
A
Dissertation

On

Analysis of Sensor Fusion using Kalman Filter in

Homogeneous and Heterogeneous Swarm Networks

Submitted in Partial Fulfillment of the Requirement

For the Award of the Degree of

Master of Technology

In

Computer Science & Engineering

Submitted By

Puneet Jain
University Roll No. 2K11/CSE/09

Under the Esteemed Guidance of
Mr. Vinod Kumar

Assoc. Prof., Computer Engineering Department, DTU, Delhi

2011-2013

DELHI TECHNOLOGICAL UNIVERSITY

DELHI - 110042

ii

CERTIFICATE

This is to certify that the dissertation titled “Analysis of Sensor Fusion using Kalman

Filter in Homogeneous and Heterogeneous Swarm Networks” is a bonafide record

of work done at Delhi Technological University by Puneet Jain, Roll No.

2K11/CSE/09 for partial fulfilment of the requirements for the degree of Master of

Technology in Computer Science & Engineering. This project was carried out under my

supervision and has not been submitted elsewhere, either in part or full, for the award

of any other degree or diploma to the best of my knowledge and belief.

 (Mr. Vinod Kumar)

 Assoc. Professor & Project Guide

Date: _____________ Department of Computer Engineering

Delhi Technological University

iii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to all the people who have supported and

encouraged me during the course of this project without which, this work could not

have been accomplished.

First of all, I am very grateful to my project supervisor Mr. Vinod Kumar for providing

the opportunity of carrying out this project under his guidance. I am deeply indebted to

him for the support, advice and encouragement he provided without which the project

could not have been a success. I am also grateful to Dr. (Mrs.) Daya Gupta, HOD,

Computer Science, DTU for her immense support. I am also thankful to my parents for

being there for me at all times. Last but not the least; I am grateful to Delhi

Technological University for providing the right resources and environment for this

work to be carried out.

 Puneet Jain

 University Roll no: 2K11/CSE/09

 M.Tech (Computer Science & Engineering)

 Department of Computer Engineering

 Delhi Technological University

Delhi – 110042

iv

ABSTRACT

A swarm consists of simplistic mobile nodes sharing information to achieve a common

complex task. Most real world sensors result in noisy data which must be corrected to

achieve accurate results. Noise filter or estimation algorithms are very useful in

achieving this task. Sensor fusion is another useful technique to attain more useful and

meaningful data from multiple sources of less accurate data. In the proposed system a

group of mobile nodes are used to measure a changing parameter of another underlying

system. But the measurement taken by these nodes is assumed to be erroneous. Thus,

an instance of the standard discrete Kalman filter is used at each node to obtain a more

accurate estimate. In this dissertation, two sharing algorithms are proposed for

homogeneous and heterogeneous swarms. Each algorithm uses two different types of

sharing schemes, complex and simple. A simple analysis of the standard Kalman filter is

conducted to observe its characteristics. The comparative analysis of the two proposed

algorithms and a standard moving average shows improved performance of both

algorithms. Also, the behaviour of the algorithms is studied with change in number of

member nodes, sensor range, communication range, sensor accuracy and type of

sharing in the system. It is also shown that the heterogeneous swarm performs better

with the proposed heterogeneous algorithm than the homogeneous algorithm which

does not account for the difference in each node.

v

Table of Contents

Certificate ii

Acknowledgment iii

Abstract iv

List of Figures vii

1. Introduction 1

1.1 Problem statement 1

1.2 Related topics 1

1.3 Proposed work 2

2. Swarms 3

2.1 Homogeneous swarms 4

2.2 Heterogeneous swarms 4

3. Sensor Fusion 6

4. Noise Filter 8

4.1 Wiener filter 8

4.2 Particle filter 9

4.3 Kalman filter 9

4.3.1 Standard filter with uniform sampling 9

4.3.2 Filter with non uniform sampling 12

4.3.3 Other versions 13

5. Sensor Fusion in Swarms using Kalman Filter 14

5.1 Homogeneous swarm with Kalman filter 15

5.2 Heterogeneous swarm with Kalman filter 20

6. Simulation Results 27

vi

6.1 Standard Kalman filter 27

6.2 Homogeneous swarm algorithm with Kalman filter 30

6.3 Heterogeneous swarm algorithm with Kalman filter 35

6.4 Heterogeneous swarm and homogeneous algorithm

 with Kalman filter 38

7. Conclusion 40

8. Future Work 41

References 42

APPENEDIX A: Code Snippets 45

vii

List of Figures

Figure 4.1: Discrete Kalman filter cycle 10

Figure 5.1: Complex sharing method for node i to j 17

Figure 6.1: Standard Kalman filter P=100 and Q=10 28

Figure 6.2: Standard Kalman filter P=100 and Q=50 29

Figure 6.3: Standard Kalman filter P=1000 and Q=10 29

Figure 6.4: Model with 5 nodes 31

Figure 6.5: Homogeneous swarm and algorithm NSTAB=0

 and TDIFF=10 32

Figure 6.6: Homogeneous swarm and algorithm NSTAB=10

and TDIFF=10 32

Figure 6.7: Model with 10 nodes 33

Figure 6.8: Model with 30 nodes 33

Figure 6.9: Homogeneous swarm and algorithm with 10 nodes 34

Figure 6.10: Homogeneous swarm and algorithm with 30 nodes 34

Figure 6.11: Heterogeneous swarm and algorithm with Rf=1.5 36

Figure 6.12: Heterogeneous swarm and algorithm with Rf=2 36

Figure 6.13: Heterogeneous swarm and algorithm with 10 nodes 37

Figure 6.14: Heterogeneous swarm and algorithm with 30 nodes 38

Figure 6.15: Heterogeneous swarm and homogeneous algorithm

with 10 nodes 39

Figure 6.16: Heterogeneous swarm and homogeneous algorithm

with 30 nodes 39

1

1. Introduction

Distributed estimation is a fundamental information processing problem in swarm

networks. A swarm system or swarm network consists of a group of mobile nodes

communicating and sharing information with each other to achieve a common goal. A

real world swarm network would considerably depend on accurate estimation and

sharing of noisy data. All solutions to such a problem must take into account the

dynamic nature of swarm networks.

1.1 Problem statement

In a given system of a group of nodes (swarm), a common dynamic parameter of an

underlying system may be measured. Each node of the swarm independently measures

the value of that parameter, along with certain error and disseminates the information

in the whole swarm. The goal is to estimate the accurate real time value of the

parameter.

1.2 Related topics

A swarm network may be broadly classified as homogeneous and heterogeneous.

Homogeneous swarms consist of identical nodes, whereas, heterogeneous swarms

consist of dissimilar nodes. Both swarms systems must be analyzed separately. Sensor

fusion is the task of integrating data from multiple sources resulting in more meaningful

or useful data. Sensor fusion has wide application in distributed environment. But

sensor fusion is not effective if data is noisy. Hence, accurate estimation of data is very

important. Noise filters are an essential class of filters in the field of signal processing.

Kalman filter is one such noise filter. The standard Kalman filter consists of a set of

mathematical equations that provides an efficient computational method to estimate

the state of a given process, in a way that minimizes the mean of the squared error [13].

The filter is simple and powerful in the sense that it only requires the previous state to

estimate the next state of a process. A Kalman filter with non uniform sampling is used

to work effectively with the distributed and dynamic swarm.

2

1.3 Proposed work

In this dissertation, two sensor fusion algorithms are proposed for both homogeneous

and heterogeneous swarm networks. The homogeneous system consists of nodes

having identical sensors with similar error magnitude and on the other hand, the

heterogeneous system consists of nodes having dissimilar sensors and error magnitude.

The Kalman filter is utilized to accurately estimate the noisy values measured by the

sensors. Also, identical and dissimilar filters operate on each node of homogeneous and

heterogeneous system respectively. The behaviour of both systems in different

conditions is analyzed.

The behaviour of a standard Kalman filter is analyzed for reference. A comparative

analysis of homogeneous and heterogeneous swarms, along with respective algorithms,

is conducted. The analysis based on different number of nodes clearly shows improved

performance for both algorithms compared to a standard moving average. It also shows

improved performance of the heterogeneous algorithm. Also, the behaviour of the

heterogeneous swarm with the homogeneous algorithm is analyzed to understand the

behaviour of the heterogeneous system with both algorithms. It is clearly observed that

the heterogeneous system shows increased performance with its corresponding

algorithm.

