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ABSTRACT 

           Series connected DC Motor Drive (SCDM) has been the most suitable drive for 

electric rapid transit railway system and electric vehicles, characterized by speed and torque 

control using PID based choppers. However there are some serious problems underlying such 

as nonlinear switching, variable nature of load and difficulty in exact mathematical model 

representation. These may cause poor dynamic response of the system. To improve the 

performance of the system these nonlinearities are to be properly incorporated in system 

representation and appropriate model of SCDM to be considered. Based on the nonlinear 

mathematical model of series connected DC motor system dynamics, the analysis and design 

of two speed controller presented, which are non linear PID and nonlinear autoregressive- 

moving average L-2 (NARMA L-2) controllers. The entire system has been modeled using 

MATLAB 8.0 Simulink and power system block sets. The speed response of SCDM is 

observed by giving reference inputs as speed and load torque in terms of step variation. The 

response of the system using NARMA L-2 Neuro Controller and classical PID Controller are 

compared. It was observed that the NARMA L-2 Neuro Controller performance was better in 

terms of rising time, overshoot and steady state error over classical PID Controller. 
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GLOSSARY 

SYMBOL                   DESCRIPTION 

Ra , Rf                                               Resistance of the armature, and field circuit 

La ,Lf                                                    Inductance of the armature, and field 

L, R                                             Total armature and field circuit inductance, and resistance                                                                                   

A1-A2                                                  Rotating armature windings 

 i ,i(U)                               armature current or Field current, current of motor at equilibrium 

ω, ω(U) Rotational speed of the motor, rotational speed of motor at equilibrium 

k1(U),k2(U),kD 
 

Proportional, integral and derivative gain 

J   Moment of inertia associated with both motor and the load 

ia , if                                                      Armature and field current 

 ,  Electromagnetic Torque, Load Torque 

p ,a                                                         Scalar input and output of neural network 

W, w                                                     Weight in neural network  

b ,n ,f                                            Bias, Summer output (net input), and transfer function 

N ,G, g                                                      Nonlinear function, Function to minimize mean square error  

V, U                                                     Terminal control voltage, Voltage at equilibrium 

pq , tq                                       Input to the network and corresponding target output 

u(k), y(k)                                              System input, and output 

SCDM Series Connected DC Motor 

IGBT Insulated Gate Bipolar Transistors   

NNC Neural Network Controllers 

NARMA L-2 Nonlinear Auto Regressive Moving Average Level -2 

TDL                       Time delay line 
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1.1  Literature Review 

           Direct current (DC) motors have been widely used in many industrial applications such as       

electric vehicles, steel rolling mills, electric cranes, and robotic manipulators due to precise, 

wide, simple, and continuous control characteristics. Traditionally rheostatic armature control 

method was widely used for the speed control of low power dc motors. However the 

controllability, cheapness, higher efficiency, and higher current carrying capabilities of static 

power converters brought a major change in the performance of electrical drives. The desired 

torque-speed characteristics could be achieved by the use of conventional proportional integral- 

derivative (PID) controllers. As PID controllers require exact mathematical modeling, the 

performance of the system is questionable if there is parameter variation. During recent past 

neural network controllers (NNC) were effectively introduced to improve the performance of 

nonlinear systems. The application of NNC [1]-[2] is very promising in system identification and 

control due to learning ability, massive parallelism, fast adaptation, inherent approximation 

capability, and high degree of tolerance.  

           A DC Motor in which the field circuit is connected in series with the armature circuit is 

referred to as a Series Connected DC Motor (SCDM). Due to this electrical connection, the 

torque produced by this motor is proportional to the square of the current (below field 

saturation), resulting in a motor that produces more torque per ampere of current than any other 

dc motor. Control of a SCDM system suffers from the considerable nonlinearities including the 

square of current and the product of current and speed. Traditional way to control such a 

nonlinear system is to use linear controllers, which are based on linearized system model about a 

nominal operating point. These controllers with constant gains can be expected to perform 

satisfactorily in the vicinity of the operating point. However, they may not be capable of dealing 
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with a situation where the motor system operates over wide dynamic regimes. To overcome the 

drawbacks of the traditional linear controllers, one approach is to employ extended linearization 

design [3]-[5]. This approach is to design a number of linear controllers corresponding to many 

operating points that cover the whole dynamic region of the motor system. Then these linear 

controllers are pieced together to obtain a nonlinear controller, which is known to demonstrate 

good property of gain scheduling with respect to constant operating equilibrium points.  

       Choppers are used for the control of DC motors because of the numbers of advantages such 

as high efficiency, flexibility in control, light weight, small sizes, quick response, and 

regeneration down to very low speeds. The control of the armature currents is done with the help 

of 4-Quadrant Chopper [6]. The switching sequence of chopper is in pairs of IGBT1, IGBT4 and 

IGBT2, IGBT3. Due to the selection of IGBT as a switching device the motor is capable to rotate 

in both the directions, thus there is forward and reverse regenerative breaking takes place. Since 

uncertainties and disturbances are unavoidable in practice, changing load torques must be taken 

into account when designing a controller for a SCDM. A number of advanced robust control 

methods have been ex-ploited to handle uncertainties and disturbances in motor systems. For 

speed tracking control of SCDM by nonlinear control approaches, such as back stepping [7] and 

feedback linearization [8] methods, usually give asymptotic tracking results with constant decay 

rates. If we want a fast transient response, large control “gains” must be applied but in many 

cases which is impossible due to high cost. The significance of the problem is to get good 

transient response without increasing “control gains” [9]. The Integral Linear quadratic speed 

control, current control with dominant pole compensation and pole placement techniques [10] 

are still exhibits partial performance due to parametric variation. 



