
Development and Validation of Test Case

Prioritization Technique using

Genetic Algorithms

A Dissertation submitted in the partial fulfillment for the award of

MASTER OF TECHNOLOGY

IN

SOFTWARE ENGINEERING

by

Divya Tiwari

Roll no. 2k11/SWE/06

Under the Esteemed Guidance of

Dr. Ruchika Malhotra

Department of Computer Engineering

Delhi Technological University

New Delhi

2012-2013

DECLARATION

I hereby declare that the thesis entitled “Development and Validation of Test Case

Prioritization Technique using Genetic Algorithms” which is being submitted to the Delhi

Technological University, in partial fulfillment of the requirements for the award of degree of

Master of Technology in Software Engineering is an authentic work carried out by me. The

material contained in this thesis has not been submitted to any university or institution for the

award of any degree.

Divya Tiwari

Department of Computer Engineering

Delhi Technological University,

Delhi.

CERTIFICATE

DELHI TECHNOLOGICAL UNIVERSITY

(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI-110042

Date:

This is to certify that the thesis entitled Development and Validation of Test Case

Prioritization Technique using Genetic Algorithms” submitted by Divya Tiwari (Roll

Number: 2K11/SWE/06), in partial fulfillment of the requirements for the award of degree of

Master of Technology in Software Engineering, is an authentic work carried out by her under my

guidance. The content embodied in this thesis has not been submitted by her earlier to any

institution or organization for any degree or diploma to the best of my knowledge and belief.

Project Guide

Dr. Ruchika Malhotra

Assistant Professor

Department of Computer Engineering

Delhi Technological University, Delhi-110042

ACKNOWLEDGEMENT

I take this opportunity to express my deepest gratitude and appreciation to all those who have

helped me directly or indirectly towards the successful completion of this thesis.

Foremost, I would like to express my sincere gratitude to my guide Dr. Ruchika Malhotra,

Assistant Professor, Department of Computer Engineering, Delhi Technological University,

Delhi whose benevolent guidance, constant support, encouragement and valuable suggestions

throughout the course of my work helped me successfully complete this thesis. Without her

continuous support and interest, this thesis would not have been the same as presented here.

Besides my guide, I would like to thank the entire teaching and non-teaching staff in the

Department of Computer Science, DTU for all their help during my course of work.

DIVYA TIWARI

PUBLICATIONS AND COMMUNICATIONS

Paper published in International Journal

Malhotra, R., Tiwari, D., “Development of a Test Case Prioritization Framework using Genetic

Algorithm”, ACM SIGSOFT Software Engineering Notes, vol. 38, no. 3.

Paper communicated in International Journal

Malhotra, R., Tiwari, D., “An Empirical Study of Genetic Algorithm Based Test Case

Prioritization Framework”, Journal of Systems and Software, communicated in May 2013.

Table of Contents

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. REGRESSION TESTING .. 2

1.2. TEST CASE PRIORITIZATION ... 5

1.3. MOTIVATION OF THE WORK .. 7

1.4. GOALS OF THE THESIS ... 11

1.5. ORGANIZATION OF THESIS .. 12

CHAPTER 2 ...15

LITERATURE SURVEY ..15

CHAPTER 3 ...21

GENETIC ALGORITHM ..21

3.1. INITIALIZATION ... 23

3.2. EVALUATION ... 24

3.3. SELECTION ... 25

3.4. CROSSOVER .. 26

3.5. MUTATION .. 27

CHAPTER 4 ...29

PROPOSED FRAMEWORK FOR TEST CASE PRIORITIZATION29

4.1. THE FRAMEWORK ... 29

4.2. MODIFIED APBC METRIC (APBCm) .. 30

4.3. ADDITIONAL MODIFIED LINES OF CODE COVERAGE (AMLOC) GRAPH 32

4.4. GENETIC ALGORITHM BASED TOOL ... 33

4.5. ILLUSTRATION ... 38

4.5. VALIDATION OF RESULTS ... 44

4.6. DRAWBACKS OF THE FRAMEWORK ... 46

CHAPTER 5 ...48

EMPIRICAL STUDY ..48

5.1. RESEARCH QUESTIONS .. 48

5.2. EFFICACY MEASURE ... 49

5.3. TEST CASE PRIORITIZATION TECHNIQUE .. 49

5.3.1. MODIFIED FRAMEWORK FOR TEST CASE PRIORITIZATION: OBJECT OF

STUDY .. 49

5.3.2. MODIFIED APBC METRIC (APBCm) ... 51

5.3.3. GENETIC ALGORITHM BASED TOOL .. 52

CHAPTER 6 ...54

DATA COLLECTION AND ..54

EXPERIMENT DESIGN ..54

6.1. DATA COLLECTION ... 54

6.1.1. SUBJECT PROGRAMS ... 55

6.1.2. TEST SUITE .. 57

6.1.3. FAULTS .. 58

6.2. EXPERIMENT DESIGN ... 60

CHAPTER 7 ...62

RESULT ANALYSIS ..62

7.1. (RQ1) Is APBCm a better comparator metric than APBC? .. 62

7.2. (RQ2) Can the proposed framework improve the rate of fault detection? 64

7.3. DISCUSSIONS .. 66

CHAPTER 8 ...68

CONCLUSIONS ..68

REFERENCES ...72

List of Figures

Figure 1.1. Process of Regression Testing .. 2

Figure 3.1. Genetic Algorithm Cycle .. 22

Figure 3.2 Roulette Wheel Selection Strategy .. 25

Figure 4.1 Framework For Test Case Prioritization [36] .. 30

Figure 4.2 Roulette Wheel for Sample Data ... 36

Figure 4.3 AMLOC Graph for T1(Ranked as most fit if APBC is

 Used for comparison of candidates in GA).. 37

Figure 4.4 Graph for T3(Ranked as most fit if APBCm is

 Used for comparison of candidates in GA).. 37

Figure 4.5 Source Code of Triangle Program [34] ... 39

Figure 4.6 Modified Triangle.c code .. 42

Figure 4.7 Less AMLOC values per test case in TS1 produced in Experiment 1 44

Figure 4.8 Greater convexity(improved coverage rate) graph using APBCm 45

Figure 5.1. Modified Framework for Test Case Prioritization ... 50

Figure 6.1. Experiment Design or Process.. 60

Figure 7.1. Results of JTopas Project ... 63

Figure 7.2. Results of Xml-Security Project ... 63

Figure 7.3. Increase in Fault Deatection Rate for Jtopas Project. ... 65

Figure 7.4. Increase in Fault Detection Rate for Xml-Security Project. 65

List of Tables

Table 4.1 Block Coverage Matrix ... 32

Table 4.2 Number Of Modified Lines Of Code Covered By Blocks ... 32

Table 4.3 Comparisons of Different Test Case

 Sequences (Candidates in the TCP problem).. 35

Table 4.4 Cumulative, Normalized APBCm Values for Sample Data .. 35

Table 4.5 Candidates Selected during some iteration (for sample data) 36

Table 4.6 Original Set of Test Cases for Triangle program [34] .. 38

Table 4.7 Lines of Code Comprising individual Blocks ... 40

Table 4.8 Block coverage ... 41

Table 4.9 Weight of Blocks .. 43

Table 4.10 Results of Experiment 1 .. 46

Table 4.11 Results of Experiment 2 .. 46

Table 6.1. Subject Programs ... 56

Table 6.2.Weight Matrix for JTopas Project .. 56

Table 6.3. Class Coverage Matrix for JTopas Project. ... 57

Table 6.4. Fault Matrix of JTopas ... 59

Table 6.5. Fault Matrix of Xml-Security .. 60

Table 7.1. Results of JTopas project ... 63

Table 7.2. Results of Xml-Security Project .. 64

ABSTRACT

Software evolution is a term used for repeated modifications in a software system caused by

changing existing requirements, emerging new requirements or bug fixes. A small change in

the software system may lead to malfunctioning of the existing software system. Thus, there

arises the need for Regression Testing. Regression Testing is the process of testing a software

system after it has undergone changes. It aims to detect faults, if any, that may have been

introduced into the software system as a result of these changes. It requires rerunning the

modified test suite but rerunning may significantly increase the time and effort required for

regression testing. Test Case Prioritization aims to reduce the time and effort required in

regression testing by prioritizing the test cases so as to increase the rate of fault detection. In

this thesis we propose and validate a test case prioritization framework for object oriented

systems based on Genetic Algorithm (GA) and using modified Average Percentage of Block

Coverage (APBCm) metric as fitness function in GA based tool. The results are obtained

using two open source softwares JTopas and Xml-Security. We have used fault coverage

criteria to validate the prioritized test case sequence produced by the proposed framework

when applied to two open source projects JTopas and Xml-Security. The results show that

the framework can be used to obtain better prioritized test case sequences with higher fault

detection rate.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

1

CHAPTER 1

INTRODUCTION

Software maintenance, commonly known as “software evolution”, is a rigorous activity that

during which changes are made to the existing software system. Such changes may be the

result of a debugging activity, or implementing a new requirement or changing existing

requirements. In any case, introduction of a change in a system is followed by several

activities like retesting the software and ensuring that no new faults are introduced by such a

change. This is known as Regression testing. Looking at the current scenario of regression

testing, it is clearly understood that the testers need to improve their practices and strategies

for testing in order to deliver a better quality software system in less time and efforts. Our

work in this thesis aims to help testers understand the significance of using practical weight

factors during test case prioritization so that overall quality of regression testing is improved.

This chapter proceeds with an in depth knowledge of how a software evolves, what is

regression testing, what are the problems faced by the testers and developers during

regression testing and how the work presented in this thesis, in the field of test case

prioritization, contributes to solving these problems and challenges.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

2

1.1. REGRESSION TESTING

“Software Testing is the process of executing a program with the intent of finding errors”

[1]. “It is an investigation that is conducted to provide stakeholders the information about

the quality of the product/service under test” [2]. Software maintenance is an essential

activity that allows developers to modify an existing software system as and when required,

in order to meet certain objective. Such objectives may include fixing the defects that are

reported by the clients, after the software system has been delivered and deployed or keeping

pace with the changing requirements or emerging new requirements. Regression Testing is

the process of testing a software system during maintenance phase. It is a type of software

testing that seeks to uncover new software bugs in existing functionality of the software

system after it has undergone changes, such as enhancements, bug fixes, configuration

changes, etc have been made to them.

 Figure 1.1. Process of Regression Testing

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

3

Figure 1.1 above gives a brief introduction to the overall process of regression testing. In our

work we try to improve the quality of regression testing process by focusing on step 1 step 3

and step 4. The objective of Step 1 is to identify those parts of the software system that have

undergone change and require the attention of tester. There may be several such parts. A

tester may therefore face the problem of identifying significant changes. Our idea of

assigning weights to different parts of code helps the testers to distinguish some of the

significant changes from lesser significant ones. Test case prioritization helps a tester to

smartly order the test cases so that when they are executed in that order, most of the faults are

exposed earlier. This is achieved in step 4. Step 3 focuses on defining the scope and coverage

criteria for testing. The answer to the question when to stop regression testing is formulated

during this step. One should always remember that testing smart but not hard, is the key

objective of any testing activity.

Regression Testing plays an important role in maintaining the quality of the subsequent

releases of the software system and also accounts for large proportion of software

maintenance cost. For the same reasons many researchers have focused on reducing the

maintenance cost and effort through regression test selection, test case minimization, and test

case prioritization techniques. Common methods of regression testing include rerunning

previously-completed tests along with the new test cases for the modified parts of the

software system and checking whether the program behavior has changed and whether

previously-fixed faults re-emerge or not. Regression testing can be used to test a system

efficiently by smartly selecting an adequate, minimum set of tests that can achieve certain

testing objective like fault coverage, code coverage, etc..