3

2. Swarms

A swarm system or a swarm network consists of a group of mobile nodes (identical or

different) communicating and sharing information to achieve a common goal. The

‘swarm’ intelligence is characterized by cooperative or collective behaviour of very

simplistic nodes with limited capabilities to achieve complex global intelligence.

Some natural examples of swarm intelligence are bees and ants colonies, bacterial

growth, animal herding, bird flocking and fish schooling. Several swarm algorithms have

been developed by emulating such natural behaviour[14,15,29,32,33]. Individual

organisms living in large groups naturally follow simple rules to achieve a larger goal

for the whole group. Flocking and schooling are easily achieved by the participating

individuals by simply observing their neighbours and correcting their own position

with respect to them, this leads to elaborate and complex group motion. Insects such as

bees and ants largely rely on swarm behaviour. Tasks such as foraging, colony defense,

exploration etc. are direct results of complex swarm behaviour arising from simple

individual behaviour and communication among the group.

The swarm system is largely decentralized and thus, does not completely rely on

specific decision making or control nodes. Therefore, all algorithms adapted for swarm

system must also be decentralized. Some swarms may be completely decentralized and

rely on individual decision making using data gathered from neighbours. Other types of

systems depend on master-slave or clustering (with a chosen cluster head)

configurations. In such cases, a representative node is chosen for either the whole

swarm or a sub cluster of the swarm. All or partial decision making is done by this

representative node. Algorithms for these systems must handle failure of representative

node, reselection of representative node, manage communication between the

representative node and other members [4,20,28,31]. These decentralized nodes also

have self organizing capability. This supports dynamic increase or decrease in number

of nodes actively participating in the swarm. Also, the roles performed by these nodes

may change over a period of time. This fluctuation in the number of nodes and their

roles must be managed and handled properly since it is an essential feature of all

4

swarms. The inherent decentralized and self organizing characteristics lead to a very

adaptive and dynamic system. Such a system has a very high fault tolerance and shows

increased efficacy in adapting to changing and unpredictable future states.

All swarms systems rely on effective communication among the nodes. This dynamic

network of such mobile nodes is essential for swarm intelligence. Members of a swarm

constantly share their position and other problem specific information. This shared

information is the basis for all higher level algorithms. To properly function most

swarming algorithms also require that all nodes be synchronized. Such synchronization

can easily be achieved by using standard algorithms such as the well known Lamport’s

logical clock [17,28].

A network of nodes exhibiting swarm intelligence may be of two types, homogeneous

swarms consist of identical member nodes and heterogeneous swarms. and

heterogeneous swarms consist of dissimilar nodes.

2.1 Homogeneous swarms

Such swarms are more common in theoretical study [2,5,25]. Standard study of swarm

intelligence is based on nodes with identical attributes and capabilities. All member

nodes exhibit identical motion characteristics, have identical sensors, identical

processing capabilities, identical communication and other data collection and

processing standards. Such swarms are simpler to manage due to the inherent

redundancy and equality among the nodes. A failure or addition of a node can be easily

handled.

2.2 Heterogeneous swarms

Such swarms are less frequently studied but are essential in real world applications

[8,18,21]. Heterogeneous swarms are more versatile since they take into account the

slight difference in attributes of each node. Such swarms categorize nodes into different

classes. This categorization may be based on several factors such as agility, efficiency of

computation, efficiency of available sensors etc. The algorithms utilized in such swarms

are more complex since they must handle different types of nodes and each node may or

may not have another equivalent node. Heterogeneous swarms allow incorporation of

5

multiple nodes with a large number of differences, for example, a single cohesive swarm

may consist of a few slow moving nodes with very large processing capability, and a

large number of small, simplistic and fast moving nodes with limited capabilities.

6

3. Sensor Fusion

Sensor fusion is the process of integration of data obtained from multiple identical or

dissimilar sensors measuring a common or disparate source, such that the resulting

information is more consistent, accurate and useful [3,9]. Simplest sensor fusion may

have completely identical sensors measuring a common source. A complex system may

consist of multiple dissimilar sensors measuring multiple different sources to obtain

more accurate state metrics of the environment being observed. It is well studied and

very essential in distributed systems such as senor networks and swarms [3,6,9,16].

Sensor fusion is of two type centralized and decentralized, depending on where the

fusion occurs. In centralized fusion, all data is sent to a central location where it is

processed and fused. In a decentralized system, the data may be processed by multiple

individual sites and processing data independently. An extremely dynamic system such

as a swarm, usually utilizes decentralized sensor fusion. Each node processes data

obtained by multiple neighbours. Though, there is no single site dependency in such

systems, the fused sensor data at multiple sites may or may not be same due to

dependency on available neighbours and different sensor fusion process states at

different sites.

Real world data usually has a component of unwanted error in it. Reduction of this error

in measurement of a single error prone source can be achieved in different ways; using

multiple different sensors measuring simultaneously, or identical sensors measuring

continuously over a period of time, or a combination or the two methods. Sensor fusion

can be applied effectively to integrate the data measured by multiple sensors to

estimate an accurate value of the source. Sensor fusion may also be used to gather

measurement from multiple sources and use their data to estimate the value of a related

parameter.

Sensor fusion largely depends on and is a combination of statistical analysis, filtering

and estimation techniques. Fusion techniques utilized over a period of time may

gradually estimate a more accurate value or may be used to continuously measure a

7

source. Thus, in dynamic systems or networks such as swarms, synchronization is

essential among member nodes [17].

8

4. Noise Filter

Noise filters or estimators are essential in statistical analysis and signal processing.

Measurement of most real world sources under observation or study lead to erroneous

data. If the original source model is known then most noise can easily be filtered out.

But most estimators gradually filter the noise over a period of time utilizing past data

and an approximate model of the original source under study. The most basic estimator

is a simple average of all past measurements or a moving average of past k

measurements. But most commonly used filters are more complex and take into

account the approximate model of the source to estimate a future value.

Bayesian estimators are very common class of noise filters which are based on Bayesian

statistics. It is a subfield of statistics in which evidence about true state of the system

under study is expressed in terms of “Degree of belief” or Bayesian probability. Bayes'

theorem, eq. (4.1), links the degree of belief in a proposition before and after accounting

for evidence.

(ܤ|ܣ)ܲ =

(ܣ)ܲ(ܣ|ܤ)ܲ
(ܤ)ܲ (4.1)

For proposition A and evidence B,

 ܲ(ܣ), the prior, is the initial degree of belief in A.

 ܲ(ܤ|ܣ), the posterior, is the degree of belief having accounted for B.

 The quotient (|)
()

 represents the support B provides for A.

Thus, in such estimators the priori data is used to estimate a more accurate posterior

data.

4.1 Wiener Filter

The wiener filter was proposed by Norbert Wiener during 1940’s [30]. This filter

assumes that one has prior knowledge about both signal and the (additive) noise, which

are stationary linear stochastic processes. This priori information is used by this linear

9

time-invariant filter to obtain a more accurate posterior. The wiener filter is based on

the Minimum Mean-Square Error (MMSE) estimator, which minimizes the mean square

error in a Bayesian setting.

4.2 Particle Filter

The particle filter, also known as Sequential Monte Carlo method (SMC), is a complex

estimation technique which is based on simulation [1,7]. The particle filter uses Monte

Carlo method, i.e., it does not use a closed form expression but instead uses repeated

random sampling to obtain results. The random samples or particles are obtained in a

given probability distribution. The various results obtained from different samples are

compared and a few more accurate samples are chosen. This step is repeated until a

tighter set of samples is obtained. Unlike standard Kalman and Wiener filter, there are

very few assumptions and limitations. The system may or may not be linear and noise

may or may not be Gaussian. Though particle filters are versatile and fast, but they are

also very complex and may not be effectively utilized by very simplistic member nodes

of a swarm. To use such a filter each node would have to run its own complex particle

filter due to decentralized sensor fusion.