Page | 4  
 

                 The classical PID controller cannot perform effectively since it is developed based on 

linear system theory, but the AI based controllers like NARMA model can be used to identify 

and control nonlinear dynamic systems since they can approximate a wide range of nonlinear 

functions to any desired degree of accuracy. The NARMA model is an exact representation of 

input-output behaviour for finite dimensional nonlinear discrete dynamic systems. To solve 

nonlinearity problems in advanced control of dynamic systems two versions of NARMA models 

are proposed [11]-[13] NARMA L-1 and NARMA L-2. The later is more convenient to be 

implement practically using multilayer ANN due to the advantages such as the training of 

NARMA L-2 controller is straight forward because the controller is simply rearrangement of 

neural network plant model which is trained offline, batch form and there is no separate dynamic 

training for the controller. Another advantage is only online computation is forward passed 

through the neural network controller. The work presented in this thesis is concentrating on 

demonstration, operation and simulation of NARMA L-2 Neuro controller for speed regulation 

of SCDM.  

1.2  Aims and Objectives  

The Aims and objectives of this project is to speed regulation of SCDM.  

I. To control the speed of SCDM by PID Controller based on 4-Quadrant chopper are 

simulated by using MATLAB 8.0 Simulink and power system block sets. 

II. To control the speed of SCDM by NARMA-L2 controller are simulated by using 

MATLAB 8.0 Simulink and neural network training block sets.               
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1.3  Outline of Dissertation 

The dissertation consists of five chapters. A brief overview of the contents for each chapter is 

given below: 

Chapter 1           Introduction, literature review, aims and objectives of the project. 

Chapter 2        Discusses the Four quadrant chopper and Artificial Neural Network. This chapter 

also covers the selection of the appropriate power system block sets, Neural 

Network Controller and its requirements. 

Chapter 3    This chapter covers the concepts of speed and current controllers and the 

implementation of nonlinear autoregressive-moving average (NARMA) L-2 

controller. 

Chapter 4     Discusses the system as a whole, including an overall description, modeling and 

simulation of Series Connected DC Motor and finally speed control of SCDM 

using conventional PID and NARMA L-2 Controllers is shown. 

Chapter 5 This final chapter gives Results, simulation studies and conclusion with respect to 

the overall project.  
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2.1 Introduction  

              Electric motor controls have only been made possible by the development of high power 

solid-state devices. The most common power devices that have been used in motor drives are 

MOSFET, IGBT, BJT, and SCR. Early designs used BJTs and SCRs, but advancements in 

semiconductor technology have made these devices obsolete and replaced with MOSFETs and 

IGBTs in modern drives. SCRs are no longer normally chosen for motor drive systems as they 

cannot be easily turned off after they have been gated on. This makes it difficult to use a PWM 

signal to drive the motor. Power BJTs are also an uncommon choice for high power drives as this 

type of transistor is a current gain device. This means that to put the transistor into saturation, 

sufficient base current must be available. A base current requirement of one-tenth of the collector 

current is not uncommon, so this results in a design that dissipates a large amount of power in the 

gate drive circuit. However, BJTs are still commonly used for low power applications due to 

their low cost. IGBTs offer performance similar to BJTs but are driven like a MOSFET. 

            Electric motors are frequently used as the final control element in positional or speed 

control system. As there are two types such as D.C & A.C motors. The control of the D.C motor 

speed by the chopper is required where the supply is d.c. or  a.c. that has already rectified by the 

d,c. voltage. The most important applications of the chopper are in the speed control of the d.c 

motor used in the industrial applications or traction drives. Choppers are used for the control of 

d.c motors because of the numbers of advantages such as high efficiency, flexibility in control, 

light weight, small sizes, quick response, and regeneration down to very low speeds. 

            The IGBT advantage are very high input impedance which is voltage controlled device , 

low level of loss in conduction state, low switching loss , high operating frequency(up to 50 

KHz), simple protection circuits. They have wide area of applications like, used in Traction 
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Drives for railways, buses & electrically driven vehicles, also in steelworks, hot strip mills, 

transformer winding machines, in position controls etc. 

2.1.1 Four Quadrant Chopper 

The four quadrant chopper has certain advantages such as high operational frequency, smooth 

and linear control, high efficiency and fast response. The block diagram of the system is shown 

in figure 2.1. The converter is full bridge chopper with four quadrant operation. Because of the 

four quadrants there is rotation of the D.C motor in the both direction i.e. reverse and forward 

direction, this has been done with the help of direction changing logic circuit. 

2.1.2 IGBT Gate Driver circuit 

IGBT is a voltage controlled device and has high input capacitance of 3000 to 7000 PF between 

its gate and source terminal. The on state voltage across IGBT depends on gate to source 

voltages Vgs therefore to keep the on state voltage low relatively high positive gate to source 

voltage must be applied .However the voltage should not exceed breakdown voltage of the gate. 

Vgs should around 15V.During the off state a negative Vgs should be applied. It is about 2 to 

5V.The Vgs must be applied continuously or else IGBT will be turn off. The output current of the 

driver circuit should be sufficient to charge and discharge the gate to source capacitance as 

quickly as possible. This will help in reducing Ton and Toff for IGBT. It will also reduce 

switching losses. The IGBT and control circuit must be electrically isolated. The wiring to the 

drive circuit to IGBT must be short as possible to avoid oscillations at the gate. The wires must 

be twisted to eliminate the effect of EMI. The drain current of IGBT must be sensed by sensing 

circuit. As soon as the drain current exceeds the saturation value the gate drive to the IGBT must 

be turned off. The gate driver circuits consist of opto-isolator along with Darlington pair which is 
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used for the driving of the IGBT. The function of opto-isolator is to provide the isolation 

between the control circuitry and to control the short circuit. 

