STUDENT'S DECLARATION

I hereby certify that the work which is being presented in the major project entitled "**Modelling** and **Thermal Performance Analysis of Evaporative Cooling Systems**" in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Thermal Engineering, submitted to the Department of Mechanical Engineering, is an authentic record of my own work carried under the supervision of **Dr. R.S. Mishra, Professor** of Mechanical Engineering Department, Faculty of Technology, University of Delhi, Delhi.

I have not submitted the matter embodied in this major project as whole or in part, for the award of any other degree.

Naresh

ME (Thermal Engineering) Univ. Roll No.-8579

Date: _____

This is to certify that the dissertation entitled "Modelling and Thermal Performance Analysis of Evaporative Cooling Systems" submitted by Mr. Naresh (09/THR/09), (University Roll. No.8579) in partial fulfilment for the award of the Degree of Master of Engineering in Thermal Engineering of University of Delhi, is an authentic record of student's own work carried out by him under my guidance and supervision.

Dr. R.S. Mishra

Professor, Department of Mechanical Engineering Faculty of Technology University of Delhi, Delhi

ACKNOWLEDGEMENT

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor **Dr. R.S. Mishra, Professor** in the Department of Mechanical Engineering, Faculty of Technology, University of Delhi, Delhi, for his invaluable guidance, encouragement and patient review. His continuous inspiration only has made me complete this major project.

I am thankful to **Dr. S.S. Kachhwaha, Professor,** School of Engineering and Technology, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, for his kind support and guidance.

I would like to thank Sh. Omprakash of RAC laboratory for extending his kind support and sharing their valuable time for the completion of the major project.

I am thankful to my all teachers, classmates and friends for their unconditional support and motivation during this project. It is a great opportunity for me to extend my heartiest felt gratitude to everybody who helped me throughout the course of this minor project in anyway.

Naresh

ME (Thermal) Univ. Roll. No. 8579

Table of Contents

Students' declarationi
Certificateii
Acknowledgementiii
Table of contentsiv
Nomenclatureviii
List of figuresxii
List of Tablesxv
Abstractxvii
Chapter 1
Introduction1
1.1 Historical development1
1.2 The evaporative cooling technique4
1.3 Motivation of present work7
1.4 Organization of the report
Chapter 2
Literature review
2.1 Classification of literature
2.1.1 Feasibility study
2.1.2 Classification and basis of classification
2.1.3 Applications and limitations

2.2	Conclusions of literature review	.29
2.3	Objectives of present work	.29

Chapter 3

F	ormulation of evaporative cooling systems	30
	3.1 The relationship between non dimensional numbers for heat and mass transfer for for	ce
	Convection heat transfer	31
	3.2 Theoretical Heat transfer coefficient	33
	3.3 Mass transfer coefficient	33
	3.4 Practical heat and mass transfer coefficients	34
	3.5 Relationship between heat and mass transfer coefficients	.35
	3.6 Outlet Temperature	35
	3.7 Outlet humidity	36
	3.8 Cooling Efficiency	36
	3.9 Humidifying efficiency	37
	3.10 Energy balance at cooling pad	37
	3.11 Exergy analysis	37
	3.11.1 Thermal Exergy	38
	3.11.2 Mechanical Exergy	38
	3.11.3 Chemical Exergy	38
	3.11.4 Exergy destruction	38
	3.11.5 Exergetic efficiency	39
	3.12 Regression analysis for curve fitting and development of correlation between variou	15
	parameters	39

Chapter 4

Description of experimental setup		
Description of	f various parts	42
4.1.1	Cellulose cooling pad	42
4.1.2	Air passage	44
	Description of 4.1.1	 ription of experimental setup. Description of various parts. 4.1.1 Cellulose cooling pad. 4.1.2 Air passage.

