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ABSTRACT

In this paper, we investigate the QR-OSIC receiver design for the transmitter side power 
allocated MIMO system. Based on the properties of the function and ordering results, we 
develop the efficient ordering algorithms in combination with the PA scheme. From the 
convexity of the function, we derive the ordering strategy that makes the channel gains 
converge to their geometric mean. Based on this approach, the fixed ordering algorithm if 
first designed, for which the geometric mean is used for constant threshold. To further 
improve the performance, the modified scheme employing adaptive thresholds is developed 
using the correlation among ordering results. Theoretical analysis and simulation results 
show that proposed ordering schemes using QR-decomposition not only require a reduced 
computational complexity compared to the conventional scheme, but result in improved 
error performance.
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1.1 Introduction

The utilization of multiple-input multiple-output (MIMO) systems has been an active 

area of research as well as practical transceiver implementations for their great potential of 

enhancing the system’s performance. The V-BLAST architecture proposed in also referred to as 

the BLAST ordered successive interference cancellation (B-OSIC) detector, is regarded as an 

attractive solution that exploits this potential. In a B-OSIC receiver, the data stream with the 

strongest signal-to-interference-noise ratio SINR is selected first and subtracted from the 

received signal, and the procedure is successively performed for the remaining multiple data 

streams. For equal power allocation (PA) across the transmit antenna array, it is optimal in terms 

of bit error rate (BER) or equivalently minimum-mean-square-error (MMSE). The knowledge of 

the channel is available at the transmitter; a further performance improvement can be achieved 

using appropriate PA schemes.

Based on the notion that the data stream with the smallest SINR degrades the overall 

error performance, PA schemes for the B-OSIC have been suggested in  which reduces the 

computational complexity and the feedback overhead by adopting a diagonal pre-coding matrix  

for the PA. Most of the PA schemes for the closed-loop systems mainly focus on the transmitter-

side processing strategies, while attempts for the joint optimization for the PA at the transmitter 

and the detection ordering scheme at the receiver have not been fully investigated. In the past 

few years, theoretical investigations have revealed that the multipath wireless channel is capable 

of enormous capacities, provided that the multipath scattering is sufficiently rich and is properly 

exploited through the use of an appropriate processing architecture. The diagonally-layered 

space-time architecture proposed by Foschini, now known as diagonal BLAST (Bell 

Laboratories Layered Space-Time) or D-BLAST is one such approach. D-BLAST utilizes multi-

element antenna arrays at both transmitter and receiver and an elegant diagonally layered coding 

structure in which code blocks are dispersed across diagonals in space-time. 

In an independent Rayleigh scattering environment, the processing structure leads to 

theoretical rates which grow linearly with the number of antennas (assuming equal numbers of 

transmit and receive antennas) with these rates approaching 90% of Shannon capacity. However, 
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the diagonal approach suffers from certain implementation complexities which make it 

inappropriate for initial implementation. In this paper, we describe a simplified version of 

BLAST known as vertical BLAST or V-BLAST, which has been implemented in real time in the 

laboratory. 

Using our laboratory prototype, we have demonstrated spectral efficiencies of 20 - 40 

bps/Hz at average SNR ranging from 24 to 34 dB. Although these results were obtained in a 

relatively benign indoor environment, we believe that spectral efficiencies of this magnitude are 

unprecedented, regardless of propagation environment or SNR, and are simply unattainable 

using traditional techniques.

A single data stream is de-multiplexed into M sub streams, and each sub stream is then 

encoded into symbols and fed to its respective transmitter. (The encoding process is discussed in 

more detail below). Transmitters 1 − M operate co channel at symbol rate 1/ T symbols/sec, with 

synchronized symbol timing. Each transmitter is itself an ordinary QAM transmitter. The 

collection of transmitters comprises, in effect, a vector-valued transmitter, where components of 

each transmitted M-vector are symbols drawn from a QAM constellation. We assume that the 

same constellation is used for each sub stream, and that transmissions are organized into bursts 

of L symbols. The power launched by each transmitter is proportional to 1/ M so that the total 

radiated power is constant and independent of M.

In this project, it is to derive new detection ordering strategy and schemes from joint 

transceiver design, which is distinct from previous studies. To obtain a closed-form solution, a

QR-factorization based approach will be employed. First the BER is provided, minimization 

condition, derived from the convexity of the function in the PA scheme. It is demonstrated that 

the ordering strategy, which makes the channel gains converge to their geometric average, 

achieves the improved error performance. Based on this observation, we develop the two 

ordering algorithms, which are identical except for the threshold adaptation. 

The basic algorithm determines the detection-order using the geometric mean as a 

constant threshold, whereas the modified ordering scheme for robust convergence adaptively 

updates the threshold by taking into account the previous ordering results. The comparison of the 
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cumulative distribution is conducted to confirm the superiority of the adaptive design. It is also 

shown that proposed ordering schemes using QR-decomposition obtain not only lower 

implementation complexity but also better BER performance compared to the conventional B-

OSIC algorithm.
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1.2 Problem Definition

MIMO technology through the use of multiple antennas at the transmitter and receiver 

sides has been an area of intense research for its promise of increased spectral efficiency and 

reliability. The MIMO system has been an active area of research as well as practical transceiver 

implementations for their great potential of enhancing the system’s performance. There are three 

basic link performance parameters that completely describe the quality and usefulness of any 

wireless link, they are speed (or spectrum), range (or coverage), and reliability (or security). The 

use of multiple waveforms transmission in parallel constitutes a new type of radio 

communication. The communication using the multi-dimensional signals is to improve all the 

three basic link performance parameters using multiple antenna system. In MIMO, a multi-

antenna system answers the question of how to achieve the higher data rates, wider coverage, 

and increased reliability, all without using additional frequency spectrum. The combination of 

multi-antenna system with multicarrier system gives an excellent performance.

The transmission in wireless communication is typically organized in packets, with a 

training sequence at the beginning of the packet, to allow for the channel estimation and coherent 

detection at the receiver. When the transmitter is unaware of the channel and the receiver does 

not give the feedback details Phase and Magnitude information, we speak of ‘open-loop’ 

transmission. It is good match for the wireless MIMO channel that is time varying and the rate of 

feeding back channel information might be low.  

In this system the input data stream is de-multiplexed into sub streams and each sub 

stream is then encoded into symbols. With the help of multiple antennas we have build up a 

virtual communication system using BPSK (Binary Phase Shift Keying) modulation technique, 

the symbols are transmitted into the channel, which is wireless medium generally the atmosphere 

and this channel behavior is estimated and the noise content is to be added and is received at the 

receiver end antennas. 

              At the receiver end, the received signal is processed and the signal is estimated using 

QR decomposition algorithm. This algorithm estimates the BER and based on this observation 

we provided the power at individual transmitting antennas to control the BER and thus improves 

the system performance.
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1.3 Objective of the Project

The main aim of the project is to derive new detection ordering strategy and schemes 

from joint transceiver design, which is distinct from previous studies. To obtain a closed-form 

solution, a QR-factorization based approach will be employed in our study. First, we provide the 

BER minimization condition, derived from the convexity of the Q-function in the PA scheme. It 

is demonstrated that the ordering strategy, which makes the channel gains converge to their 

geometric average, achieves the improved error performance. Based on this observation, we 

develop the two ordering algorithms, which are identical except for the threshold adaptation. The 

basic algorithm determines the detection-order using the geometric mean as a constant threshold, 

whereas the modified ordering scheme for robust convergence adaptively updates the threshold 

by taking into account the previous ordering results.



Page | 12

MIMO System

2.1 Introduction

During the past decades, wireless communication has benefitted from substantial 

advances and it is considered as the key enabling technique of innovative future consumer 

products. For the sake of satisfying the requirements of various applications, significant 

technological achievements are required to ensure that wireless devices have appropriate 

architectures suitable for supporting a wide range of services delivered to the users. In the 

foreseeable future, the large-scale deployment of wireless devices and the requirements of high 

bandwidth and high data rate applications are expected to lead to tremendous new challenges in 

terms of the efficient exploitation of the achievable spectral resources and constitute a substantial 

research challenge in the context of the emerging WLAN’s and other indoor multimedia 

networks. Due to the physical limits imposed by the mobile radio channel which cause 

performance degradation and make it very difficult to achieve Journal of Theoretical and 

Applied Information Technology high bit rates at low error rates over the time dispersive 

wireless channels. Other detrimental characteristics are Co-Channel Interference (CCI), Doppler 

Effect, Intentional Jamming in Military Communications and Inter Symbol Interference (ISI) 

induced by multipath fading, however, there is an irreducible error floor that imposes a limit on 

the maximum attainable transmission rate. Specifically, the employment of multiple antennas at 

both the transmitter and the receiver, which is widely referred to as the MIMO technique, 

constitutes a cost-effective approach to high through put wireless communications and remote 

sensing.

The concept MIMO for both wired and wireless systems was first introduced by Jack 

Winters in 1987 for two basic communication systems. The first was for the communication 

between multiple mobiles and a base station with multiple antennas and second for the 

communication between two mobiles each with multiple antennas. Where, he introduced a 

technique of transmitting data from multiple users over the same frequency/time channel using 

multiple antennas at both the transmitter and receiver ends. Sparked off by Winters pioneering 

work, Salz investigated joint transmitter/receiver optimization using the minimum mean square 

error (MMSE) criterion. Since then, Winters and others have made further significant advances 

in the field of MIMO. In 1996, Raleigh and Cioffi and Foschini proposed new approaches for 

improving the efficiency of MIMO systems, which inspired numerous further contributions for 
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two suitable architectures for its realization known as Vertical Bell-Labs Layered Space-Time

(V-BLAST), and Diagonal Bell-Labs Layered Space-Time BLAST (D-BLAST) algorithm has 

been proposed by Foschini, which is capable of achieving a substantial part of the MIMO 

capacity.