4.3 Kalman Filter

In 1960, R.E. Kalman published his famous paper describing a solution to the discrete-

data linear filtering problem [13].The Kalman filter is a set of mathematical equations

that provides an efficient computational means to estimate the state of a process, in a

way that minimizes the mean of the squared error. The filter is very powerful in several

aspects: it supports estimations of past, present, and even future states, and it can do so

even when the precise nature of the modelled system is unknown. The Kalman filter has

been the subject of extensive research and application [22,23,24,26,27].

4.3.1 Standard filter with uniform sampling

The standard discrete Kalman filter is based on the assumption that the underlying

system has a linear evaluation function and all noise in the system is additive and

follows normal or Gaussian distribution.

10

The Kalman filter estimates the state ݔ ∈ ℝ of a discrete-time controlled process that is

governed by the linear stochastic difference equation

݇ݔ = 1−݇ݔ݇ܣ + 1−݇ݑ݇ܤ (4.2) ,1−݇ݓ+

With a measurement ݕ ∈ ℝ that is

݇ݕ = ݇ݔ݇ܤ + (4.3) .݇ݒ

The ݊ × ݊ matrix ݇ܣ in eq. (4.2) relates the state at previous time step ݇ − 1 to the state

at current time step ݇. The ݊ × ݈ matrix ݇ܤ relates the optional control input ݑ ∈ ℝ to

the state ݔ. The m× ݊ matrix ݇ܪ in the measurement eq. (4.3) relates the state to the

measurement ݇ݕ. The random variables ݇ݓ and ݇ݒ represent the process and

measurement noise respectively. They are assumed to be independent of each other,

white, and with normal probability distributions. Due to uniform sampling, time

differences between consecutive iterations are constant. And matrices ܤ ,ܣ and ܪ may

or may not be dependent on the time (or iteration).

The Kalman filter algorithm has two phases, time update and measurement update.

Figure 4.1 Discrete Kalman filter cycle

Time
Update

prediction

Measurement
Update

correction

11

The time update step is projects the current state estimate ahead in time. The

measurement update adjusts the projected estimated by an actual measurement that

time.

The time update is described by following equations,

ො݇ݔ
− = ො݇−1ݔ݇ܣ + (4.4) ,1−݇ݑ݇ܤ

 ܲ݇− = ܶ݇ܣ1−݇ܲ݇ܣ + ܳ݇. (4.5)

The measurement update is described by the following equations,

݇ܭ = ݇ܪ−݇ܲ
݇ܪ−݇ܲ݇ܪ)ܶ

ܶ + ܴ݇)−1, (4.6)

ො݇ݔ = ො݇ݔ
− + ݇ݕ)݇ܭ ො݇ݔ݇ܪ−

−), (4.7)

 ܲ݇ = ܫ) − (4.8) .−݇ܲ(݇ܪ݇ܭ

The variables in eq. (4.4-4.8) are,

 .ො݇ : Estimated state, posterioriݔ

ො݇ݔ
− : Estimated state, priori.

 .State transition matrix (i.e., transition between states) : ݇ܣ

 .Control variable : ݇ݑ

 .Control matrix (i.e., mapping control to state variables) : ݇ܤ

ܲ݇ : State variance matrix (i.e., error of estimation), posterior.

ܲ݇− : State variance matrix (i.e., error of estimation), priori.

ܳ݇ : Process variance matrix (i.e., error due to process; covariance of ݇ݓfrom eq.

(4.2)).

 .Measurement variables : ݇ݕ

 .Measurement matrix (i.e., mapping measurements onto state) : ݇ܪ

 .Kalman gain : ݇ܭ

12

ܴ݇ : Measurement variance matrix (i.e., error from measurements; covariance of ݇ݒ

from eq. (4.3)).

In the time update step, eq. (4.4) and eq. (4.5) project state and covariance estimates

from step ݇ − 1 to step ݇. ݇ܣ and ݇ܤ are obtained from eq. (4.2).

The first step in the measurement update step is to calculate the Kalman gain. In eq. (4.6)

it can be seen that as measurement error covariance ܴ݇ approaches 0, the gain ݇ܭ

weights the residual more heavily.

 lim
ܴ݇→0

݇ܭ = ݇ܪ
−1 (4.9)

On the other hand, as the priori estimate error covariance approaches zero, the gain ݇ܭ

weights the residual less heavily.

 lim
ܲ݇
−→0

݇ܭ = 0 (4.10)

Depending on the initial variable values, the Kalman filter may require a few iterations

to stabilize and get a tighter estimate.

4.3.2 Filter with non uniform sampling

A slight modification of the Kalman filter with uniform sampling is the non uniform

sampling filter [19]. The original filter is based on constant time difference between

iterations. But applications such as distributed analysis and swarm networks, such time

synchronization is not possible. Therefore, another variant of the Kalman filter utilizes

iteration steps with different time intervals.

Similar to the standard filter, the equations are:

The time update is described by following equations,

2ݐ,ො݇ݔ
− = 1ݐ,ො݇−1ݔݐ∆ܣ + (4.11) ,ݐ∆ݑݐ∆ܤ

13

2ݐ,݇ܲ
− = ݐ∆ܣ1ݐ,1−݇ܲݐ∆ܣ

ܶ + (4.12) .ݐ∆ܳ

The measurement update is described by the following equations,

2ݐ,݇ܭ = 2ݐ,݇ܲ
− 2ݐܪ

2ݐ,2ܲ݇ݐܪ)ܶ
− 2ݐܪ

ܶ + (4.13) ,1−(2ݐܴ

2ݐ,ො݇ݔ = 2ݐ,ො݇ݔ
− + 2ݐ,݇ݕ)2ݐ,݇ܭ

− 2ݐ,ො݇ݔ2ݐܪ
−), (4.14)

2ݐ,݇ܲ = ܫ) − 2ݐ,݇ܲ(2ݐܪ2ݐ,݇ܭ
− . (4.15)

In eq. (4.11) and eq. (4.12) ݑ ,ܤ ,ܣ and ܳ depend on ∆ݐ = 2ݐ − and ܪ In eq. (4.13-4.15) .1ݐ

ܴ only depend on 2ݐ because they are independent of the previous state.

This filter can be effectively applied in a swarm system where measurement of

parameters at uniform time intervals may not be possible. Thus, each measurement at a

different time may be processed along with previous such measurements.

4.3.3 Other versions

Kalman filter has been extensively researched and modified [11,12]. Well known

variants such as the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF)

provide wider applications and improved capabilities[10]. The EKF is a nonlinear

version of the standard Kalman filter and unlike the standard filter does not require

only additive noise. In highly nonlinear state transition and observation models the EKF

may give poor results because the covariance is propagated through linearization of the

underlying nonlinear model. The UKF utilizes a deterministic sampling technique

known as unscented transform to choose a minimal set of sample points around the

mean. These points are propagated through the nonlinear functions, from which the

mean and covariance of the estimate are then recovered. This resulting filter more

accurately captures the actual mean and covariance.

14

5. Sensor Fusion in Swarms using Kalman Filter

Sensor fusion using Kalman filter in a distributed system has only been studied by a few

[23,24,26]. The Kalman filter and its variants can be easily applied in a dynamic and

distributed setting. Important criteria for any information sharing algorithm are, when

to share, which neighbours to share with and what to share. Sharing algorithms must

account for dissimilar states of different nodes. Such algorithms must balance the need

for sharing of complex large amounts of data and, energy consumption and delay.

In the proposed sensor fusion system, the Kalman filter with non uniform sampling is

applied in a distributed swarm system consisting of multiple, mobile, identical or

dissimilar nodes. The nodes may measure a single or multiple parameters of a system.

Each node may run a single or multiple instances of the sharing algorithm depending on

observation of single or multiple parameters, respectively. Each node is assumed to

have a single type of sensor, but the proposed algorithms can easily be adapted for

multisensory nodes. All nodes are assumed to be synchronized. Each node has a sensor

range and a communication range. The sensor range is the distance up to which the

sensor can effectively measure an observation point. The communication range is the

distance up to which the node can communicate with another member node.

In the proposed system, there are two different algorithms for homogeneous and

heterogeneous swarms. Three metrics are used to identify how and what to share.