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

4

Experience has shown that during software evolution, new faults may emerge as a result of

software changes. Often this reemergence occurs because a fix gets lost through poor

revision control practices (or simple human error in revision control). Most of the times the

code to fix a bug or a problem is "delicate" or prone to changes in future, in the sense that it

considers the problem as a specific case when it was first observed but not in more general

cases which may arise over the lifetime of the software. Also, the code to fix a problem in

one area adversely causes malfunctioning of some other area of the software system. Lastly,

it is possible that, when some feature is re-implemented, some of the same mistakes that were

done in the original implementation of the feature are repeated unintentionally. Therefore, in

most software development scenarios, when a bug is encountered and fixed, it is often

considered a good testing practice to record the test case that exposes the bug and re-run that

test regularly after subsequent changes to the program. Although most testers do this

manually through code instrumentation using programming techniques, it is always a better

option to use automated testing tools. There are software tools that provide a testing

environment to execute all the regression test cases automatically and some projects even set

up automated systems to automatically re-run all regression tests at specific time intervals

and report any failures (which may imply a regression or an outdated test). Common

strategies are to execute such a system after every successful compilation (for small projects),

at regular time intervals like once a week.

Regression testing is an integral part of the software maintenance activities and plays an

important role in preserving or enhancing the quality of software system as it evolves over

time. In the software industry, it has been observed that regression testing is usually

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

5

performed by a software quality assurance team after the development team has completed

the development work. However, defects encountered during this stage are the most

expensive to fix and therefore regression testing accounts for a large proportion of the

software maintenance cost. To address this problem, unit testing practices have been

improved. Although developers have always written test cases as part of the development

cycle, these test cases have generally been either functional tests or unit tests that verify only

intended outcomes. Developer testing compels a developer to focus on unit testing and to

include both positive and negative test cases.

1.2. TEST CASE PRIORITIZATION

Software maintenance is an essential activity that allows developers to modify an existing

software system as and when required, in order to meet certain objective. Such objectives

may include fixing the defects that are reported by the clients, after the software system has

been delivered and deployed or keeping pace with the changing requirements or emerging

new requirements. Regression testing is the process of testing the modifications in a software

system once it has undergone changes and detect the new faults that may have been

introduced into the system as a result of these changes. It plays an important role in

maintaining the quality of the subsequent releases of the software system but it also accounts

for large proportion of software maintenance cost. It requires ample amount of time and

effort. In the scenario where developers have to pace up with the increasing competition in

the market, smart testing within budget and time is essential. For the same reasons many

researchers have focused on reducing the maintenance cost and effort through regression test

selection, test case minimization, and test case prioritization techniques. Test case

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

6

prioritization techniques allow testers to execute the test cases in an order that achieves some

testing objective at a faster rate. There are multiple testing objectives like rate of fault

detection, rate of code coverage, etc. The test case prioritization problem as defined by

Rothermal et al.[3] is stated below::

Given a Test Suite ‘T’ ,a set ‘PT’ of all permutations of T and a function ‘f’ ’that maps PT to

real numbers, test case prioritization technique aims to find a T’∈ PT such that (∀T’’) (T’’ ∈

PT) (T’’≠ T)[f(T’) ≥ f(T’’)].

For an efficient and smart regression testing it is important to understand what part of

software system actually needs to be focused. This can be achieved through weights.

Assigning weights to different parts of code highlights the relative importance of the code to

be tested. Statistics show that of all the features provided with a software system only a few

are used by the end users and most of the bugs reported by them are associated with the

modules implementing those features. Therefore, this fact can be exploited and used to assign

weights to different parts of code. Similarly for version specific test case prioritization,

testers should focus on parts of code that are highly error prone. Claes et al. [5] in their study

revealed that certain programming constructs are more error prone than others and defect

data can be used to identify them. Empirical studies performed till now to compare the

different techniques of test case prioritization, have used either APBC (Average Percentage

of Block Coverage) or APFD (Average Percentage of Fault Detection) metric. Both these

metrics reveal the rate at which the faults are discovered or the rate at which the code

coverage is achieved. Still there is a drawback of using these metrics as discussed by Elbaum

et al. [4]. The APFD metric requires faults to be known prior to prioritization and treats all

faults equally severe. Elbaum et al. [4] in their work tried to improve the APFD metric

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

7

incorporating the knowledge like fault severity and cost of executing a test case. Similarly

APBC metric considers that all blocks are equally likely to contain errors. In their paper [5],

authors emphasize that certain programming constructs are more error prone than others. The

defect data can be used to identify these programming constructs. Thus, in an application,

certain blocks contribute more to faults than others. Our work in [36] focuses to exploit this

fact and assign weights to blocks. The APBC metric assumes that all blocks are equally error

prone. In the work presented in this thesis, we have tried to extend the test case prioritization

framework presented in [36] to object oriented systems and validate the new framework

using APFD metric thereby ensuring that the performance of test case prioritization

techniques improves by including the knowledge about significance of blocks and error

proneness of blocks in the form of weights.

1.3. MOTIVATION OF THE WORK

The need for Test Case Prioritization has its roots in the seven fundamental principles of

Software Testing some of which are equally applicable to regression testing. These

fundamental principles are as follows:

a. Exhaustive Testing is not possible. This implies that the entire set of possible test cases

cannot be executed. Therefore it is important to minimize and prioritize test cases so that

faults can be detected at a higher rate.

b. Early Testing. This implies that testing activities should be started early and move

parallel with the development of software. Thus, test case prioritization should focus on

prioritizing the test cases on the basis of requirement specification.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

8

c. Testing shows presence of errors. This implies that one cannot be assured that a

software is free from errors. It shows errors are present but cannot assure their absence.

d. Accumulation of errors. This implies that there is no equal distribution of errors within

one test object. All errors may not be localized to same place in code but it is more

likely to happen that some errors may be found where one error is found. The testing

process must be flexible and respond to this behavior. Thus, all parts of code are not

equally error prone. Hence, the need of weightage arises.

e. Fading effectiveness. This implies that the effectiveness of tests fades over time. If test

cases are only repeated, they do not expose new errors. Errors, remaining within

untested functions may not be discovered. In order to prevent this effect, test suites must

be modified and reworked from time to time.

f. Testing depends on context. No two systems are the same and therefore, can not be

tested the same way. Testing intensity, when to stop testing etc. must be defined

individually for each system depending on its testing context.

g. False conclusion: no errors equals usable system. Error detection and removal does not

guarantee a usable system matching the users expectations. Early integration of units

and rapid prototyping prevents unhappy clients and discussions.

Besides, there are several drawbacks of Average Percentage of Block Coverage (APBC) and

Average Percentage of Fault Detected (APFD) metric. The APFD metric requires faults to be

known prior to prioritization and treats all faults equally severe. Elbaum et al. [4] in their

work tried to improve the APFD metric incorporating the knowledge like fault severity and

cost of executing a test case. Similarly APBC metric considers that all blocks are equally

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

9

likely to contain errors. It does not consider the practical weight factors like significance of

the blocks covered. Several factors that can be used to highlight the significance of blocks are

as follows:

a. Some blocks of code, like exception handling code, are not frequently executed. Most of

the features provided with a software system remain unused throughout the lifetime of

the software. Changes in the modules implementing such features of software should be

considered least important. Understanding the fact that since such features will not be

used in future by the end users, undetected faults in these features shall not be reported.

This saves time and effort of testers which can then be devoted to testing of other highly

usable modules of the system.

b. Certain programming constructs are more error prone than others[4]. For instance it is

common to commit errors in looping constructs than in simple input output statements.

Long and complex expressions are highly prone to logical errors. Therefore, not only the

amount of changes but the type of changes made to different blocks of code also affects

the error-proneness of that block. It is therefore important to identify these constructs.

The defect data can be used to find these programming constructs. In their paper [4], the

authors have proposed a method to identify programming and design constructs that

contribute more than expected to the defect statistics. Zengkai Ma et al [32] have

shown how analysis of program structure can be used to find important modules (eg.

methods) in a source code. Lei Zhao et al [33] have presented a methodology using

Control Flow Analysis to quantitatively analyze how the basic blocks contribute to

failures.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

10

c. Some blocks of code contain greater percentage of modified line. Assigning a priority to

these blocks shall result in faster exposure of faults since modifications are most likely

to contain errors.

d. It is observed that corrective changes are less error prone than adaptive changes. Thus,

the kind of software change carried out-adaptive, preventive, corrective also influences

the error-proneness of blocks.

In their paper [5], authors emphasize that certain programming constructs are more error

prone than others. The defect data can be used to identify these programming constructs.

Thus, there arises a need to differentiate error prone blocks of code from less error prone

blocks of code. Criteria such as the number of modifications made to a block and the type of

modifications made to a block can be used as a measure for error proneness. Apart from this

complexity is also a measure for error proneness, i.e., highly complex blocks are more likely

to contains errors than less complex blocks.

In [36] we had proposed a test case prioritization framework based on Genetic algorithm and

assigned weights to blocks of code according to the number of modifications made to the

block. It also used a new improved metric APBCm that used the knowledge of weights to

prioritize the test cases. We thereby identified two main problems with the test case

prioritization framework presented in [36]. A block in the original Average Percentage of

Block Coverage (APBC) metric and modified Average Percentage of Block Coverage

(APBCm) metric refers to the basic block, that is a block consisting of all sequential

statements such that if first statement in block gets executed then all the consecutive

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

11

sequential statements in that block get executed. Since it is not practically feasible to

calculate the number of changes at the level of blocks, this metric had limited application to

small sized programs and not software systems. Also, most of the software systems

developed today use object oriented approach and the framework discussed in [36] was not

applicable to the object oriented systems. Therefore, in this work we modifiy the test case

prioritization framework presented in [36] by considering a class as a block unit in the

modified framework and validate it. That is in the modified framework, the GA based tool

uses APBCm metric which considers a class as a block thus increasing the utility of the

framework. For the purpose of validation we used two open source projects, JTopas and

Xml-Security and compared the test case sequences produced by the framework using the

APFD metric.

1.4. GOALS OF THE THESIS

The goal of the work in this thesis is summarized below:

a. To extend the test case prioritization framework presented in [36] to object oriented

systems- As discussed earlier, the main problem with that framework presented in [36] is

that it cannot be applied to the object oriented systems. In this thesis we aim to enhance

and modify the framework by considering a class as a block unit so that it can be applied

to object oriented systems.

b. To validate the proposed framework for test case prioritization using two open source

projects through experimentation- We also aim to validate the proposed test case

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

12

prioritization framework using two open source software projects. By doing so we wish

to generalize the results.

c. To analyze the prioritized test case sequences produced by the framework using

Average Percentage of Fault Detected (APFD) metric- As, that fault detection is the

main objective of any testing activity, we aim to analyze the results for effectiveness in

terms of fault detection.

d. To compare the APBC and APBCm metric used as fitness function in the GA based

tool- We also aim to compare the two metrics APBC and APBCm and show that the latter

is a better comparator metric. By doing so, we support our claim that use of weights to

identify error prone and significant changes in the software system allows testers to shift

their focus of testing activity to some specific areas thereby reducing testing time and

effort.

It can be observed that our goals are focused on improving the quality of regression testing.

We aim to provide a framework for test case prioritization which can help testers in perfectly

managing their time and resources during regression testing.

1.5. ORGANIZATION OF THESIS

This thesis is organized as follows:

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

13

Chapter 2 discusses the previous work done in the field of test case prioritization. This

includes the extensive study of various test case prioritization techniques that have been

proposed in the literature so far. It also highlights some of the most relevant works in the

direction of field of work presented in the thesis

Chapter 3 gives a comprehensive study of Genetic Algorithm. This chapter is dedicated to a

profound study of historical background of Genetic Algorithm including details of it’s origin,

various phases of Genetic Algorithm, significance and utility of the algorithm. We also

exemplified the working of the algorithm with some sample data.

