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ABSTRACT 
 

A swarm consists of simplistic mobile nodes sharing information to achieve a common 

complex task. Most real world sensors result in noisy data which must be corrected to 

achieve accurate results. Noise filter or estimation algorithms are very useful in 

achieving this task. Sensor fusion is another useful technique to attain more useful and 

meaningful data from multiple sources of less accurate data. In the proposed system a 

group of mobile nodes are used to measure a changing parameter of another underlying 

system. But the measurement taken by these nodes is assumed to be erroneous. Thus, 

an instance of the standard discrete Kalman filter is used at each node to obtain a more 

accurate estimate. In this dissertation, two sharing algorithms are proposed for 

homogeneous and heterogeneous swarms. Each algorithm uses two different types of 

sharing schemes, complex and simple. A simple analysis of the standard Kalman filter is 

conducted to observe its characteristics. The comparative analysis of the two proposed 

algorithms and a standard moving average shows improved performance of both 

algorithms. Also, the behaviour of the algorithms is studied with change in number of 

member nodes, sensor range, communication range, sensor accuracy and type of 

sharing in the system. It is also shown that the heterogeneous swarm performs better 

with the proposed heterogeneous algorithm than the homogeneous algorithm which 

does not account for the difference in each node.    
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1.  Introduction 
 

Distributed estimation is a fundamental information processing problem in swarm 

networks. A swarm system or swarm network consists of a group of mobile nodes 

communicating and sharing information with each other to achieve a common goal. A 

real world swarm network would considerably depend on accurate estimation and 

sharing of noisy data. All solutions to such a problem must take into account the 

dynamic nature of swarm networks.  

 

1.1  Problem statement 

In a given system of a group of nodes (swarm), a common dynamic parameter of an 

underlying system may be measured. Each node of the swarm independently measures 

the value of that parameter, along with certain error and disseminates the information 

in the whole swarm. The goal is to estimate the accurate real time value of the 

parameter.  

 

1.2  Related topics 

A swarm network may be broadly classified as homogeneous and heterogeneous. 

Homogeneous swarms consist of identical nodes, whereas, heterogeneous swarms 

consist of dissimilar nodes. Both swarms systems must be analyzed separately. Sensor 

fusion is the task of integrating data from multiple sources resulting in more meaningful 

or useful data. Sensor fusion has wide application in distributed environment. But 

sensor fusion is not effective if data is noisy. Hence, accurate estimation of data is very 

important. Noise filters are an essential class of filters in the field of signal processing. 

Kalman filter is one such noise filter. The standard Kalman filter consists of a set of 

mathematical equations that provides an efficient computational method to estimate 

the state of a given process, in a way that minimizes the mean of the squared error [13]. 

The filter is simple and powerful in the sense that it only requires the previous state to 

estimate the next state of a process. A Kalman filter with non uniform sampling is used 

to work effectively with the distributed and dynamic swarm. 
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1.3  Proposed work 

In this dissertation, two sensor fusion algorithms are proposed for both homogeneous 

and heterogeneous swarm networks. The homogeneous system consists of nodes 

having identical sensors with similar error magnitude and on the other hand, the 

heterogeneous system consists of nodes having dissimilar sensors and error magnitude. 

The Kalman filter is utilized to accurately estimate the noisy values measured by the 

sensors. Also, identical and dissimilar filters operate on each node of homogeneous and 

heterogeneous system respectively. The behaviour of both systems in different 

conditions is analyzed.    

 

The behaviour of a standard Kalman filter is analyzed for reference. A comparative 

analysis of homogeneous and heterogeneous swarms, along with respective algorithms, 

is conducted. The analysis based on different number of nodes clearly shows improved 

performance for both algorithms compared to a standard moving average. It also shows 

improved performance of the heterogeneous algorithm. Also, the behaviour of the 

heterogeneous swarm with the homogeneous algorithm is analyzed to understand the 

behaviour of the heterogeneous system with both algorithms. It is clearly observed that 

the heterogeneous system shows increased performance with its corresponding 

algorithm.  
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2.  Swarms 
 

A swarm system or a swarm network consists of a group of mobile nodes (identical or 

different) communicating and sharing information to achieve a common goal. The 

‘swarm’ intelligence is characterized by cooperative or collective behaviour of very 

simplistic nodes with limited capabilities to achieve complex global intelligence. 

 

Some natural examples of swarm intelligence are bees and ants colonies, bacterial 

growth, animal herding, bird flocking and fish schooling. Several swarm algorithms have 

been developed by emulating such natural behaviour[14,15,29,32,33]. Individual 

organisms living in large groups naturally follow simple rules to achieve a larger goal 

for the whole group. Flocking and schooling are easily achieved by the participating 

individuals by simply observing their neighbours and correcting their own position 

with respect to them, this leads to elaborate and complex group motion. Insects such as 

bees and ants largely rely on swarm behaviour. Tasks such as foraging, colony defense, 

exploration etc. are direct results of complex swarm behaviour arising from simple 

individual behaviour and communication among the group.    

  

The swarm system is largely decentralized and thus, does not completely rely on 

specific decision making or control nodes. Therefore, all algorithms adapted for swarm 

system must also be decentralized.  Some swarms may be completely decentralized and 

rely on individual decision making using data gathered from neighbours. Other types of 

systems depend on master-slave or clustering (with a chosen cluster head) 

configurations. In such cases, a representative node is chosen for either the whole 

swarm or a sub cluster of the swarm. All or partial decision making is done by this 

representative node. Algorithms for these systems must handle failure of representative 

node, reselection of representative node, manage communication between the 

representative node and other members [4,20,28,31].   These decentralized nodes also 

have self organizing capability. This supports dynamic increase or decrease in number 

of nodes actively participating in the swarm. Also, the roles performed by these nodes 

may change over a period of time. This fluctuation in the number of nodes and their 

roles must be managed and handled properly since it is an essential feature of all 
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swarms.  The inherent decentralized and self organizing characteristics lead to a very 

adaptive and dynamic system. Such a system has a very high fault tolerance and shows 

increased efficacy in adapting to changing and unpredictable future states.  

  

All swarms systems rely on effective communication among the nodes. This dynamic 

network of such mobile nodes is essential for swarm intelligence. Members of a swarm 

constantly share their position and other problem specific information. This shared 

information is the basis for all higher level algorithms. To properly function most 

swarming algorithms also require that all nodes be synchronized. Such synchronization 

can easily be achieved by using standard algorithms such as the well known Lamport’s 

logical clock [17,28].  

 

A network of nodes exhibiting swarm intelligence may be of two types, homogeneous 

swarms consist of identical member nodes and heterogeneous swarms. and 

heterogeneous swarms consist of dissimilar nodes. 

 

2.1  Homogeneous swarms 

Such swarms are more common in theoretical study [2,5,25]. Standard study of swarm 

intelligence is based on nodes with identical attributes and capabilities. All member 

nodes exhibit identical motion characteristics, have identical sensors, identical 

processing capabilities, identical communication and other data collection and 

processing standards.  Such swarms are simpler to manage due to the inherent 

redundancy and equality among the nodes. A failure or addition of a node can be easily 

handled. 