2.1.3 IGBT Power circuit 

IGBT power circuit consists of four IGBT, these are turned ON and OFF in pairs of IGBT1 & 

IGBT4, IGBT2 & IGBT4 as shown in figure2.1. The IGBT used is IRG4B30FD which have in 

built snubber circuit with ultra fast soft recovery diode has following specifications: operating 

frequency 1-5 KHz in hard switching, >20 KHz in resonant mode, Vces =600v, Ic @ 25ºC = 31 

A, Vge= ±20V.  

 

 

 

 

 

 

2.2 Speed and Current Controller for SCDM 

2.2.1 Controller Fundamentals  

The controller used in a closed loop provides a very easy and common technique of keeping 

motor speed at any desired set-point speed under changing load conditions [14]-[15]. This 

controller can also be used to keep the speed at the set-point value when, the set-point is stepping 

up or down at a defined rate. The essential addition required for this condition to the previous 

system is a means for the present speed to be measured. In this closed loop speed controller, a 

voltage signal obtained from a tacho attached to the rotor which is proportional to the motor 

speed is fed back to the input where signal is subtracted from the set-point speed to produce an 

Figure 2.1. Four Quadrant chopper configuration 

 

 M 

   IGBT1 

IGBT2

 

 

IGBT3 

IGBT4 

      

V 

 
Gnd. 
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error signal. This error signal is then fed to controller and the controller output will be to make 

the motor run at the desired set-point speed. For example, if the error speed is negative, this 

means the motor is running slow so that the controller output should be increased and vice-versa. 

2.2.2 Deciding factors of Controller 

The control action can be imagined at first sight as something simple like if the error speed is 

negative, then multiply it by some scale factor generally known as gain and set the output drive 

to the desired level. But this approach is only partially successful due to the following reason: if 

the motor is at the set-point speed under no load there is no error speed so the motor free runs. If 

a load is applied, the motor slows down and a positive error speed is observed. Then the output 

increases by a proportional amount to try and restore the desired speed. However, when the 

motor speed recovers, the error reduces drastically and so does the drive level. The result is that 

the motor speed will stabilize at a speed below the set-point speed at which the load is balanced 

by the product of error speed and the gain. This basic technique discussed above is known as 

"proportional control" and it has limited use as it can never force the motor to run exactly at the 

set-point speed. 

               From the above discussion an improvement is required for the correction to the output 

which will keep on adding or subtracting a small amount to the output until the motor reaches the 

set-point. This effect can be done by keeping a running total of the error speed observed for 

instant at regular interval and multiplying this by another gain before adding the result to the 

proportional correction found earlier. This approach is basically based on what is effectively the 

integration of the error in speed. Till now we have two mechanisms working simultaneously 

trying to correct the motor speed which constitutes a PI (proportional-integral) controller. The 
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proportional term does the job of fast-acting correction which will produce a change in the 

output as quickly as the error arises. The integral action takes a finite time to act but has the 

capability to make the steady-state speed error zero. A further refinement uses the rate of change 

of error speed to apply an additional correction to the output drive. This is known as Derivative 

approach. It can be used to give a very fast response to sudden changes in motor speed. The table 

2.1.depicts the comparison of various process and its controller structure and Table 2.2 depicts 

the comparison of various control modes of controller. 

                  Table 2.1. Comparison of various processes and its controller structure 

Process Controller structure 

 P PD PI PID 

Pure dead time unsuitable unsuitable Very suitable or 
pure I controller 

 

First- order with short 

dead time 

Suitable if 

derivative is 

acceptable 

Suitable if 

derivative is 

acceptable 

Highly suitable Highly suitable 

Second-order with 

short dead time 

Deviation 

mostly too 

high 

Deviation mostly 

too high 

Not as good as 

PID 

Highly suitable 

Higher-order unsuitable unsuitable Not as good as 

PID 

Highly suitable 

Without self-

limitation with delay 

suitable suitable suitable suitable 

 

Table 2.2. Comparison of various control modes of controller 

Controller Mode Settling Time Offset Overshoot 

P Lower than highest highest Lower than highest 

PI Highest Zero Highest 

PD Lower Lower than highest Lower 

PID More than lowest Zero More than lowest 

Hence, a suitable combination of the three basic modes- proportional, integral and derivative 

(PID) can improve all aspects of the system performance.  
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2.2.3 Importance of Current Controller 

                 When the machine is made to run from zero speed to a high speed then motor has to 

go to specified speed. But due to electromechanical time constant motor will take some time to 

speed up. But the speed controller used for controlling speed acts very fast [15]. Speed feedback 

is zero initially, so this will result in full controller output and hence converter will give 

maximum voltage. So a very large current flow at starting time because counter emf is zero at 

that time which sometime exceeds the motor maximum current limit and can damage the motor 

windings. Hence there is a need to control current in motor armature. To solve the above 

problem we can employ a current controller which will take care of motor rated current limit. 

The applied voltage will now not dependent on the speed error only but also on the current error. 

We should ensure that Voltage is applied in such a way that machine during positive and 

negative torque, does not draw more than the rated current. So, an inner current loop hence 

current controller is required. The schematic of Speed control of SCDM using 4-quadrant 

chopper as shown in figure 2.2 

 

 

 

 

 

Figure 2.2 Speed control of SCDM using 4-Quadrant chopper 
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In the above model the current reference is obtained by amplification of the angular rotational 

speed error. This reference is limited to the maximum value tolerable by the motor.  