4.1.3	Sprayer44
4.1.4	Collecting tank45
4.1.5	Instruments to measure data45

Chapter 5

Experimental Investigations	
5.1 Experimental procedure	46
5.2 Development of Mathematical expressions from experimental data	46
5.3 Mathematical modelling of the system on computer	48

Chapter 6

Results and discussions	
6.1 Normal water temperature	50
6.1.1 The drop in DBT	50
6.1.2 Cooling efficiency	53
6.1.3 Dew point effectiveness	53
6.1.4 Wet bulb effectiveness	58
6.1.5 Humidifying efficiency	
6.1.6 Exergy destruction and exergetic efficiency	62
6.1.7 Heat transfer coefficient	
6.2 Elevated water temperature	64
6.2.1 Change in DBT of air	65
6.2.2 Drop in water temperature	65

	6.2.3 Cooling efficiency	72
	6.2.4 Exergy destruction and exergetic efficiency	73
	6.2.5 Heat transfer coefficient	73
6.3	Chilled water temperature	75
	6.3.1 The drop in DBT	75
	6.3.2 Cooling efficiency	75
	6.3.3 Dew point effectiveness	82
	6.3.4 Wet bulb effectiveness	82
	6.3.5 Exergy destruction and exergetic efficiency	.85
	6.3.6 Heat transfer coefficient	85

Chapter 7

Conclusions and Recommendations	
References	

Nomenclature

 $A_s = Surface area of pad module(m^2)$

 $A_c = Cross \ section \ area \ of \ air \ passage(m^2)$

$$C_{pa} = Specific heat of dry air\left(\frac{kJ}{kgK}\right)$$

 $C_{pv} = Specific heat of water vapours\left(\frac{kJ}{kgK}\right)$

$$C_{pma} = specific heat of moist air\left(\frac{kJ}{kgk}\right)$$

d = *diffusion coefficient*

$$ex = Total \ exergy \ of \ air\left(\frac{kJ}{kg}\right)$$

$$exth = Thermal \ exergy \ of \ air\left(\frac{kJ}{kg}\right)$$

$$exme = Mechanical \ exergy \ of \ air\left(\frac{kJ}{kg}\right)$$

$$exch = Chemical \ exergy \ of \ air\left(\frac{kJ}{kg}\right)$$

$$h_c = Heat \ transfer \ coefficient\left(rac{w}{m^2k}
ight)$$

$$h_m = mass \ transfer \ coefficient\left(rac{kg}{m^2s}
ight)$$

 $h_{fg} = latent heat of vaporizaton of water\left(\frac{kJ}{kg}\right)$

$$h_{a,in} = Specific \ enthalpy \ of \ inlet \ air\left(\frac{kJ}{kg}\right)$$

 $h_{w,in} = Specific enthalpy of inlet water\left(\frac{kJ}{kg}\right)$

 $h_{a,out} = Specific enthalpy of outlet air\left(\frac{kJ}{kg}\right)$

 $h_{w,out} = Specific enthalpy of outlet water\left(\frac{kJ}{kg}\right)$

 $h_{w,wb} = Specific enthalpy at of water wet bulb temperature \left(\frac{kJ}{kg}\right)$

 $k = Thermal \ conductivity\left(\frac{w}{mk}\right)$

 l_e = Characteristic dimension of pad module(m)

l = length of one pass of pad module(m)

 $m_a = mass flow rate of air\left(\frac{kg}{s}\right)$

 $m_{a,in} = Inlet mass flow rate of air\left(\frac{kg}{s}\right)$

 $m_{w,in} = Inlet mass flow rate of water\left(\frac{kg}{s}\right)$

 $m_{a,out} = Outlet mass flow rate of air\left(\frac{kg}{s}\right)$

 $m_{w,out} = 0$ utlet mass flow rate of water $\left(\frac{kg}{s}\right)$

$$m_w = mass flow rate of water\left(\frac{kg}{s}\right)$$

 $p_0 = atmospheric pressure of air(kPa)$

p = pressure of air at anyh condition(kPa)

$$R_a = Characteristic \ gas \ constant\left(\frac{kJ}{kgK}\right)$$

$$\rho = Density\left(\frac{kg}{m^3}\right)$$

 $t_s = surface \ temperature \ of \ pad \ module(^{\circ}C)$

- $t_{wb} = air wet bulb temperature(°C)$
- $t_{wf} = water film temperature(°C)$
- $t_{in} = Air inlet temperature(°C)$
- $t_{out} = Air outlet temperature(°C)$
- $T_0 = Absolute atmospheric temperature(K)$
- T = Absolute temperature of air at any condition(K)