 

2.2  Heterogeneous swarms 

Such swarms are less frequently studied but are essential in real world applications 

[8,18,21]. Heterogeneous swarms are more versatile since they take into account the 

slight difference in attributes of each node. Such swarms categorize nodes into different 

classes. This categorization may be based on several factors such as agility, efficiency of 

computation, efficiency of available sensors etc. The algorithms utilized in such swarms 

are more complex since they must handle different types of nodes and each node may or 

may not have another equivalent node. Heterogeneous swarms allow incorporation of 
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multiple nodes with a large number of differences, for example, a single cohesive swarm 

may consist of a few slow moving nodes with very large processing capability, and a 

large number of small, simplistic and fast moving nodes with limited capabilities.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

3.  Sensor Fusion 
 

Sensor fusion is the process of integration of data obtained from multiple identical or 

dissimilar sensors measuring a common or disparate source, such that the resulting 

information is more consistent, accurate and useful [3,9]. Simplest sensor fusion may 

have completely identical sensors measuring a common source. A complex system may 

consist of multiple dissimilar sensors measuring multiple different sources to obtain 

more accurate state metrics of the environment being observed. It is well studied and 

very essential in distributed systems such as senor networks and swarms [3,6,9,16].   

 

Sensor fusion is of two type centralized and decentralized, depending on where the 

fusion occurs. In centralized fusion, all data is sent to a central location where it is 

processed and fused. In a decentralized system, the data may be processed by multiple 

individual sites and processing data independently. An extremely dynamic system such 

as a swarm, usually utilizes decentralized sensor fusion. Each node processes data 

obtained by multiple neighbours. Though, there is no single site dependency in such 

systems, the fused sensor data at multiple sites may or may not be same due to 

dependency on available neighbours and different sensor fusion process states at 

different sites. 

 

Real world data usually has a component of unwanted error in it. Reduction of this error 

in measurement of a single error prone source can be achieved in different ways; using 

multiple different sensors measuring simultaneously, or identical sensors measuring 

continuously over a period of time, or a combination or the two methods.  Sensor fusion 

can be applied effectively to integrate the data measured by multiple sensors to 

estimate an accurate value of the source. Sensor fusion may also be used to gather 

measurement from multiple sources and use their data to estimate the value of a related 

parameter.     

 

Sensor fusion largely depends on and is a combination of statistical analysis, filtering 

and estimation techniques. Fusion techniques utilized over a period of time may 

gradually estimate a more accurate value or may be used to continuously measure a 
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source. Thus, in dynamic systems or networks such as swarms, synchronization is 

essential among member nodes [17].      
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4.  Noise Filter 
 

Noise filters or estimators are essential in statistical analysis and signal processing. 

Measurement of most real world sources under observation or study lead to erroneous 

data. If the original source model is known then most noise can easily be filtered out. 

But most estimators gradually filter the noise over a period of time utilizing past data 

and an approximate model of the original source under study. The most basic estimator 

is a simple average of all past measurements or a moving average of past k 

measurements. But most commonly used filters are more complex and take into 

account the approximate model of the source to estimate a future value.  

 

Bayesian estimators are very common class of noise filters which are based on Bayesian 

statistics. It is a subfield of statistics in which evidence about true state of the system 

under study is expressed in terms of “Degree of belief” or Bayesian probability. Bayes' 

theorem, eq. (4.1), links the degree of belief in a proposition before and after accounting 

for evidence. 

  

 
(ܤ|ܣ)ܲ =

(ܣ)ܲ(ܣ|ܤ)ܲ
(ܤ)ܲ  (4.1)

 

For proposition A and evidence B, 

 ܲ(ܣ), the prior, is the initial degree of belief in A. 

 ܲ(ܤ|ܣ), the posterior, is the degree of belief having accounted for B. 

 The quotient (|)
()

 represents the support B provides for A. 

Thus, in such estimators the priori data is used to estimate a more accurate posterior 

data.   

  

 

4.1  Wiener Filter 

The wiener filter was proposed by Norbert Wiener during 1940’s [30]. This filter 

assumes that one has prior knowledge about both signal and the (additive) noise, which 

are stationary linear stochastic processes. This priori information is used by this linear 
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time-invariant filter to obtain a more accurate posterior. The wiener filter is based on 

the Minimum Mean-Square Error (MMSE) estimator, which minimizes the mean square 

error in a Bayesian setting.  

 

4.2  Particle Filter 

The particle filter, also known as Sequential Monte Carlo method (SMC), is a complex 

estimation technique which is based on simulation [1,7]. The particle filter uses Monte 

Carlo method, i.e., it does not use a closed form expression but instead uses repeated 

random sampling to obtain results. The random samples or particles are obtained in a 

given probability distribution. The various results obtained from different samples are 

compared and a few more accurate samples are chosen. This step is repeated until a 

tighter set of samples is obtained. Unlike standard Kalman and Wiener filter, there are 

very few assumptions and limitations. The system may or may not be linear and noise 

may or may not be Gaussian. Though particle filters are versatile and fast, but they are 

also very complex and may not be effectively utilized by very simplistic member nodes 

of a swarm. To use such a filter each node would have to run its own complex particle 

filter due to decentralized sensor fusion.  

 

4.3  Kalman Filter 

In 1960, R.E. Kalman published his famous paper describing a solution to the discrete-

data linear filtering problem [13].The Kalman filter is a set of mathematical equations 

that provides an efficient computational means to estimate the state of a process, in a 

way that minimizes the mean of the squared error. The filter is very powerful in several 

aspects: it supports estimations of past, present, and even future states, and it can do so 

even when the precise nature of the modelled system is unknown. The Kalman filter has 

been the subject of extensive research and application [22,23,24,26,27].  

 

4.3.1  Standard filter with uniform sampling 

The standard discrete Kalman filter is based on the assumption that the underlying 

system has a linear evaluation function and all noise in the system is additive and 

follows normal or Gaussian distribution.  
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The Kalman filter estimates the state ݔ ∈ ℝ of a discrete-time controlled process that is 

governed by the linear stochastic difference equation 

 

݇ݔ  = 1−݇ݔ݇ܣ + 1−݇ݑ݇ܤ (4.2) ,1−݇ݓ+

 

With a measurement ݕ ∈ ℝ that is 

 

݇ݕ  = ݇ݔ݇ܤ + (4.3) .݇ݒ

 

The ݊ × ݊ matrix ݇ܣ in eq. (4.2) relates the state at previous time step ݇ − 1 to the state 

at current time step ݇. The ݊ × ݈ matrix ݇ܤ relates the optional control input ݑ ∈ ℝ  to 

the state ݔ. The m× ݊ matrix ݇ܪ in the measurement eq. (4.3) relates the state to the 

measurement ݇ݕ. The random variables ݇ݓ and ݇ݒ represent the process and 

measurement noise respectively. They are assumed to be independent of each other, 

white, and with normal probability distributions. Due to uniform sampling, time 

differences between consecutive iterations are constant. And matrices ܤ ,ܣ and ܪ may 

or may not be dependent on the time (or iteration).  

 

The Kalman filter algorithm has two phases, time update and measurement update.  