2.3 Artificial Neural Network  

                  The field of neural networks covers a very broad area. Instead, we will concentrate on 

the most common neural network architecture – the multilayer perceptron. We will describe the 

basics of this architecture, discuss its capabilities and show how it has been used in several 

different control system configurations. As shown in Figure2.3, we have some unknown function 

that we wish to approximate. We want to adjust the parameters of the network so that it will 

produce the same response as the unknown function, if the same input is applied to both systems 

[16].For our applications, the unknown function may correspond to a system we are trying to 

control, in which case the neural network will be the identified plant model. The unknown 

function could also represent the inverse of a system we are trying to control, in which case the 

neural network can be used to implement the controller. In this work we will present NARMA  

L-2 control architecture demonstrating a function approximator neural network. 

 

 

 

 

 

 

 

 

Figure 2.3 Neural Networks as Function Approximator 
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In the next section we will present the multilayer perceptron neural network, and will 

demonstrate how it can be used as a function approximator. 

2.3.1 Multilayer Perceptron architecture 

The multilayer perceptron neural network is built up of simple components. We will begin with a 

single-input neuron, which we will then extend to multiple inputs [17]. We will next stack these 

neurons together to produce layers. Finally, we will cascade the layers together to form the 

network.A single-input neuron is shown in Figure 2.4. The scalar input p is multiplied by the 

scalar weight w to form wp, one of the terms that is sent to the summer. The other input, 1, is 

multiplied by a bias b and then passed to the summer. The summer output n , often referred to as 

the net input, goes into a transfer function f , which produces the scalar neuron output a . 

 

                                                           

 

                                                                                               

                                                                            

                                                             

Figure 2.4 Single-Input Neuron 

The neuron output is calculated as 

                                     ………………………..……………………………… (2.1) 

Note that and are both adjustable scalar parameters of the neuron. Typically the transfer function 

is chosen by the designer, and then the parameters and is adjusted by some learning rule so that 

the neuron input/output relationship meets some specific goal. The transfer function in Figure2.4 

General Neuron Input   

1

   

a

   

n

   
∑ ƒ 

b

   

w

   
p

   

a= f (wp+b)                                                                               
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may be a linear or a nonlinear function. One of the most commonly used functions is the log-

sigmoid transfer function, which is shown in Figure 2. 5. 

 

     

 

  

Figure 2.5 Log-Sigmoid Transfer Function 

This transfer function takes the input (which may have any value between plus and minus 

infinity) and squashes the output into the range 0 to 1, according to the expression (2.2) 

                                                              ……………………………………………. (2.2) 

The log-sigmoid transfer function is commonly used in multilayer networks that are trained 

using the back propagation algorithm.Typically; a neuron has more than one input. A neuron 

with R inputs is shown in Figure 2.6. and its matrix representation as shown in figure 2.7. The 

individual inputs p
1 , p2 ,..., pR are each weighted by corresponding elements w

1,1, , w
1,2

... ,w
1, R 

of the weight matrix W. 

 

 

 

 

 

Figure2.6. Multiple-Input Neuron 
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The neuron has a bias, which is summed with the weighted inputs to form the net input 

                            …………………………………… (2.3) 

This expression can be written in matrix form 

                                   …………………………………………………………. (2.4) 

Where, the matrix W for the single neuron case has only one row.  

Now the neuron output can be written as 

                                  ………………………………………………………. (2.5) 

 

 

 

 

 

 

 

Figure 2.7 Representation of the neuron in matrix form. 

2.3.2 Network Architectures 

Commonly one neuron, even with many inputs, is not sufficient. We might need five or ten, 

operating in parallel, in what is called a layer. A single-layer network of S neurons is shown in 

Figure 2.8. Note that each of the R inputs is connected to each of the neurons and that the 

weight matrix now has S rows. The layer includes the weight matrix W, the summers, the bias 

vector b, the transfer function boxes and the output vector a. Some authors refer to the inputs as 

another layer, but we will not do that here. It is common for the number of inputs to a layer to 

be different from the number of neurons (i.e., R≠S) 

ƒ 

 
 R 

 1 

 P 

RX1 

 

 1XR 
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b 

 a 
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Multiple-Input Neuron      Input   
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Figure 2.8 Layer of S Neurons 

The S-neuron, R-input, one-layer network also can be drawn in matrix notation, as shown in 

Figure 2.9. 

 

 

 

 

Figure 2.9 Layer of S Neurons, Matrix Notation 
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2.3.3 Multiple Layers of Neurons 

Now consider a network with several layers. Each layer has its own weight matrix W, its own bias 

vector b , a net input vector n and an output vector a . We need to introduce some additional 

notation to distinguish between these layers. We will use superscripts to identify the layers. Thus, 

the weight matrix for the first layer is written as W
1 

, and the weight matrix for the second layer is 

written as W
2 

. This notation is used in the three-layer network shown in Figure 2.10. As shown, 

there are R inputs, S
1 

neurons in the first layer, S
2 

neurons in the second layer, etc. As noted, 

different layers can have different numbers of neurons. 