Chapter 4 focuses on the proposed framework for Test Case Prioritization problem including

the details of the original framework presented in [36] and the modified framework. It also

describes the APBCm metric, GA based tool and Additional Modified Lines of Code

Coverage (AMLOC) graph. It also lays down certain guidelines regarding computation of

weight factors that are to be included in APBCm metric. A detailed study followed by

application of framework to a small benchmark program has been shown.

Chapter 5 presents the research questions that we aim to address in this thesis. We also

describe in detail the modified test case prioritization framework.

Chapter 6 comprises of the empirical data collection for two (Free Open Source Softwares)

FOSS projects-JTopas and Xml-Security. It also includes the details of the two experiments

and how the experiments were performed.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

14

Chapter 7 presents a detailed analysis of the results obtained. In this chapter we compare and

assess the results of the experiments and show improvement in results after application of the

modified APBC metric in the tool developed for test case prioritization using Genetic

Algorithm. We also provide answers to the research questions formulated in chapter 5.

Chapter 8 presents the conclusions of the thesis and future work.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

15

CHAPTER 2

LITERATURE SURVEY

Test case prioritization is dedicated to finding an ideal ordering of test cases for testing, so

that certain testing objective is achieved and the tester obtains maximum benefit in terms of

saving time and effort and finding maximum number of faults as early as possible, even if the

testing is prematurely halted at some arbitrary point. This approach was first introduced by

Wong et al.[41]. However, it had a limitation that it was only applicable to test cases which

were selected by firstly applying some test case selection technique. Harrold et al.[42]

proposed and assessed a more generalized approach. Thereafter several techniques were

developed and analysed for effectiveness. Most of these techniques were focused on version

specific test case prioritization using structural metrics and machine learning techniques but

the goal remained same that is to maximize early fault detection and achieve certain level of

confidence in the software system.

The test case prioritization problem definition given in section 1.2 is a generalized definition

and says nothing about the versions of the program under test and the changes carried out

from one version to another. Generally, a tester is more interested in the rate of fault

detection so the test cases should be executed in the order that maximizes early fault

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

16

detection. However, the fault detection information is not known beforehand until the testing

is completed. In order to overcome this problem of knowing which tests reveal faults, test

case prioritization techniques depend on surrogates, hoping that early maximization of a

certain chosen surrogate property will result in increased fault detection rate. If the regression

testing is performed in a controlled manner, the result of prioritization can be assessed by

executing test cases according to the fault detection rate.

Structural coverage is a metric that is often used as the prioritization criterion [3-11]. The

intuition behind the idea is that early maximization of structural coverage will also increase

the chance of early maximization of fault detection. Although, the goal of test case

prioritization remains that of achieving a higher fault detection rate, the prioritization

techniques actually aim to maximize early coverage. Rothermel et al.[3] presented empirical

studies of several test case prioritization techniques. They applied the same algorithm with

different fault detection rate surrogates. The considered surrogates were: branch-total,

branch-additional, statement-total, statement-additional, Fault Exposing Potential (FEP)-

total, and FEP-additional. The branch-total approach prioritizes test cases according to the

number of branches covered by individual test cases, while branch-additional prioritizes test

cases according to the additional number of branches covered by individual test cases. The

statement-total and statement-additional approaches apply the same idea to program

statements, rather than branches. Algorithmically, ‘total’ approaches are essentially instances

of greedy algorithms whereas ‘additional’ approaches are essentially instances of additional

greedy algorithms. The FEP of a test case is measured using program mutation. Program

mutation introduces a simple syntactic modification to the program source, producing a

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

17

mutant version of the program. This mutant is said to be killed by a test case if the test case

reveals the difference between the original program and the mutant. Given a set of mutants,

the mutation score of a test case is the ratio of mutants that are killed by the test case to the

total kill-able mutants. The FEP-total approach prioritizes test cases according to the

mutation score of individual test cases, while the FEP-additional approach prioritizes test

cases according to the additional increase in mutation score provided by individual test cases.

The FEP criterion can be constructed so that it is at least as strong as structural coverage; to

kill a mutant, a test case not only needs to achieve the coverage of the location of mutation

but also to execute the mutated part with a set of test inputs that can kill the mutant. In other

words, coverage is necessary but not sufficient to kill the mutants. It is important to

understand that all the ‘additional’ approaches may reach 100% realization of the utilized

surrogate before every test case is prioritized. For example, achieving 100% branch coverage

may not require all the test cases in the test suite, in which case none of the remaining test

cases can increase the branch coverage. The results are usually evaluated using the Average

Percentage of Fault Detection (APFD) metric. Higher APFD values denote faster fault

detection rates. When plotting the percentage of detected faults against the number of

executed test cases, APFD can be calculated as the area under the curve.

A wide range of metrics for test case prioritization have been proposed and studied. Earliest

techniques revolved around coverage metrics like Statement-total ,Statement-Additional,

Branch-total, Branch-Additional, Fault Exposing Potential(FEP)-total, FEP–Additional

[3-11]. Jones and Harrold [12] applied greedy approach for prioritization to Modified

Condition/Decision Coverage. The main idea behind using coverage based metric was that

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

18

maximizing structural coverage of code may maximize the fault detection. The resulting Test

Case prioritized sequence produced by various techniques were compared, for effectiveness

using APFD metric(Average Percentage Of Fault Detection) or APBC(Average Percentage

of Block Coverage). The work in field of test case prioritization technique is not limited to

structural coverage. Several other machine learning techniques have also been employed in

this area. Leon and Podgurski [13] have used clustering techniques to distinguish test cases

associated with highly error prone regions of code from those associated with less error prone

regions. They prioritized the test cases based on the density of clusters formed by the test

cases. Recently Ryan Carlson et al [14] also presented a clustering based approach to test

case prioritization. They specifically applied four different metrics code coverage, code

complexity, fault history, and combination of code complexity and fault detection ratio in

order to prioritize test cases within each cluster. Tonella et al. [15] used Case Based

Reasoning(CBR) to prioritize the test cases. They included human knowledge of test cases

for pair wise test case comparison. Yoo et al. [16] combined human based prioritization

technique (incorporates knowledge of humans about test cases) with clustering technique.

Kim and Porter [17] took an execution history based approach, borrowing from statistical

quality control. Mirab and Tahvildari [18] exploited Bayesian networks for test case

prioritization. They have used information like fault proneness, code coverage, modified

elements in program while providing feedback to Bayesian networks. Several model based

test case prioritization techniques have also been proposed in literature including work of

Korel et al. [19-21], Rajib Mall et al. [22]. Relevant to the work presented in this paper is

the work of Siripong Roongruangsuwan et al [23], Elbaum et al. [3] and several other cost

effective Prioritization techniques [8, 24-27]. The authors Siripong Roongruangsuwan et

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

19

al. [23], in their paper test case prioritization technique with practical weight factors. In their

work they have discussed Elbaum et al. [3] emphasizes on improving APFD metric by

incorporating the fact all faults are not equally severe. The drawback of APFD metric is that

it requires faults to be known beforehand. Similar to his work, the idea presented here

focuses to improve the APBC metric, taking into account that not all blocks of code are

equally likely to have error. In contrast to most of the cost effective prioritization techniques

the APBCm assigns weights to blocks of code rather than assigning weights to test cases.

Avritzer et al. [40] presented a test case generation technique for the software systems that

can be modeled using Markov chains. Although the term “prioritization” is not used by the

authors, the technique generates test cases in an order that covers a greater proportion of the

software states that are most likely to be reached in the field earlier in testing thereby

increasing the chances of faults getting revealed earlier in testing. The work presented by

Malhotra et al. [36] is inspired by several cost effective prioritization techniques in the past

like Roongruangsuwan et al. [23] emphasized on the necessity of incorporating practical

weight factors. Elbaum et al. [3] introduced an improvement to APFD metric to make it

more cost effective. Similarly in [36], the authors proposed a framework for test case

prioritization using a new metric APBCm as fitness function in GA based tool. Although this

work is inspired by several cost effective techniques in the past it differs from them in the

sense that it assigns weights to code and not to test cases. The authors exploited the fact that

all blocks of code are not equally significant and error prone. In this work we modify the test

case prioritization framework presented in [36] so as to extend the applicability of the

framework to object oriented systems and follow a systematic procedure to validate and

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

20

analyze it using two open source projects JTopas and Xml-Security. We then compare the

test case sequences produced by the framework using the APFD metric.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

21

CHAPTER 3

GENETIC ALGORITHM

The term genetic algorithm, almost universally abbreviated nowadays to GA, was first used

by John Holland, whose book “Adaptation in Natural and Artificial Systems” of 1975 was

instrumental in creating something which is now a flourishing field of research and

application that goes beyond the original GA. Many people now use the term evolutionary

computing or evolutionary algorithms (EAs), in order to cover the developments of the last

10 years. However, in the context of meta-heuristics, it is probably fair to say that GAs in

their original form encapsulate most of what one needs to know. Holland’s contribution and

influence in the development of the topic has been very important, but several other scientists

with different backgrounds were also involved in developing similar ideas. In 1960s in

Germany, Ingo Rechenberg and Hans-Paul Schwefel developed the idea of the

Evolutionsstrategie (in English, evolution strategy), while also in the 1960s Bremermann,

Fogel and others in USA implemented their idea for what they called evolutionary

programming. The common thread in these ideas was the use of mutation and selection—the

concepts at the core of the neo-Darwinian theory of evolution. Although some promising

results were obtained, evolutionary computing did not really take off until the 1980s. Not the

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

22

least important reason for this was that the techniques needed a great deal of computational

power.

The term Genetic Algorithm has its origin in the Biological Sciences. It works on the famous

Darwins Theory which emphasizes on the survival of the fittest. The work presented here

emphasizes on using the genetic algorithm with modified APBC as fitness function to search

for the fittest candidate (a test case sequence). Genetic algorithm explains the notion of

evolution. The fittest candidates in a population are carried to the next generation of

population. The Genetic Algorithm is a heuristic search. The input of the algorithm is a

collection of some permutations of the test suite and output of the algorithm is a prioritized

test case sequence. The figure 3.1 below gives an overview of the working of Genetic

algorithm.

Figure 3.1. Genetic Algorithm Cycle

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

23

The following sections explain the various phases of genetic algorithm. The genetic

algorithm has four phases primarily Initialization, Evaluation, Selection, Breeding (Crossover

and Mutation). These phases are explained below.

3.1. INITIALIZATION

The first phase focuses on initializing the population. It is important to identify the candidate

solutions for a problem and the way they are encoded in the population. Various encoding

strategies like binary encoding, permutation encoding, real value encoding, tree encoding,etc.

A brief description of various strategies for encoding is given below.

a. Binary Encoding- In this a chromosome is usually represented as a string of 0’s and 1’s.

This had been the most commonly used form of encoding strategy mainly because of its

simplicity. The binary digits usually represent presence or absence of some property in

the chromosomes. For instance the knapsack problem uses this kind of encoding.

b. Permutation Encoding- A candidate encoded using this strategy is represented as a

sequence of numbers which usually denotes a permutation. The ordering problems like

Travelling Salesman problem and in our case test case prioritization problem uses this

kind of encoding.

c. Value Encoding- In this a chromosome is represented using a string of values like real

numbers, names, complicated objects, etc. for instance the problem of finding the optimal

weights for the neural network uses this kind of encoding.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

24

d. Tree Encoding- In this a chromosome is represented as a tree of objects such as

functions, commands or operators in a programming language, etc. An example is an S-

Expression tree. The problem using this kind of encoding is-finding a mapping from

given inputs to known outputs.