Firstly, the total number of iterations of Kalman filter executed to obtain current

estimated value known to node ݅, ܰ݅. This helps in identifying the stability achieved by

the filter. Secondly, the time stamp of the latest measurement known to node ݅, ݈ܶ݅. It is

important to known that it is not necessary that node ݅ measure and execute the filter

itself. It may receive estimates and measurements from other nodes. Lastly, the average

rank of the estimated value known to node ݅, ܴ݅. This is further explained in section 5.2

and is only applicable for heterogeneous swarms.

Each algorithm uses two different types of sharing methods. One is a simple sharing

method which involves direct transfer of data from one node to another. The other is a

15

more complex version which involves multiple interchange and processing of data

between the two nodes. These are referred to as ShareSimple and ShareComplex

methods, respectively.

5.1 Homogeneous swarm with Kalman filter

Homogeneous swarms consist of identical nodes with identical sensors accuracy, sensor

range, motion characteristics, and processing capability. Data obtained by all nodes is

treated equally. Two control parameters are used to minutely control how and when

information is shared. They are stability number, ܰܵܶܤܣ and time difference, ܶܨܨܫܦ. It

is more preferable that an estimator captures the true value as soon as possible. Thus,

as number of filter iterations increases a tighter estimate is obtained compared to initial

values. A balance between the number of iterations and more recent estimates must be

made.

The simple sharing method followed by nodes ݅ and ݆ belonging to a homogeneous

swarm is given as:

,ܑ)ܗ۶܍ܔܘܕܑ܁܍ܚ܉ܐ܁ (ܒ

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅ from ݅ to ݆.

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e. send last ݇ measurements from ݅ to ݆.

 Node ݆ updates its variables.

In this method, node ݅ sends all relevant information it has to node ݆. The number of

measurements to shared may be fixed at the start, given by ݇. The las ݇ t measurements

may be used by ݆ when it might execute a ShareComplexHo method. Thus, updating

node j.

The complex sharing method followed by nodes ݅ and ݆ belonging to a homogeneous

swarm is given as:

,ܑ)ܗ۶ܠ܍ܔܘܕܗ۱܍ܚ܉ܐ܁ (ܒ

 Send ݈݆ܶ, ݔො݆ܰ,݈݆ܶ , ݆ܲܰ,݈݆ܶ from ݆ to ݅.

16

 Using ݔො݆ܰ,݈݆ܶ and ݆ܲܰ,݈݆ܶ node ݅ iterates Kalman filter from its measurement value

with next greater time index to ݈݆ܶ up to last measurement value. Note that

݈ܶ݅ > ݈݆ܶ.

 Last ݇ − ܿ measurement values are sent from node ݆ to ݅ and are added in sorted

order according to time. Here, ܿ is the number of measurement values of ݅ which

were iterated over in the above step.

 Node ݅ shifts last ݇ measurement values by ܿ.

 Node ݅ updates ܰ݅ = ݆ܰ + ܿ. Thus, obtaining new ݔොܰ݅,݈ܶ݅ and ܲܰ݅,݈ܶ݅ .

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅ from ݅ to ݆.

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e send last ݇ measurements from ݅ to ݆.

 Node ݆ updates its variables.

The complex sharing method ShareComplexHo(i, j) has three phases. In the first phase,

node ݆ sends its estimate, state variance and last measurement time to node ݅. In the

second phase, node ݅ iterates up to its last measurement value using the data given by ݆.

Node ݆ also sends additional measurement values to have accurate last ݇ measurements

at node ݅. Node ݅ then updates its own measurement list and other variables. In phase

three, node ݅ performs steps similar to simple sharing and sends data to node ݆.

The complex sharing method is explained in Figure 5.1. In this figure ݇ = 6 and due to

values of ݈ܶ݅ and ݈݆ܶ, ܿ = 4. First node ݆ sends data to ݅, then ݅ processes and updates its

data, then it shares this new updated values with node ݆.

17

Figure 5.1 Complex sharing method for node i to j.

Nj
tlj

Ni
tli ti

 k

 k=6

.

. . .

Node i

Node j

tj

 c=4

.

. . .
tj

ti

 k

Nj
tlj

Node j

Nj + c
tli

Node i

 k

.

. . .
tj

ti

 k
Nj + c
tli

Nj + c
tli

Node i

 k

Node j

18

The sharing algorithm followed by two neighbor nodes ݅ and ݆ for a single observation

source is given as:

Homogeneous Sharing Algorithm

If ܰ݅ == ݆ܰ

If ܰ݅ <= ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ

ShareComplexHo(i, j)

Else If ݈ܶ݅ < ݈݆ܶ

ShareComplexHo(j, i)

Else if ݈ܶ݅ > ݈݆ܶ

If ݈ܶ݅ − ݈݆ܶ > ܨܨܫܦܶ

 ShareSimpleHo(i, j)

Else

ShareComplexHo(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

If ݈݆ܶ − ݈ܶ݅ > ܨܨܫܦܶ

 ShareSimpleHo(j, i)

Else

ShareComplexHo(j, i)

Else if ܰ݅ > ݆ܰ

If ܰ݅ <= ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ

ShareComplexHo(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

ShareComplexHo(j, i)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHo(i, j)

Else if ݈ܶ݅ > ݈݆ܶ

 ShareSimpleHo(i, j)

19

Else if ݈ܶ݅ < ݈݆ܶ

If ݆ܰ > ܤܣܶܵܰ

 ShareSimpleHo(j, i)

Else

 ShareComplexHo(j, i)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHo(i, j)

Else if ݆ܰ > ܰ݅

If ݆ܰ <= ܤܣܶܵܰ

If ݈݆ܶ > ݈ܶ݅

ShareComplexHo(j, i)

Else if ݈݆ܶ < ݈ܶ݅

ShareComplexHo(i, j)

Else if ݈݆ܶ == ݈ܶ݅

 ShareSimpleHo(j, i)

Else if ݈݆ܶ > ݈ܶ݅

 ShareSimpleHo(j, i)

Else if ݈݆ܶ < ݈ܶ݅

If ܰ݅ > ܤܣܶܵܰ

 ShareSimpleHo(i, j)

Else

ShareComplexHo(i, j)

Else If ݈݆ܶ == ݈ܶ݅

 ShareSimpleHo(j, i)

In general, nodes with larger number of known measurements and/or more recent

measurement are used as source nodes to send distribute data to other nodes. During

the starting phase of the system it is desirable that more sharing take place. This

enables the filter to stabilize faster. ܰܵܶܤܣ is used to control the number of iterations

up to which combination of measured values and re-estimation is required. After

20

number of iterations is greater than ܰܵܶܤܣ the node with latest measurement sends

data to other nodes.

If ܰ݅ == ݆ܰ then ܶܨܨܫܦmay be used to control if re-estimation is required or not since.

The complex sharing method enables combination of multiple measurements and

results in single more accurate estimated value.

5.2 Heterogeneous swarm with Kalman filter

In the heterogeneous swarm all nodes are not identical. In such a swarm nodes having

varying capabilities. Specifically, some nodes have more accurate sensors and longer

sensor range. Thus, nodes have different ݇ݒ and ܴ݇.

In the proposed scheme, a rank or score is assigned to each type of sensor. Higher

rank/score implies more accurate sensor. If a single node measures the observation

point then its estimated value will have the rank same as it sensor rank. But in the case

of swarms where nodes share measurement values and average rank of the estimated

value must be obtained.

The simple sharing of data from node ݅ to ݆, where both belong to heterogeneous swarm

is given as:

,ܑ)܍۶܍ܔܘܕܑ܁܍ܚ܉ܐ܁ (ܒ

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅ .݆ from ݅ to ܴ݅ܣ ,

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e. send last ݇ measurements from ݅ to ݆.

 Node ݆ updates its variables.

The only difference between homogeneous and heterogeneous is the additional sharing

of the average rank of estimated value at node ݅ is ܴ݅ܣ.

The complex sharing of data from node ݅ to ݆, where both belong to heterogeneous

swarm is given as:

,ܑ)܍۶ܠ܍ܔܘܕܗ۱܍ܚ܉ܐ܁ (ܒ

 Send ݈݆ܶ, ݔො݆ܰ,݈݆ܶ , ݆ܲܰ,݈݆ܶ from ݆ to ݅.