 

 
Figure 4.1 Discrete Kalman filter cycle 

 

Time 
Update 

prediction 

Measurement 
Update 

correction 
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The time update step is projects the current state estimate ahead in time. The 

measurement update adjusts the projected estimated by an actual measurement that 

time.  

 

The time update is described by following equations, 

 

ො݇ݔ 
− = ො݇−1ݔ݇ܣ + (4.4) ,1−݇ݑ݇ܤ

 

 ܲ݇− = ܶ݇ܣ1−݇ܲ݇ܣ + ܳ݇. (4.5)

 

The measurement update is described by the following equations, 

 

݇ܭ  = ݇ܪ−݇ܲ
݇ܪ−݇ܲ݇ܪ)ܶ

ܶ + ܴ݇)−1, (4.6)

 

ො݇ݔ  = ො݇ݔ
− + ݇ݕ)݇ܭ ො݇ݔ݇ܪ−

− ), (4.7)

 

 ܲ݇ = ܫ) − (4.8) .−݇ܲ(݇ܪ݇ܭ

 

The variables in eq. (4.4-4.8) are, 

 .ො݇   : Estimated state, posterioriݔ

ො݇ݔ
−  : Estimated state, priori. 

 .State transition matrix (i.e., transition between states) :  ݇ܣ

 .Control variable :  ݇ݑ

 .Control matrix (i.e., mapping control to state variables) :  ݇ܤ

ܲ݇  : State variance matrix (i.e., error of estimation), posterior. 

ܲ݇−  : State variance matrix (i.e., error of estimation), priori. 

ܳ݇ : Process variance matrix (i.e., error due to process; covariance of ݇ݓfrom eq.    

(4.2)). 

 .Measurement variables : ݇ݕ

 .Measurement matrix (i.e., mapping measurements onto state) :  ݇ܪ

 .Kalman gain :  ݇ܭ
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ܴ݇  : Measurement variance matrix (i.e., error from measurements; covariance of ݇ݒ 

from eq. (4.3)). 

 

In the time update step, eq. (4.4) and eq. (4.5) project state and covariance estimates 

from step ݇ − 1 to step ݇. ݇ܣ and ݇ܤ are obtained from eq. (4.2). 

 

The first step in the measurement update step is to calculate the Kalman gain. In eq. (4.6) 

it can be seen that as measurement error covariance ܴ݇ approaches 0, the gain ݇ܭ 

weights the residual more heavily. 

 

 lim
ܴ݇→0

݇ܭ = ݇ܪ
−1 (4.9)

 

On the other hand, as the priori estimate error covariance approaches zero, the gain  ݇ܭ 

weights the residual less heavily. 

 

 lim
ܲ݇
−→0

݇ܭ = 0 (4.10)

 

Depending on the initial variable values, the Kalman filter may require a few iterations 

to stabilize and get a tighter estimate. 

 

4.3.2  Filter with non uniform sampling 

A slight modification of the Kalman filter with uniform sampling is the non uniform 

sampling filter [19]. The original filter is based on constant time difference between 

iterations. But applications such as distributed analysis and swarm networks, such time 

synchronization is not possible. Therefore, another variant of the Kalman filter utilizes 

iteration steps with different time intervals.  

 

Similar to the standard filter, the equations are: 

The time update is described by following equations, 

 

2ݐ,ො݇ݔ 
− = 1ݐ,ො݇−1ݔݐ∆ܣ + (4.11) ,ݐ∆ݑݐ∆ܤ
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2ݐ,݇ܲ 
− = ݐ∆ܣ1ݐ,1−݇ܲݐ∆ܣ

ܶ + (4.12) .ݐ∆ܳ

 

The measurement update is described by the following equations, 

 

2ݐ,݇ܭ  = 2ݐ,݇ܲ
− 2ݐܪ

2ݐ,2ܲ݇ݐܪ)ܶ
− 2ݐܪ

ܶ + (4.13) ,1−(2ݐܴ

 

2ݐ,ො݇ݔ  = 2ݐ,ො݇ݔ
− + 2ݐ,݇ݕ)2ݐ,݇ܭ

− 2ݐ,ො݇ݔ2ݐܪ
−  ), (4.14)

 

2ݐ,݇ܲ  = ܫ) − 2ݐ,݇ܲ(2ݐܪ2ݐ,݇ܭ
− . (4.15)

 

In eq. (4.11) and eq. (4.12) ݑ ,ܤ ,ܣ and ܳ depend on ∆ݐ = 2ݐ −  and ܪ In eq. (4.13-4.15) .1ݐ

ܴ  only depend on 2ݐ because they are independent of the previous state. 

 

This filter can be effectively applied in a swarm system where measurement of 

parameters at uniform time intervals may not be possible. Thus, each measurement at a 

different time may be processed along with previous such measurements. 

   

4.3.3  Other versions  

Kalman filter has been extensively researched and modified [11,12]. Well known 

variants such as the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) 

provide wider applications and improved capabilities[10]. The EKF is a nonlinear 

version of the standard Kalman filter and unlike the standard filter does not require 

only additive noise. In highly nonlinear state transition and observation models the EKF 

may give poor results because the covariance is propagated through linearization of the 

underlying nonlinear model. The UKF utilizes a deterministic sampling technique 

known as unscented transform to choose a minimal set of sample points around the 

mean. These points are propagated through the nonlinear functions, from which the 

mean and covariance of the estimate are then recovered. This resulting filter more 

accurately captures the actual mean and covariance.  
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5.  Sensor Fusion in Swarms using Kalman Filter 
  

Sensor fusion using Kalman filter in a distributed system has only been studied by a few 

[23,24,26]. The Kalman filter and its variants can be easily applied in a dynamic and 

distributed setting. Important criteria for any information sharing algorithm are, when 

to share, which neighbours to share with and what to share. Sharing algorithms must 

account for dissimilar states of different nodes. Such algorithms must balance the need 

for sharing of complex large amounts of data and, energy consumption and delay.  

 

In the proposed sensor fusion system, the Kalman filter with non uniform sampling is 

applied in a distributed swarm system consisting of multiple, mobile, identical or 

dissimilar nodes. The nodes may measure a single or multiple parameters of a system. 

Each node may run a single or multiple instances of the sharing algorithm depending on 

observation of single or multiple parameters, respectively. Each node is assumed to 

have a single type of sensor, but the proposed algorithms can easily be adapted for 

multisensory nodes. All nodes are assumed to be synchronized. Each node has a sensor 

range and a communication range. The sensor range is the distance up to which the 

sensor can effectively measure an observation point. The communication range is the 

distance up to which the node can communicate with another member node. 

  

In the proposed system, there are two different algorithms for homogeneous and 

heterogeneous swarms. Three metrics are used to identify how and what to share. 

Firstly, the total number of iterations of Kalman filter executed to obtain current 

estimated value known to node ݅, ܰ݅.  This helps in identifying the stability achieved by 

the filter. Secondly, the time stamp of the latest measurement known to node ݅, ݈ܶ݅. It is 

important to known that it is not necessary that node ݅ measure and execute the filter 

itself. It may receive estimates and measurements from other nodes. Lastly, the average 

rank of the estimated value known to node ݅, ܴ݅. This is further explained in section 5.2 

and is only applicable for heterogeneous swarms. 