      The outputs of layers one and two are the inputs for layers two and three. Thus layer 2 can 

be viewed as a one-layer network with R = S
1   

inputs S=S
2 

neurons, and an S
2 ,S

1 
weight 

matrix W
2
. The input to layer 2 is a

1
, and the output is a

2
. A layer whose output is the network 

output is called an output layer. The other layers are called hidden layers. The network shown in 

Figure2.15 has an output layer (layer 3) and two hidden layers (layers 1 and 2). 
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2.3.4 Training of Multilayer Networks 

We know multilayer networks are universal approximators; the next step is to determine a 

procedure for selecting the network parameters (weights and biases) that will best approximate a 

given function. The procedure for selecting the parameters for a given problem is called training 

the network. In this section we will outline a training procedure called backpropagation, which is 

based on gradient descent. (More efficient algorithms than gradient descent are often used in 

neural network training.) 

As we discussed earlier, for multilayer networks the output of one layer becomes the input to the 

following layer (see Figure2.10). The equations that describe this operation are 

                              , For m=0, 1, 2… M-1    …………      (2.6) 

                             …………………………………………………………………      (2.7) 

This provides the starting point for Eq. (2.7). The outputs of the neurons in the last layer are 

considered the network outputs: 

                             …………………………………………………………………… (2.8) 

The backpropagation algorithm for multilayer networks is a gradient descent optimization 

procedure in which we minimize a mean square error performance index. The algorithm is 

provided with a set of examples of proper network behavior: 

{p1, t1}, {p2 ,t2},{pQ , tQ}, 

Where pq is an input to the network, and tq is the corresponding target output. As each input 

is applied to the network, the network output is compared to the target. The algorithm should 

adjust the network parameters in order to minimize the sum squared error: 

                                     …………………………….  (2.9) 

Where is a vector containing all network weights and biases. 
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3.1 Mathematical Modeling of NARMA-L2 Neuro Controller  

                 In recent years, a rapidly advancing technology and a competitive market have 

required systems to operate in many cases in regions in the state space where linear 

approximations are no longer satisfactory. To cope with such nonlinear problems, research has 

been underway on their identification and control using neural networks based entirely on 

measured inputs and outputs. It is now known that under certain conditions, an exact input–

output representation of the nonlinear system is given by the nonlinear autoregressive moving 

average (NARMA) model in a neighborhood of the equilibrium state.  

               In [18] the two approximations to the nonlinear autoregressive moving average 

(NARMA) model called the NARMA-L1 and the NARMA-L2 are proposed. From a practical 

stand-point, the NARMA-L2 model is found to be simpler to realize than the NARMA-L1 

model. The controllers used in this section are based only on the NARMA-L2 approximate 

model. 

Multilayer neural networks have been applied successfully in the identification and control of 

dynamic systems. Rather than attempt to survey the many ways in which multilayer networks 

have been used in control systems, we will concentrate on three typical neural network 

controllers: model predictive control [19], NARMA-L2 control, and model reference control 

[20].These controllers are representative of the variety of common ways in which multilayer 

networks are used in control systems. As with most neural controllers, they are based on standard 

linear control architectures. 

In spite of the fact that the NARMA model is an exact representation of the system, the 

approximate nonlinear models are found to be at least as good as the exact model for control 

purposes (which is quite often much better than a linear model). This can be attributed to the fact 
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that only approximate methods are used in practice for controlling a plant represented by a 

NARMA model. The Fig.3.1 shows the block diagram representation of NARMA L-2 controlled 

SCDM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1.1. NARMA-L2 (Feedback Linearization) Control  

The Neuro controller described in this section is referred to by two different name such as 

feedback linearization control and NARMA-L2 control [21]. It is referred to as feedback 

linearization when the plant model has a particular form (companion form). It is referred to as 

NARMA-L2 control when the plant model can be approximated by the same form. The central 

idea of this type of control is to transform nonlinear system dynamics into linear dynamics by 

canceling the nonlinearities.  

Fig. 3.1 NARMA-L2 controlled SCDM 
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3.1.2 Identification of the NARMA-L2 Model 

In model predictive control, the first step is feedback linearization to identify the system to be 

controlled. For training of a neural network to represent the forward dynamics of the system, the 

first step is to choose a model structure. One standard model to represent general discrete-time 

nonlinear systems is the nonlinear autoregressive-moving average (NARMA) model expressed 

by equation (3.1). 

   …….. (3.1) 

Where u(k) is the system input, and y(k) is the system output and d is the system delay. For the 

predictive control the system delay is taken as 1. For the identification phase, to train the neural 

network the nonlinear function N is approximated.  

If the system output followed some reference trajectory of y(k + d) = yr(k + d), to develop a 

nonlinear controller by using equation(3.2) 

…..... (3.2) 

The problem to exploit NARMA L-2 Controller is quite slow due to dynamic back-propagation 

training and it will create a function G to minimize the mean square error. The proposed solution 

is to approximate model by equation (3.3).  

 

                                                                                                                  ……………………. (3.3) 

This approximated model is in companion form, here the next controller input u(k) is not 

contained nonlinearity, the advantage of this form is to solve for the control input that causes the 

system output following the reference y(k + d) = yr(k + d). The resulting controller represented 

by equation (3.4) 
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                                                                                                                          ………………. (3.4) 

 The Use of this equation directly can cause realization problem, because it determines the 

control input u(k) based on the output y(k) simultaneously . So, instead of companion NARMA 

L-2 model, approximated NARMA L-2 model is used and represented by equation (3.5).  

 

                                                                                                                           ……………… (3.5) 

Where time delay line d ≥ 2. 

 The following figure 3.2 shows the structure of NARMA-L2 Plant Model. 

 

Figure 3.2 Approximated NARMA-L2 Plant Model 
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3.1.3 NARMA-L2 Controller 

Using the approximated NARMA-L2 model, we can obtain the next input  represented 

by equation (3.6) 

 

                                                                                                                          ……………… (3.6) 

This is realizable for d ≥2. 