21

 Using ݔො݆ܰ,݈݆ܶ and ݆ܲܰ,݈݆ܶ node ݅ iterates Kalman filter from its measurement value

with next greater time index to ݈݆ܶ up to last measurement value. Note that

݈ܶ݅ > ݈݆ܶ.

 Last ݇ − ܿ measurement values are sent from node ݆ to ݅ and are added in sorted

order according to time. Here, ܿ is the number of measurement values of ݅ which

were iterated over in the above step.

 Node ݅ shifts last ݇ measurement values by ܿ.

 Node ݅ updates ܰ݅ = ݆ܰ + ܿ. Thus, obtaining new ݔොܰ݅,݈ܶ݅ and ܲܰ݅,݈ܶ݅ .

 Node ݅ also updates ܴ݅ܣ given as:

ܴ݅ܣ =
݆ܴܣ ∗݆ܰ + ܴ݅ܣ ∗ ܿ

݆ܰ + ܿ . (5.1)

 Send ݈ܶ݅, ܰ݅, ݔොܰ݅,݈ܶ݅ , ܲܰ݅,݈ܶ݅ .݆ from ݅ to ܴ݅ܣ ,

 Send ݐ,݉ݕ for ݉ = ܰ݅ − ݇ to ݉ = ܰ, i.e send last ݇ measurements from ݅ to ݆.

 Node ݆ updates its variables.

The complex sharing method of heterogeneous is also different from homogeneous only

with respect to additional update and sharing of ܴ݅ܣ.

The sharing algorithm followed by two neighbor nodes ݅ and ݆ for a single observation

source is given as:

Heterogeneous Sharing Algorithm

ܴ݅ܣ == ݆ܴܣ

If ܰ݅ == ݆ܰ

If ܰ݅ <= ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ

 ShareComplexHe(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

 ShareComplexHe(j, i)

Else if ݈ܶ݅ > ݈݆ܶ

22

If ݈ܶ݅ − ݈݆ܶ > ܨܨܫܦܶ

 ShareSimpleHe(i, j)

Else

 ShareComplexHe(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

If ݈݆ܶ − ݈ܶ݅ > ܨܨܫܦܶ

 ShareSimpleHe(j, i)

Else

 ShareComplexHe(j, i)

Else if ܰ݅ > ݆ܰ

If ܰ݅ <= ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ

 ShareComplexHe(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

 ShareComplexHe(j, i)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHe(i, j)

Else if ݈ܶ݅ > ݈݆ܶ

 ShareSimpleHe(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

If ݆ܰ > ܤܣܶܵܰ

 ShareSimpleHe(j, i)

Else

 ShareComplexHe(j, i)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHe(i, j)

Else if ܰ݅ > ܰ݅

If ݆ܰ <= ܤܣܶܵܰ

If ݈݆ܶ > ݈ܶ݅

 ShareComplexHe(j, i)

Else if ݈݆ܶ < ݈ܶ݅

 ShareComplexHe(i, j)

23

Else if ݈݆ܶ == ݈ܶ݅

 ShareSimpleHe(j, i)

Else if ݈݆ܶ > ݈ܶ݅

 ShareSimpleHe(j, i)

Else if ݈݆ܶ < ݈ܶ݅

If ܰ݅ > ܤܣܶܵܰ

 ShareSimpleHe(i, j)

Else

 ShareComplexHe(i, j)

Else If ݈݆ܶ == ݈ܶ݅

 ShareSimpleHe(j, i)

ܴ݅ܣ > ݆ܴܣ

If ܰ݅ == ݆ܰ

If ܰ݅ == ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ

 ShareComplexHe(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

 ShareComplexHe(j, i)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHe(i, j)

Else if ݈ܶ݅ > ݈݆ܶ

If ݈ܶ݅ − ݈݆ܶ > ܨܨܫܦܶ

 ShareSimpleHe(i, j)

Else

 ShareComplexHe(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

If ݈݆ܶ − ݈ܶ݅ > ܨܨܫܦܶ ∗ ܴ݂

 ShareSimpleHe(j, i)

Else

 ShareComplexHe(j, i)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHe(i, j)

24

Else if ܰ݅ > ݆ܰ

If ܰ݅ <= ܤܣܶܵܰ

If ݈ܶ݅ > ݈݆ܶ

 ShareComplexHe(i, j)

Else if ݈ܶ݅ < ݈݆ܶ

 ShareComplexHe(j, i)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHe(i, j)

Else if ݈ܶ݅ > ݈݆ܶ

 ShareSimpleHe(i, j)

Else if ݈ܶ݅ == ݈݆ܶ

 ShareSimpleHe(i, j)

Else if ݈݆ܶ − ݈ܶ݅ > ܨܨܫܦܶ ∗ ܴ݂

 ShareSimpleHe(j, i)

Else

 ShareComplexHe(j, i)

Else if ݆ܰ > ܰ݅

If ݆ܰ <= ܤܣܶܵܰ

If ݈݆ܶ > ݈ܶ݅

 ShareComplexHe(j, i)

Else if ݈݆ܶ < ݈ܶ݅

 ShareComplexHe(i, j)

Else if ݈݆ܶ == ݈ܶ݅

 ShareSimpleHe(j, i)

Else if ܶ ݈ > ݈ܶ

 ShareSimpleHe(j, i)

Else If ܶ ݈ == ݈ܶ

ShareSimpleHe(j, i)

Else if ݈ܶ − ܶ ݈ > ܨܨܫܦܶ

 ShareSimpleHe(i, j)

Else

 ShareComplexHe(i, j)

25

ܴܣ < ܣ ܴ

If ܰ == ܰ

If ܰ <= ܤܣܶܵܰ

If ܶ ݈ > ݈ܶ

 ShareComplexHe(j, i)

Else if ܶ ݈ < ݈ܶ

 ShareComplexHe(i, j)

Else if ܶ ݈ == ݈ܶ

 ShareSimpleHe(j, i)

Else if ܶ ݈ > ݈ܶ

If ܶ ݈ − ݈ܶ > ܨܨܫܦܶ

 ShareSimpleHe(j, i)

Else

 ShareComplexHe(j, i)

Else if ܶ ݈ < ݈ܶ

If ݈ܶ − ܶ ݈ > ܨܨܫܦܶ ∗ ܴ݂

 ShareSimpleHe(i, j)

Else

 ShareComplexHe(i, j)

Else if ܶ ݈ == ݈ܶ

 ShareSimpleHe(j, i)

Else if ܰ > ܰ

If ܰ <= ܤܣܶܵܰ

If ܶ ݈ > ݈ܶ

 ShareComplexHe(j, i)

Else if ܶ ݈ < ݈ܶ

 ShareComplexHe(i, j)

Else if ܶ ݈ == ݈ܶ

ShareSimpleHe(j, i)

Else if ܶ ݈ > ݈ܶ

 ShareSimpleHe(j, i)

Else if ܶ ݈ == ݈ܶ

26

 ShareSimpleHe(j, i)

Else if ݈ܶ − ܶ ݈ > ܨܨܫܦܶ ∗ ܴ݂

 ShareSimpleHe(i, j)

Else

 ShareComplexHe(i, j)

Else if ܰ > ܰ

If ܰ <= ܤܣܶܵܰ

If ݈ܶ > ܶ ݈

 ShareComplexHe(i, j)

Else if ݈ܶ < ܶ ݈

 ShareComplexHe(j.i)

Else if ݈ܶ == ܶ ݈

 ShareSimpleHe(i, j)

Else if ݈ܶ > ܶ ݈

 ShareSimpleHe(i, j)

Else If ݈ܶ > ܶ ݈

 ShareSimpleHe(i, j)

Else if ܶ ݈ − ݈ܶ > ܨܨܫܦܶ

 ShareSimpleHe(j, i)

Else

 ShareComplexHe(j, i)

The main difference between homogeneous and heterogeneous sharing algorithms is

the average rank which must also be compared. The accuracy of sensor is essential to

obtain a more accurate estimate. But in some cases, for example, if a high ranking node

has a very old measurement value, it would not be preferable for such a node to share

its data, a less accurate but more recent measurement may be more useful. This balance

must be maintained. A fixed rank factor, ܴ݂, is used to control the balance between

accurate measurements and more recent measurements. The positive ܴ݂ is multiplied

with ܶܨܨܫܦ to control when complex sharing takes place. Complex sharing allows more

accurate data to be included in estimates.