It is capable of achieving high spectral efficiency while being relatively simple to 

implement. This structure offers highly better error performance than other existence detection 

method and still has low complexity. The basic motive was to increase the data rate in a 

constrained spectrum. The promises of information theoretic MIMO analysis for the channel 

capacity were the main trigger for this enthusiasm and also ignited the study of related areas such 

as MIMO Channel Modeling, Space-Time Signal Processing, Space-Time Coding, etc. The 

objective of such multi-channel diagonalization is to partition or distribute multi-user signals into

disjoint space and resultant channel gains are maximized to optimize the overall system capacity

under the constraint of a fixed transmit power. It also improves the quality (BER) or potential of

achieving extraordinary data rates by transferring the signals in time domain and space domain 

separately, without consuming more frequency resources, frequency diversity due to delay 

spread, higher spectral efficiency and without increasing the total transmission power or

bandwidth of the communication system by means of the deployment of multiple spatial ports, 

improved link reliability, beam forming, and adequate signal processing techniques at both ends 

of the system by using interference cancellation techniques for the communication as well as 

remote sensing. 

In the use of multiple antennas both the transmitter and receiver improves the 

communication performance. MIMO technology has attracted attention in wireless 

communications, because it offers significant increases in data through put and link range 

without additional bandwidth or increased transmit power. It achieves this goal by spreading the 

same total transmit power over the antennas to achieve an array gain that improves the spectral 

efficiency (more bits per second per hertz of bandwidth) or to achieve a diversity gain that 

improves the link reliability (reduced fading).
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2.2 Why is MIMO Beneficial?

Motivated by these promising improvements one question remains: Why and how are 

these gains in rate and reliability possible? Basically, it turns out that there are two gains that can 

be realized by MIMO systems. They are termed as diversity gain and spatial multiplexing gain. 

First, to investigate the diversity gain in an introductory form, we take a look at the single input 

single output (SISO) system.

In the context of wireless transmissions, it is common knowledge that depending on the 

surrounding environment, a transmitted radio signal usually propagates through several different 

paths before it reaches the receiver, which is often referred to as multipath propagation. The 

radio signal received by the receiver antenna consists of the superposition of the various multi 

paths. If there is no line-of-sight (LOS) between the transmitter and the receiver, the attenuation 

coefficients corresponding to different paths are often assumed to be Independent and Identically 

Distributed (IID). In this case the central limit theorem applies and the resulting path gain can be 

modelled as a complex Gaussian variable (which has a uniformly distributed phase and a 

Rayleigh distributed magnitude).

Due to this statistical behavior, the channel gain can sometimes become very small so 

that a reliable transmission is not always possible. To deal with this problem, communication 

engineers have thought of many possibilities to increase the so-called diversity. The higher the 

diversity is the lower is the probability of a small channel gain.

Some common diversity techniques are time diversity and frequency diversity, where the 

same information is transmitted at different time instants or in different frequency bands, as well 

as spatial diversity, where one relies on the assumption that fading is at least partly independent 

between different points in space.

The concept of spatial diversity leads directly to an expansion of the SISO system. This 

enhancement is denoted as single-input multiple-output (SIMO) system. In such a system, we 

equip the receiver with multiple antennas. Doing so usually can be used to achieve a 

considerable performance gain i.e. better link budget but also co-channel interference can be 

better combated. At the receiver, the signals are combined (i.e. if the phases of the transmission 

are known, in a coherent way) and the resulting advantage in performance is referred to as the 
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diversity gain obtained from independent fading of the signal paths corresponding to the 

different antennas. This idea is well known and is used in many established communication 

systems, for example in the Global System for Mobile communications (GSM). It is clear that in 

the above described way, a base station can improve the uplink reliability and signal strength 

without adding any cost, size or power consumption to the mobile device.

As far as the ability to achieve performance in terms of diversity is concerned, system 

improvements are not only limited to the receiver side. If the transmitter side is also equipped 

with multiple antennas, we can either be in the multiple-input single-output (MISO) or multiple-

input multiple-output (MIMO) case. A lot of research has been performed in recent years to 

exploit the possible performance gain of transmit diversity. The ways to achieve the predicted 

performance gain due to transmit diversity are various most of them are loosely speaking, 

summarized under the concept of space-time coding (STC).

Besides the advantages of spatial diversity in MIMO systems, they can also order a 

remarkably gain in terms of information rate or capacity. This improvement is linked with the

fore mentioned multiplexing gain. In fact, the advantages of MIMO are far more fundamental as 

it may have appeared to the reader so far. The underlying mathematical nature of MIMO 

systems, where data is transmitted over a matrix rather than a vector channel, creates new and 

enormous opportunities beyond the just described diversity effects. Where the author points out 

how one may, under certain conditions, transmit a number of independent data streams 

simultaneously over the eign modes of a matrix channel, created by several transmit and receive 

antennas. 

The gains achievable by a MIMO system in comparison to a SISO one can be described 

rigorously by information theory. A lot of research in the area of MIMO systems and STC is 

based on this mathematical framework introduced by Shannon.  The fundamental result of error 

free communication below a specific rate (depending on the actual signal-to-noise ratio (SNR)) 

in the limit of infinite length codes is also in the MIMO case an upper bound to all 

communication schemes. It can be used as a design criterion for transmission schemes as well as 

for comparison of different MIMO communication systems.
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Overall, the potential increase in data rates and performance of wireless links offered by 

MIMO technology has proven to be so promising that we can accept MIMO systems to be the 

cornerstone of many future wireless communication systems.

2.3 MIMO Channel Model

MIMO systems are an extension of smart antennas systems. Traditional smart antenna

systems employ multiple antennas at the receiver, whereas in a general MIMO system multiple 

antennas are employed both at the transmitter and the receiver. The addition of multiple antennas 

at the transmitter combined with advanced signal processing algorithms at the transmitter and the 

receiver yields significant advantage over traditional smart antenna systems - both in terms of 

capacity and diversity advantage. A MIMO channel is a wireless link between M transmits and N 

receive antennas. It consists of MN elements that represent the MIMO channel coefficients. The 

multiple transmit and receive antennas could belong to a single user modem or it could be 

distributed among different users. The later configuration is called distributed MIMO and

cooperative communications. Statistical MIMO channel models offer flexibility in selecting the

channel parameters temporal and spatial correlations. 

Figure: - A MIMO wireless channel
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We focus on a single-user communication model and consider a point-to-point link where 

the transmitter is equipped with nT antennas and the receiver employs nR antennas. Next to the 

single user assumption in the depiction as point-to-point link, we suppose that no inter symbol 

interference (ISI) occurs. This implies that the bandwidth of the transmitted signal is very small 

and can be assumed frequency -° at (narrowband assumption), so that each signal path can be 

represented by a complex-valued gain factor. For practical purposes, it is common to model the 

channel as frequency -° at whenever the bandwidth of the system is smaller than the inverse of 

the delay spread of the channel, hence a wideband system operating where the delay spread is 

fairly small (for instance indoor scenes) may sometimes be considered as frequency.

Figure: - A MIMO channel with nT transmit and nR receive antennas

If the channel is frequency selective, one could use an OFDM (orthogonal frequency-

division multiplexing) system, to turn the MIMO channel into a set of parallel frequencies at 

MIMO channels, of which each obeys our stated assumptions. 

In addition to these restrictions, we will further assume that we are operating in a time-

invariant setup. These assumptions allow us to use the standard complex-valued baseband 
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representation of narrowband signals that can be written in a discrete form (omitting the 

dependency on time).

Now let hi;j be the complex valued path gain from transmit antenna j to receive antenna i 

(the fading coefficient). If at a certain time instant the complex valued signals s1; : : : ; snT  

(fs1;: : : ; snTg) are transmitted via the nT antennas, respectively, the received signal at antenna i 

can be expressed as

                                  
n T

i i , j j i
j = 1

y = h s + n                                                  (1)

where ni represents additive noise, which will be treated later in this chapter. This linear relation 

can be easily written in a matrix framework. Thus, let be a vector of size nT containing the 

transmitted values, and y be a vector of size nR containing the received values, respectively. 

Certainly, we have s 2 CnT and y 2 CnR. Moreover, if we define the channel transfer matrix H as

                   

T

T

R R R T

1,1 1,2 1,n

2,1 2,2 2,n

n ,1 n ,2 n ,n

h h ..... h

h h ..... h
H =

. . .. .

h h ..... h

 
 
 
 
 
  

                      (2)

                               y Hs n                                                          (3)

We obtain

This is the same matrix notation as it is used in the majority of the publications in this field, e.g. 

[2]. This relation, denoting a transmission only over one symbol interval, is easily adapted to the 

case that several consecutive vectors fs1; s2; : : : ; sLg are transmitted (here, L denotes the total 

number of symbol intervals used for transmission) over the channel. Therefore, we arrange the 

transmitted, the received and the noise vectors in the matrices.

           1 2 L 1 2 L 1 2 LS= s ,s ,....s , Y= y ,y ,.....y , N= n ,n ,......,n                    (4)
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2.4 MIMO System Channel Capacity

Multipath propagation has long been regarded as “impairment” because it causes signal 

fading. To mitigate this problem, diversity techniques were developed. Antenna diversity is a 

widespread form of diversity. Information theory has shown that with multipath propagation, 

multiple antennas at both transmitter and receiver can establish essentially multiple parallel 

channels that operate simultaneously, on the same frequency band at the same total radiated 

power. Antenna correlation varies drastically as a function of the scattering environment, the 

distance between transmitter and receiver, the antenna configurations, and the Doppler spread. 

Recent research has shown that multipath propagation can in fact “contribute” to capacity.

Channel capacity is the maximum information rate that can be transmitted and received with 

arbitrarily low probability of error at the receiver. A common representation of the channel 

capacity is within a unit bandwidth of the channel and can be expressed in bps/Hz. This 

representation is also known as spectral (bandwidth) efficiency. MIMO channel capacity 

depends heavily on the statistical properties and antenna element correlations of the channel. 

Representing the input and output of a memory less channel with the random variables X and Y 

respectively, the channel capacity is defined as the maximum of the mutual information between

X and Y

                            C= max p(x) I (X;Y)                            (5)

A channel is said to memory less if the probability distribution of the output depends only 

on the input at that time and is conditionally independent of previous channel inputs or outputs. 

P(x) is the probability distribution function of the input symbols X.

2.4.1 Capacity of Single-Input-Single-Output (SISO) System

According to Shannon capacity of wireless channels, given a single channel corrupted by 

an additive white Gaussian noise at a level of SNR, the capacity is

             CSHANNON= B.log2 [1 + SNR] (BPS/Hz)                                                    (6)

Where: C is the Shannon limits on channel capacity, SNR is signal-to-noise ratio, B is bandwidth 

of channel. In the practical case of time varying and randomly fading wireless channel, the 

capacity can be written as:

            CSHANNON= B.log2 [1+SNR |H|2] (BPS/Hz)                                          (7)
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Where: H is the 1x1 unit-power complex matrix Gaussian amplitude of the channel. Moreover, it 

has been noticed that the capacity is very small due to fading events.