Different techniques are applied to randomly generate a few candidates. The convergence of

the algorithm depends upon these candidates, better the candidates faster the algorithm

converges. We have used Johnson-Trotter [28-30] algorithm to generate the permutations of

the test suite and use this as initial population.

3.2. EVALUATION

A fitness function is used to evaluate each of the candidates in the current population. There

are several fitness criteria that have been proposed in the literature for the purpose of test

case prioritization. In the framework proposed in this work and in [36], we emphasize on

using a new metric, APBCm (modified APBC) as explained in section 4.2, as they used the

knowledge of modifications unlike APBC metric. This metric is a modified form of

traditional APBC (Average Percentage of Block Coverage) metric which is evaluated as

follows:

 𝑨𝑷𝑩𝑪 = 𝟏 −
𝐓𝐁𝟏+𝐓𝐁𝟐…+𝐓𝐁𝐧

𝒏𝒎
+

𝟏

𝟐𝒏
 (3.1)

where “n” is the number of test cases in the input test case set and “m” is the number of

blocks in the program to be tested. TBj denots the location, in the test case sequence, of the

test case that first finds the block ‘j’. Consider the test case sequence A,C,E,D,B. Suppose

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

25

block 3 (in program code) is covered by 2 test cases{E,B},then the value of TB3 =3(location

of ‘E’ in the test case sequence under consideration). APBC tries to achieve the block

coverage at a faster rate.

3.3. SELECTION

Few candidates are selected on the basis of their fitness function. These are propagated to the

next generation intact or their offsprings, generated after breeding, are propagated. Several

methods have been proposed for selecting the good candidates. We have used the Roulette

Wheel Strategy. The roulette-wheel selection, is a genetic operator used in genetic algorithms

for selecting potentially fit candidates for mutation If fi is the fitness of ith individual in the

population, its probability of being selected is pi=
𝑓𝑖

∑ 𝑓𝑗
𝑗=𝑁
𝑗=1

 where N is the number of

individuals in the population. This could be imagined similar to a Roulette wheel in a casino.

The figure 3.2 gives an overview of the roulette wheel.

Figure 3.2 Roulette Wheel Selection Strategy

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

26

The candidate that is more fit occupies a larger area of the wheel so that it’s chances of

getting selected is higher. In order to select N candidates, the wheel is rotated N times.

3.4. CROSSOVER

Crossover is a breeding process. A crossover operator is used to recombine two

individuals to get a better string. In crossover operation, recombination process creates

different individuals in the successive generations by combining material from two

individuals of the previous generation. In reproduction, good individuals in a population

are probabilistic-ally assigned a larger number of copies and a mating pool is formed. It is

important to note that no new individuals are formed in the reproduction phase. In the

crossover operator, new individuals are created by exchanging information among

individuals of the mating pool.

The two individuals participating in the crossover operation are known as parent

individuals and the resulting individuals are known as offsprings. It is intuitive from this

construction that good attributes (test cases in this case) from parent can be combined to

form a better child string, if an appropriate site is chosen. With a random site, the children

produced may or may not have a combination of good features from parent individuals,

depending on whether or not the crossing site falls in the appropriate place. But this is not

a matter of serious concern, because if good individuals are created by crossover, there

will be more copies of them in the next mating pool generated by crossover. It is clear

from this discussion that the effect of cross over may be detrimental or beneficial. Thus, in

order to preserve some of the good individuals that are already present in the mating pool,

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

27

all individuals in the mating pool are not used in crossover. Whether parents selected will

be used in crossover operation or not depends on Crossover Probability Pc.

The process of parent individual m, n cross-generation offspring of individual p, q is as

follows:

(1) Generate a random crossover point k, k is bigger than 1, less than n (n is the number of

test sequences in the test case).

(2) Copy the first k test cases of m into p.

(3) Remove k test cases in n, and then copy the rest into p

(4) similar to generate p , individual q consists of first k test cases in the n, and n-k test

cases m which is removed of the k test cases.

3.5. MUTATION

Mutation adds new information in a random way to the genetic search process and

ultimately helps to avoid getting trapped at local optima. It is an operator that introduces

diversity in the population whenever the population tends to become homogeneous due to

repeated use of reproduction and crossover operators. Mutation may cause the

chromosomes of individuals to be different from those of their parent individuals.

Mutation in a way is the process of randomly disturbing genetic information. They operate

at the feature level (test cases in this case); when the features are being copied from the

current individual to the new individual, there is probability that each feature may become

mutated. This probability is usually a quite small value, called as mutation probability. A

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

28

coin toss mechanism is employed; if random number between zero and one is less than the

mutation probability, then the bit is inverted, so that zero becomes one and one becomes

zero. This helps in introducing a bit of diversity to the population by scattering the

occasional points. This random scattering would result in a better optima, or even modify

a part of genetic code that will be beneficial in later operations. On the other hand, it might

produce a weak individual that will never be selected for further operations.The mutation

is also used to maintain diversity in the population.

Mutation operation process is as follows:

(1) Generates a random between 0 and 1, if the random number is less than mutation

probability Pm, then do the mutation operation.

(2) Randomly select two test cases in the test sequences, and exchange its location.

Whether mutation is performed or not depends on mutation probability Pm. The process of

Mutation causes two test cases in the offspring produced by crossover to be exchanged.

This produces diversity in the population.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

29

CHAPTER 4

PROPOSED FRAMEWORK FOR TEST CASE

PRIORITIZATION

In this chapter, we describe the framework proposed by us originally in [36] for prioritizing

test cases and illustrate it’s working with the help of an example.

4.1. THE FRAMEWORK

The proposed framework includes three major components, the Test Case Prioritizing Tool

(based on Genetic Algorithm), Modified APBC Metric (APBCm) and the Additional

Modified Lines Of Code Coverage (AMLOC) graph. The initial input comprises of a test

suite permutation that serves as initial population to prioritization tool. The tool uses the

metric (APBCm) to compare between two permutations and decide which candidate

permutation is better and should be carried to next generation of population. The final output

of the tool is a prioritized test case sequence that maximizes the APBCm. The Figure 4.1

shown below gives an overview of the proposed framework for Test Case Prioritization.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

30

Figure 4.1 Framework For Test Case Prioritization [36]

4.2. MODIFIED APBC METRIC (APBCm)

In this chapter we present a framework for test case prioritization. In this framework we used

a Genetic Algorithm Based Tool for prioritizing test cases and used modified Average

Percentage of Block Coverage (APBCm) for evaluating the fitness value of an individual in

the population, in Genetic Algorithm. This metric is evaluated as follows

 𝑨𝑷𝑩𝑪𝒎 = 𝟏 −
(𝒘𝟏∗𝐓𝐁𝟏)+(𝒘𝟐∗𝐓𝐁𝟐)+………+(𝒘𝒎∗𝐓𝐁𝐦)

𝒏∗(∑ 𝒘𝒊
𝒎
𝒊=𝟎)

+
𝟏

𝟐𝒏
 (4.1)

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

31

where “n” is the number of test cases in the input test case set and “m” is the number of basic

blocks in the program to be tested. TBj denotes the location, in the test case sequence, of the

test case that first finds the block ‘j’. Consider the test case sequence A,C,E,D,B. Suppose

block 3 (in program code) is covered by 2 test cases{E,B},then the value of TB3 =3(location

of ‘E’ in the test case sequence under consideration). APBC tries to achieve the block

coverage at a faster rate. However, the APBC metric has the following problem:

a. APBC metric does not consider the practical weight factors like significance of the

blocks covered. Several factors that can be used to highlight the significance of blocks

are as follows:

i. Some blocks of code, like exception handling code, are not frequently executed.

Certain programming constructs are more error prone than others[4]. The defect

data can be used to find these programming constructs.

ii. In their paper [4], the authors have proposed a method to identify programming

and design constructs that contribute more than expected to the defect statistics.

Zengkai Ma et al [32] have shown how analysis of program structure can be used

to find important modules (eg. methods) in a source code. Lei Zhao et al [33]

have presented a methodology using Control Flow Analysis to quantitatively

analyze how the basic blocks contribute to failures.

iii. Some blocks of code contain greater percentage of modified line. Assigning a

priority to these blocks shall result in faster exposure of faults since modifications

are most likely to contain errors.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

32

For the purpose of illustration we have used the third factor as a measure of weights. We

have used this metric as a fitness evaluation function in the Genetic Algorithm based tool

and compared the results with those produced by the tool when APBC metric was used.

4.3. ADDITIONAL MODIFIED LINES OF CODE COVERAGE

(AMLOC) GRAPH

For a test case sequence TS’ t1,t2,t3,….tp-1,tp….tn, the AMLOC value corresponding to a test

case tk, with respect to TS’, is the ratio of the total number of unique modified lines of source

code that are covered or reached by executing the test cases t1,t2,….tk, where k<=n, to the

total number of modified lines of source code. For example consider the data (hypothetical)

given in the following tables. Table 4.1 represents the format of Block Coverage Matrix and

Table 4.2 shows the number of modified lines of code contained in each block alongwith the

block weights. The block weights are taken as the fraction of modified lines of source code

covered by the block.

Table 4.1 Block Coverage Matrix

 Blocks

Test Cases B1 B2 B3 B4 B5

t1 X X X

t2 X X

t3 X X

Table 4.2 Number Of Modified Lines Of Code Covered By Blocks

Blocks

Number of Modified Lines

Covered (NMLOC)

Weight of Blocks

NMLOC / (∑NMLOC)

B1 2 0.1

B2 6 0.3

B3 5 0.25

B4 2 0.1

B5 5 0.25

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

33

Consider the test case sequence TS’’ t1, t3, t2. t1 covers blocks B1,B3,B4 and hence a total of

9 (2+5+2) modified lines of source code. t3 covers blocks B2 and B4 but B4 has already been

executed by test case t1. So the unique blocks covered by t1,t3 together are B1,B2,B3,B4.

Hence, total number of unique modified lines of source code covered by t1,t3 is 15

(2+6+5+2). Similarly t2 covers blocks B2 and B5 but B2 has already been covered by t3. So

the unique blocks covered by t1,t3,t2 collectively are B1,B2,B3,B4,B5. Hence, the total

number of unique modified lines of source code covered by t1,t3,t2 collectively is 20

(2+6+5+2+5). Therefore the AMLOC values corresponding to test cases t1, t3 & t2 with

respect to test case sequence TS’’ is 0.45 (9/20) or 45%, 0.75 (15/20) or 75% and 1.0 (20/20)

or 100% respectively. The GA based tool uses the AMLOC values of the output test case

sequence (prioritized test case sequence) to draw the graph. This graph is then used for

comparative analysis of results. Greater the convexity of graph, faster is the rate of modified

code coverage. Modified code coverage has a considerable impact on version-specific test

case prioritization.

4.4. GENETIC ALGORITHM BASED TOOL

We have presented a framework that employs a test case prioritization tool, developed in

Java Language using Eclipse IDE, based on Genetic Algorithm explained in Chapter 3 of this

thesis. The tool also uses a new metric modified APBC(APBCm), which is a modified form

of original APBC metric. The tool produces the Prioritized Test Case Sequence and an

Additional Modified Lines Of Code Coverage (AMLOC) graph for the same. In this section

we will explain the working of our framework. The discussion throughout this section

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

34

proceeds with an understanding of the way this framework uses the input data to produce a

prioritized test case sequence.