27

6. Simulation Results

The simulation study has been conducted using MATLAB 7.12.0 (R2011a) and no

additional packages were used. In this study all results have been obtained independent

of the network. That is, it is assumed that no communication delays, protocol delays,

synchronization delays, and interference due to communication signal occur. It is also

assumed that no processing delays take place.

The motion of the swarm occurs in a Euclidean space. A fixed range is selected in which

the nodes are allowed to move. A fixed maximum velocity is chosen and the velocity of

each node is randomly selected and follows uniform distribution.

The simulation environment consists of a single observation point (green) and multiple

mobile nodes (magenta). At the observation point temperature is said to be increasing

following the eq. (6.1), where ܣ and ܤ are fixed parameters. All noise in the system

follows normal or Gaussian distribution. All operations are independent of units of

measurement.

௪݉݁ܶ = ܣ ∗ ௨௧݉݁ܶ + (6.1) ܤ

6.1 Standard Kalman Filter

In this study a 50 by 50 area is considered along with a single stationary node

constantly monitoring the observation point. The increasing temperature is described

as ܣ = 1.03 and ܤ = 1.5 from eq. (6.1), with an initial temperature of 100.

Figure 6.1 describes the standard Kalman filter with parameters as,

Measurement noise magnitude (standard deviation) = ොݔ ݈ܽݐ݅݊ܫ ,45 = ܲ ݈ܽ݅ݐ݅݊ܫ , 0 =

100, ܳ = ܪ ,10 = ܨ ,1 = ܤ ,1.03 = 1.5 and ݑ = 1. It can be seen that ܨ and ܤ are

accurate but ܳ indicates that node assumes process error. A moving average with past 5

values is also considered for comparative analysis.

28

It can be seen in Figure 6.1, that the estimated value is more accurate than the moving

average. Also, that the Kalman filter captures a tighter estimate after some time. This is

due to the fact that the initial estimate is very far from actual value.

Figure 6.1 Standard Kalman filter P=100 and Q=10

In Figure 6.2, it is considered that ܳ = 50 and all other parameters are same. Thus,

there is deviation in the estimated value since the measuring node assumes that the

system model parameters ܨ and ܤ are not accurate. Therefore, some more time is taken

by the filter capture the tighter values.

In Figure 6.3, it is considered that ܲ = 1000 and all other parameters are same. Since,

the filter assumes large error in the initial estimate, it captures the true value much

faster. But such a large error takes time to reduce, so there is deviation from actual

value in the beginning.

29

Figure 6.2 Standard Kalman filter P=100 and Q=50

Figure 6.3 Standard Kalman filter P=1000 and Q=10

30

6.2 Homogeneous swarm algorithm with Kalman filter

Similar to the standard Kalman filter model, a single observation point is assumed but

with multiple identical nodes. The temperature is said to be increasing with ܣ = 1.09

and B= 1, from eq. (6.1), with starting temperature of 100.

The non uniform sampling Kalman filter parameters are,

Measurement noise magnitude = ොݔ ݈ܽݐ݅݊ܫ ,150 = ܲ ݈ܽ݅ݐ݅݊ܫ , 0 = 500, ܳ = ܪ ,10 = 1,

ݑ = 1, and ܨ and ܤ are accurate. Eq. (6.1) is fixed time interval increase of temperature

but nodes measure only when they are close to observation point. Therefore, ܨ and ܤ

must be adapted according to eq. (6.2) and eq. (6.3).

௧∆ܨ = 1.019∆௧ (6.2)

௧∆ܤ =

1.019∆௧ − 1
1.019− 1 (6.3)

The swarm parameters are, ܰ. ݏ݁݀݊ ݂ = ݕݐ݈݅ܿ݁ݒ ݉ݑ݉݅ݔܽܯ ,5 = 20,

݁݃݊ܽݎ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ = ݁݃݊ܽݎ ݎݏ݊݁ܵ ,30 = 10.

Figure 6.4 describes the modelled environment with the observation point and mobile

nodes along with their communication and sensor ranges. In figure 6.5 ܰܵܶܤܣ = 0 and

ܨܨܫܦܶ = 10. It can be seen that the estimated value is not close to actual. Large

fluctuation in the average measured shows reduced sharing and higher error. At many

occasions it can be seen that both estimates and measured are horizontal to x axis, thus

showing no sharing. In figure 6.6 ܰܵܶܤܣ = 10 and ܶܨܨܫܦ = 10, thus increasing the

complex sharing. A slight improvement in estimated values is observed compared to

previous run.

To comparatively study the effect of number of nodes, two models of 10 nodes and 30

nodes were used, as described in figure 6.7 and figure 6.8 respectively. In both cases the

temperature increase model is same as earlier. The non uniform sampling Kalman filter

parameters are same as earlier, i.e. Measurement noise magnitude = ොݔ ݈ܽݐ݅݊ܫ ,150 = 0

31

ܲ ݈ܽ݅ݐ݅݊ܫ , = 500, ܳ = ܪ ,10 = ݑ ,1 = 1, and ܨ and ܤ are given by eq. (6.2) and eq. (6.3)

respectively.

In figure 6.9, the swarm parameters are, ܰ. ݏ݁݀݊ ݂ = ݕݐ݈݅ܿ݁ݒ ݉ݑ݉݅ݔܽܯ ,10 = 15,

݁݃݊ܽݎ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ = ݁݃݊ܽݎ ݎݏ݊݁ܵ ,15 = ܤܣܶܵܰ ,10 = ܨܨܫܦܶ ,5 = 5. Figure 6.10

has same parameters but ܰ. ݏ݁݀݊ ݂ = 30. It can be clearly seen that increase in

number of nodes provides a more accurate estimate. Also, the effectiveness of the

algorithm is highly dependent on the frequency of sharing and observation. Due to

reduced frequency of sharing and observation and high error the moving average gives

closer measurement values. As iterations increase the estimated value attains a tighter

capture of the actual value.

Figure 6.4 Model with observation point (green), 5 nodes (magenta), comm. range (blue)=30

and sensor range (red)=10.

32

Figure 6.5 Homogeneous 5 nodes with NSTAB=0 and TDIFF=10.

Figure 6.6 Homogeneous 5 nodes with NSTAB=10 and TDIFF=10.

33

Figure 6.7 Model with observation point (green), 10 nodes (magenta), comm. range (blue)=15

and sensor range (red)=10.

Figure 6.8 Model with observation point (green), 30 nodes (magenta), comm. range (blue)=15

and sensor range (red)=10.

34

Figure 6.9 Homogeneous swarm and algorithm with 10 nodes.

Figure 6.10 Homogeneous swarm and algorithm with 30 nodes.

35

6.3 Heterogeneous swarm algorithm with Kalman filter

In the heterogeneous swarm model some nodes have more accurate sensors and

greater sensor range. Figure 6.11 and figure 6.12 describe models with ܴ݂ = 1.5 and

ܴ݂ = 2, respectively. The increasing temperature model is same as above with

ܣ = 1.019 and ܤ = 1 in eq. (6.1), with initial temperature of 100. The non uniform

sampling Kalman filter parameters are same as earlier, i.e. ݔ ݈ܽݐ݅݊ܫො = ܲ ݈ܽ݅ݐ݅݊ܫ , 0 =

500, ܳ = ܪ ,10 = ݑ ,1 = 1, and ܨ and ܤ are given by eq. (6.2) and eq. (6.3) respectively.

The swarm parameters are, ܰ. ݏ݁݀݊ ݂ = ݕݐ݈݅ܿ݁ݒ ݉ݑ݉݅ݔܽܯ ,30 = 15,

݁݃݊ܽݎ ݊݅ݐܽܿ݅݊ݑ݉݉ܥ = ܤܣܶܵܰ ,15 = ܨܨܫܦܶ ,5 = 5. But unlike homogeneous

swarms these nodes are not identical, 18 nodes have Measurement noise magnitude =

150 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 10, 8 nodes have Measurement noise magnitude = 80 and

݁݃݊ܽݎ ݎݏ݊݁ܵ = 11, and 4 nodes have Measurement noise magnitude = 5 and

݁݃݊ܽݎ ݎݏ݊݁ܵ = 12.