 

Each algorithm uses two different types of sharing methods. One is a simple sharing 

method which involves direct transfer of data from one node to another. The other is a 
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more complex version which involves multiple interchange and processing of data 

between the two nodes. These are referred to as ShareSimple and ShareComplex 

methods, respectively. 

 

5.1  Homogeneous swarm with Kalman filter 

Homogeneous swarms consist of identical nodes with identical sensors accuracy, sensor 

range, motion characteristics, and processing capability. Data obtained by all nodes is 

treated equally. Two control parameters are used to minutely control how and when 

information is shared. They are stability number, ܰܵܶܤܣ and time difference, ܶܨܨܫܦ. It 

is more preferable that an estimator captures the true value as soon as possible. Thus, 

as number of filter iterations increases a tighter estimate is obtained compared to initial 

values. A balance between the number of iterations and more recent estimates must be 

made.  

 

The simple sharing method followed by nodes ݅ and ݆ belonging to a homogeneous 

swarm is given as: 

,ܑ)ܗ۶܍ܔܘܕܑ܁܍ܚ܉ܐ܁   (ܒ

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅  from ݅ to ݆. 

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e. send last ݇ measurements from  ݅ to ݆. 

 Node ݆ updates its variables. 

 

In this method, node ݅ sends all relevant information it has to node ݆. The number of 

measurements to shared may be fixed at the start, given by ݇. The las ݇ t measurements 

may be used by ݆ when it might execute a ShareComplexHo method. Thus, updating 

node j. 

 

The complex sharing method followed by nodes ݅ and ݆ belonging to a homogeneous 

swarm is given as: 

,ܑ)ܗ۶ܠ܍ܔܘܕܗ۱܍ܚ܉ܐ܁   (ܒ

 Send ݈݆ܶ, ݔො݆ܰ,݈݆ܶ , ݆ܲܰ,݈݆ܶ  from ݆ to ݅. 
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 Using ݔො݆ܰ,݈݆ܶ  and ݆ܲܰ,݈݆ܶ  node ݅ iterates Kalman filter from its measurement value 

with next greater time index to ݈݆ܶ up to last measurement value. Note that 

݈ܶ݅ > ݈݆ܶ.  

 Last ݇ − ܿ measurement values are sent from node ݆ to ݅ and are added in sorted 

order according to time. Here, ܿ is the number of measurement values of ݅ which 

were iterated over in the above step.  

 Node ݅ shifts last ݇ measurement values by ܿ. 

 Node ݅ updates ܰ݅ = ݆ܰ + ܿ. Thus, obtaining new  ݔොܰ݅,݈ܶ݅  and ܲܰ݅,݈ܶ݅ . 

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅  from ݅ to ݆. 

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e send last ݇ measurements from  ݅ to ݆. 

 Node ݆ updates its variables. 

 

The complex sharing method ShareComplexHo(i, j) has three phases. In the first phase, 

node ݆ sends its estimate, state variance and last measurement time to node ݅. In the 

second phase, node ݅ iterates up to its last measurement value using the data given by ݆. 

Node ݆ also sends additional measurement values to have accurate last ݇ measurements 

at node ݅. Node ݅ then updates its own measurement list and other variables. In phase 

three, node ݅ performs steps similar to simple sharing and sends data to node ݆. 

 

The complex sharing method is explained in Figure 5.1. In this figure ݇ = 6 and due to 

values of ݈ܶ݅ and ݈݆ܶ,  ܿ = 4.  First node ݆ sends data to ݅, then ݅ processes and updates its 

data, then it shares this new updated values with node ݆. 
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Figure 5.1 Complex sharing method for node i to j. 
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The sharing algorithm followed by two neighbor nodes ݅ and ݆ for a single observation 

source is given as: 

 

Homogeneous Sharing Algorithm 

If ܰ݅ == ݆ܰ  

If ܰ݅ <=  ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ 

ShareComplexHo(i, j)  

Else If ݈ܶ݅ < ݈݆ܶ  

ShareComplexHo(j, i)  

 

Else if ݈ܶ݅ > ݈݆ܶ 

If ݈ܶ݅ − ݈݆ܶ >   ܨܨܫܦܶ

 ShareSimpleHo(i, j) 

Else 

ShareComplexHo(i, j)  

  

Else if ݈ܶ݅ < ݈݆ܶ 

If ݈݆ܶ − ݈ܶ݅ >   ܨܨܫܦܶ

 ShareSimpleHo(j, i)  

Else 

ShareComplexHo(j, i)  

Else if ܰ݅ > ݆ܰ 

If ܰ݅ <=  ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ 

ShareComplexHo(i, j)  

Else if ݈ܶ݅ < ݈݆ܶ 

ShareComplexHo(j, i)  

Else if ݈ܶ݅ == ݈݆ܶ 

 ShareSimpleHo(i, j) 

Else if ݈ܶ݅ > ݈݆ܶ 

 ShareSimpleHo(i, j) 
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Else if ݈ܶ݅ < ݈݆ܶ 

If ݆ܰ >  ܤܣܶܵܰ

 ShareSimpleHo(j, i) 

Else 

 ShareComplexHo(j, i) 

Else if ݈ܶ݅ == ݈݆ܶ 

             ShareSimpleHo(i, j)  

Else if ݆ܰ > ܰ݅ 

If ݆ܰ <=  ܤܣܶܵܰ

If ݈݆ܶ > ݈ܶ݅ 

ShareComplexHo(j, i)  

Else if ݈݆ܶ < ݈ܶ݅ 

ShareComplexHo(i, j)    

Else if ݈݆ܶ == ݈ܶ݅ 

 ShareSimpleHo(j, i) 

Else if ݈݆ܶ > ݈ܶ݅ 

 ShareSimpleHo(j, i) 

Else if ݈݆ܶ < ݈ܶ݅ 

If ܰ݅ >   ܤܣܶܵܰ

 ShareSimpleHo(i, j) 

Else 

ShareComplexHo(i, j)  

Else If ݈݆ܶ == ݈ܶ݅ 

 ShareSimpleHo(j, i) 

 

 

In general, nodes with larger number of known measurements and/or more recent 

measurement are used as source nodes to send distribute data to other nodes. During 

the starting phase of the system it is desirable that more sharing take place. This 

enables the filter to stabilize faster. ܰܵܶܤܣ is used to control the number of iterations 

up to which combination of measured values and re-estimation is required. After 



20 
 

number of iterations is greater than ܰܵܶܤܣ the node with latest measurement sends 

data to other nodes. 

 

If ܰ݅ == ݆ܰ then ܶܨܨܫܦmay be used to control if re-estimation is required or not since. 

The complex sharing method enables combination of multiple measurements and 

results in single more accurate estimated value.  

 

5.2  Heterogeneous swarm with Kalman filter 

In the heterogeneous swarm all nodes are not identical. In such a swarm nodes having 

varying capabilities. Specifically, some nodes have more accurate sensors and longer 

sensor range. Thus, nodes have different ݇ݒ and ܴ݇.  