Figure: Shannon capacity for SISO system

From the above expression it is clear that theoretically capacity increase as the bandwidth is 

increased which shown in above figure. C increases 1 bits/sec/Hz for every 3dB of SNR.

2.4.2 Capacity of Single-Input-Multiple-Output (SIMO) System

For the SIMO system, we have N antennas at receiver and only one at transmitter. If the 

signals received on these antennas have on average the same amplitude, then they can be added 

coherently to produce an N increase in the signal power. On the other hand, there are N sets of 

noise that are added incoherently and result in an N fold increase in the noise power. Hence, 

there is an overall increase in the SNR.

                                                                           (8)

So the capacity of SIMO channel is:

CSIMO = B.log2 [1+N.SNR] (BPS/Hz)                                                                  (9)

The capacity of SIMO system in the practical case of time-varying and randomly fading 

wireless channel is:

CSIMO =B.log2 [1+SNR.HH*] (BPS/Hz)                                                              (10)

Where H is 1xN channel vector and ( )* is the transpose conjugate.
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2.4.3 Capacity of Multiple-Input-Single-Output (MISO) System

For the SIMO system, we have M antennas at transmitter and only one at receiver. As 

same as the case of the SIMO system, we have capacity of MISO system.

CMISO = B.log2 [1+M.SNR] (BPS/Hz)                                                               (11)

In the practical case of time-varying and randomly fading wireless channel, it is shown 

that the capacity of M x 1 MIMO system is:

CMISO = Blog2 [1+SNR.HH*] (BPS/Hz)    (12)

Compared with SISO system, the capacity of SIMO and MISO system shows 

improvement. The increase in capacity is due to the spatial diversity which reduces fading and 

SNR improvement. However, the SNR improvement is limited, since the SNR is increasing 

inside the log function.

2.4.4 The capacity of the MIMO Channel is analyzed in two cases

For the MIMO system, we have M antennas at transmitter and N antennas at receiver.

 Case 1. Same signal transmitted by each antenna 

In this case, the MIMO system can be view in effect as a combination of the SIMO and 

MISO channels. 

                                (13)

So the capacity of MIMO channels in this case is:

CMIMO = B.log2 [1+M.N.SNR] (BPS/Hz) (14)

           Thus, we can see that the channel capacity for the MIMO systems higher than that of 

SIMO and MIMO system. But in this case, the capacity is increasing inside the log function. 

This means that trying to increase the data rate by simply transmitting more power is extremely 

costly.
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 Case 2. Different signal transmitted by each antenna

The big idea in MIMO is that we can send different signals using the same bandwidth and 

still be able to decode correctly at the receiver. Thus, it is like we are creating a channel for each 

one of the transmitters. The capacity of each one of these channels is roughly equal to

(15)

But we have Mt of these channels, so the total capacity of the system is:

(16)

With N≥ M, the capacity of MIMO channels is equal to:

CMIMO = M.B.log2 [1 + SNR] (BPS/Hz)     (17)

Thus, we can get linear increase in capacity of the MIMO channels with respect to the 

number of transmitting antennas.

2.4.5 Capacity of Deterministic MIMO Channels

We now study the capacity of a MIMO channel in the case that the channel matrix H is 

deterministic. Furthermore, we assume that the channel has a bandwidth of 1 Hz and fulfills all 

constraints. Thus, we are investigating the vector transmission model.

                                                 
T

y Hs n
n


                                                         (18)

In the following, we assume that the channel H is known to the receiver. This is a very 

common assumption, although in practice hard to realize. Channel knowledge at the receiver 

may be maintained via training and tracking, but time-varying environments can make it difficult 

to estimate the channel sufficiently exact.

The capacity of the MIMO channel is defined similar to definition as

                              ( )max ( ; ).p sC I s y                                                                        (19)

We start by using Equation written as
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                            ( ; ) ( ) ( ),I s y H y H y s                                                                  (20)

where H (¢) denotes the entropy. Because y is specified through our linear MIMO transmission 

model, we can use the identity ( ) ( )H y s H n s . Since according to our premises, the noise n and

the transmit vector s are statistically independent, we can further write ( ) ( )H y s H n . 

Therefore, Equation simplifies to

                                                ( ; ) ( ) ( ).I s y H y H n                                                (21)

By our assumptions about the noise term n, the entropy H(n) can be evaluated as

                                    ( ) ln det( ) ln det( )nH n eC eI                                              (22)

Thus, the maximization of the mutual information I(s; y) reduces to a maximization of 

H(y). To derive an expression for the entropy of y, we first investigate its covariance matrix.

The covariance matrix of y, Cy satisfies

     ,

H

H H H H
y

T T T

C E yy E Hs n Hs n E Hss H E nn
n n n

                
    

                   (23)

Which can be further simplified to?

                   h H H H
y s n

T T

C HE ss H E nn HC H C
n n

 
                                         (24)

Where Cs is the covariance matrix of s. To evaluate the maximization of H(y), we need the

following theorem.

Theorem 1: (Entropy-maximizing property of a Gaussian random variable). Suppose the

complex random vector X2 Cn is zero-mean and satisfies .{ }H
xE xx C then the entropy of x is 

maximized if and only if x is a circularly symmetric complex Gaussian random variable 

with .{ }H
xE xx C .

Proof: Let ( )xf  be any density function satisfying *
, ,( ) ( ) 1 , .x i j x i j

nC

f d C i j n      

furthermore, let 

                                   1
,

1
( ) exp

det
H

x G x
x

f C
C

  


                                               (25)
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denote a joint complex Gaussian distribution with zero-mean. Now, we can observe that

*
, ,( ) ( )x i j x i j

nC

f d C     and that log , ( )x Gf  is a linear combination of the terms *
i j 

This means that by the construction of  , ( )x Gf  the integral , ,( ) log ( )x G x G
nC

f f d                         

can be split up in integrals *, ( )x G i j
nC

f d      of which each yields the same as *( )x i j
nC

f d   

Therefore, by construction, we have the identity

, , ,( ) log ( ) ( ) log ( )x G x G x x G
n nC C

f f d f f d       .

Thus,

   , , ,

, ,

,

( ) ( ) ( ) log ( ) , ( ) log ( )

( ) log ( ) ( ) log ( )

( )
( ) log 0.

( )

x x G x x x G x G
n nC C

x x x x G
n nC C

x G
x

n xC

H f H f f f d f f d

f f d f f d

f
f

f

       

     






    

   

 

              (26)

With equality if and only if  

,( ) ( )x x Gf f    

Thus    ,( ) ( )x x GH f H f  this concludes the proof.

Accordingly, the differential entropy H(y) is maximized when y is zero-mean circularly 

symmetric complex Gaussian (ZMCSCG). This, in turn implies that s must be a ZMCSCG

vector, with distribution that is completely characterized by Cs. The differential entropy H (y)

                                     ( ) log det( ).yH y cC                                                          (27)

Therefore, the mutual information I(s; y), in case of a deterministic channel H, reduces to

                        ( ; ) log det /H
s

T

I s y I HC H bps Hz
n

 
  

 
                                         (28)
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This is the famous “log-det” formula, firstly derived by Telatar. In principle, we could

denote the derived mutual information as a capacity since we maximized over all possible input 

distributions. Nevertheless, the above derivation does not tell us how to choose the covariance 

matrix of s to get the maximum mutual information. Therefore we keep the above notation. Thus 

in the following equation we write the capacity of the MIMO channel (within our power 

constraint) as

                 ( ) log det /max
H

s
trC nx T T

C H I HC H bps Hz
n




 
  

 
                                       (29)

2.4.6 Capacity of Random MIMO Channels

For a fading channel, the channel matrix H is a random quantity and hence the associated 

channel capacity C (H) is also a random variable. To deal with these circumstances, we define 

the ergodic channel capacity as the average of over the distribution of H. Definition (Ergodic 

MIMO channel capacity). The ergodic channel capacity of the MIMO transmission model is 

given by

                           log detmax
H

E s
trC nx T T

C E I HC H
n




      
   

                                        (30)

According to our information theoretic basics, this capacity cannot be achieved unless 

coding is employed across an infinite number of independently fading blocks. After having 

identified the channel capacity in a fading MIMO environment, it remains to evaluate the 

optimal input power distribution, or covariance matrix Cs that maximizes equation. The 

maximization depends on an important condition we have not taken into account yet. Before 

being able to compute the maximization, we have to clarify if the transmitter, the receiver, or 

both have perfect knowledge of the channel state information (CSI). This is equivalent to the 

constraint that the channel matrix H is perfectly known to any or both sides of the 

communication system.

If the channel H is known to the transmitter, the transmit correlation matrix Cs can be

chosen to maximize the channel capacity for a given realization of the channel. The main tool for 

performing this maximization is a technique, which is commonly referred to as water filling “or 

water-pouring algorithm”, which we will not restate here. Besides the performance gain 
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achievable, this method implicates a complex system, because the CSI has to be fed back to the 

transmitter.

Therefore, we chose to focus on the case of perfect CSI on the receiver side and on CSI at

the transmitter. Of course, this implies that the maximization of Equation (31) is now more

restricted than in the previous case. Nevertheless, Telatar, among others showed that the optimal 

signal covariance matrix has to be chosen according to

sC I

This means that the antennas should transmit uncorrelated streams with the same average

power. With this result, the ergodic MIMO channel capacity reduces to

                            log det H
E s

T

C E I HC H
n

      
   

                                                (31)

Clearly, this is not the Shannon capacity in a true sense, since as mentioned before, a 

genie with channel knowledge can choose a signal covariance matrix that outperforms Cs = I.

Nevertheless, we shall refer to the expression in Equation (29) as the ergodic channel capacity

with CSI at the receiver and no CSI at the transmitter.

Now that we have specified our MIMO transmission system in a consistent way, and 

having identified the corresponding ergodic MIMO channel capacity, we would like to derive 

another notation of the capacity formula. Therefore, we take a closer look at the term HHH in

Equation.