It can be clearly seen in figure 6.11 and figure 6.12 that a much tighter capture is

attained. Also, around time=80, ܴ݂ = 1.5 causes less dip is estimated value and ܴ݂ = 2

causes more. ܴ݂ must be used to obtain a fine balance between recent and more

accurate measurements. Larger ܴ݂ means more preference to accurate measurements

than recent measurements.

36

Figure 6.11 Heterogeneous swarm and algorithm with 30 nodes Rf=1.5.

i

Figure 6.12 Heterogeneous swarm and algorithm with 30 nodes Rf=2.

37

In figure 6.13 and figure 6.14 we compare the effect of number of nodes on this

algorithm. Same filter setting are used as above. But the swarm in figure 6.13 has 10

nodes; 5 nodes have Measurement noise magnitude = 150 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 10, 3

nodes have Measurement noise magnitude = 80 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 11, and 2 nodes

have Measurement noise magnitude = 25 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 12. Figure 6.14 has 30

nodes; 18 nodes have Measurement noise magnitude = 150 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 10, 8

nodes have Measurement noise magnitude = 80 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 11, and 4 nodes

have Measurement noise magnitude = 5 and ܵ݁݊݁݃݊ܽݎ ݎݏ = 12. An obvious increase

in accuracy of estimation is observed. This is due to presence of more accurate nodes as

well as increased sharing among the nodes. Also, clear improvement from the moving

average is seen.

Figure 6.13 Heterogeneous swarm and algorithm with 10 nodes.

38

Figure 6.14 Heterogeneous swarm and algorithm with 30 nodes.

6.4 Heterogeneous swarm and homogeneous algorithm with Kalman filter

To perform an appropriate comparative analysis of the two proposed algorithms. The

homogeneous algorithm is run in a heterogeneous swarm system. Thus, the

homogeneous swarm does not account for the difference in the accuracy of the member

nodes.

Figure 6.15 and figure 6.16 describe swarms with 10 and 30 nodes, respectively. All

parameters are similar for respective models of the heterogeneous algorithm previously

simulated. Comparing figure 6.13 And figure 6.15, it can be seen that beyond time=50

the heterogeneous algorithm provides better estimate. Also, in figure 6.14 and figure

6.16, a noticeable improvement is seen. The heterogeneous algorithm captures the true

value faster and gives better result throughout. This is due to larger nodes and more

number of accurate nodes. Thus, the better suited heterogeneous algorithm gives better

results.

39

Figure 6.15 Heterogeneous swarm and homogeneous algorithm with 10 nodes.

Figure 6.16 Heterogeneous swarm and homogeneous algorithm with 30 nodes.

40

7. Conclusion

In this study, the effectiveness of Kalman filter algorithm is analyzed in a homogeneous

and heterogeneous swarm network in a noisy environment. Firstly, the behavior of a

standard Kalman filter is examined. Then two sharing algorithms are proposed for both

homogeneous and heterogeneous swarms. These swarms are designed to observe an

underlying system with erroneous sensors. Thus, such swarms must utilize a noise filter

to achieve a more accurate estimate. Each sharing algorithm uses two different types of

sharing schemes to achieve a more accurate estimate in a distributed environment.

Later, a comparative analysis is conducted between the two algorithms and as well as a

standard moving average. It is clearly shown that given sufficient number of nodes the

algorithms perform better than the moving average. Also, as expected, a heterogeneous

system (with few more accurate nodes) provides better results than a homogeneous

system. The effectiveness of the rank based heterogeneous algorithm is also examined.

It is shown that in a heterogeneous environment, the heterogeneous algorithm

performs better than the homogeneous algorithm. This is due to the fact that the

heterogeneous algorithm takes into account the difference in capabilities of each node,

thus, achieving higher accuracy and reduced time to capture the true value.

41

8. Future Work

There is a very broad scope of possible work in the future. General improvements in

speed, response time and memory consumption can obviously be achieved. A dynamic

approach to currently fixed parameters such as, ܰܵܶܨܨܫܦܶ , ܤܣ and ܴ݂, can be studies

in the future. A dynamic switching between the homogeneous and heterogeneous nodes

may be possible in cases where there are a large number of nodes of each type. Thus, if a

large number of neighbours of a node are of the same type then homogeneous algorithm

would be faster and more effective. The existing algorithm can easily be modified to

work with EKF and UKF algorithms which would be effective in nonlinear systems. A

comparative study of various filters may also be conducted. The proposed work has

large applications in multiple fields. A modified and more specific system may be

developed for different environments. For example, path traversal, searching, social

network information sharing etc. can greatly benefit from the proposed work. Also,

more in depth analysis would be helpful in identifying differences in behavior of

homogeneous and heterogeneous swarms.

42

References

[1] Arulampalam, M. Sanjeev, Simon Maskell, Neil Gordon, and Tim Clapp. "A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking." Signal
Processing, IEEE Transactions on 50, no. 2 (2002): 174-188.

[2] Bonabeau, Eric, Marco Dorigo, and Guy Theraulaz. Swarm intelligence: from
natural to artificial systems. Vol. 4. New York: Oxford university press, 1999.

[3] Brooks, Richard R., and Sundararaja S. Iyengar. Multi-sensor fusion:
fundamentals and applications with software. Prentice-Hall, Inc., 1998.

[4] Buchsbaum, Daphna, Pablo Funes, Julien Budynek, Heiner Koppermann, and Eric
Bonabeau. "Designing collective behavior in a group of humans using a real-time
polling system and interactive evolution." In Swarm Intelligence Symposium,
2005. SIS 2005. Proceedings 2005 IEEE, pp. 15-21. IEEE, 2005.

[5] Cai, N., and Y-S. Zhong. "Formation controllability of high-order linear time-
invariant swarm systems." Control Theory & Applications, IET 4, no. 4 (2010):
646-654.

[6] Deming, R., L. Perlovsky, and R. Brockett. "Sensor fusion for swarms of
unmanned aerial vehicles using modeling field theory." In Integration of
Knowledge Intensive Multi-Agent Systems, 2005. International Conference on,
pp. 122-127. IEEE, 2005.

[7] Doucet, Arnaud, Nando De Freitas, and Neil Gordon. Sequential Monte Carlo
methods in practice. Vol. 1. New York: Springer, 2001.

[8] Ducatelle, Frederick, Gianni A. Di Caro, and Luca M. Gambardella. "Cooperative
self-organization in a heterogeneous swarm robotic system." In Proceedings of
the 12th annual conference on Genetic and evolutionary computation, pp. 87-94.
ACM, 2010.

[9] Hall, David L., and James Llinas, eds. Multisensor data fusion. CRC press, 2001.

[10] Julier, Simon J., and Jeffrey K. Uhlmann. "New extension of the Kalman filter to
nonlinear systems." In AeroSense'97, pp. 182-193. International Society for
Optics and Photonics, 1997.

[11] Kalman, Rudolf Emil. "Contributions to the theory of optimal control." Bol. Soc.
Mat. Mexicana 5, no. 2 (1960): 102-119.

[12] Kalman, Rudolph E., and Richard S. Bucy. "New results in linear filtering and
prediction theory." Journal of Basic Engineering 83, no. 3 (1961): 95-108.

43

[13] Kalman, Rudolph Emil. "A new approach to linear filtering and prediction
problems." Journal of basic Engineering 82, no. 1 (1960): 35-45.

[14] Karaboga, Dervis, and Bahriye Akay. "A survey: algorithms simulating bee swarm
intelligence." Artificial Intelligence Review 31, no. 1-4 (2009): 61-85.

[15] Karaboga, Dervis. "An idea based on honey bee swarm for numerical
optimization." Techn. Rep. TR06, Erciyes Univ. Press, Erciyes (2005).

[16] Kumar, Manish, Devendra P. Garg, and Randy A. Zachery. "A method for judicious
fusion of inconsistent multiple sensor data." Sensors Journal, IEEE 7, no. 5
(2007): 723-733.