The tool takes as input the block coverage matrix and the weight of blocks. The GA

algorithm uses APBCm as fitness function. The initial population for Genetic Algorithm is

taken to be the permutations (T1, T2,…..Tn) of the initial test suite T. The fitness value for

each of these sequences (candidate solution) is then computed using APBCm. The candidates

that are more fit are selected for the breeding process. Let us assume that the selected

candidates form the pool D’. Whether crossover should be performed on any two parents

present in D’ or not is decided by Pc (crossover probability). This process is repeated half the

times of initial population. The next population (set of test case sequences that will serve as

population for next iteration of GA) comprises of the parent candidates if crossover is not

performed and children candidates if crossover is performed. After crossover, mutation is

performed based on Pm (mutation probability). This completes one cycle of GA. The

convergence criteria used in the tool is the maximum fitness of any individual contained in a

population. Consider sample input data (hypothetical) given in Table 4.1 & Table 4.2 to

understand the concept underlying the framework.

The Table 4.3 shows that while comparing the individual candidates, GA based tool marked

T3 as the fittest candidate when APBCm was used as fitness function (Experiment 1). It also

shows that when APBC was used as fitness function, the GA based tool marked T1 as the

fittest candidate (Experiment 2). The ranking produced during evaluation phase has a

tremendous effect on the following selection and breeding processes. During the selection

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

35

process the candidates are sorted in ascending order of their fitness values and their

cumulative APBCm value is computed (the values are normalized to range [0,1]). A random

number ‘r’ is generated between 0 and 1. The candidate whose cumulative APBCm value is

greater than ‘r’ is selected. The process is repeated as many number of times as the

population size.

Table 4.3 Comparisons of Different Test Case

 Sequences (Candidates in the TCP problem)

The Table 4.4 below shows the results after sorting the candidates and computing the

cumulative APBCm values for each candidate. Thereafter, the candidates are plotted on a

roulette wheel as shown in figure 4.2.

Table 4.4 Cumulative, Normalized APBCm Values for Sample Data

Candidate

Number

Permutations of

Test Suite T

sorted in

Ascending order

of APBCm values

Cumulative

Normalized

APBCm

values

1 T5 0.148

2 T6 0.296

3 T2 0.458

4 T4 0.62

5 T1 0.807

6 T3 1.0

Permutations

of Test Suite

T

APBCm

Values

APBCm

/∑

APBCm

Ranking on

the Basis

Of APBCm

(fittest

candidate

ranked 1)

APBC

Values

Ranking on

the basis Of

APBC (fittest

candidate

ranked 1)

T1(t1 ,t2 ,t3) 0.6503(65%) 0.1857 2 0.7(70%) 1

T2(t1 ,t3 ,t2) 0.567(56.7%) 0.162 3 0.6336(63%) 2

T3(t2 ,t1 ,t3) 0.6836(68.4%) 0.195 1 0.6336(63%) 2

T4(t2 ,t3 ,t1) 0.567(56.7%) 0.162 3 0.5(50%) 4

T5(t3 ,t1 ,t2) 0.517(51.7%) 0.148 4 0.567(56.7%) 3

T6(t3 ,t2 ,t1) 0.517(51.7%) 0.148 5 0.5(50%) 4

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

36

Figure 4.2 Roulette Wheel for Sample Data

The results of selection process have been shown in the Table 4.5.

Table 4.5 Candidates Selected during some iteration (for sample data)

Rounds

Random number

Generated Candidate Selected

1 0.96512 T3

2 0.73894 T1

3 0.869 T3

4 0.826 T3

5 0.779 T1

6 0.2547 T6

This intermediate population comprising of selected candidates is used for crossover. During

crossover phase, a random number ‘p’ is generated between 0 and 1. If p<=Pc, crossover is

performed on two randomly selected different candidates and the resulting off-springs are

carried to the next generation or else the candidates are copied in their original form to the

next generation. This process is repeated as many times as half the population size. To

preserve diversity in population mutation is performed on the population generated after the

crossover phase. A random number ‘q’ is generated between 0 and 1. If q<=Pm, mutation is

performed on a randomly selected candidate. This completes one cycle of GA.

0.148

0.296

0.458

0.62

0.807

1.0

FITNESS VALUES

T5

T6

T2

T4

T1

T3

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

37

The figure 4.3 and figure 4.4 shows the AMLOC graph for the candidates T1 and T3. These

candidates were marked as fittest by the GA based tool when APBC and APBCm was used as

fitness function respectively. The figures show that the candidate ranked as fittest, by GA

based tool (when the APBCm metric is used), is actually the fittest candidate because

execution of the test case sequence represented by this candidate (T3) has a greater rate of

modified code coverage as shown by AMLOC graph. In other words, the ranking made by

the APBCm is more efficient as compared to the ranking produced by the APBC metric.

Figure 4.3 AMLOC Graph for T1(Ranked as most fit if APBC is

Used for comparison of candidates in GA)

Figure 4.4 Graph for T3(Ranked as most fit if APBCm is

 Used for comparison of candidates in GA)

45%

100% 100%

0

0.5

1

1.5

t1 t2 t3

Additional Modified Lines Of Code

Coverage

55%

100% 100%

0

0.2

0.4

0.6

0.8

1

1.2

t2 t1 t3

Additional Modified Lines Of Code

Coverage

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

38

In the upcoming section we demonstrate the working of the proposed framework using a

benchmark program. We also present the data used for our demonstration and analyze the

results after applying the framework.

4.5. ILLUSTRATION

The Triangle benchmark program has been used previously by several researchers in

Software Engineering studies. Given three sides of a triangle, the program aims to classify it

as a scalene, isosceles, equilateral or not a triangle. For the purpose of our illustration, we

used the simplified version of original Triangle program presented in [34], translated from

FORTRAN into ‘C’ language. The original set of 14 test cases was minimized to 10 test

cases taking into account redundancy of test cases in terms of block coverage. The Table 4.6

shows the original set of test cases followed by the simplified code of Triangle.

Table 4.6 Original Set of Test Cases for Triangle program [34]

Input Expected Output

0,0,0 4 (Not a triangle)

1,0,0 4 (Not a triangle)

1,1,0 4 (Not a triangle)

1,1,1 3 (Equilateral triangle)

2,2,1 2 (Isosceles triangle)

1,1,2 4 (Not a triangle)

2,1,2 2 (Isosceles triangle)

1,2,1 4 (Not a triangle)

2,1,1 4 (Not a triangle)

3,2,2 2 (Isosceles triangle)

3,2,1 4 (Not a triangle)

4,3,2 1 (Scalene triangle)

2,3,1 4 (Not a triangle)

2,1,3 4 (Not a triangle)

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

39

Figure 4.5 Source Code of Triangle Program [34]

We applied the approach of basic blocks identification algorithm [35] to identify the basic

blocks from the source code given in figure 4.5. This algorithm is developed to work on three

address code but for simplicity we have used this approach in our high level source code. In

this algorithm the code is partitioned in such a way that each line of code falls in exactly one

partition. Each partition has exactly one leader which is the first statement of the block. The

following rules are used to identify the leaders.

a. The first instruction is a leader.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

40

b. The statements to which control can be transferred from a conditional or unconditional

jump statement is a leader.

c. The line immediately following the conditional or unconditional jump instruction is a

leader.

Once the leaders are identified the blocks are constructed. A block consists of the leader and

all statements following the leader until and not including the next leader.

In the above code 21 basic blocks were identified after applying the algorithm. The identified

blocks and block coverage is given in Table 4.7 and Table 4.8 respectively.

Table 4.7 Lines of Code Comprising individual Blocks

Block

Lines

Comprising

the Block

B1 1-4

B2 5-6

B3 7-8

B4 9-10

B5 11

B6 12-13

B7 14

B8 15-16

B9 17

B10 18

B11 19-20

B12 21-24

B13 25

B14 26-27

B15 28

B16 29-30

B17 31

B18 32[-33

B19 34

B20 35-36

B21 37-38

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

41

Table 4.8 Block coverage

Test Cases
Blocks Covered

T1 B1,B2

T2 B1,B2

T3 B1,B2

T4
B1,B3,B4,B5,B6,B7,

B8,B9,B13,B14

T5
B1,B3,B4,B5,B7,B9,B13

B15,B16

T6
B1,B3,B4,B5,B7,B9,B13

B15,B17,B19,B21

T7
B1,B3,B5,B6,B7,B9,

B13,B15,B17,B18

T8
B1,B3,B5,B6,B7,B9,

B13,B15,B17,B19,21

T9
B1,B3,B5,B7,B8,B9,

B13,B15,B17,B19,B21

T10
B1,B3,B5,B7,B8,B9,

B13,B15,B17,B19,B20

T11
B1,B3,B5,B7,

B9,B10,B11

T12
B1,B3,B5,B7,

B9,B10,B12

T13
B1,B3,B5,B7,

B9,B10,B11

T14
B1,B3,B5,B7,

B9,B10,B11

From the Table 4.8 it can be seen that the test cases T1, T2, T3 and T11, T13, T14 are

redundant in terms of block coverage. The minimized test set therefore includes

T3,T4,T5,T6,T7,T8,T9,T10,T11,T12 and discards T1,T2,T13,T14. For the purpose of our

illustration we took another modified version of Triangle.c by introducing the following

features.

i. If the triangle is isosceles print the height of the triangle.

ii. If the triangle is scalene, print the area, circumradius and inradius of the triangle.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

42

The Figure 4.6 shows the modified version of Triangle.c produced by introducing above two

features.

Figure 4.6 Modified Triangle.c code

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

43

The fraction of modified lines contained within each block is taken as the block weight. The

idea behind doing so is that greater the number of modifications in a block, greater is the

error proneness of the block. Doing so, some blocks were found to have weight 0. In order to

overcome this “zero weight problem”, ‘1’ was added to each of the values. The table 4.9

gives the weights calculated for the blocks using the modified Triangle.c.

Table 4.9 Weight of Blocks

Block

Number of

Modified

Lines

Of Code

NMLOC

Weight

NMLOC /

∑NMLOC

B1 1+1 0.0645

B2 0+1 0.032

B3 0+1 0.032

B4 0+1 0.032

B5 0+1 0.032

B6 0+1 0.032

B7 0+1 0.032

B8 0+1 0.032

B9 0+1 0.032

B10 0+1 0.032

B11 0+1 0.032

B12 6+1 0.226

B13 0+1 0.032

B14 0+1 0.032

B15 0+1 0.032

B16 1+1 0.0645

B17 0+1 0.032

B18 1+1 0.0645

B19 0+1 0.032

B20 1+1 0.0645

B21 0+1 0.032

Total 31 0.996~1

To illustrate the working, two experiments were performed. Experiment 1 was to produce

the prioritized test case sequence TS1 using Table 4.8 (after removing redundant test cases)

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

44

as input and APBC as fitness function in Genetic Algorithm. Experiment 2 was to produce

the prioritized test case sequence TS2 using the same Table 4.8 (after removing redundant

test cases) as input and APBCm as the fitness function in Genetic Algorithm. Both

Experiments were performed using the Test Case Prioritization Tool based on Genetic

Algorithm. The convergence criteria used in the tool is the maximum fitness of any

individual contained in a population which was set to 0.78. Results of Experiment 1 and

Experiment 2 are compared in the Section 4.6 of this chapter.

4.5. VALIDATION OF RESULTS

The results of prioritization as obtained by tool developed are shown below in Figure 4.7 and

Figure 4.8.

Figure 4.7 Less AMLOC values per test case in TS1 produced in Experiment 1

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

45

Applying APBC means each block is equally likely to have fault and therefore contributes

equally to block coverage. A test case covering 6 blocks out of 10 means 60%. In modified

APBC metric, blocks that contain greater number of modified lines or is more error prone

contributes more to block coverage as shown below. For example, a test case covering 0.453

(sum of weights of blocks covered by test case) to a total of 0.982 (sum of weights of all

blocks) means 46% of block coverage. In other words a block having large weight associated

with it contributes larger to block coverage. Covering these blocks should therefore be the

first concern.