The term HHH is an nR x nR positive semi-definite Hermitian matrix. Let the eigen

decomposition of HHH be Q^QH, where Q is a nR x nR matrix satisfying QQH =QHQ = I and 

 1 2, ,..... nR
A diag    with ¸ 0t  denoting the ordered eigen values 1( )t t   of HHH. 

Then the channel capacity can be expressed as

                           log det H
E

T

C E I Q Q
n

       
   

                                                  (32)

Using the identity det (I+AB) = det (I+BA) for matrices A of size (mxn) and B of size (nxm), 

together with the relation QHQ = I, the above equation simplifies to

      
1

log det log 1
r

E t
tT T

C E I E
n n

  


                    
         

                                          (33)
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where r is the rank of the channel H. This expresses the capacity of the MIMO channel as the

sum of the capacities of r SISO channels, each having a gain of ¸λi; i = 1,……….. r.

Hence, the use of multiple antennas at the transmitter and receiver in a wireless link 

opens multiple scalar spatial pipes (also known as modes) between the transmitter and the 

receiver. This indicates the already mentioned multiplexing gain. To underline these insights, we 

did some numerical simulations, in which according to our IID, MIMO transmission model, we

chose H to be formed by independent and Gaussian elements with unit variance shows the 

ergodic MIMO channel capacity with no CSI at transmitter for various numbers of transmit and 

receive antennas. From this, we can see that the gain in capacity is obtained by employing an 

extra receive antenna is around 3dB relative to the SISO system. This gain can be viewed as a 

consequence of the fact that the extra receive antenna effectively doubles the received power. 

The gain of a system with nT = 2; nR = 1 relative to the SISO system is small. 

As far as the ergodic channel capacity is concerned there is practically no benefit in

adding an extra transmit antenna to the SISO system. Note also that the SIMO channel has a 

higher ergodic channel capacity than the MISO channel. Finally, the capacity of a system with nT

= 2; nR = 2 is higher and faster growing with SNR than that of the SISO system.

The growth of the ergodic channel capacity as a function of the number of antennas can 

be shown to obey a simple law. If we assume the channel H to be full rank, Equation indicates 

that when the number of transmit and receive antennas are the same, the ergodic MIMO channel 

capacity increases linearly by the number of antennas.

In general, the capacity increases by the minimum of the number of transmit and receive

antennas. One can show that at high SNR, the ergodic channel capacity in terms of the received 

SNR can be described as

               
min{ },

1
min{ , } log log( ),

n nT R

E T R k
k n nT T R

C n n x
n


 

 
   

 
                                     (34)

where Xk is a chi squared random variable with 2k degrees of freedom. Therefore, a 3dB increase 

in SNR results in min {nT,nR} extra bits of capacity at high SNR.

To further clarify our observation that the adding of transmit antennas to a system with a 

fixed number of receive antennas has a limited impact on the ergodic channel capacity, we 
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investigate the ergodic capacity behavior for a large number of transmit antennas. In the

mentioned case, using the law of large numbers, one can show that /H
TH H n I almost

surely. As a result, the ergodic channel capacity is log(1 )Rn  for large nT. This bound is

rapidly reached, thus explaining the limited gain of adding extra transmit antennas. 

Similar investigations can be performed for a fixed number of transmit antennas, where 

the capacity gain for adding one additional receive antenna also gets smaller if the number of 

receive antennas gets large. Now, it just remains to point out that a correlation of the entries of 

the channel matrix H, as it might be induced by not well separated antennas at either the transmit 

or receiver side. It can of course influence the shape of the presented curves massively. In 

general, correlation of H reduces the gains obtained in MIMO channels, as long as we are 

investigating a MIMO system with perfect CSI on the receiver side. Recent research shows that 

if only partial CSI at the receiver is available, correlation may be used to improve capacity gains.

2.5 Mathematical Description of MIMO System

In MIMO systems, a transmitter sends multiple streams by multiple transmit antennas. 

The transmit streams go through a matrix channel which consists of all paths between 

the transmit antennas at the transmitter and receive antennas at the receiver. Then, the 
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receiver gets the received signal vectors by the multiple receive antennas and decodes the 

received signal vectors into the original information. A narrowband flat fading MIMO system is 

modeled as

y = Mx + n       (35)

where and are the receive and transmit vectors, respectively, and and are the channel 

matrix and the noise vector, respectively.

Referring to information theory, the ergodic channel capacity of MIMO systems where 

both the transmitter and the receiver have perfect instantaneous channel state information is

(36)

where denotes Hermitian transpose and is the ratio between transmit power and noise 

power (i.e., transmit SNR). The optimal signal covariance Q=VSVH is achieved 

through singular value decomposition of the channel matrix and an optimal diagonal 

power allocation matrix. S= diag(s1,…….,smin(Nt,Nr),0….0) The optimal power allocation 

is achieved through water filling, that is

(37)

where d1,........dmin(Nt,Nr) are the diagonal elements of is zero if its argument is negative, 

and µ is selected such that

s1+………..+ smin (Nt ,Nr) = Nt (38)

If the transmitter has only statistical channel state information, then the ergodic channel 

capacity will decrease as the signal covariance can only be optimized in terms of the 

average mutual information as
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Cstatistical-CSI =maxQE [log2 det (I+ρHQHH)]  (39)

the spatial correlations of the channel has a strong impact on the ergodic channel capacity with 

statistical information.

If the transmitter has no channel state information it can select the signal covariance to 

maximize channel capacity under worst-case statistics, which means and accordingly

        (40)

depending on the statistical properties of the channel, the ergodic capacity is no greater 

than times larger than that of a SISO system.

2.6 Noise

After stating the general linear input-output relation of the MIMO channel under more or 

less general assumptions, we will now go a little bit into detail on the noise term of the 

transmission model.

In this thesis, the noise vectors }{ ln will be assumed to be spatially white circular 

Gaussian random variables with zero-mean and variance 2
N per real and imaginary component. 

Thus,

                                                        ),2,0(~ 2 In Ncl                                                              (41)

where NC stands for a complex-valued multivariate Gaussian probability density function. 

Because we will need an exact definition of the complex-valued multivariate Gaussian 

probability density function, we will restate it here.

 Definition: (Complex-valued Gaussian distribution). Let MCX  , then the probability 

density function )(xf of x is given by

                                       
)]()(exp[

)det(

1 1
xx

H
x

n
x c

C
f  


  ,                                     (42)
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Where }))({( H
XkXX EC   denotes the covariance matrix of x, }{ EX 

denotes the mean vector of x and H(.) stands for the complex conjugate (Hermitian 

transpose).Compactly, we write ),(~ XXC CX  .

There are at least two strong reasons for making the Gaussian assumption of the noise. 

First, Gaussian distributions tend to yield mathematical expressions that are relatively easy to 

deal with. Second, a Gaussian distribution of a disturbance term can often be motivated via the 

central limit theorem.

Throughout this thesis, we will also model the noise as temporally white. Although such 

an assumption is customary as well, it is clearly an approximation. In particular, N may contain 

interference consisting of modulated signals that are not perfectly white.

To conclude our examination of the noise term in our channel model, we summarize the 

statistical properties of the set of complex Gaussian vectors :,......,1},{ Llnl 

                                                  kforlnnE

InnE
H
kl

N
H
ll





,0}{

,2}{ 2

                                                        (43)

The elements of the matrix H correspond to the complex-valued channel gains between 

each transmit and receive antenna. For the purpose of assessing and predicting the performance 

of a communication system, it is necessary to postulate a statistical distribution of these 

elements. This is also true to some degree for the design of well performing receivers, in the 

sense that knowledge of the statistical behavior of H could potentially be used to improve the 

performance of receivers.

Throughout this thesis, we will assume that the elements of the channel matrix H are 

zero-mean complex-valued Gaussian random variables with unit variance. This assumption is 

made to model the fading effects induced by local scattering in the absence of line-of-sight 

components. Consequently, the magnitudes of the channel gains jih , have a Rayleigh distribution, 

or equivalently, 
2

, jih are exponentially distributed. The presence of line of-sight components can 

be modelled by letting jih , have a Gaussian distribution with a non-zero mean (This is also called 

Ricean fading).
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After having identified the possibilities, model the complex-valued channel path gains, it 

re-mains to check a possible correlation between these entries. In this work, we make a 

commonly made assumption on H, i.e. that the elements of H are statistically independent. 

Although this assumption again tends to yield mathematical expressions that are easy to deal 

with, and allows the identification of fundamental performance limits, it is usually a rough 

approximation. In practice, the complex path gains }{ , jih are correlated by an amount that 

depends on the propagation environment as well as the polarization of the antenna elements and 

the spacing between them.

The channel correlation has a strong impact on the achievable system performance. 

Nevertheless, we will think of a rich scattering environment with enough antenna separation at 

the receiver and the transmitter, so that the entries of H can be assumed to be independent zero-

mean complex Gaussian random variables with unit variance. 

This model is often popularly referred to as the IID (identically and independently 

distributed) Rayleigh fading MIMO channel model. The fading itself will be modeled as block-

fading, which means that the elements of H stay constant during the transmission of L data 

vectors s (or equivalently during the whole transmission duration of S) and change independently 

to another realization for the next block of L symbol periods. In practice, the duration L has to be 

shorter than the coherence time of the channel, although in reality the channel path gains will 

change gradually. Never the less, we will use the block fading model for its simplicity.

2.7 Fading

The elements of the matrix H correspond to the complex-valued channel gains between 

each transmit and receive antenna. For the purpose of assessing and predicting the performance 

of a communication system, it is necessary to postulate a statistical distribution of these 

elements. This is also true to some degree for the design of well performing receivers, in the 

sense that knowledge of the statistical behavior of H could potentially be used to improve the 

performance of receivers. Throughout this thesis, we will assume that the elements of the 

channel matrix H are zero mean complex-valued Gaussian random variables with unit variance. 

This assumption is made to model the fading effects induced by local scattering in the 

absence of line-of-sight components. Consequently, the magnitudes of the channel gains hi;j have 
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a Rayleigh distribution, or equivalently, 
2

,i jh are exponentially distributed. The presence of 

line-of-sight components can be modeled by letting hi;j have a Gaussian distribution with a non-

zero mean (This is also called Ricean fading).

After having identified the possibilities to model the complex-valued channel path gains, 

it remains to check a possible correlation between these entries. In this work, we make a 

commonly made assumption on H, i.e. that the elements of H are statistically independent. 