The following figure 3.3 is a block diagram of the NARMA-L2 controller. 

 

Figure 3.3 Block diagram of NARMA-L2 Controller 

This controller can be implemented with the Approximated NARMA-L2 plant model, as shown 

in the figure3.4. 

 

 

 

 

 

 
 

Figure 3.4 Implementation of NARMA-L2 Controller 
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4.1 Dynamics of SCDM  

A series connected dc motor is configured by simply connecting the field circuit in series with 

the armature circuit (A1 and A2), shown in Fig.4.1  

 

 

 

 

 

 

Figure 4.1Equivalent circuit of SCDM drive system 

Neglecting magnetic saturation in field circuit, the dynamic equations of a SCDM with  

ia = if = i , L= Lf + La and R= Ra + Rf  where ia is armature current and if is field current, are 

described by 

 

                                                      ……………………………..         (4.1) 

Hence τe = Mi
2  

and  E = Miω 

Where,  

i = Armature current or Field current 

V =Terminal control voltage 

E = Counter emf 

La and Ra = Armature inductance and resistance 

Lf and Rf = Field inductance and resistance 

L = Total armature and field circuit inductance 

R = Total armature and field circuit resistance 

ω = Rotational speed of the motor 

 = Electromagnetic Torque  

 = Load Torque  

J = Moment of inertia associated with both motor and the load 

M= Motor constant  

The dynamic model of SCDM is nonlinear due to the terms of τe = Mi
2  

and  E = Miω 
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4.2. Derived model of SCDM from Simulink  

4.2.1. Simulation model 

The SCDM simulation models is built using resources from the SimPowerSystems and Simulink 

libraries because there is no Series Connected DC Motor(SCDM) function block available in 

SimPowerSystem Library. The function block is derived from the "DC machine" function block 

and saved it in the working directory as SERIES_DC_motor.mdl shown in fig.4.2 and 

DC_SERIES_NARMA_motor.mdl shown in fig.4.3  

 

Figure.4.2 SCDM for conventional PID controller 

 



Page | 29  
 

 

Figure. 4.3 SCDM for NARMA-L2 controller 

4.2.2. Function Block with its Parameters  

Select all the component of the model to develop mask subsystems for the chopper controlled 

SCDM shown in fig.4.4 and NARMA-L2 controlled SCDM shown in fig.4.5  

 

 

 

4.3.1 Nonlinear PI Controller 
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4.3 Nonlinear Speed Controllers 

Consider a nonlinear PI speed controller by extended linearization technique for the criteria of 

optimal linear regulator settings [7] is used in the determination of the linearized PI controller 

gains on the basis of parameterized transfer function of the SCDM system. 

For constant input , the equilibrium state vector for the following nonlinear system is 

 

                                                           ………….....………………………… (4.2) 

It can be expressed as a function of U by means of a function x (U). By considering nonlinear 

system equation (4.2) for the equilibrium operating point (U, x (U)) is 

 

                                                                                                ………………….. (4.3)                                   

                                                 Where,   

 

 

 

 

The linearized model (4.3) actually constitutes a family of linearization of model (4.2) which is 

parameterized by the constant input equilibrium points. Taking Laplace transform in (4.3), under 

the invertible matrix A(U) and zero initial conditions, the parameterized transfer function 

equation is: 



Page | 31  
 

                                             ……………………...  (4.4)                                   

Based on this parameterized transfer function, a parameterized PI controller can be chosen in the 

form of 

                                                ………………………………………   (4.5) 

Where k1(U) and k2(U) can be determined via optimal linear design technique [22]. 

Now, for constant input , the equilibrium state vector for SCDM system (4.1) can be 

expressed as a function of U by means of a function X (U). 

 

                                                                                    …………………………  (4.6) 

About any such point, the linearized model of (4.1) from assuming the output being ω is  

                             …………………………  (4.7) 

 

Where  

The parameterized transfer function relating the incremental motor speed ω to the incremental 

terminal voltage U for the linearized model (4.7) can be written in the form 

                                            …………………………………. (4.8) 

                                                Where,  
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                                                                  …………………..…………. (4.9) 

Based on the design of linear regulator setting, the values of proportional and integral gains       

k1 (U) and k2 (U) are given 

                                                                  

                                                                                                    ……………. (4.10) 

The PI controller represented by (4.10) is such that it would stabilize the output response of the 

whole family of linearized model (4.7) to zero. The block diagram of the parameterized linear 

closed-loop system is shown in Fig. 4.6. 

 

 

 

 

Figure 4.6 Parameterized linear closed- loop system 

To introduce a PID controller in the parameterized linear closed loop system by using integral 

and differential corrector in parallel with the proportional gain and then start manual correction 

in the proportional, integral and differential gain parameter to get stable PID controller. 
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4.4 Speed control of SCDM using 4-Quadrant chopper  

Figure 4.7 shows the speed control simulation model of SCDM using 4-Quadrant chopper. It 

consists of a SCDM fed by a DC source through 4-Quadrant chopper as shown in figure 4.8 and 

its subsystem as shown in figure 4.9 and PID controllers as shown in figure 4.10. The motor 

drives a mechanical load characterized by inertia J, friction coefficient D, and a load torque τL. 