Figure 4.8 Greater convexity(improved coverage rate) graph using APBCm

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

46

The values calculated as per modified APBC and APBC are as follows:

Table 4.10 Results of Experiment 1

 Metric

Test Case sequence APBC

TS1(T2’,T6’,T9’,T1’,T10’,T8’,T3’,T5’,T4’,T7’) 0.79285

Table 4.11 Results of Experiment 2

 Metric

Test Case sequence

Modified

APBC

TS2(T10’,T8’,T5’,T9’,T3’,T7’,T2’,T1’,T6’,T4’) 0.80285

From the Table 4.10 and Table 4.11 it is clear that using APBC for comparing candidate

solutions may finally produce ineffective prioritized Test Case Sequence as output. TS2 is

better as it covers the block with greater number of modified lines first (that is blocks with

large weights). Hence, Modified APBC is better and is expected to be of great help in version

specific test case prioritization. It may therefore help in revealing the faults earlier.

4.6. DRAWBACKS OF THE FRAMEWORK

The framework presented in this chapter is the original framework for test case prioritization

proposed by us. We identified two major problems with this framework and enlist them

below:

1. A block in the original Average Percentage of Block Coverage (APBC) metric and

modified Average Percentage of Block Coverage (APBCm) metric refers to the basic

block, that is a block consisting of all sequential statements such that if first statement

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

47

in block gets executed then all the consecutive sequential statements in that block get

executed. Since it is not practically feasible to calculate the number of changes at the

level of blocks, this metric had limited application to small sized programs and not

software systems.

2. Most of the software systems developed today use object oriented approach and the

framework discussed in [36] was not applicable to the object oriented systems.

In the next chapter we present an enhanced and modified form of this framework which is the

main goal of the work presented in this thesis and analyze its effectiveness in the field of test

case prioritization problem. The chapter on empirical data collection illustrates the

application of the modified framework on two open source projects.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

48

CHAPTER 5

EMPIRICAL STUDY

In the previous chapter we observed certain shortcomings of the test case prioritization

framework. We now move ahead to resolve those problems and present a test case

prioritization framework which is indeed an enhancement over the framework presented in

chapter 4. This framework can be applied to both structured and object oriented systems.

Also, the framework produces a prioritized test case sequence that has an increased rate of

fault detection. In the study that follows, we give the details of the modified test case

prioritization framework which is our object of analysis and aim to address two research

questions stated in the next section.

5.1. RESEARCH QUESTIONS

Like any research work the work presented in this thesis aims to address the following

research questions:

RQ1. Is APBCm a better comparator metric than APBC?

RQ2. Does the proposed framework improve fault detection rate?

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

49

5.2. EFFICACY MEASURE

In order to address our research questions, we need certain measure with which we can

analyze the effectiveness of using the APBCm metric in the GA based tool, in the modified

framework. We have used Average Percentage of Fault Detection as the criterion for

analysis. It is defined as follows:

 𝑨𝑷𝑭𝑫 = 𝟏 −
𝐓𝐅𝟏) + (𝐓𝐅𝟐) + ⋯ … … + (𝐓𝐅𝐦)

𝒏 ∗ 𝒎
+

𝟏

𝟐𝒏
 (𝟓. 𝟏)

where 'TBi' represents the location of the test case, in the test case sequence, that first exposes

ith fault, 'm' represents the number of faults and 'n' represents the number of test cases. It is

the most widely used evaluator metric or comparator metric. It measures the rate at which

faults are discovered or revealed by a test case sequence. That is, higher the value of the

APFD metric, better is the prioritized sequence in terms of fault detection.

5.3. TEST CASE PRIORITIZATION TECHNIQUE

In this section, we present the modified test case prioritization framework which is our object

of study. That is, it is this framework that we will analyze for effectiveness in the test case

prioritization problem.

5.3.1. MODIFIED FRAMEWORK FOR TEST CASE

PRIORITIZATION: OBJECT OF STUDY

As discussed earlier, two major problems were identified with the framework presented in

previous chapter. A block in the original APBC metric and modified APBC metric refers to

the basic block, that is, a block consisting of all sequential statements such that if first

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

50

statement in the block gets executed then all the consecutive sequential statements in that

block get executed. Since it is not practically feasible to calculate the number of changes at

the level of blocks, this metric has limited application to small sized programs and not

software systems. In order to resolve the two problems, we modified the framework

presented in chapter 4 by redefining the interpretation of the metric APBCm and APBC. We

have, therefore, considered a class as a block unit in the modified framework thereby

extending its utility to object oriented systems. In this work we aim to analyze the

effectiveness of this GA based test case prioritization framework using two open source

projects.

Figure 5.1. Modified Framework for Test Case Prioritization

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

51

The modified framework has three major components: the modified APBCm metric which

considers a class as a block, the Additional Modified Lines of Code Coverage graph

(AMLOC) and the GA based tool. The GA based tool is the central main component of the

framework. Initially the tool takes the weight matrix and the class coverage matrix as the

input and produces a prioritized test case sequence and the corresponding AMLOC graph.

Figure 5.1 gives an overview of the modified framework.

5.3.2. MODIFIED APBC METRIC (APBCm)

The APBCm metric defined by Malhotra et al. is given below [1].

 𝑨𝑷𝑩𝑪𝒎 = 𝟏 −
(𝒘𝟏 ∗ 𝐓𝐁𝟏) + (𝒘𝟐 ∗ 𝐓𝐁𝟐) + … … … + (𝒘𝒎 ∗ 𝐓𝐁𝐦)

𝒏 ∗ (∑ 𝒘𝒊
𝒎
𝒊=𝟎)

+
𝟏

𝟐𝒏
 (𝟓. 𝟐)

The interpretation of the above equation has been redefined in the modified framework as

follows: 'wi' represents the weight of the 'ith' class, 'TBi' represents the location of the test

case, in the test case sequence, that first covers ith class, 'm' represents the number of classes

and 'n' represents the number of test cases. It should be noted that “block” refers is a generic

term and can be used to dente a basic block, a function, a class, a module. The GA based tool

uses the weight matrix and the class coverage matrix to compute the value of APBCm for

each of the candidate present in a population. Higher value of APBCm denotes higher fitness

level of a candidate in the population. In this work we shall analyze how the concept of

weighing the different regions of code differently, employed in this metric, affects the

working of GA based tool and rate of fault detection of the prioritized test case sequence

produced by the tool.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

52

5.3.3. GENETIC ALGORITHM BASED TOOL

We have developed a GA based tool in java using Eclipse IDE which uses the modified

interpretation of the APBCm metric as discussed in the section 3.3.2. The tool works as

follows:

Algorithm

Inputs: Weight matrix, Class Coverage Matrix

Output: A prioritized Test Case Sequence

Begin

a. Encoding: The tool uses permutation encoding to represent the candidate solutions to

test case prioritization problem. A candidate encoded using this strategy is represented

as a sequence of numbers which denotes a permutation. In our problem of test case

prioritization it denotes a permutation of test cases. That is, in a candidate sequence,

‘ith’ value indicates a test case whose rank is ‘i’. For instance, consider a sample

sequence (permutation of 5 test cases) “3, 4, 5, 1, 2”. In this sample sequence test case

‘3’ has rank ‘1’, test case ‘4’ has rank ‘2’, test case ‘5’ has rank ‘3’ and so on.

b. Initialization: The tool takes as input a set of test cases and computes permutations of

this set. An initial population of 50 candidates ordered lexicographically is generated as

the initial pool of candidates.

c. Evaluation: The tool uses the APBCm metric (defined in section 3.3.2) to compute the

fitness of each of the candidate.

d. Selection: The tool uses the Roulette Wheel strategy [] to select pairs of candidates and

for each selected pair performs step e and step f.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

53

e. Crossover: The tool performs the crossover operation based on crossover probability,

Pc and generates two children from the parents.

f. Mutation: The tool performs the mutation of the two children produced in step 4 on the

basis of mutation probability, Pm , and generates two children. These two children

become a part of the new population which is used as input to the next iteration.

g. Repeat steps c to step f till the algorithm converges.

End.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

54

CHAPTER 6

DATA COLLECTION AND

EXPERIMENT DESIGN

In this chapter we describe the meaning of the different data that will be used throughout the

experimentation and also highlight the computational details of each data. Apart from this,

we will provide the details of various tools, employed for successful conduction of the

experiments, as and when required.

6.1. DATA COLLECTION

In order to assess the test case prioritization framework, we designed and performed two

experiments. In Experiment 1, we used the APBC metric as fitness function in GA based tool

and obtained a prioritized test case sequence TS1.While in Experiment 2, we used the

APBCm metric as the fitness function in GA based tool and obtained another prioritized test

case sequence TS2. To assess the effectiveness and quality of the two test case sequences, we

used the additional fault coverage strategy and developed a graph. This section provides a

deep insight into how the data, to be experimented, was prepared.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

55

The two open source projects were taken from Souceforge [43] and Software Artifact

Infrastructure Repository (SIR) [44]. Sourceforge is a Free Open Source Software host that

allows users to build open source software systems. It also provides a common repository of

source code and documentation related to software projects. SIR is a repository, specialized

and dedicated to research in the field of Software Testing.

6.1.1.SUBJECT PROGRAMS

The data, to be experimented, was obtained from two open source projects JTopas [45] and

Xml-Security [46]. The JTopas project provides a small and easy to use java library for

tokenizing and parsing arbitrary text data like Html files, Xml files, RTF files, etc. It

comprises of 50 classes and around 5400 LOC. XML-security is a component library

implementing XML signature and encryption standards. It is supplied by the XML subproject

of the open source Apache project and is available at [47]. Currently, it provides a mature

implementation of Digital Signatures for XML, along with implementation of encryption

standards in progress. It comprises of 143 classes and around 16800 LOC. For the purpose of

our validation, we used version v0 and v1 (SIR versions) and considered a class as a block

for both the projects. we used CLOC tool [48] and scanned for all the classes present in the

version v0 and v1 and counted the number of lines added, deleted and modified in each of the

classes. CLOC is freely available, command based software that counts the number of

changes (additions, deletions, modifications) made in the source code and generates a report.

It supports a variety of report formats like csv, sql, etc. The weight of each class is calculated

using the following formula:

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

56

 𝐰𝐢 =
𝐜𝐢

∑ 𝐜𝐢
𝐧
𝐢=𝟏

 (𝟔. 𝟏)

where ‘n’ denotes the number of classes, ‘ci’ denotes the number of changes in the ‘ith’ class

and ‘wi’ denotes the weight of the ‘ith’ class. While preparing the weight matrix it was found

that some of the classes no changes, that is, number of modified lines of code is ‘0’. In order

to overcome this “zero error problem” a minimal count of ‘1’ was added to each of the

classes. Table 6.1 gives a short description of the subject programs and table 6.2 lists the

weight matrix of the JTopas project.

Table 6.1. Subject Programs

Project Size (LOC)

Number of

Classes

Number of

Sequential

Versions

Number of

Test Cases

Number of

Faults

JTopas 5400 50 4 10 10

Xml-Security 16800 143 9 15 20

Table 6.2.Weight Matrix for JTopas Project

Class

NMLOC(Number

of Modified LOC) Weights

C1 33 0.194

C2 27 0.158

C3 23 0.135

C4 23 0.135

C5 23 0.135

C6 1 0.005

C7 1 0.005

C8 1 0.005

C9 15 0.088

C10 1 0.005

C11 1 0.005

C12 1 0.005

C13 1 0.005

C14 18 0.1

C15 1 0.005

 170 (total) ~1

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

57

6.1.2. TEST SUITE

In order to conduct our experiments, we required the entire test suite of the JTopas and Xml

Security project, version v1. The Software Artifact Infrastructure Repository (SIR) provides

most of the information necessary for research in the field of testing like, test cases,

regression faults, change logs, etc. The JTopas and Xml-Security project have 10 and 15

JUnit test cases respectively. Apart from this we conducted several activities like obtaining

coverage information, creating faulty versions of the original project (version v1),

preparation of fault matrix and preparation of class coverage matrix. we used Eclipse Galileo,

an IDE to support the development of java projects and EclEmma [49], an eclipse plugin to

provide coverage based information. Each of the test cases was executed for both the

projects. For each test case execution EclEmma provides a detailed report at different levels

of coverage like class, methods, complexity, lines, etc. All the reports were merged manually

which required effort in activities like adding the classes which were completely missed by

each of the test cases, sorting the entire file and eliminating classes which were not covered

by any of the available test cases. The final common class coverage was reported in an excel

sheet. Table 6.3 displays the class coverage matrix for JTopas Project.