 

In the proposed scheme, a rank or score is assigned to each type of sensor. Higher 

rank/score implies more accurate sensor. If a single node measures the observation 

point then its estimated value will have the rank same as it sensor rank. But in the case 

of swarms where nodes share measurement values and average rank of the estimated 

value must be obtained. 

 

The simple sharing of data from node ݅ to ݆, where both belong to heterogeneous swarm 

is given as: 

,ܑ)܍۶܍ܔܘܕܑ܁܍ܚ܉ܐ܁   (ܒ

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅  .݆ from ݅ to ܴ݅ܣ ,

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e. send last ݇ measurements from  ݅ to ݆. 

 Node ݆ updates its variables. 

 

The only difference between homogeneous and heterogeneous is the additional sharing 

of the average rank of estimated value at node ݅ is ܴ݅ܣ. 

 

The complex sharing of data from node ݅ to ݆, where both belong to heterogeneous 

swarm is given as: 

,ܑ)܍۶ܠ܍ܔܘܕܗ۱܍ܚ܉ܐ܁   (ܒ

 Send ݈݆ܶ, ݔො݆ܰ,݈݆ܶ , ݆ܲܰ,݈݆ܶ  from ݆ to ݅. 
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 Using ݔො݆ܰ,݈݆ܶ  and ݆ܲܰ,݈݆ܶ  node ݅ iterates Kalman filter from its measurement value 

with next greater time index to ݈݆ܶ up to last measurement value. Note that 

݈ܶ݅ > ݈݆ܶ.  

 Last ݇ − ܿ measurement values are sent from node ݆ to ݅ and are added in sorted 

order according to time. Here, ܿ is the number of measurement values of ݅ which 

were iterated over in the above step.  

 Node ݅ shifts last ݇ measurement values by ܿ. 

 Node ݅ updates ܰ݅ = ݆ܰ + ܿ. Thus, obtaining new  ݔොܰ݅,݈ܶ݅  and ܲܰ݅,݈ܶ݅ . 

 Node ݅ also updates ܴ݅ܣ given as: 

 

ܴ݅ܣ  =
݆ܴܣ ∗݆ܰ + ܴ݅ܣ ∗ ܿ

݆ܰ + ܿ . (5.1)

 

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅  .݆ from ݅ to ܴ݅ܣ ,

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e send last ݇ measurements from  ݅ to ݆. 

 Node ݆ updates its variables. 

  

The complex sharing method of heterogeneous is also different from homogeneous only 

with respect to additional update and sharing of ܴ݅ܣ. 

 

The sharing algorithm followed by two neighbor nodes ݅ and ݆ for a single observation 

source is given as: 

 

Heterogeneous Sharing Algorithm 

ܴ݅ܣ ==   ݆ܴܣ

If ܰ݅ == ݆ܰ 

If ܰ݅ <=  ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ 

 ShareComplexHe(i, j) 

Else if ݈ܶ݅ < ݈݆ܶ 

 ShareComplexHe(j, i)  

Else if ݈ܶ݅ > ݈݆ܶ 
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If ݈ܶ݅ − ݈݆ܶ >  ܨܨܫܦܶ

 ShareSimpleHe(i, j) 

Else 

 ShareComplexHe(i, j) 

Else if ݈ܶ݅ < ݈݆ܶ 

If ݈݆ܶ − ݈ܶ݅ >  ܨܨܫܦܶ

 ShareSimpleHe(j, i) 

Else 

 ShareComplexHe(j, i)  

Else if ܰ݅ > ݆ܰ 

If ܰ݅ <=  ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ  

 ShareComplexHe(i, j) 

Else if ݈ܶ݅ < ݈݆ܶ 

 ShareComplexHe(j, i) 

Else if ݈ܶ݅ == ݈݆ܶ 

 ShareSimpleHe(i, j) 

Else if ݈ܶ݅ > ݈݆ܶ 

 ShareSimpleHe(i, j) 

Else if ݈ܶ݅ < ݈݆ܶ 

If ݆ܰ >  ܤܣܶܵܰ

 ShareSimpleHe(j, i) 

Else 

 ShareComplexHe(j, i) 

Else if ݈ܶ݅ == ݈݆ܶ 

 ShareSimpleHe(i, j) 

Else if ܰ݅ > ܰ݅ 

If ݆ܰ <=  ܤܣܶܵܰ

If ݈݆ܶ > ݈ܶ݅ 

 ShareComplexHe(j, i) 

Else if ݈݆ܶ < ݈ܶ݅ 

 ShareComplexHe(i, j) 
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Else if ݈݆ܶ == ݈ܶ݅ 

 ShareSimpleHe(j, i) 

Else if ݈݆ܶ > ݈ܶ݅ 

 ShareSimpleHe(j, i) 

Else if ݈݆ܶ < ݈ܶ݅ 

If ܰ݅ >  ܤܣܶܵܰ

 ShareSimpleHe(i, j) 

Else 

 ShareComplexHe(i, j) 

Else If ݈݆ܶ == ݈ܶ݅ 

 ShareSimpleHe(j, i) 

ܴ݅ܣ >   ݆ܴܣ

If ܰ݅ == ݆ܰ 

If ܰ݅ ==  ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ 

 ShareComplexHe(i, j) 

Else if ݈ܶ݅ < ݈݆ܶ 

 ShareComplexHe(j, i) 

Else if ݈ܶ݅ == ݈݆ܶ 

 ShareSimpleHe(i, j) 

Else if ݈ܶ݅ > ݈݆ܶ 

If ݈ܶ݅ − ݈݆ܶ >  ܨܨܫܦܶ

 ShareSimpleHe(i, j) 

Else 

 ShareComplexHe(i, j) 

Else if ݈ܶ݅ < ݈݆ܶ 

If ݈݆ܶ − ݈ܶ݅ > ܨܨܫܦܶ ∗ ܴ݂ 

 ShareSimpleHe(j, i) 

Else 

 ShareComplexHe(j, i) 

Else if ݈ܶ݅ == ݈݆ܶ 

 ShareSimpleHe(i, j) 
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Else if ܰ݅ > ݆ܰ 

If ܰ݅ <=  ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ 

 ShareComplexHe(i, j) 

Else if ݈ܶ݅ < ݈݆ܶ 

 ShareComplexHe(j, i) 

Else if ݈ܶ݅ == ݈݆ܶ 

 ShareSimpleHe(i, j) 

Else if ݈ܶ݅ > ݈݆ܶ 

 ShareSimpleHe(i, j) 

Else if ݈ܶ݅ == ݈݆ܶ 

 ShareSimpleHe(i, j) 

Else if ݈݆ܶ − ݈ܶ݅ > ܨܨܫܦܶ ∗ ܴ݂ 

 ShareSimpleHe(j, i) 

Else 

 ShareComplexHe(j, i) 

Else if ݆ܰ > ܰ݅ 

If ݆ܰ <=  ܤܣܶܵܰ

If ݈݆ܶ > ݈ܶ݅ 

 ShareComplexHe(j, i) 

Else if ݈݆ܶ < ݈ܶ݅ 

 ShareComplexHe(i, j) 

