2008.

[24] F. Biajoli and L. Lorena, "Mirrored Traveling Tournament Problem: An

Evolutionary Approach," in Advances in Artificial Intelligence - IBERAMIA-

SBIA 2006, vol. 4140, Springer, 208-217, pp. 208-217.

[25] A. Tajbakhshl, K. Eshghi and A. Shamsi, "A hybrid PSO-SA algorithm for the

Traveling Tournament Problem," in International conference on Computers &

Industrial Engineering, Troyes, 2009.

[26] P.C. Chen , G. Kendall and G. Berghe, "An Ant Based Hyper-heuristic for the

Travelling Tournament Problem," in IEEE Symposium on Computational

Intelligence in Scheduling, Honolulu, HI, 2007.

[27] D. Simon, "Biogeography-Based Optimization," IEEE Transactions on

Evolutionary Computation, vol. 12, no. 6, pp. 702 - 713, 2008.

[28] M. Haping, F. Minrui, D. Zhiguo and J. Jing, "Biogeography-based

optimization with ensemble of migration models for global numerical

78

optimization," in IEEE Congress on Evolutionary Computation (CEC),

Brisbane, QLD, 2012.

[29] Y. Wang and C. Zhihua, "A novel hybrid biogeography-based optimization

with differential mutation," in International conference on Electronic and

Mechanical Engineering and Information Technology (EMEIT), Harbin,

Heilongjiang, China, 2011.

[30] D. Simon and D. Daweiu, "Oppositional biogeography-based optimization,"

in IEEE International Conference on Systems, Man and Cybernetics, San

Antonio, TX, 2009.

[31] D. Simon, M. Ergezer and D. Dawei, "Population distributions in

biogeography-based optimization algorithms with elitism," in IEEE

International Conference on Systems, Man and Cybernetics, San Antonio, TX,

2009.

[32] S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by Simulated

Annealing," American Association for the Advancement of Science, vol. 220,

no. 4598, pp. 671-680, 1983.

[33] G. Ridgway, "Matlab Website," Mathworks, [Online]. Available:

http://www.mathworks.com/matlabcentral/fileexchange/27321-unique-

random-permutations. [Accessed 1 May 2013].

[34] J. Dinitz, E. Lamken and W. Wallis, "Scheduling a tournament," in Handbook

of Combinatorial Designs, CRC Press, 1995, pp. 578-584.

79

[35] R. Poli, "Analysis of the Publications on the Applications of Particle Swarm

Optimization," Journal of Artificial Evolution and Applications, pp. 1-10,

2008.

[36] D. Palupi Rini, S. M. Shamsuddin and S. S. Yuhaniz, "Particle Swarm

Optimization: Technique, System and Challenges," International Journal of

Computer Applications, vol. 14, no. 1, pp. 19-27, 2011.

[37] D. Simon, "Biogeography-Based Optimization," April 2014. [Online].

Available: http://embeddedlab.csuohio.edu/BBO/.