The control circuit consists of a speed control loop and a current control loop. A proportional- 

integral derivative (PID) controlled speed control loop senses the actual speed of the motor and 

compares it with the reference speed to determine the reference armature current required by the 

motor. One may note that any variation in the actual speed is a measure of the armature current 

required by the motor. The current control loop consists of a 4-Quadrant chopper. The 4-

Quadrant chopper[23] consists of a relay, which is used to generate switching patterns required 

for the chopper circuit. The speed control loop consists of PID Controller and a current limiter. 

Current limiter limit the speed control output so that an input current is generated which follows 

a reference current waveform. The difference between the desired current, and the current being 

injected is used to control the switching of the chopper circuit. When the error reaches an upper 

limit namely upper hysteresis limit, IGBT is switched to force the current down. On other hand 

when the error reaches the lower hysteresis limit, a positive pulse is produced to increase the 

current. The minimum and maximum values of the error signal are emin and emax , and  the range 

of the error signal, (emax – emin), directly controls the amount of the ripple in the output current 

and is called the hysteresis band. Thus the armature current is forced to stay within the hysteresis 

band determined by the upper and lower hysteresis limits. 
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4.4.1 Simulink model 

 

Figure 4.7 Simulink model for Speed control of DCSM using 4-Quadrant chopper 

 

Figure 4.8 Simulink model of Four Quadrant chopper model 
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4.5 Speed control of SCDM using NARMA-L2 Controller 

4.5.1 NARMA-L2 Controller 

The learning ability, self-adapting, and super-fast computing features of ANN make it well 

suited for the control of DC motor. In learning process, neural network adjusts its structure such 

that it will be able to follow the supervisor. The learning is repeated until the difference between 

network output and the supervisor is low. MATLAB based Subsystem for NARMA L-2 

Controller as shown in figure 4.11 

 

 

 

 

 

 

 

 

Figure 4.9 Subsystem of Four Quadrant 

chopper model 

 

 

Figure 4.10 Simulink model  

for PID Controller 

 

 

Figure 4.11. MATLAB based Subsystem for NARMA L-2 Controller 
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4.5.2 System Identification and controller design Stage 

In NARMA-L2 controller, a multilayer neural network has been successfully applied for the 

identification and control of dynamic systems [24]. There are two steps involved in NARMA-L2 

controller which are System identification and control design. The system identification stage 

developed a neural network model of the plant to be controlled. The control design stage, use the 

neural network plant model to train the controller [25], figure4.12 shows the neural network 

training. In the system identification stage a neural network plant model must be developed 

before the controller is used. The plant model predicts future plant outputs. The specifications of 

the plant model are given in figure 4.13  

 

Figure 4.12 neural network training 
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Figure 4.13 specifications of the plant model 

Figure 4.14 shows the Plant input-output data of NARMA-L2 controller. Sample performance, 

training state and regression graph as shown in figure 4.15, 4.16 and 4.17 respectively and 

testing, training and validation   data obtained from a NARMA-L2 controller are illustrated in 

Figure 4.18,4.19 and 4.20 respectively. 

 

Figure 4.14 SCDM input-output data 
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Figure 4.15 Performance of NARMA L-2 controller 

 

Figure 4.16 Training state of NARMA L-2 controller 
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Figure 4.17 Regression of NARMA L-2 controller 

 

 

Figure 4.18 Testing data of NARMA L-2 controller 
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Figure 4.19 Training data of NARMA L-2 controller 

 

 

Figure 4.20 Validation data of NARMA L-2 controller 
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4.5.3 Implementation of NARMA L-2 Neuro controller 

The Implementation of NARMA L2 Neuro Controller for dynamic model of SCDM equation 

(4.1).Consider the nonlinear change of coordinates 

                                                                    

                                                                   …………………………………. (4.11) 

In these new coordinates, the system is represented by 

 

 

                                                                            ………………… (4.12) 

Where, the load torque is assumed to be constant. 

To linearize the system using feedback, the input voltage is V set as 

                                                               ……………………………. (4.13) 

Resulting in the linear system 

 

 

Where u is a new control input 

The linearized controller equation (4.13) is singular, which is simply a consequence of the fact 

that the motor cannot produce torque without current. Now from equation (4.12)  

                                                                                 …………………………… (4.14) 

On integrating equation 4.14 the square current is, 

                                                                  

Again, 
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                                                       …………………….     (4.15) 

Substituting the value of  in equation (4.15)  

consider .  The model of the nonlinear plant can be written as  

                                                    ………………………. (4.16)        

This is a second order nonlinear plant which can be modeled as n-dimensional discrete time as  

                   ………………………  (4.17) 

The control input to the plant is in the form of:  

                                       …………………………………  (4.18) 

4.5.4 Simulink model of NARMA L-2 Controlled SCDM 

The simulink model of a NARMA-L2 controlled SCDM is shown in Fig.4.21. The inputs of the 

controller are the reference speed and the output is actual speed and the control input is driving 

current to the motor. 

 

Figure 4.21 NARMA-L2 controlled SCDM 
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5.1 SCDM system parameters 

To demonstrate the effectiveness of the proposed two nonlinear speed controllers such as 

conventional PID controller and NARMA L-2 Neuro controller, the computer simulations have 

been carried under step changes in speed reference and load torque. The parameters used for 

simulation of SCDM system are given in table 5.1  

Table 5.1 Series connected DC Motor: list of parameters 

Rated power 1.5 kW 

Rated Armature current ( I ) 5A 

Definition speed (ω) 600 rev/min 

Maximum speed (ωmax) 5000rev/min 

Minimum Supply voltage(Vs) 40V 

Maximum supply voltage (Vmax) 200V 

Total armature and field circuit inductance( L) 0.0917 H 

Total armature and field circuit resistance ( R) 7.2Ω 

Viscous damping torque constant( D) 0.0004N.m/rad/s 

Motor constant (M) 0.1236Nm/Wb.A 

Moment of inertia associated with both motor and the load( J ) 0.0007046 kg-m
2
 

 

5.2 Speed responses of SCDM system 

5.2.1 PID controller  

The speed response of PID controlled SCDM under operating conditions of 200V and 2 kN with 

increase of speed reference from 340rad/sec to 500rad/sec. The PID parameters are calculated 

from the equations (4.6), (4.9) and (4.10), given in Table 5.2. The corresponding speed response 

is shown in figure 5.1, which observes more overshoot but usually overshoot is undesirable 

phenomenon in precise system.  