Table 6.3. Class Coverage Matrix for JTopas Project.

Clas

s

TC

1

TC

2

TC

3

TC

4

TC

5

TC

6

TC

7

TC

8

TC

9

TC1

0

C1 0 0 1 1 1 1 1 1 1 1

C2 1 1 0 0 0 0 0 0 0 0

C3 1 1 0 0 0 0 0 0 0 0

C4 1 0 0 0 0 0 0 0 0 0

C5 1 1 0 0 0 0 0 0 0 0

C6 0 0 0 0 0 0 0 1 1 1

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

58

C7 0 0 1 1 1 1 1 0 0 1

C8 0 0 0 0 0 1 0 0 0 0

C9 0 0 0 0 0 0 0 1 1 1

C10 0 0 1 1 1 1 1 0 0 1

C11 0 0 0 0 0 1 0 0 0 0

C12 0 0 1 1 1 1 1 0 0 1

C13 0 0 1 1 1 1 1 1 1 1

C14 1 0 0 0 0 0 0 0 0 0

C15 0 0 1 1 1 1 1 1 1 1

6.1.3. FAULTS

The objective of this work was to analyze the prioritized test case sequences produced by the

GA based tool in the two experiments. In order to assess the test case sequences, we used the

percentage of regression faults discovered by them. For this we needed regression faults data.

Regression faults are the faults introduced in the software system as a result of changes made

to the system. SIR provides such faults for the JTopas and Xml-security project. The fault

seeding procedure, followed by SIR, is similar to that defined and used in several previous

studies in the field of testing techniques [37],[38],[39]. The following types of faults were

considered by the SIR seeders [35]:

a. Faults associated with variables: definition of variable, redefinition of variable, deletion

of variable, change value of variable in existing assign statement.

b. Faults associated with control flow: addition of new block of code, deletion of path,

redefinition of execution condition, removal of block, change order of execution, new

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

59

call to external function, removal of call to external function, adding function,

removing function.

c. Faults associated with specific Java language constructs or facilities (such as

constructors or inheritance).

Given the potential faults, we seeded the faults one at a time and created faulty versions of

the existing original version v1 for both the projects. We then executed the entire test suite

on each of the faulty versions to visualize which test cases succeeded in revealing which

faults. In doing so it was found that there were 3 faults (F4, F7, F8) in JTopas project which

could not be revealed by any of the existing test cases in the test suite. While following

similar procedure with the Xml-security project we found that there were 13 faults which

could not be revealed by any of the available test cases. Apart from this there were two 2

faults which were revealed by more than 25% of the test cases. Since, we were not

interested in assessing the effectiveness of the test suite, we simply discarded these faults.

The final fault matrices for the JTopas and Xml-Security project are given in Table 6.4 and

Table 6.5.

Table 6.4. Fault Matrix of JTopas

Fault TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10

F1 1 0 0 0 0 0 0 0 0 0

F2 1 0 0 0 0 0 0 0 0 0

F3 1 0 0 0 0 0 0 0 0 0

F5 0 0 0 1 1 0 0 0 0 0

F6 0 0 0 1 0 0 0 0 0 0

F9 1 1 0 0 0 0 0 0 0 0

F10 1 1 0 0 0 0 0 0 0 0

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

60

Table 6.5. Fault Matrix of Xml-Security

 T

C1

T

C2

T

C3

T

C4

T

C5

T

C6

T

C7

T

C8

T

C9

TC

10

TC

11

TC

12

TC

13

TC

14

TC

15

F1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

F2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

F3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

F4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

F5 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

6.2. EXPERIMENT DESIGN

Figure 6.1. Experiment Design or Process

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

61

In order to be systematic in our validation process, we designed a strategy for conducting the

experiments. Figure 6.1 gives an overall description of the complete experimental process

including the modified framework presented in figure 5.1, various inputs to the framework,

outcome of applying the framework and the basis or criteria for validation. The experiments

are designed in such a way that our three research questions can be addressed using these two

experiments.

We selected two open source projects to validate the modified framework. For each project

we computed the weight matrix and the class coverage matrix and performed two

experiments as shown in figure 6.1 using the weight matrix and the class coverage matrix of

the selected project. In the first experiment APBC was chosen as the fitness function in the

GA based tool and in the second experiment APBCm was chosen as the fitness function.

Apart from this, as discussed earlier, for both the experiments, a class is considered as a

block. For both the experiments the convergence criteria for GA based tool is chosen to be

the maximum fitness of any candidate in the population. It was set to be 0.96 for Xml-

Security project and 0.913 for JTopas project. The reason behind choosing different values in

different projects is that the two projects differ significantly in project size and other

characteristics. we also computed the fault matrix using the faults data available with the

project and analyzed the results of the experiments (prioritized test case sequence) using the

APFD metric. For this an additional fault coverage graph for the prioritized sequence was

plotted using the fault matrix The APFD value gives the area under the curve plotted. For

details on APFD metric refer to chapter 5.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

62

CHAPTER 7

RESULT ANALYSIS

In this chapter we present an analysis of the results produced by the modified and enhanced

test case prioritization framework, presented in chapter 6, when applied on the two open

source projects Jtopas and Xml-Security and provide answers to the research questions stated

in chapter 5.

7.1. (RQ1) Is APBCm a better comparator metric than APBC?

To address this research question, it is important to understand the role played (role of

fitness function) by the APBCm metric (fitness function in experiment2) or APBC metric

(fitness function in experiment 1) inside the GA based tool. The fitness function in the GA

based tool is used for comparison of various candidate solutions (test case sequences) and

selection of parents for reproduction. A good and healthy comparison of candidates from the

population, during selection phase in GA, results in good parents being selected. This

ensures that the future generation has fitter candidates than are present in the current

generation.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

63

Figure 7.1. Results of JTopas Project

Figure 7.2. Results of Xml-Security Project

Table 7.1. Results of JTopas project

 Test Sequence APFD Value

Experiment 1 (Using

APBC)

TC6, TC1, TC9, TC2, TC8,

TC3, TC7, TC5, TC10, TC4

65%

Experiment 2 (Using

APBCm)

TC1, TC9, TC6, TC4, TC2,

TC10, TC5, TC8, TC3, TC7

86.4%

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

64

Table 7.2. Results of Xml-Security Project

 Test Sequence APFD Value

Experiment 1 (Using

APBC)

TC2, TC8, TC10, TC7, TC5,

TC9, TC15, TC1, TC14,

TC4,TC3,TC6,TC11,TC13,TC12

63.3%

Experiment 2 (Using

APBCm)

TC8, TC2, TC10, TC6, TC11,

TC7, TC1, TC4, TC14,

TC3,TC5,TC12,TC15,TC13,TC9

88.67%

The two sequences TS1 and TS2 produced by the GA based tool, in the two experiments,

are given in table 7.1 and table 7.2 for the JTopas and Xml-Security projects respectively.

Figure 7.1 and figure 7.2 show the fault coverage graph for the two projects. Since the

APFD value of the sequence TS2, in both the projects, is greater than APFD value of the

sequence TS1, it is clear that the tool performs better with the APBCm metric. It can

therefore be deduced that the APBCm metric is a better comparator metric than APBC.

7.2. (RQ2) Can the proposed framework improve the rate of fault detection?

In order to address this research question we plotted the fault coverage graph given in figure

7.1 and figure 7.2. The vertical axis shows the percentage of total regression faults revealed

where as the ‘ith’ value on horizontal axis shows the test suite fraction that has been

executed. A value (x,y) in the graph denotes that ‘y’ percent of total regression faults are

revealed after ‘x’ fraction of the test suite, in the order specified by the test case sequence, is

executed.

The APFD value represents the area of the graph shown. Looking at the graphs, it is

observed that the APFD values show a remarkable increase of 21% and 25% in the second

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

65

experiment for the JTopas and Xml-Security project respectively. Figure 7.3 and figure 7.4

shows this increase in fault coverage per test case execution for the two projects. This

implies that the modified framework for test case prioritization increases the rate of fault

detection of the regression test suite. It can therefore be used to generate a test case sequence

with a high potential of exposing the faults earlier during regression testing.

Figure 7.3. Increase in Fault Deatection Rate for Jtopas Project.

Figure 7.4. Increase in Fault Detection Rate for Xml-Security Project.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

66

7.3. DISCUSSIONS

Software maintenance is a rigorous activity requiring a huge amount of resources, time and

effort. Often during maintenance and regression testing, testers are short of time and

resources. In such a scenario, smart testing and not hard testing is the key objective of testers.

Using the concept of weights to highlight the error prone and significantly modified code

from less error prone regions allows testers to divert their time and effort in testing these

parts rather than testing the entire software system with equal focus on each and every

portion of code. The concept of assigning weights also highlights the significance of the

changed code regions. There is no point in extensively testing a change in a feature or

functionality that is known to be less than 5% usable. Errors and bugs are less likely to be

reported for such a feature as these features are hardly used. The question now arises that “Is

it worth testing such a change?” when it is understood that a fault or a bug in such a feature

will probably be reported after several years. The new and enhanced test case prioritization

framework presented in chapter 5 allows testers to perfectly manage their time, effort and

resources by ordering test cases in a smart way so that highly error prone regions and

significant changes are tested first and faults are revealed earlier during testing.

The major advantage of the modified framework are as follows:

1. It is applicable to object oriented systems as well as structured systems (considering a

function as a block).

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

67

2. The concept of weighing also helps testers to identify weak portions and holes in the

code. Such regions of code are more likely to contain faults. Testing such regions of

the code prior to others exposes the faults in the software system early in regression

testing. It helps testrs to understand “what to test” and “how much to test”.

3. Choice of class as a block unit is apt because it is neither too small like a basic block

or a statement, nor it is too large like a complete module or a component. Small size

of a block makes the framework difficult to apply and large block size makes it

difficult to localize the faults exposed.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

68

CHAPTER 8

CONCLUSIONS

Regression testing is a complex and costly process that may involve multiple objectives and

constraints. For example, the cost of executing a test case is usually measured as the time

taken to execute the test case. However, there may be a series of different costs involved in

executing a test case, such as setting up the environment or preparing a test input, each of

which may be subject to a different constraint. Existing techniques also assume that test cases

can be executed in any given order without any change to the cost of execution, which seems

unrealistic. Test cases may have dependency relations between them. It may also be possible

to lower the cost of execution by grouping test cases that share the same test environment,

thereby saving set-up time.

Considering the complexity of real-world regression testing, existing representations of

problems in regression testing may be over-simplistic. Larger software systems do not simply

entail larger problem size; they may denote a different level of complexity. Test Case

Prioritization is an essential task that tries to reduce the testing effort in maintenance phase to

a considerable extent. In this thesis we have described the original test case prioritization

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

69

framework proposed by us in [36]. we have, thereby, highlighted the major drawbacks of this

framework and propose a new enhanced and modified framework which is applicable to

object oriented systems. The framework uses a tool based on Genetic Algorithm, developed

in Java. The framework also highlights the necessity and the benefits of using a new metric

APBCm (considering a class as a block unit in the metric) as fitness evaluation function in

GA. Several factors that can be used to embed the knowledge about significance of blocks in

the APBCm metric have also been discussed. However, the exact computation of weights

taking into account all the factors discussed, is still an open challenge. Finally, the results

have been analyzed and compared, on the basis of fault coverage criteria using APFD metric,

with those produced when traditional APBC metric was used as fitness evaluation function in

GA based tool. It was then found that APBCm metric is better and efficient than APBC. The

approach, presented here, has its application in the areas of version specific test case

prioritization but can also be extended to generalized test case prioritization problem.