Else if ݈݆ܶ == ݈ܶ݅ 

 ShareSimpleHe(j, i) 

Else if ܶ ݈ > ݈ܶ  

 ShareSimpleHe(j, i) 

Else If ܶ ݈ == ݈ܶ  

ShareSimpleHe(j, i)  

Else if ݈ܶ − ܶ ݈ >  ܨܨܫܦܶ

 ShareSimpleHe(i, j) 

Else 

 ShareComplexHe(i, j) 
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ܴܣ < ܣ ܴ  

If ܰ == ܰ 

If ܰ <=  ܤܣܶܵܰ

If ܶ ݈ > ݈ܶ  

 ShareComplexHe(j, i) 

Else if ܶ ݈ < ݈ܶ  

 ShareComplexHe(i, j) 

Else if ܶ ݈ == ݈ܶ  

 ShareSimpleHe(j, i) 

Else if ܶ ݈ > ݈ܶ 

If ܶ ݈ − ݈ܶ >  ܨܨܫܦܶ

 ShareSimpleHe(j, i) 

Else 

 ShareComplexHe(j, i) 

Else if ܶ ݈ < ݈ܶ 

If ݈ܶ − ܶ ݈ > ܨܨܫܦܶ ∗ ܴ݂ 

 ShareSimpleHe(i, j) 

Else 

 ShareComplexHe(i, j) 

Else if ܶ ݈ == ݈ܶ  

 ShareSimpleHe(j, i) 

Else if ܰ > ܰ 

If ܰ <=  ܤܣܶܵܰ

If ܶ ݈ > ݈ܶ  

 ShareComplexHe(j, i) 

Else if ܶ ݈ < ݈ܶ  

 ShareComplexHe(i, j) 

Else if ܶ ݈ == ݈ܶ  

ShareSimpleHe(j, i)  

Else if ܶ ݈ > ݈ܶ  

 ShareSimpleHe(j, i) 

Else if ܶ ݈ == ݈ܶ  
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 ShareSimpleHe(j, i) 

Else if ݈ܶ − ܶ ݈ > ܨܨܫܦܶ ∗ ܴ݂ 

 ShareSimpleHe(i, j) 

Else 

 ShareComplexHe(i, j) 

Else if ܰ > ܰ 

If ܰ <=  ܤܣܶܵܰ

If ݈ܶ > ܶ ݈  

 ShareComplexHe(i, j) 

Else if ݈ܶ < ܶ ݈  

 ShareComplexHe(j.i) 

Else if ݈ܶ == ܶ ݈  

 ShareSimpleHe(i, j) 

Else if ݈ܶ > ܶ ݈  

 ShareSimpleHe(i, j) 

Else If ݈ܶ > ܶ ݈  

 ShareSimpleHe(i, j) 

Else if ܶ ݈ − ݈ܶ >  ܨܨܫܦܶ

 ShareSimpleHe(j, i) 

Else 

 ShareComplexHe(j, i) 

  

 

The main difference between homogeneous and heterogeneous sharing algorithms is 

the average rank which must also be compared. The accuracy of sensor is essential to 

obtain a more accurate estimate. But in some cases, for example, if a high ranking node 

has a very old measurement value, it would not be preferable for such a node to share 

its data, a less accurate but more recent measurement may be more useful. This balance 

must be maintained. A fixed rank factor, ܴ݂, is used to control the balance between 

accurate measurements and more recent measurements. The positive ܴ݂ is multiplied 

with ܶܨܨܫܦ to control when complex sharing takes place. Complex sharing allows more 

accurate data to be included in estimates.  
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6.  Simulation Results 
 

The simulation study has been conducted using MATLAB 7.12.0 (R2011a) and no 

additional packages were used. In this study all results have been obtained independent 

of the network. That is, it is assumed that no communication delays, protocol delays, 

synchronization delays, and interference due to communication signal occur. It is also 

assumed that no processing delays take place.  

 

The motion of the swarm occurs in a Euclidean space. A fixed range is selected in which 

the nodes are allowed to move. A fixed maximum velocity is chosen and the velocity of 

each node is randomly selected and follows uniform distribution.   

    

The simulation environment consists of a single observation point (green) and multiple 

mobile nodes (magenta). At the observation point temperature is said to be increasing 

following the eq. (6.1), where  ܣ and ܤ are fixed parameters. All noise in the system 

follows normal or Gaussian distribution. All operations are independent of units of 

measurement. 

 

௪݉݁ܶ  = ܣ ∗ ௨௧݉݁ܶ + (6.1) ܤ

 

 

6.1  Standard Kalman Filter 

In this study a 50 by 50 area is considered along with a single stationary node 

constantly monitoring the observation point. The increasing temperature is described 

as ܣ = 1.03 and ܤ = 1.5 from eq. (6.1), with an initial temperature of 100.  

 

Figure 6.1 describes the standard Kalman filter with parameters as, 

Measurement noise magnitude (standard deviation)  = ොݔ ݈ܽݐ݅݊ܫ ,45 = ܲ ݈ܽ݅ݐ݅݊ܫ , 0 =

100, ܳ = ܪ ,10 = ܨ ,1 = ܤ ,1.03 = 1.5 and ݑ = 1. It can be seen that ܨ and ܤ are 

accurate but ܳ indicates that node assumes process error. A moving average with past 5 

values is also considered for comparative analysis. 
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It can be seen in Figure 6.1, that the estimated value is more accurate than the moving 

average. Also, that the Kalman filter captures a tighter estimate after some time. This is 

due to the fact that the initial estimate is very far from actual value. 

 

 
Figure 6.1 Standard Kalman filter P=100 and Q=10 

 

In Figure 6.2, it is considered that ܳ = 50 and all other parameters are same. Thus, 

there is deviation in the estimated value since the measuring node assumes that the 

system model parameters ܨ and ܤ are not accurate. Therefore, some more time is taken 

by the filter capture the tighter values.  

 

In Figure 6.3, it is considered that ܲ = 1000 and all other parameters are same. Since, 

the filter assumes large error in the initial estimate, it captures the true value much 

faster. But such a large error takes time to reduce, so there is deviation from actual 

value in the beginning. 
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Figure 6.2 Standard Kalman filter P=100 and Q=50 

 

 
Figure 6.3 Standard Kalman filter P=1000 and Q=10 
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6.2  Homogeneous swarm algorithm with Kalman filter 

Similar to the standard Kalman filter model, a single observation point is assumed but 

with multiple identical nodes. The temperature is said to be increasing with ܣ = 1.09 

and B= 1, from eq. (6.1), with starting temperature of 100. 

 

The non uniform sampling Kalman filter parameters are, 

Measurement noise magnitude = ොݔ ݈ܽݐ݅݊ܫ ,150 = ܲ ݈ܽ݅ݐ݅݊ܫ , 0 = 500, ܳ = ܪ ,10 = 1, 

ݑ = 1, and  ܨ and ܤ are accurate. Eq. (6.1) is fixed time interval increase of temperature 

but nodes measure only when they are close to observation point. Therefore,  ܨ and ܤ 

must be adapted according to eq. (6.2) and eq. (6.3).  