Table 5.2 gains for PID Controller 

i(U) ω(U)      

4.02A 342.4 rad/sec 0.0057 sec 0.17 sec 1.236 20.6 0.15 

To get the stable speed regulation of SCDM the modified gains of PID controller given in table 

5.3, which observes the less overshoot in figure 5.3 
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                           Table 5.3 gains for PID Controller with modification 

i(U) ω(U)      

4.02A 342.4 rad/sec 0.0057 sec 0.17 sec 12.3 21 0.15 

 

 

 

 

 

 

 

 

 

 

 

 

The corresponding Armature current and load torque response is shown in figure 5.3 and figure 

5.4 respectively. 
 

 

 

 

 

 

 

 

 

Figure 5.1 Speed response of SCDM 
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Figure 5.2 Speed response of SCDM with modified 

PID gains 
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Actual speed of DCSM using conventional Controller

 
Figure5.3 Armature current 
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Figure 5.4 Load Torque with PID controller 
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 5.2.2 NARMA-L2 controller 

The speed response of NARMA L-2 controlled SCDM under operating conditions of 200V and 

load torque of 0.260 kN to 5.45 kN with increase of speed reference from 340rad/sec to 

500rad/sec as shown in figure 5.5 which observes no overshoot and corresponding load torque as 

shown in figure 5.6 

 

 

 

 

 

 

 

 

 

 

5.3 Comparison of Speed responses of SCDM by PID and NARMA L-2 controller  

 Figure 5.7 displays the comparative speed response of SCDM with increase of speed reference 

from 340rad/sec to 500rad/sec and the operating voltage is 200V under the steady load torque of 

2 kN for conventional PID controller and 0.260 kN to 5.45 kN for NARMA L-2 controlled 

SCDM. The corresponding parameter values for both the controller as given in table 5.4 which 

shows the comparison of parametric values of controllers. 

 

 

 
             Figure 5.5 Speed response of SCDM with  

                              NARMA L-2 controller 

 

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

Time(sec)

s
p
e
e
d
(r

a
d
/s

e
c
)

 
Figure 5.6 Load Torque with  

NARMA L-2 controller 
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Table 5.4 Parametric values of both the controllers with 200V 

Parameters rise time(sec) peak overshoot steady state error 

Speed(rad/sec) 340 500 340 500 340 500 

PID Controller 0.11 4.16 0.44 0.23 0.005 0.01 

NARMAL-2 

Controller 

0.75 4.55 0.29 0.06 1.7 0.05 

 

 
       Figure5.7 Comparison of speed responses for SCDM with 200V 

              Figure 5.8 displays the comparative speed response of SCDM with increase of speed 

reference from 340rad/sec to 500rad/sec and the operating voltage is 40V under the load torque 

of 0.250 kN to 0.099 kN for conventional PID controller and 0.260 kN to 0.210 kN for NARMA 

L-2 controller. The corresponding parameter values for both the controllers are given in table 5.5 

which shows the comparison of parametric values of controllers.  
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Table 5.5 Parametric values of both the controllers with 40V 

Parameters rise time(sec) peak overshoot steady state error 

Speed(rad/sec) 340 500 340 500 340 500 

PID Controller 0.28 0.5 0.09 0.06 0.734 0.165 

NARMAL-2 

Controller 

0.72 1.01 no 

overshoot 

no 

overshoot 

0.74 0.16 

 

 

Figure 5.8 Comparison of speed responses for SCDM with 40V 

Figure 5.9 displays the comparative speed response of SCDM with increase of speed reference 

from 340rad/sec to 500rad/sec and the operating voltage is 200V under the load torque 0.260 to 2 

kN for conventional PID controller and the load torque 0.260 KN to 5.45KN for NARMA L-2 

controller. The corresponding parameter values for both the controller as given in table 5.6 which 

shows the comparison of desired parametric values of controllers. 
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Table 5.6 Desired parametric values of both the controllers with 200V 

Parameters rise time(sec) peak overshoot steady state error 

Speed(rad/sec) 340 500 340 500 340 500 

PID Controller 0.02 0.08 0.05 0.03 0.81 0.35 

NARMAL-2 

Controller 

0.7 0.04 no 

overshoot 

no 

overshoot 

0.7 0.34 

 

 

Figure 5.9 Desired Speed responses of both the controller for SCDM 
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CONCLUSION 

The conventional PID and NARMA-L2 controllers have been successfully developed and 

simulated using MATLAB to control the speed of a Series connected DC Motor. Simulation 

results show effectiveness of these two controllers for dealing with the motor system with 

nonlinearity under wide dynamic operation regimes. In comparison with the conventional PID 

controller, the proposed NARMA L-2 controller has the advantages of no overshoot and 

excellent speed tracking performance.  

FUTURE SCOPE 

Possible future work in this area that shows promise of further improvement in the performance 

of series connected DC drive by developing hardware model. 
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