Although this assumption again tends to yield mathematical expressions that are easy to deal 

with, and allows the identification of fundamental performance limits, it is usually a rough 

approximation. 

In practice, the complex path gains {hi,j}are correlated by an amount that depends on the 

propagation environment as well as the polarization of the antenna elements and the spacing 

between them. The channel correlation has a strong impact on the achievable system 

performance. Nevertheless, throughout this thesis, we will think of a rich scattering environment 

with enough antenna separation at the receiver and the transmitter, so that the entries of H can be 

assumed to be independent zero-mean complex Gaussian random variables with unit variance. 

This model is often popularly referred to as the IID (identically and independently distributed) 

Rayleigh fading MIMO channel model.

The fading itself will be modeled as block-fading, which means that the elements of H 

stay constant during the transmission of L data vectors s (or equivalently during the whole 

transmission duration of S) and change independently to another realization for the next block of 

L symbol periods. In practice, the duration L has to be shorter than the coherence time of the 

channel, although in reality the channel path gains will change gradually. Nevertheless, we will 

use the block fading model for its simplicity.
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2.8 Power Constraints, SNR Definition 

The stated MIMO transmission model is now nearly ready to be investigated. What is 

still missing are declarations about the transmit power. Furthermore, we would like to derive 

expressions as a function of the signal-to-noise ratio (SNR) at the receiver, so we have to define 

it in terms of the already introduced quantities. 

In the theoretical literature of MIMO systems, it is common to specify the power 

constraint on the input power in terms of an average power over the nT transmit antennas. This 

may be written as

                        2
,

1

1
, 1,......

nT

i l s
iT

E s E for l L
n 

                                                 (44)

so that on average, we spend Es in power at each transmit antenna. Here Es denotes the mean 

symbol energy, as defined for example  2( )i
sE E s (here, i denotes the time index of the sent 

symbol), where the expectation is carried out over the symbol sequence (i.e. over i), which in 

case of a white symbol sequence reduces to an averaging over the symbol alphabet. 

Although this power constraint is a very common one, there is a variety of similar 

constraints that lead to the same basic information theoretic conclusions on MIMO transmission 

systems [15]. Since we will need other power constraints within this thesis, we will briefly 

restate them now. The power constraints can be written as

1.    sli EsE }{
2

, for i = 1; : : : Tn ; and l = 1; : : : ;L, where no averaging over the transmit 

         antennas is performed.

2.     s

L

l li EsE
L

 1

2

, }{
1

,for i = 1; : : : Tn , what is quite similar to the power constraint, but 

         here averaging is performed over time instead of space.

3.    s

L

l

nT

I li
T

EsE
Ln

  1 1

2
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1

Where we average over time and space. This can equivalently 

        be expressed as s
H

r
T

ESStE
Ln

}{
.
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Since in most of our investigations, we want to derive expressions or curves depending 

on the SNR at a receive antenna, we will use a slightly adapted MIMO transmission model, in 

which we are using a redefinition of the power constraint.

To motivate this, we would like to express the average signal-to-noise ratio at an arbitrary 

receive antenna. Because we transmit a total power of sT En over a channel with an average path 

gain of magnitude one1 and a total noise power of 22 N at each receive antenna, we could state 

the SNR at a receive antenna as )2/( 2
NsT En   .

This would have the negative aspect, that our total transmitted power (and thus the 

receive SNR) is dependent on the number of transmit antennas. So, if we normalize the 

transmitted power by the number of transmit antennas Tn , we remove this small inconsistency. 

This also motivations a slightly description of our MIMO transmission model:

                                                             
NHS

n
Y

T




                                                         (45)

In this context, we have following constraints on our elements of the MIMO transmission

Model:

1. Average magnitude of the channel path gains TR
H

r nnHHtE }{ ,

2. Average transmit power LnSStE T
H

r }{ and

3. Average noise variance LnNNtE R
H

r }{

If these constraints are fulfilled, the factor 
Tn

 ensures that  is the average SNR at a 

receive antenna, independent of the number of transmit antennas (see for example also [16]).
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2.9 Diversity

So far, we studied how multiple antennas can enhance channel capacity. Now we discuss 

how antennas can also offer diversity. Diversity provides the receiver with multiple (ideally 

independent) observations of the same transmitted signal. Each observation constitutes a

diversity branch. With an increase in the number of independent diversity branches, the 

probability that all branches fade at the same time reduces. Thus, diversity techniques stabilize 

the wireless link leading to an improvement in link reliability or error rate.

To clarify matters, we will have a closer look at a very simple example, Assume that we 

transmit a data symbol s drawn from a scalar constellation with unit average energy. This symbol 

is now transmitted in a way that we can provide M identically independently Rayleigh faded 

versions of this symbol to the receiver. If the fading is frequency flat, the receiver sees

                                   
,,........,2,1, Minsh

M
y iii 



                                                       
(46)

Where  is the average SNR for each of the M diversity branches and iy is the received signal

corresponding to the ith diversity branch? Furthermore, hi denotes the channel path gain and in is 

additive ZMCSCG noise with variance 1 in the ith diversity branch, whereas the noise from 

different branches is assumed to be statistically independent.

If we provide a receiver with multiple versions of the transmitted symbol s, it can be 

shown that the post-processing SNR can be maximized by a technique called maximum ratio 

combining (MRC). With perfect CSI at receiver, the M signals are combined according 

to ,
1

*



M

i
ii yhz and thus the post-processing SNR  is given by 
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detection, the corresponding probability of symbol error is given by,
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Where,  denotes the number of nearest neighbors, mind labels the minimum distance in the 

underlying scalar symbol constellation and (.)Q is the Q-function. The error probability can be 

further bounded applying the Chernoff bound :)2/exp()( 2xxQ 
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By averaging this instant error probability with respect to the fading gains ih ; i = 1;:::; M, the 

upper bound is obtained.
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                                            In the high SNR regime, the preceding equation may be further simplified to
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which makes it absolutely clear that diversity effects the slope of the symbol error rate (SER)

curve. The slope of the SER curve on a log-log scale, compared to the slope of a SISO system

terms the mentioned diversity gain. Clearly, multiple antennas on the transmitter and/or receiver 

side can lead to this kind of performance gain. The answer to the question is how we can achieve 

the maximum diversity gain RT nn in a MIMO system.

2.10 Functions of MIMO

MIMO can be sub-divided into three main categories, pre-coding, spatial multiplexing or 

SM, and diversity coding.

 Pre-coding: It is multi-stream beam forming, in the narrowest definition. In more general 

terms, it is considered to be all spatial processing that occurs at the transmitter. In (single-

layer) beam forming, the same signal is emitted from each of the transmit antennas with 

appropriate phase (and sometimes gain) weighting such that the signal power is 

maximized at the receiver input. The benefits of beam forming are to increase the 

received signal gain, by making signals emitted from different antennas add up 

constructively, and to reduce the multipath fading effect. In the absence of scattering, 

beam forming results in a well defined directional pattern, but in typical cellular 

conventional beams are not a good analogy. When the receiver has multiple antennas, the 

transmit beam forming cannot simultaneously maximize the signal level at all of the 
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receive antennas, and pre-coding with multiple streams is used. Note that pre-coding

requires knowledge of channel state information (CSI) at the transmitter.

 Spatial multiplexing: It requires MIMO antenna configuration. In spatial multiplexing, a 

high rate signal is split into multiple lower rate streams and each stream is transmitted 

from a different transmit antenna in the same frequency channel. If these signals arrive at 

the receiver antenna array with sufficiently different spatial signatures, the receiver can 

separate these streams into (almost) parallel channels. Spatial multiplexing is a very 

powerful technique for increasing channel capacity at higher signal-to-noise ratios 

(SNR). The maximum number of spatial streams is limited by the lesser of the number of 

antennas at the transmitter or receiver. Spatial multiplexing can be used with or without 

transmit channel knowledge. Spatial multiplexing can also be used for simultaneous 

transmission to multiple receivers, known as space division multiple access. The 

scheduling of receivers with different spatial signatures allows good reparability.

 Diversity Coding: This technique is used when there is no channel knowledge at the 

transmitter. In diversity methods, a single stream (unlike multiple streams in spatial 

multiplexing) is transmitted, but the signal is coded using techniques called space-time 

coding. The signal is emitted from each of the transmit antennas with full or near 

orthogonal coding. Diversity coding exploits the independent fading in the multiple 

antenna links to enhance signal diversity. Because there is no channel knowledge, there is 

no beam forming or array gain from diversity coding.

Spatial multiplexing can also be combined with pre-coding when the channel is known at 

the transmitter or combined with diversity coding when decoding reliability is in trade-

off.

2.11 Applications of MIMO

Spatial multiplexing techniques make the receivers very complex, and therefore they are 

typically combined with Orthogonal frequency division multiplexing (OFDM) or with   

Orthogonal Frequency Division Multiple Access (OFDMA) modulation, where the problems 

created by a multi-path channel are handled efficiently. The IEEE 802.16e standard incorporates 
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MIMO-OFDMA. The IEEE 802.11n standard, released in October 2009, recommends MIMO-

OFDM.

MIMO is also planned to be used in Mobile radio telephone standards such as 

recent 3GPP and 3GPP2. In 3GPP, High-Speed Packet Access plus (HSPA+) and Long Term 

Evolution (LTE) standards take MIMO into account. Moreover, to fully support cellular 

environments, MIMO research consortia including IST-MASCOT propose to develop advanced 

MIMO techniques, e.g. multi-user MIMO (MU-MIMO).

MIMO technology can be used in non-wireless communications systems. One example is 

the home networking standard ITU-T G.9963, which defines a power line communications 

system that uses MIMO techniques to transmit multiple signals over multiple AC wires (phase, 

neutral and ground)
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3.1 Introduction

One of the earliest communication systems that were proposed to take advantage of the

promising capacity of MIMO channels is the BLAST architecture. It achieves high spectral 

efficiencies by spatially multiplexing coded or uncoded symbols over the MIMO fading channel.

Symbols are transmitted through M antennas. Each receiver antenna receives a superposition of 

faded symbols. The ML decoder would select the set of symbols that are closest in Euclidean 

distance to the received N signals. However, it is hard to implement due to its exponential 

complexity. More practical decoding architectures were proposed in the literature.