[17] Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed
system." Communications of the ACM 21, no. 7 (1978): 558-565.

[18] Li, Ling, Alcherio Martinoli, and Yaser S. Abu-Mostafa. "Learning and measuring
specialization in collaborative swarm systems." Adaptive Behavior 12, no. 3-4
(2004): 199-212.

[19] Li, Weihua, Sirish L. Shah, and Deyun Xiao. "Kalman filters in non-uniformly
sampled multirate systems: for FDI and beyond." Automatica 44, no. 1 (2008):
199-208.

[20] Lo, Virginia, Dayi Zhou, Yuhong Liu, Chris GauthierDickey, and Jun Li. "Scalable
supernode selection in peer-to-peer overlay networks." In Hot Topics in Peer-to-
Peer Systems, 2005. HOT-P2P 2005. Second International Workshop on, pp. 18-
25. IEEE, 2005.

[21] Magg, Sven, and René te Boekhorst. "Pattern formation in homogeneous and
heterogeneous swarms: differences between versatile and specialized agents." In
Artificial Life, 2007. ALIFE'07. IEEE Symposium on, pp. 311-316. IEEE, 2007.

[22] Maybeck, Peter S. Stochastic models, estimation, and control. Vol. 3. Access
Online via Elsevier, 1982.

[23] Olfati-Saber, Reza. "Distributed Kalman filter with embedded consensus filters."
In Decision and Control, 2005 and 2005 European Control Conference. CDC-
ECC'05. 44th IEEE Conference on, pp. 8179-8184. IEEE, 2005.

[24] Olfati-Saber, Reza. "Distributed Kalman filtering for sensor networks." In
Decision and Control, 2007 46th IEEE Conference on, pp. 5492-5498. IEEE, 2007.

[25] Parunak, H. Van Dyke, and Sven A. Brueckner. "Engineering swarming systems."
In Methodologies and Software Engineering for Agent Systems, pp. 341-376.
Springer US, 2004.

[26] Roumeliotis, Stergios I., and George A. Bekey. "Collective localization: A
distributed Kalman filter approach to localization of groups of mobile robots." In

44

Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International
Conference on, vol. 3, pp. 2958-2965. IEEE, 2000.

[27] Sorenson, Harold W. "Least-squares estimation: from Gauss to Kalman."
Spectrum, IEEE 7, no. 7 (1970): 63-68.

[28] Tanenbaum, Andrew S., and Maarten Van Steen. Distributed systems. Vol. 2.
Prentice Hall, 2002.

[29] Vatankhah, Ramin, Shahram Etemadi, Mohammad Honarvar, Aria Alasty,
Mehrdad Boroushaki, and Gholamreza Vossoughi. "Online velocity optimization
of robotic swarm flocking using particle swarm optimization (PSO) method." In
Mechatronics and its Applications, 2009. ISMA'09. 6th International Symposium
on, pp. 1-6. IEEE, 2009.

[30] Wiener, Norbert. Extrapolation, interpolation, and smoothing of stationary time
series: with engineering applications. Vol. 8. MIT press, 1964.

[31] Yang, Bo, Yunping Chen, Zunlian Zhao, and Qiye Han. "A master-slave particle
swarm optimization algorithm for solving constrained optimization problems."
In Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World
Congress on, vol. 1, pp. 3208-3212. IEEE, 2006.

[32] Yang, Mao, Chengfeng Li, and Yantao Tian. "Flocking for Swarm Robot System:
Distributed Coadaptive Control and Optimization." Information Engineering and
Computer Science, 2009. ICIECS 2009. International Conference on. IEEE, 2009.

[33] Zhang, Hong-juan, and Hong-yun Ning. "Dynamic Parameters Ant Colony
Algorithm with Particle Swarm Characteristic." In Natural Computation, 2009.
ICNC'09. Fifth International Conference on, vol. 3, pp. 241-245. IEEE, 2009.

45

APPENDIX A: Code Snippets

Following are MATLAB code snippets for sharing methods.

ShareSimpleHo(1,2)

nd2.x_esti_post = nd1.x_esti_post;
nd2.P_esti_post = nd1.P_esti_post;
nd2.tlast = nd1.tlast;
for i=nd1.Nm:-1:nd1.yt_send_point

nd2.y_measure_list(i) = nd1.y_measure_list(i);
nd2.t_measure_list(i) = nd1.t_measure_list(i);

end
nd2.Nm = nd1.Nm;
nd2.yt_send_point = nd1.yt_send_point;

ShareComplexHo(1,2)

%2->1
nd1.x_esti_post = nd2.x_esti_post;
nd1.P_esti_post = nd2.P_esti_post;
nd1.tlast = nd2.tlast;
%1 process
x = nd1.timeIndexSearch(nd2.tlast);
cnt = 0;
for i=x:1:nd1.Nm

nd1.kalmanIterate(i);
cnt = cnt + 1;

end
for i=nd1.Nm-cnt:-1:nd1.yt_send_point

nd1.y_measure_list(i) = nd2.y_measure_list(i+cnt);
nd1.t_measure_list(i) = nd2.t_measure_list(i+cnt);

end
for i=nd1.Nm:-1:nd1.yt_send_point

nd1.y_measure_list(i+cnt) = nd1.y_measure_list(i);
nd1.t_measure_list(i+cnt) = nd1.t_measure_list(i);

end
nd1.Nm = nd2.Nm + cnt;
nd1.yt_send_point = nd1.yt_send_point + cnt;
%1->2
nd2.x_esti_post = nd1.x_esti_post;
nd2.P_esti_post = nd1.P_esti_post;
nd2.tlast = nd1.tlast;
for i=nd1.Nm:-1:nd1.yt_send_point

nd2.y_measure_list(i) = nd1.y_measure_list(i);
nd2.t_measure_list(i) = nd1.t_measure_list(i);

end

46

nd2.Nm = nd1.Nm;
nd2.yt_send_point=nd1.yt_send_point;

ShareSimpleHe(1,2)

nd2.x_esti_post = nd1.x_esti_post;
nd2.P_esti_post = nd1.P_esti_post;
nd2.tlast = nd1.tlast;
for i=nd1.Nm:-1:nd1.yt_send_point

nd2.y_measure_list(i) = nd1.y_measure_list(i);
nd2.t_measure_list(i) = nd1.t_measure_list(i);

end
nd2.Nm = nd1.Nm;
nd2.yt_send_point = nd1.yt_send_point;
nd2.avg_rank = nd1.avg_rank;

ShareComplexHe(1,2)

nd1.x_esti_post = nd2.x_esti_post;
nd1.P_esti_post = nd2.P_esti_post;
nd1.tlast = nd2.tlast;
%1 process
x = nd1.timeIndexSearch(nd2.tlast);
cnt = 0;
for i=x:1:nd1.Nm

nd1.kalmanIterate(i);
cnt = cnt + 1;

end
for i=nd1.Nm-cnt:-1:nd1.yt_send_point

nd1.y_measure_list(i) = nd2.y_measure_list(i+cnt);
nd1.t_measure_list(i) = nd2.t_measure_list(i+cnt);

end
for i=nd1.Nm:-1:nd1.yt_send_point;

nd1.y_measure_list(i+cnt) = nd1.y_measure_list(i);
nd1.t_measure_list(i+cnt) = nd1.t_measure_list(i);

end
nd1.Nm = nd2.Nm + cnt;
nd1.yt_send_point = nd1.yt_send_point + cnt;
nd1.avg_rank = (nd2.avg_rank * nd2.Nm + nd1.avg_rank * cnt) / (nd2.Nm + cnt);
%1->2
nd2.x_esti_post = nd1.x_esti_post;
nd2.P_esti_post = nd1.P_esti_post;
nd2.tlast = nd1.tlast;
for i=nd1.Nm:-1:nd1.yt_send_point

nd2.y_measure_list(i) = nd1.y_measure_list(i);
nd2.t_measure_list(i) = nd1.t_measure_list(i);

end
nd2.Nm = nd1.Nm;

47

nd2.yt_send_point = nd1.yt_send_point;
nd2.avg_rank = nd1.avg_rank;