µ=Kinematic viscosity (kg.m/s)

$$V = Velocity of flow\left(\frac{m}{s}\right)$$

$$w_{out} = Air \text{ outlet specific humidity}\left(\frac{kg}{kg}\right)$$

$$w_{in} = Air \ inlet \ specific \ humidity\left(\frac{kg}{kg}\right)$$

 $w_s = Specific humidity of air at saturation \left(\frac{kg}{kg}\right)$

 $w_0 = Specific$ humidity of air at atmospheric condition $\left(\frac{kg}{kg}\right)$

 $w = Specific humidity of air at any condition \left(\frac{kg}{kg}\right)$

- $N_u = Nusselt Number$
- *Re* = *Reynolds Number*
- *Pr* = *Prandtl Number*
- Sh = Sherwood Number
- *Sc* = *Schmid Number*

List of Figures

Figure No.	Description	Page no.
Figure 1.1	Opening facing a patio	15
Figure 1.2	Water fountain and vegetation in Arab residential patio	15
Figure 1.3	Janata Cooler	16
Figure 1.4	working of an evaporative cooler	19
Figure 1.5	Evaporative cooling pad	19
Figure 4.1	Schematic line diagram of the evaporative cooling test rig	56
Figure 6.1	Variation of delta T with change in velocity of air for normal water temperature at different water flow rates	52
Figure 6.2	Variation of cooling efficiency at normal water temperature with change in velocity of air at different mass flow rates of water	52
Figure 6.3	Humidity ratio change at normal water temperatures model versus experimental at different water flow rates	54
Figure 6.4	Change in temperature of air, at normal water temperature, Model versus experimental at different mass flow rates of water	54
Figure 6.5	Variation in Water evaporation rate with change in air flow rate at different water flow rates	55
Figure 6.6	Variation in dew point effectiveness with air velocity at different water flow rates	55
Figure 6.7	Dew point effectiveness Experimental versus model results at different water flow rates	59
Figure 6.8	Variation of Dew point effectiveness with Inlet air temperature at different water flow rates	59
Figure 6 .9	Variation of wet bulb effectiveness with air velocity at different water flow rates	60
Figure 6.10	Variation of wet bulb effectiveness with Inlet temperature of air at different water flow rates	60
Figure 6.11	Comparison of wet bulb effectiveness experimental versus model at different water flow rates	61

Figure 6.12	Variation of humidifying efficiency with Air velocity at normal water temperature and different water flow rates	61
Figure 6.13	Variation of exergy destruction with change in air velocity at different water flow rates	62
Figure 6.14	Variation of exergetic efficiency with change in air velocity at different water flow rates	63
Figure 6.15	Variation of heat transfer coefficient with velocity of air at different water flow rates	63
Figure 6.16	Variation of Change in specific humidity versus Velocity of air for elevated water temperature at different water flow rates	67
Figure 6.17	Variation of Change in DBT of air versus Velocity of air for elevated water temperature at different water flow rates	67
Figure 6.18	Variation of water evaporation rate versus Velocity of air for elevated water temperature at different water flow rates	68
Figure 6.19	Variation of Change in water temperature versus Velocity of at different water flow rates	68
Figure 6.20	Variation of cooling efficiency versus Velocity of air for elevated water temperature at different water flow rates	69
Figure 6.21	Variation of water cooling efficiency versus Velocity of air for elevated water temperature at different water flow rates	69
Figure 6.22	Variation of exergy destruction with air velocity at different water flow rates	73
Figure 6.23	Variation of exergetic efficiency with air velocity at different water flow rates	74
Figure 6.24	Variation of heat transfer coefficient with Velocity of air at different water flow rates	74
Figure 6.25	Variation of temperature drop with Air velocity at chilled water temperature and different water flow rates	77
Figure 6.26	Variation of cooling efficiency with Air velocity at chilled water temperature and different water flow rates	77