Considering practical weight factors is a general concept that can help improve cost of

regression testing and can also be extended to the problems of test suite minimization and

regression test selection.

This work provides a detailed analysis of incorporating weights in test case prioritization

problem, with the aim of improving the quality of regression testing. This can be used to

reduce the costs incurred and time elapsed in regression testing or software testing in general.

The literature survey is an evidence to suggest that the topic of test case prioritization is of

increasing importance. The field continues to attract growing attention from the wider

research community.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

70

The main contributions of the work are as follows:

a. In this thesis we propose a test case prioritization framework that is applicable to object

oriented systems. The framework uses the GA based tool and APBCm metric as fitness

function in the tool.

b. We applied the framework on two open source projects JTopas and Xml-Security.

c. We compared and analyzed the prioritized test case sequences produced by the

framework using the APFD metric and show that the framework has indeed improved the

rate of fault detection by 21% and 25% for JTopas and Xml-Security projects

respectively.

d. We also compared the APBC and APBCm metric and show that the latter is a better

comparator metric and yields better results when used as fitness function in GA based

tool.

e. We have presented an empirical validation of the proposed framework which shows that

the proposed framework produces a prioritized test case sequence with high potential of

exposing faults early during regression testing.

Hence, we conclude that the proposed framework can be used by software practitioners and

researchers for obtaining prioritized test case sequence during version specific regression

testing.

There are a few areas which still need to be looked upon in future. In this work, we have

computed the weights using the knowledge of modifications in the code. There are several

other factors also that can be used along with this knowledge to highlight the error prone

regions of code such as complexity, coupling between classes, etc. Apart from this, the

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

71

framework can be extended to general test case prioritization problem where testers can

focus on testing the highly usable features rather than testing each feature with equal time

and effort. In such case, portion of code, implementing these features, is significant and

should be assigned a higher weight. In future we aim to address above mentioned challenges.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

72

REFERENCES

1. Aggarwal, K.K, Singh, Y., “Software Engineering”, New Age International Publishers,

Second ed., 2006.

2. Kaner, C., “Exploratory Testing,” Quality Assurance Institute Worldwide Annual Software

Testing Conference Florida Institute of Technology, Orlando, FL, 2006

3. Rothermel, G., Untch, R.J., Chu, C., Prioritizing test cases for regression testing. IEEE

Transactions on Software Engineering October 2001,Vol 27 No. 10 ,p 929–948.

4. Elbaum, S., Rothermel, G., Kanduri, S., Malsihevsky, A.G., “Selecting A Cost Effective Test

Case Prioritization Technique”.Software Quality Control Journal, 2004, Vol 12 No. 3, p 185-

210.

5. Claes, W., Martin, H., Magnus, C. Ohlsson, “Understanding The Sources Of Software

Defects: A Filtering Approach”, Proceedings the 8th International Workshop on Program

Comprehension, Limerick, Ireland, 2000.

6. Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J., Test case prioritization: An empirical

study. Proceedings of International Conference on Software Maintenance (ICSM 1999),

IEEE Computer Society Press, 1999,p 179–188.

7. Elbaum, S.G., Malishevsky, A.G., Rothermel, G., Prioritizing test cases for regression

testing. Proceedings of International Symposium on Software Testing and Analysis (ISSTA

2000), ACM Press, 2000; p 102–112.

8. Elbaum, S., Gable, D., Rothermel, G., Understanding and measuring the sources of variation

in the prioritization of regression test suites. Proceedings of the Seventh International

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

73

Software Metrics Symposium (METRICS 2001), IEEE Computer Society Press, 2001, p

169–179.

9. Elbaum, S.G., Malishevsky, A.G., Rothermel, G., Incorporating varying test costs and fault

severities into test case prioritization in Proceedings of the International Conference on

Software Engineering (ICSE 2001), ACM Press, 2001,p 329–338.

10. Malishevsky, A., Rothermel, G., Elbaum, S. “Modeling the cost-benefits tradeoffs for

regression testing techniques” in Proceedings of the International Conference on Software

Maintenance (ICSM 2002), IEEE Computer Society Press, 2002, p 230–240.

11. Rothermel, G., Elbaum, S., Malishevsky, A., Kallakuri, P., Davia, B. “The impact of test

suite granularity on the costeffectiveness of regression testing.” in Proceedings of the 24th

International Conference on Software Engineering (ICSE 2002), ACM Press, 2002, p 130–

140.

12. Jones, J.A., Harrold, M.J. “Test-suite reduction and prioritization for modified

condition/decision coverage” in Proceedings of International Conference on Software

Maintenance (ICSM 2001), IEEE Computer Society Press, 2001, p 92–101.

13. Leon, D., Podgurski, A. “A comparison of coverage-based and distribution-based techniques

for filtering and prioritizing test cases” in Proceedings of the IEEE International Symposium

on Software Reliability Engineering (ISSRE 2003), IEEE Computer Society Press, 2003, p.

442–456.

14. Carlson, R., Do, H., Denton, A. “A Clustering Approach to Improving Test Case

Prioritization: An Industrial Case Study” in 27th IEEE International Conference on Software

Maintenance (ICSM), 2011.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

74

15. Tonella, P., Avesani, P., Susi, A. “Using the case-based ranking methodology for test case

prioritization” in Proceedings of the 22nd International Conference on Software

Maintenance (ICSM 2006), IEEE Computer Society, 2006, 123–133.

16. Yoo, S., Harman, M., Tonella, P., Susi, A. “Clustering test cases to achieve effective &

scalable prioritisation incorporating expert knowledge” in Proceedings of International

Symposium on Software Testing and Analysis (ISSTA 2009), ACM Press, 2009, p 201–211.

17. Kim, J.M., Porter, A. “A history-based test prioritization technique for regression testing in

resource constrained environments” in Proceedings of the 24th International Conference on

Software Engineering (ICSE 2002), ACM Press, 2002,p 119–129.

18. Mirarab, S., Tahvildari, L. “A prioritization approach for software test cases based on

bayesian networks” in Proceedings of the 10th International Conference on Fundamental

Approaches to Software Engineering, Springer–Verlag, 2007, p 276–290.

19. Korel, B., Tahat, L., Harman, M. “Test prioritization using system models” in Proceedings of

the 21st IEEE International Conference on Software Maintenance (ICSM 2005), 2005, p 559–

568.

20. Korel, B., Koutsogiannakis, G., Tahat, L.H. “Model-based test prioritization heuristic

methods and their evaluation” in Proceedings of the 3rd international workshop on Advances

in Model-based Testing (A-MOST 2007), ACM Press, 2007, p 34–43.

21. Korel, B., Koutsogiannakis, G., Tahat, L.. “Application of system models in regression test

suite prioritization” in Proceedings of IEEE International Conference on Software

Maintenance 2008 (ICSM 2008), IEEE Computer Society Press, 2008, p 247–256.

22. Panigrahi, Chhabi, R., Mall, R. “Model Based Regression Test Case Prioritization”. ACM

SIGSOFT Software Engineering Notes,2001, Vol 35 No 6, p 1-7

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

75

23. Roongruangsuwan, S., Daengdej, J., “A Test Case Prioritization Maethod with Practical

Weight Factors”, Journal Of Software Engineering, 2010, Vol 4 No. 3, p 193-214.

24. Yoo, S., Harman, M. Pareto, “Efficient multi-objective test case selection” in Proceedings of

International Symposium on Software Testing and Analysis (ISSTA 2007), ACM Press, 2007,

p 140–150.

25. Do, H., Mirarab, S.M., Tahvildari, L., Rothermel G., “An empirical study of the effect of

time constraints on the cost-benefits of regression testing” in Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, ACM Press,

2008, p 71–82.

26. Walcott, K.R., Soffa, M.L., Kapfhammer, G.M., Roos, R.S.. “Time aware test suite

prioritization” in Proceedings of the International Symposium on Software Testing and

Analysis (ISSTA 2006), ACM Press, 2006, p 1–12.

27. Zhang, X., Qu, B., “An Improved Metric for Test Case Prioritization” in Eighth Web

Information Systems and Applications Conference, IEEE, 2011.

28. Johnson, S.M. (1963), "Generation of permutations by adjacent transposition", Mathematics

of Computation 17, p 282–285, doi:10.1090/S0025-5718-1963-0159764-2.

29. Trotter, H. F. (August 1962), "Algorithm 115: Perm", Communications of the ACM , Vol 5

No. 8, p 434–435.

30. Levitin, A. “Introduction to The Design & Analysis of Algorithms”, Addison Wesley, 2003.

31. Thengade, A., Dondal, R., “Genetic Algorithm – Survey Paper”. MPGI National Multi

Conference 2012 (MPGINMC-2012), Proceedings published by International Journal of

Computer Applications.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

76

32. Ma, Z., Zhao, J. “Test Case Prioritization based on the Analysis Of Program Structure” in

15th Asia-Pacific Software Engineering Conference, 2008. APSEC '08.,IEEE, p 471-478.

33. Zhao, L., Wang, L., Yin, X. “Context Aware Fault Localization via Control Flow Analysis”.

Journal Of Software,2011, Vol 6, No. 10.

34. Langdon, W.B., Harman, M., Jia, Y. “Efficient multi-objective higher order mutation testing

with genetic programming”. Journal Of Systems and Software, 2010, ACM, Vol 83 No. 12, p

2416-2430.

35. Allen, F.E. “Control Flow Analysis” in Proceedings of Symposium on Compiler Optimization

July 1970, ACM-SIGPLAN, Vol 5 No. 7, p 1-19

36. Malhotra, R., Tiwari, D. “Development of a framework for Test Case Prioritization using

Genetic Algorithm”

37. Foster, H., Goradia, T., Hutchins, M., Ostrand, T. “Experiments on the effectiveness of data

flow and control flow test adequacy criteria” in Proceedings of the International Conference

on Software Engineering, (May 1994), 191-200.

38. Horgan, J.R., London, S., Mathur, A.P., Wong, W.E. “Effect of test set size and block

coverage on the fault detection effectiveness” in Proceedings of the Fifth International

Symposium on Software Reliability Engineering, (November 1994), 230-238.

39. Horgan, J.R., London, S., Mathur, A.P., Wong, W.E. “Effect of test set minimization on the

fault detection effectiveness” in Proceedings of the 17th International Conference on

Software Engineering, (April 1995), 41-50.

40. Avritzer, A., Weyuker, E.J. “The automatic generation of load test suites and the assessment

of the resulting software”. IEEE Transactions on Software Engineering, 21(9), September

1995, 705-716.

Development and Validation of Test Case Prioritization Technique using Genetic Algorithm

77

41. Agrawal, H., Horgan, J., London, S., Wong, W. “A study of effective regression in practice”

in Proceedings of the Eighth International Symposium on Software Reliability Engineering,

November 1997, p 230-238.

42. Chu, C., Harrold, M., Rothermel, G., Untch, R. “Test case prioritization: An empirical study”

in Proceedings of the International Conference on Software Maintenance, 1999, p 179-188.

43. http://www.sourceforge.net

44. http://sir.unl.edu

45. http://jtopas.sourceforge.net/jtopas

46. http://santuario.apache.org

47. http://sir.unl.edu/content/bios/xml-security.php

48. http://cloc.sourceforge.net/

49. http://www.eclemma.org.

.