3.2 V-BLAST Technique

The transmission is described as follows. A data stream is de-multiplexed into M sub-

streams termed layers. For D-BLAST at each transmission time, the layers circularly shift across 

the M transmit antennas resulting in a diagonal structure across space and time. On the other 

hand, the layers are arranged horizontally across space and time for V-BLAST and the cycling 

operation is removed before transmission is shown in at the receiver, as mentioned previously, 

the received signals at each receive antenna is a superposition of M faded symbols plus additive 

white Gaussian noise (AWGN). Although the layers are arranged differently for the two BLAST 

systems across space and time, the detection process for both systems is performed vertically for 

each received vector. Without loss of generality, assume that the first symbol is to be detected. 

Main Steps for V-BLAST detection :

1. Ordering: choosing the best channel.

2. Nulling: using ZF, MMSE, ML.

3. Slicing: making a symbol decision

4. Cancelling: subtracting the detected symbol

5. Iteration: going to the first step to detect the next symbol

The detection process consists of two main operations:
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I) Interference suppression (nulling):

The suppression operation nulls out interference by projecting the received vector onto 

the null subspace (perpendicular subspace) of the subspace spanned by the interfering signals. 

After that, normal detection of the first symbol is performed.

II) Interference cancellation (subtraction):

The contribution of the detected symbol is subtracted from the received vector.

Figure: - Block diagram of V-BLAST Architecture.

BLAST detection algorithm combines linear (interference suppression) and nonlinear 

(serial cancellation) algorithms. This is similar to the de-correlating decision feedback multiuser 

detection algorithm. A drawback of BLAST algorithms is the propagation of decision errors. 

Also, the interference nulling operation requires that the number of receive antennas be greater 

than or equal to the number of transmit antennas. Furthermore, due to the interference 

suppression, early detected symbols benefit from lower receives diversity than later ones. Thus, 

the algorithm results in unequal diversity advantage for each symbol.
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3.3 Difference between V-BLAST and D-BLAST 

The layers of the V-BLAST can be coded or un-coded. The D-BLAST is intended to be 

used only with coded layers. This is the reason behind cycling which provides more spatial 

diversity for each layer particularly over slowly fading channels. Further, due to the diagonal 

structure of D-BLAST, each layer benefits from the same diversity advantage while V-BLAST 

layers have unequal diversity advantages. However, D-BLAST requires advanced inter-stream 

coding techniques to optimize the performance of the code across space and time. Finally, some 

space-time is wasted at the start and the end of the burst for D-BLAST.

V-BLAST takes a single data stream and de-multiplexes it into M sub-streams with M is 

the number of transmitter antennas. Each sub-stream is encoded into symbols and fed to a 

separate transmitter. The modulation method in these systems usually is M Quadrature 

Amplitude Modulation (QAM). QAM combines phase modulation with amplitude modulation, 

making it an efficient method for transmitting data over a limited bandwidth channel. BLAST's 

receivers operate co-channel, each receiving the signals emanating from all M of the transmitting 

antennas. For the sake of simplicity, it is also assumed that the channel-time variation is 

negligible over the L symbol periods in a burst.

3.4 V-BLAST Technique for Different Linear Detectors in a slow Fading 

Channel

3.4.1 Maximum Likelihood (ML):

The ML receiver performs optimum vector decoding and is optimal in the sense of 

minimizing the error probability. ML receiver is a method that compares the received signals 

with all possible transmitted signal vector which is modified by channel matrix H and estimates 

transmit symbol vector x according to the Maximum Likelihood principle , which is shown as:

                                                                   (1)
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Where the minimization is performed over all possible transmit estimated vector symbols x. 

Although ML detection offers optimal error performance, it suffers from complexity issues. It 

has exponential complexity in the sense that the receiver has to consider |A|M possible symbols 

for an M transmitter antenna system with A is the modulation constellation.

3.4.2 V-BLAST Zero Forcing (ZF) characteristic:

We can reduce the decoding complexity of the ML receiver significantly by employing 

linear receiver front-ends to separate the transmitted data streams, and then independently 

decode each of the streams. Simple linear receiver with low computational complexity and 

suffers from noise enhancement. It works best with high SNR. The solution of the ZF is given 

by:

    (2)

Where, ( ) + represents the pseudo-inverse. The ZF receiver converts the joint decoding problem 

into M single stream decoding problems thereby significantly reducing receiver complexity. This 

complexity reduction comes, however, at the expense of noise enhancement which in general 

results in a significant performance degradation (compared to the ML decoder). The diversity 

order achieved by each of the individual data streams equals 

N - M + 1.

3.4.3 .V-BLAST with Minimum Mean Square Error (MMSE):

The MMSE receiver suppresses both the interference and noise components, whereas the 

ZF receiver removes only the interference components. This implies that the mean square error 

between the transmitted symbols and the estimate of the receiver is minimized. Hence, MMSE is 

superior to ZF in the presence of noise. Some of the important characteristics of MMSE detector 

are simple linear receiver, superior performance to ZF and at Low SNR, MMSE becomes 

matched filter. Also at high SNR, MMSE becomes Zero-Forcing. MMSE receiver gives a 

solution of:

                                      (3)
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At low SNR, MMSE becomes ZF:

                                                                       (4)

At high SNR, MMSE becomes ZF:

                                           (5)

i.e., the MMSE receiver approaches the ZF receiver and therefore realizes (N-M + 1) th order 

diversity for each data stream.

3.4.4 V-BLAST with Maximal Ratio Combining (MRC):

MRC combines the information from all the received branches in order to maximize the 

ratio of signal to noise power, which gives it its name. MRC works by weighting each branch 

with a complex factor and then adding up the branches, MRC is intuitively appealing; the total 

SNR is achieved by simply adding up the branch SNRs when the appropriate weighting 

coefficients are used. BER for MRC in Rayleigh fading channel (1x2) with BPSK modulation  

                           

                                                                           (6)                                                     

3.4.5 STBC (Space-time block codes)

STBC is a class of linear coding for MIMO systems that aims to maximize the system 

diversity gain rather than the data rate. A very popular STBC for a two transmit antennas setup 

was developed by Alamouti, which is illustrated in Fig.7. It is designed for 2x2 MIMO systems 

and its simplicity and high frequency have led to its wide adoption in MIMO systems. In this 

scheme orthogonal signals are transmitted from each antenna, which greatly simplifies receiver 

design. This particular scheme is restricted to using M = 2 antennas at the transmitter but can any 

number of receive antennas N. Two QAM symbols S1 and S2 for transmission by the Alamouti 

scheme are encoded in both the space and time domain at the two transmitter antennas over the 
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consecutive symbol periods as shown in equation (20). The information bits are first modulated 

using a modulation scheme (for example QPSK). The encoder then takes a block of two 

modulated symbols s1 and s2 in each encoding operation and gives to the transmit antennas 

according to the code matrix.

    (7)

The code matrix has the following property

                                (8)

Where I2 is the 2x2 identity matrix.

In the above matrix the first column represents the first transmission periods and the 

second column, the second transmission period. The first row corresponds to the symbols 

transmitted from the first antenna and second row corresponds to the symbols transmitted from 

the second antenna. It means that during the symbol period, the first antenna transmits s1 and 

second antenna s2. During the second symbol period, the first antenna transmits –s2 * and the 

second antenna transmits s1 * being the complex conjugate of s1. This implies that we are 

transmitting both in space (across two antennas) and time (two transmission intervals). 

Hence,   

Moreover a close look reveals that sequences are orthogonal over a frame interval, since the 

inner product of the sequences S1 and S2 is zero, i.e.

                                       (9)
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         (10)

In a fast fading channel, the BER is of primary interest since the channel varies every 

symbol time; while in a slow fading situation, the FER (Frequency error rate) is more important 

because channel stays the same for a frame.
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4.1 Introduction

MULTIPLE-INPUT multiple-output (MIMO) communication offers key advantages over 

single-input single-output (SISO) communication, such as diversity gain and spatial multiplexing 

gain. Diversity gain improves link reliability, while spatial multiplexing gain increases the 

transmission rate. Our goal with this paper is to investigate transmit optimization for MIMO 

spatial multiplexing, which is receiver-dependent. Signal reception for MIMO spatial 

multiplexing can employ criteria such as linear zero-forcing (ZF), minimum mean-squared error 

(MMSE), maximum likelihood (ML) and successive interference cancellation (SIC), or ordered 

SIC (OSIC), as for example, in the case of the Vertical Bell Laboratories layered space–time (V-

BLAST) architecture. In order to achieve high MIMO diversity and/or spatial multiplexing gains, 

appropriate transceiver designs are necessary. Efforts to optimize MIMO transceivers structures 

have involved joint transmit–receive optimization and linear pre-coding for specific receivers. 

Joint pre-coding/decoding optimization under MMSE criterion is investigated. A unified 

framework for joint transmit–receive design using convex optimization is proposed. Minimum 

bit-error rate (MBER) pre-coding for ZF equalization of block transmission and block 

transceivers with MMSE decision-feedback equalization (DFE) is readily applicable to MIMO 

systems. Pre-coding for multicarrier MIMO using an ML receiver and pair wise error probability 

as criterion is proposed in. These designs generally require high-complexity processing at the 

transmitter and the receiver, as well as high feedback overhead. Pre-coded MIMO transmission 

with reduced feedback has been recently proposed based on quantized channel state information 

(CSI) feedback and limited feedback signal design.

However, existing pre-coding schemes with reduced feedback generally also require 

high processing complexity. Consider simultaneous reduction of transmitter complexity and 

feedback overhead by constraining pre-coding to transmit power allocation, i.e., I optimize only 

the transmitted power of signal streams, but apply a more suitable criterion. Power allocation for 

multicarrier MIMO systems was considered. Where MIMO was operated in a diversity mode and 

the transmit power was allocated across the frequency dimension (subcarriers). As opposed to 

MMSE pre-coding/decoding, I consider MBER as the optimization criterion. The block 

transceiver design for MMSE-DFE provides a closed-form solution to approximate MBER 

(AMBER) pre-coding for SIC receivers. Compared with MMSE-DFE and ZF-MBER pre-
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coding, we provide a unified solution to MBER power allocation for ZF, SIC, and OSIC 

receivers. 

General power allocation (with diagonal pre-coder) by minimizing error rate does not 

have a closed-form solution, and has high computational complexity. An approximate solution 

can be found instead, which was originally given in to allocate power across channel eigen 

modes. In this paper, it is applied to transmit power allocation for ZF, SIC, and OSIC receivers. 