		1
Figure 6.27	Variation of water evaporation rate with mass of air at chilled water temperature and different water flow rates	78
Figure 6.28	Variation of dew point effectiveness with Air velocity at chilled water temperature and different water flow rates	78
Figure 6.29	Variation of dew point effectiveness with Air inlet temperature at chilled water temperature and different water flow rates	79
Figure 6.30	Variation of dew point effectiveness with Air velocity at chilled water temperature and different water flow rates	79
Figure 6.31	Variation of Wet bulb effectiveness with Air inlet temperature at chilled water temperature and different water flow rates	83
Figure 6.32	Variation of exergetic efficiency with velocity at different water flow rates	83
Figure 6.33	Variation of exergy destruction with velocity at different water flow rates	84
Figure 6.34	Variation of heat transfer coefficient with velocity of air at different water flow rates	84

List of tables

Table No.	Description	Page No.
Table 1	Experimental Inlet and outlet dry bulb temperatures and relative humidity at normal water temperature, m_w=0.015 kg/s at different air velocities	51
Table 2	Experimental Inlet and outlet dry bulb temperatures and relative humidity at normal water temperature, m_w=0.050 kg/s at different air velocities	51
Table 3	Experimental Inlet and outlet dry bulb temperatures and relative humidity at normal water temperature, m_w=0.085 kg/s at different air velocities	56
Table 4	Experimental Inlet and outlet dry bulb temperatures and relative humidity at elevated water temperature, m_w=0.015 kg/s at different air velocities	56
Table 5	Experimental Inlet and outlet dry bulb temperatures and relative humidity at elevated water temperature, m_w=0.050 kg/s at different air velocities	57
Table 6	Experimental Inlet and outlet dry bulb temperatures and relative humidity at chilled water temperature, m_w=0.085 kg/s at different air velocities	57
Table 7	Experimental Inlet and outlet dry bulb temperatures and relative humidity at chilled water temperature, m_w=0.015 kg/s at different air velocities	66
Table 8	Experimental Inlet and outlet dry bulb temperatures and relative humidity at chilled water temperature, m_w=0.050 kg/s at different air velocities	66
Table 9	Experimental Inlet and outlet dry bulb temperatures and relative humidity at chilled water temperature, m_w=0.050 kg/s at different air velocities	70
Table 10	Comparison of Experimental and model data for normal water temperature m_w=0.015 kg/s at different air velocities	70
Table 11	Comparison of Experimental and model data for normal water temperature m_w=0.050 kg/s at different air velocities	71
Table 12	Comparison of Experimental and model data for normal water temperature m_w=0.085 kg/s at different air velocities	71

Table 13	Comparison of Experimental and model data for elevated water temperature m_w=0.015 kg/s at different air velocities	76
Table 14	Comparison of Experimental and model data for elevated water temperature m_w=0.050 kg/s at different air velocities	76
Table 15	Comparison of Experimental and model data for elevated water temperature m_w=0.085 kg/s at different air velocities	80
Table 16	Comparison of Experimental and model data for chilled water temperature m_w=0.015 kg/s at different air velocities	80
Table 17	Comparison of Experimental and model data for chilled water temperature m_w=0.050 kg/s at different air velocities	81
Table 18	Comparison of Experimental and model data for chilled water temperature m_w=0.085 kg/s at different air velocities	81

Abstract

Evaporative cooling is a passive method which can save the fossil fuel reserves or contribute to prevent the use of gas CFC in refrigeration, which contribute to global warming. Evaporative cooling is an environment friendly technology and can be used as an alternative to mechanical refrigeration systems. It is a cost effective technology for preserving food and vegetables, therefore this is an eco-friendly alternative to mechanical refrigeration systems.

In this project we have developed thermal model for evaporative cooling for (i) Normal water temperature (ii) Elevated water temperature (iii) Chilled water temperature. The results were compared with experimental results found out through experiments conducted on the experimental test setup for several days. It was observed that theoretical results well matches with experimental measurements, therefore the model can be used for analyzing performance of any type of evaporative cooling system.

Mathematical expressions between various parameters have been developed based upon the experimental data. These expressions have been developed for individual water temperature as well as for combined data for all water temperatures.