 

௧∆ܨ  = 1.019∆௧ (6.2)

 

 
௧∆ܤ =

1.019∆௧ − 1
1.019− 1  (6.3)

 

The swarm parameters are, ܰ. ݏ݁݀݊ ݂ = ݕݐ݈݅ܿ݁ݒ ݉ݑ݉݅ݔܽܯ ,5 = 20, 

݁݃݊ܽݎ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ = ݁݃݊ܽݎ ݎݏ݊݁ܵ ,30 = 10. 

 

Figure 6.4 describes the modelled environment with the observation point and mobile 

nodes along with their communication and sensor ranges. In figure 6.5 ܰܵܶܤܣ = 0 and 

ܨܨܫܦܶ = 10. It can be seen that the estimated value is not close to actual. Large 

fluctuation in the average measured shows reduced sharing and higher error. At many 

occasions it can be seen that both estimates and measured are horizontal to x axis, thus 

showing no sharing. In figure 6.6 ܰܵܶܤܣ = 10 and ܶܨܨܫܦ = 10, thus increasing the 

complex sharing. A slight improvement in estimated values is observed compared to 

previous run. 

 

To comparatively study the effect of number of nodes, two models of 10 nodes and 30 

nodes were used, as described in figure 6.7 and figure 6.8 respectively. In both cases the 

temperature increase model is same as earlier. The non uniform sampling Kalman filter 

parameters are same as earlier, i.e.  Measurement noise magnitude = ොݔ ݈ܽݐ݅݊ܫ  ,150 = 0 
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ܲ ݈ܽ݅ݐ݅݊ܫ , = 500, ܳ = ܪ ,10 = ݑ ,1 = 1, and  ܨ and ܤ are given by eq. (6.2) and eq. (6.3) 

respectively. 

  

In figure 6.9, the swarm parameters are, ܰ. ݏ݁݀݊ ݂ = ݕݐ݈݅ܿ݁ݒ ݉ݑ݉݅ݔܽܯ ,10 = 15, 

݁݃݊ܽݎ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ = ݁݃݊ܽݎ ݎݏ݊݁ܵ ,15 = ܤܣܶܵܰ ,10 = ܨܨܫܦܶ ,5 = 5. Figure 6.10 

has same parameters but  ܰ. ݏ݁݀݊ ݂ = 30. It can be clearly seen that increase in 

number of nodes provides a more accurate estimate. Also, the effectiveness of the 

algorithm is highly dependent on the frequency of sharing and observation. Due to 

reduced frequency of sharing and observation and high error the moving average gives 

closer measurement values. As iterations increase the estimated value attains a tighter 

capture of the actual value.  

   

 
Figure 6.4 Model with observation point (green), 5 nodes (magenta), comm. range (blue)=30 

and sensor range (red)=10. 
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Figure 6.5 Homogeneous 5 nodes with NSTAB=0 and TDIFF=10. 

 
Figure 6.6 Homogeneous 5 nodes with NSTAB=10 and TDIFF=10. 
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Figure 6.7 Model with observation point (green), 10 nodes (magenta), comm. range (blue)=15 

and sensor range (red)=10. 

 
Figure 6.8 Model with observation point (green), 30 nodes (magenta), comm. range (blue)=15 

and sensor range (red)=10. 
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Figure 6.9 Homogeneous swarm and algorithm with 10 nodes. 

 
Figure 6.10 Homogeneous swarm and algorithm with 30 nodes. 
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6.3  Heterogeneous swarm algorithm with Kalman filter 

In the heterogeneous swarm model some nodes have more accurate sensors and 

greater sensor range. Figure 6.11 and figure 6.12 describe models with ܴ݂ = 1.5 and 

ܴ݂ = 2, respectively. The increasing temperature model is same as above with 

ܣ = 1.019 and ܤ = 1 in eq. (6.1), with initial temperature of 100.  The non uniform 

sampling Kalman filter parameters are same as earlier, i.e.  ݔ ݈ܽݐ݅݊ܫො = ܲ ݈ܽ݅ݐ݅݊ܫ , 0 =

500, ܳ = ܪ ,10 = ݑ ,1 = 1, and  ܨ and ܤ are given by eq. (6.2) and eq. (6.3) respectively. 

The swarm parameters are, ܰ. ݏ݁݀݊ ݂ = ݕݐ݈݅ܿ݁ݒ ݉ݑ݉݅ݔܽܯ ,30 = 15, 

݁݃݊ܽݎ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ = ܤܣܶܵܰ ,15 = ܨܨܫܦܶ ,5 = 5. But unlike homogeneous 

swarms these nodes are not identical, 18 nodes have Measurement noise magnitude =

150 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 10, 8 nodes have Measurement noise magnitude = 80 and 

݁݃݊ܽݎ ݎݏ݊݁ܵ = 11, and 4 nodes have Measurement noise magnitude = 5 and 

݁݃݊ܽݎ ݎݏ݊݁ܵ = 12.  

 

It can be clearly seen in figure 6.11 and figure 6.12 that a much tighter capture is 

attained. Also, around time=80, ܴ݂ = 1.5 causes less dip is estimated value and ܴ݂ = 2 

causes more. ܴ݂ must be used to obtain a fine balance between recent and more 

accurate measurements. Larger ܴ݂ means more preference to accurate measurements 

than recent   measurements.  
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Figure 6.11 Heterogeneous swarm and algorithm with 30 nodes Rf=1.5. 

i  

Figure 6.12 Heterogeneous swarm and algorithm with 30 nodes Rf=2. 
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In figure 6.13 and figure 6.14 we compare the effect of number of nodes on this 

algorithm. Same filter setting are used as above. But the swarm in figure 6.13 has  10 

nodes; 5 nodes have Measurement noise magnitude = 150 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 10, 3 

nodes have Measurement noise magnitude = 80 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 11, and 2 nodes 

have Measurement noise magnitude = 25 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 12. Figure 6.14 has  30 

nodes; 18 nodes have Measurement noise magnitude = 150 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 10, 8 

nodes have Measurement noise magnitude = 80 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 11, and 4 nodes 

have Measurement noise magnitude = 5 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 12. An obvious increase 

in accuracy of estimation is observed. This is due to presence of more accurate nodes as 

well as increased sharing among the nodes. Also, clear improvement from the moving 

average is seen. 

 

 
Figure 6.13 Heterogeneous swarm and algorithm with 10 nodes. 
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Figure 6.14 Heterogeneous swarm and algorithm with 30 nodes. 

 

6.4  Heterogeneous swarm and homogeneous algorithm with Kalman filter 

To perform an appropriate comparative analysis of the two proposed algorithms. The 

homogeneous algorithm is run in a heterogeneous swarm system. Thus, the 

homogeneous swarm does not account for the difference in the accuracy of the member 

nodes. 