Recently, it has come to our attention that a similar AMBER power allocation for V-BLAST was 

proposed independently. Transmitter-side power allocation ideally requires CSI or allocated 

power to be available at the transmitter. In some cases, CSI can be made available at the 

transmitter, e.g. in time-division duplex (TDD) systems, due to the reciprocity of the uplink and 

downlink channels. In this case, existing limited feedback schemes do not possess any 

advantages, since feedback overhead is not a concern. 

However, power allocation is still attractive, due to the significant reduction in 

transmitter complexity. On the other hand, in channels that lack reciprocity in uplink and 

downlink, e.g. frequency-division duplex (FDD), complete CSI is not available at the transmitter, 

and CSI or power information has to be fed back. Regardless of availability, CSI or power 

feedback is imperfect, in practice, due to channel estimation, quantization, feedback delay, 

and/or errors introduced by feedback channel. This motivates performance analysis of power 

allocation under uncertain feedback. 

While a general analysis is difficult, we analyze the special cases of noisy CSI and power 

feedback. Based on this analysis, we propose an AMBER power-allocation algorithm that takes 

statistical knowledge of noisy feedback into account. Furthermore, as a by-product, a modified 

algorithm for perfect CSI which takes into account error-propagation effects in SIC and OSIC 

receivers is devised. 

Multi-input-multi-output (MIMO) digital communication systems are receiving an 

increasing attention due to their potential of increasing the overall system throughput. In such 

systems, MIMO decision feedback equalization (DFE) is often used to mitigate inter-symbol-

interference (ISI), which results from channel multi-path propagation. In many of such systems, 

the transmitted symbol consists of a known training sequence followed by unknown data. An 
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efficient equalization technique in this scenario is to rest estimate the channel impulse responses 

between each transmitter and each receiver using the training sequence, and then use this 

estimate to compute the optimal decision feedback equalizer tap coefficients corresponding to 

the estimated channel. The computed tap coefficients are then uploaded to the equalizer taps. For 

time-varying channels, the detection ordering and nulling vectors need to be updated for each 

time, plus the channel parameters should be tracked.

These update and tracking operations in the time domain require excessive 

computations. To overcome this drawback, a simplified policy for updating and tracking is 

proposed, where the V-BLAST (Vertical Bell Laboratories Layered Space-Time coding) 

detection is updated block-wise, and the channel tracking is interpolation-based, thereby creating 

a trade-off between complexity and performance. As an alternative approach to detecting MIMO 

systems in time-varying channels, the adaptive techniques may be employed. By successively 

detecting the transmitted symbols at each time, the adaptive decor- relating detector can suppress 

the co-channel interference caused by spatial multiplexing, but it requires channel estimation to 

determine the order of detection. The adaptive decision feedback equalizer is useful for reducing 

inter symbol interference in MIMO systems over frequency-selective channels. However, they 

are not suitable for reducing the co-channel interference; in the DFE, the transmitted symbols at 

each time are simultaneously detected without considering the order of detection. 

The adaptive method is a blind technique, whereas the receivers are data aided. A data-

aided ordered based on the recursive least squares ordered decision feed-back equalizer (RLS-O-

DFE) architecture is proposed. For each time, the tap weight vectors are updated using an RLS 

based-time and order-update algorithm and detection ordering determined according to a least 

squares error (LSE) criterion. But the proposed algorithm doesn't cancel interference from 

detected symbols successively and the detection performance deteriorated. A variable step size 

blind equalization algorithm based on log-normal error function is proposed. 

The algorithm has faster convergent rate and smaller the mean square error (MSE) than 

the constant modulus algorithm (CMA). But most cost is on the computing of error function and 

the complexity is increased. In this letter, an improved log-normal error function based on CMA 

algorithm ordered successive interference cancellation decision feedback equalization 

(ILNCMA- OSIC-DFE) is proposed. The algorithm improved the variable step size blind 
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equalization algorithm based on log-normal error function restyle and added decision conditions. 

So the convergent rate is accelerated and the computational complexity is reduced. Then it 

cancels the detected symbols as interference from received symbols and overcomes the drawback 

of the RLS-O-DFE algorithm, such as instability and high bit error ratio (BER), while the 

computational complexities are increased a little. Performance analysis and simulation results 

show the effectiveness of the proposed algorithm.

4.2 System model

Let us consider a MIMO system with Nt transmit antennas and Nr receive antennas. The 

flat-fading MIMO channel is expressed by the Nr × Nt matrix H with the element hji  representing 

the channel gain from ith  transmit antenna to jth receive antenna. The Nr ×1 received signal 

vector  1[ ,........, ]T
Ny y x is written as

s

t

E
y HPX n

N
                                                     (1)

where 

1,......
T

Nt
X x x    Denotes the Nr X1 transmitted signal vector, and 1,......

T

Nr
n n n    is 

the Nr dimensional noise vector with elements following complex zero 2
n   mean Gaussian 

distribution with variance of 2
n .  Es is the total transmitted signal energy on Nt transmit antennas 

and tP N 1[ ,........, ]
tNP P denotes the diagonal PA pre-coding matrix.

To express the signal model for the MMSE-QR detector, an (Nr + Nt) X Nt augmented 

channel matrix H an (Nr + Nt) X1 extended receive vector y and an Nt X1 zero matrix   0Nt,1 can 

be written as 

,10
t tn N N

H y
H ordering QR and y

I

   
                                                              (2)
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Figure. MIMO transmission model with QR-OSIC detector.

The upper triangular matrix, which is differently defined by the detection-order, 

determines the SINR and the post detection SINR ρk of the kth data stream is given as 

                              2 2
,2

1, 1,...........s
k k k k t

n

E
p R k N


                                                 (3)

The QR-decomposition based OSIC detection for BER-minimized PA transmission can 

be performed using the architecture shown in Fig.4.1. Based on the feedback information of the 

diagonal elements ,k kR , transmission power Pk is assigned to each data stream. The independently 

encoded symbols are processed through a diagonal PA matrix and then transmitted from Nt data 

streams. The QR-OSIC receiver detects the transmit symbols sequentially in accordance with the 

designated detection-order.

4.3 MMSE Detector

The MMSE detector minimizes the mean squared error (MSE) between the actually 

transmitted symbols and the output of the linear detector and leads to the filter matrix. 

                                                    



Page | 52

Transmission Model

                                       2 1( )
t

H H
MMSE n NG H H I H                                                     (4)

The resulting filter output is given by

                           12

t

H H
MMSE MMSE n NS G y H H I H y


                                                  (5)

The estimation errors of the different layers correspond to the main diagonal elements of 

the error covariance matrix.

   H

MMSE MMSE MMSEE s s s s    

                                               
2 2 1( )

t

H
n n NH H I                                                      (6)

With the definition of (Nr +Nt)  XNt augmented channel matrix, an (   + )  X1  

extended receive vector y and  an  Nt X1 zero matrix ,10
tN can  be written as 

,10n N Ntt

H y
H ordering QR and y

I
   

     
  

the output of the MMSE filter  now can be rewritten as

1( )H H
MMSES H H H y H y  

Furthermore, the error covariance matrix becomes

                           
2 1 2( )

HH
MMSE n nH H H H                                                                          (7)

Comparing last two equations to the corresponding expression for linear zero-forcing detector in 

previous topic. The only difference is that the channel matrix H has been replaced by H . This 

observation is extremely important for incorporating the MMSE criterion into the SQRD based 

detection algorithm. 

4.4 Proposed detection algorithms (QR OSIC Algorithm)

4.4.1 MMSE QR Detection

In order to extend the QR based detection with respect to the MMSE criterion, we can 

apply the similarity of ZF and MMSE detection noted in previous Section. We introduce the QR 

decomposition of the extended channel matrix 
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1 1

2 2tn N

H Q Q R
H QR R

I Q Q R
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where the (Nr + Nt) XNt   matrix Q with orthogonal columns was partitioned into the an  Nr  XNt

matrix 1Q and the  Nt XNt matrix . 2Q Obviously,

                                      
2

1 2
H H H

nQ H Q Q R                                                                      (8)                                             

holds and from the relation  2tn NI Q R  it follows that

1
2

1

n

R Q 


                                         

i.e. the inverse   1R    is a by-product of the QR decomposition and 2Q is an upper triangular 

matrix. This relation will be useful for the post-sorting algorithm using above equations. The 

filtered receive vector becomes

                           1 2 1
H H H H

nS Q y Q y RS Q S Q     
                                                        (9)

The second term on the right hand side of the above equation including the lower 

triangular matrix. 2
HQ constitutes the remaining interference that cannot be removed by the 

successive interference cancellation procedure. This point outs the trade-off between noise 

amplification and interference suppression.

The optimum detection sequence now maximizes the signal-to-interference-and-noise 

ratio (SINR) for each layer, leading to minimal estimation error for the corresponding detection 

step. The estimation errors of the different layers in the first detection step correspond to the 

diagonal elements of the error covariance matrix.

                                        
2 1 2 1( )H H
n nH H R R                                                               (10)

The estimation error after perfect interference cancellation is given by
2

2

,

n

k kr
 . Thus, it is again 

optimal to choose the permutation that maximizes  ,k kr in each detection step. The algorithm 

proposed in the next section determines an optimized detection sequence within a single sorted
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QR decomposition and thereby significantly reduces the computational complexity in 

comparison to standard MMSE-BLAST algorithms.

4.4.2 Description of the BER Performance

The PA scheme for the average BER minimization under the assumption of the QR-

decomposition of the channel matrix and no error propagation in successive cancellation of the 

data streams has been proposed in the PA scheme for BPSK modulation can be expressed as

                        Minimize   ,
1 1

1 1
( 2 ) ( 2 )

t tN N

s k k k k
k kt t

Q P R Q
N N


 

  
                                     

(11)

s.t        2

1

1, 0 1,
tN

k k
k

P P


  

,k kR ≥0 k є {1, 2 ...Nt}

Where  
2

2
( )1

2( )
t

x
Q x e dt

     and 
2
s

s
n

E 


We assume ,k kR ≥0 because it is defined as the norm of the kth column of the augmented 

channel matrix. For general constellations, the average BER of the PA can be approximated with 

a constellation-specific constant.
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Graph of 1,1( )R

It can be observed in above equations, the average BER as well as the post-detection 

SINR is determined by the allocated power and the channel gain. Because of the convexity 

property of the function the resulting BER is minimized by 

(i) The detection ordering of the QR-OSIC receiver such that all diagonal elements of the 

matrix are equal to their geometrical  average ,
1

det( )
t

t t

N
N N

k k
k

R R


   ,and alternatively 

(ii) The PA scheme at the transmitter which makes the product of two variables Pk and ,k kR

identical for all data streams. 