 

Figure 6.15 and figure 6.16 describe swarms with 10 and 30 nodes, respectively. All 

parameters are similar for respective models of the heterogeneous algorithm previously 

simulated. Comparing figure 6.13 And figure 6.15, it can be seen that beyond time=50 

the heterogeneous algorithm provides better estimate. Also, in figure 6.14 and figure 

6.16, a noticeable improvement is seen. The heterogeneous algorithm captures the true 

value faster and gives better result throughout. This is due to larger nodes and more 

number of accurate nodes. Thus, the better suited heterogeneous algorithm gives better 

results.  
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Figure 6.15 Heterogeneous swarm and homogeneous algorithm with 10 nodes. 

 
Figure 6.16 Heterogeneous swarm and homogeneous algorithm with 30 nodes. 
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7.  Conclusion 
 

In this study, the effectiveness of Kalman filter algorithm is analyzed in a homogeneous 

and heterogeneous swarm network in a noisy environment. Firstly, the behavior of a 

standard Kalman filter is examined. Then two sharing algorithms are proposed for both 

homogeneous and heterogeneous swarms. These swarms are designed to observe an 

underlying system with erroneous sensors. Thus, such swarms must utilize a noise filter 

to achieve a more accurate estimate. Each sharing algorithm uses two different types of 

sharing schemes to achieve a more accurate estimate in a distributed environment. 

Later, a comparative analysis is conducted between the two algorithms and as well as a 

standard moving average. It is clearly shown that given sufficient number of nodes the 

algorithms perform better than the moving average. Also, as expected, a heterogeneous 

system (with few more accurate nodes) provides better results than a homogeneous 

system. The effectiveness of the rank based heterogeneous algorithm is also examined. 

It is shown that in a heterogeneous environment, the heterogeneous algorithm 

performs better than the homogeneous algorithm. This is due to the fact that the 

heterogeneous algorithm takes into account the difference in capabilities of each node, 

thus, achieving higher accuracy and reduced time to capture the true value. 
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8.  Future Work 
 

There is a very broad scope of possible work in the future. General improvements in 

speed, response time and memory consumption can obviously be achieved. A dynamic 

approach to currently fixed parameters such as, ܰܵܶܨܨܫܦܶ , ܤܣ and ܴ݂, can be studies 

in the future. A dynamic switching between the homogeneous and heterogeneous nodes 

may be possible in cases where there are a large number of nodes of each type. Thus, if a 

large number of neighbours of a node are of the same type then homogeneous algorithm 

would be faster and more effective. The existing algorithm can easily be modified to 

work with EKF and UKF algorithms which would be effective in nonlinear systems. A 

comparative study of various filters may also be conducted. The proposed work has 

large applications in multiple fields. A modified and more specific system may be 

developed for different environments. For example, path traversal, searching, social 

network information sharing etc. can greatly benefit from the proposed work. Also, 

more in depth analysis would be helpful in identifying differences in behavior of 

homogeneous and heterogeneous swarms.   
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APPENDIX A: Code Snippets 

 

Following are MATLAB code snippets for sharing methods. 

ShareSimpleHo(1,2) 

nd2.x_esti_post = nd1.x_esti_post; 
nd2.P_esti_post = nd1.P_esti_post; 
nd2.tlast = nd1.tlast; 
for i=nd1.Nm:-1:nd1.yt_send_point 

nd2.y_measure_list(i) = nd1.y_measure_list(i); 
nd2.t_measure_list(i) = nd1.t_measure_list(i); 

end 
nd2.Nm = nd1.Nm; 
nd2.yt_send_point = nd1.yt_send_point; 
 
ShareComplexHo(1,2) 

%2->1 
nd1.x_esti_post = nd2.x_esti_post; 
nd1.P_esti_post = nd2.P_esti_post; 
nd1.tlast = nd2.tlast; 
%1 process 
x = nd1.timeIndexSearch(nd2.tlast); 
cnt = 0; 
for i=x:1:nd1.Nm 

nd1.kalmanIterate(i); 
cnt = cnt + 1; 

end 
for i=nd1.Nm-cnt:-1:nd1.yt_send_point 

nd1.y_measure_list(i) = nd2.y_measure_list(i+cnt); 
nd1.t_measure_list(i) = nd2.t_measure_list(i+cnt); 

end 
for i=nd1.Nm:-1:nd1.yt_send_point 

nd1.y_measure_list(i+cnt) = nd1.y_measure_list(i); 
nd1.t_measure_list(i+cnt) = nd1.t_measure_list(i); 

end 
nd1.Nm = nd2.Nm + cnt; 
nd1.yt_send_point = nd1.yt_send_point + cnt; 
%1->2 
nd2.x_esti_post = nd1.x_esti_post; 
nd2.P_esti_post = nd1.P_esti_post; 
nd2.tlast = nd1.tlast; 
for i=nd1.Nm:-1:nd1.yt_send_point 

nd2.y_measure_list(i) = nd1.y_measure_list(i); 
nd2.t_measure_list(i) = nd1.t_measure_list(i); 

end 
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nd2.Nm = nd1.Nm; 
nd2.yt_send_point=nd1.yt_send_point; 
 

ShareSimpleHe(1,2) 

nd2.x_esti_post = nd1.x_esti_post; 
nd2.P_esti_post = nd1.P_esti_post; 
nd2.tlast = nd1.tlast; 
for i=nd1.Nm:-1:nd1.yt_send_point 

nd2.y_measure_list(i) = nd1.y_measure_list(i); 
nd2.t_measure_list(i) = nd1.t_measure_list(i); 

end 
nd2.Nm = nd1.Nm; 
nd2.yt_send_point = nd1.yt_send_point; 
nd2.avg_rank = nd1.avg_rank; 
 

ShareComplexHe(1,2) 

nd1.x_esti_post = nd2.x_esti_post; 
nd1.P_esti_post = nd2.P_esti_post; 
nd1.tlast = nd2.tlast; 
%1 process 
x = nd1.timeIndexSearch(nd2.tlast); 
cnt = 0; 
for i=x:1:nd1.Nm 

nd1.kalmanIterate(i); 
cnt = cnt + 1; 

end 
for i=nd1.Nm-cnt:-1:nd1.yt_send_point 

nd1.y_measure_list(i) = nd2.y_measure_list(i+cnt); 
nd1.t_measure_list(i) = nd2.t_measure_list(i+cnt); 

end 
for i=nd1.Nm:-1:nd1.yt_send_point; 

nd1.y_measure_list(i+cnt) = nd1.y_measure_list(i); 
nd1.t_measure_list(i+cnt) = nd1.t_measure_list(i); 

end 
nd1.Nm = nd2.Nm + cnt; 
nd1.yt_send_point = nd1.yt_send_point + cnt; 
nd1.avg_rank = (nd2.avg_rank * nd2.Nm + nd1.avg_rank * cnt) / (nd2.Nm + cnt); 
%1->2 
nd2.x_esti_post = nd1.x_esti_post; 
nd2.P_esti_post = nd1.P_esti_post; 
nd2.tlast = nd1.tlast; 
for i=nd1.Nm:-1:nd1.yt_send_point 

nd2.y_measure_list(i) = nd1.y_measure_list(i); 
nd2.t_measure_list(i) = nd1.t_measure_list(i); 

end 
nd2.Nm = nd1.Nm; 
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nd2.yt_send_point = nd1.yt_send_point; 
nd2.avg_rank = nd1.avg_rank; 
 
 