As the real MIMO channel it is characterized by several spatial temporal properties, the 

condition isType equation here.
(i) It is not practical in spite of its optimality. On the other hand in

(ii) Different detection order leads to different ,k kR , and hence Pk should be also differently 

assigned. This indicates that an appropriate detection ordering strategy incorporates with 

the PA scheme can achieve the improved BER performance.
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Since the Q-function has convex and decreasing properties, the average BER 

minimization problem can be simplified to maximize the product of two variables Pk and  ,k kR   

  Maximize    1 1,1PR

                  s. t.  1 1,1PR = 2 2,2P R =………. = ,t t tN N NP R
                                                  

(12)

2

1

, 0 1
tN

k k
k

P P


 

Using the following properties of  

2
1 1,1 2 2,2 1 1,11 (det( ) / )PR P R P R R  

2 2 4
1 1,1(det ( ) / ( det( ))P R R R  And 2 2

1 1,1 1 1,1max maxPR P R

The problem for two transmit antennas can be written as

                              Maximize 
2 2
1,1

1,14 2
1,1

det ( )
( )

det ( )

R R
R

R R
 

                                                                
(13)

s. t   1 1,1PR = 2 2,2P R , 2 2
1 2 1P P 

To find the direction of increasing, a plot of the objective function  1,1( )R versus  1,1R   is 

given. It is observed that 1,1( )R   increases as 1,1R tends to µ. When differential calculus is 

applied to 1,1( )R , we also obtain

                                4 2
1,1 1,12 det ( ) 0R R R                                                             (14)

                                   1,1 det( )R R  

Note that, 2 2
,k k k kP R and therefore the above considerations imply that k is gradually 

increasing as ,k kR approaches to µ. In other words, the ordering strategy that makes ,k kR   

converge to µ achieves higher post-detection SINR, which also further improves the overall BER 

performance. It can be extended to the system with transmit antennas. To satisfy the derived 

strategy, we establish the fixed ordering algorithm, the architecture of which arranges the 

channel gains to minimize ,k kR  for all k.     
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,arg mini w wk R  

s .t    1 1{ ,......, }iw k k 

det( )tN R                                                                     

Where the list of Nt elements {1, 2… are rearranged with the parenthesized subscript implying 

the reverse order in which the elements are to be detected and the ordered set 1{ ,......, }
tNk k k is 

a permuted sequence 

Figure. Comparison of cumulative distribution of  ,k kR 

Using the correlation among ordering results, the modified ordering algorithm employing 

adaptive criteria can be developed for robust convergence. For instance, in Nt=3 system, 

selecting an element 1 as k1, in general, result in a different 1,1R than if element 2 or 3 was 

selected. It also affects the remaining sets which decide   k2,k3.

Moreover, channel gains are constrained via 
1 1,

1

t

t

N

N
k k

k

R


  . Motivated by the above 

properties, we propose the adaptive ordering design which continually renews the thresholds by 
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controlling the weights with reference to previously determined channel gains. Substituting the 

variable thresholds into the fixed method, we get

                                               ,arg mini w wk R  
                                                             

(15)

s . t  1
,

1
1 1;

1
i

Nt i
i i

t i
i R

t

N

N
    

 
 



Where µi denotes the threshold for ki. The adaptive ordering algorithm can be considered 

as the reduced sized fixed ordering process extracting the already decided gains, thus it plays a 

large part in balancing among ordering results. If the sign of  ,k kR  is distributed to one side 

serially, the adaptive ordering algorithm enables the following channel gain to be on the opposite 

side by adjusting µi+1. This allows more channel gains to converge to µ. To identify it, the 

cumulative distributions of ,k kR  with four transmit/receive antennas are drawn in Fig.4.3.

The small gap between two similar schemes is noticeable because the adaptive algorithm is 

equivalent to the fixed one for slight differences in ,k kR  .

The complexity comparison between the B-OSIC and the QR-OSIC receiver is, in a    B-

OSIC detector with Nt =Nr, the total numbers of multiplications and additions 

are   4 3 243 / 12 (20 / 3) ( )t t tN N N   , respectively. On the other hand, the OSIC receiver using 

QR-factorization requires   3 2 2 22 / 3 7 2 ( )t t r r t tN N N N N N    multiplications and additions. 

Because of the multiple calculations of pseudo-inverse for nulling and ordering, the B-OSIC 

requires higher computational cost. When Nt =Nr the number of multiplications and additions are 

given with the complex floating point operations (flops).

  4 3 243 / 6 14 ( )t t tN N N        For B-OSIC;

          3 229 / 3 ( )t tN N              For QR-OSIC;



Page | 59

Transmission Model

4.5 Q-function

In statistics, the Q-function is the tail probability of the distribution. In other words, Q(x)

is the probability that a standard normal random variable will obtain a value larger than x. Other 

definitions of the Q-function, all of which are simple transformations of the normal cumulative 

distribution function, are also used occasionally.

Definition and basic properties

Figure. A plot of the Q function

Formally, the Q-function is defined as

21
( ) e x p

22

u
Q x d u

x

  
    
                                                      

(16)

Thus,

( ) 1- (- ) 1- ( ),Q x Q x x  

where Φ(x) is the cumulative distribution function of the normal Gaussian distribution.

The Q-function can be expressed in terms of the error function as
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1 1 1
( )

2 2 22 2

x x
Q x erf erfc

        
                                                            

(17)

 Bounds

The Q-function is not an elementary function. However, the bounds 

2 2/2 /2
2

1 1 1
. ( ) . 0,

1 2 2
x xx

e Q x e x
xx  

   


Using the substitution v = u2 / 2 and defining 

1 1 1 1

2 1 2 1 2 2 2

3 1 3 1 2 3 2 3 3 3

1

,

, ,

, , ,

,
k

k j k j
j

a e a e

a e a e e a e

a e a e e a e e a e

a e a e




 

  

 

the upper

bound is derived as follows:

- -

2 / 2
2 / 2

( ) ( )

( )
( ) - .

2 2

x

v v

x
x x

Q x u d u

u e e x
u d u d v

x xx x




 



  

 

    
             

Similarly, using ( ) ( )u u u    and the quotient rule,

2 2

2

1 1
1 ( ) 1 ( )

1

1 ( ) ( )
1 ( ) .

x

x x

Q x u d u
x x

u x
u d u

u xu



 





       

       
                

(18)

Solving for Q(x) provides the lower bound.
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 Chernoff bound of Q-function is 

2

21
( ) , 0

2

x

Q x e x


 

4.6 QR-Decomposition 

In linear algebra, a QR decomposition (also called a QR factorization) of a matrix is a 

decomposition of a matrix A into a product A=QR orthogonal matrix Q and an upper triangular 

matrix R. QR decomposition is often used to solve the linear least squares problem, and is the 

basis for a particular eigen value algorithm, the QR algorithm.

If A has linearly independent columns (say n columns), then the first n columns of Q

form an ortho normal basis for the column space of A. More specifically, the first k columns of 

Q form an ortho normal basis for the span of the first k columns of A for any 1≤ k ≤ n. The fact 

that any column k of A only depends on the first k columns of Q is responsible for the triangular 

form of R.

 Square matrix  

Any real square matrix A may be decomposed as

,A QR

where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning QTQ = 

I) and R is an upper triangular matrix (also called right triangular matrix). This generalizes to a 

complex square matrix A and an unitary matrix Q. If A is invertible, then the factorization is 

unique if we require the diagonal elements of R are positive.

 Rectangular matrix

More generally, we can factor a complex m×n matrix A, with m ≥ n, as the product of an 

m×m unitary matrix Q and m×n upper triangular matrix R. As the bottom (m−n) rows of an m×n

upper triangular matrix consist entirely of zeroes, it is often useful to partition R or both R and Q.
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 1 1
1 2 1 10 0

R R
A QR Q Q Q Q R

   
      

   

where R1 is n×n upper triangular matrix, Q1 is m×n, Q2 is m×(m−n), and Q1 and Q2 both have 

orthogonal columns.

 Computing the QR decomposition

There are several methods for actually computing the QR decomposition, such as by 

means of the Gram–Schmidt process, Householder transformations, or Givens rotations. Each 

has a number of advantages and disadvantages.

 Using the Gram–Schmidt process

Consider the Gram–Schmidt process applied to the columns of the full column rank 

matrix 1[ ,........, ]nA a a , with inner product , Tv w v w (or) *,v w v w for the complex case.

Define the projection:

e

e,a
proj a= e

e,e

Then:                                      

1
1 1 1

1

2
2 2 e 2 21

2

1

e
1

,

proj a ,

proj a ,
k

k
k k k kj

j k

u
u a e

u

u
u a e

u

u
u a e

u





 

  

  

We then rearrange the equations above so that the as are on the left, using the fact that the 
ei are unit vectors.



Page | 63

Transmission Model

1 1 1 1

2 1 2 1 2 2 2

3 1 3 1 2 3 2 3 3 3

1

,

, ,

, , ,

,
k

k j k j
j

a e a e

a e a e e a e

a e a e e a e e a e

a e a e




 

  

 

Where                       

                                                         ,i i ie a u .

This can be written in matrix form:

A = QR   

Where             

1 1 1 2 1 3

2 2 2 3
1

3 3

, , ,

0 , ,
[ ,........, ]

0 0 ,n

e a e a e a

e a e a
Q e e and R

e a



 



 







   

Example: Consider the decomposition of

12 51 4

6 167 68 .

4 24 41

A

 
   
   

Recall that an orthogonal matrix Q has the property

.TQ Q I

Then, we can calculate Q by means of Gram–Schmidt as follows:

 1 2 3

12 69 58 / 5

6 158 6 / 5 .

4 30 33

U u u u

  
    
   
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31 2

1 2 3

6 / 7 69 /175 58 /175

3 / 7 158 /175 6 /175 .

2 / 7 6 / 35 33 / 35

uu u
Q

u u u

  
        
     

Thus, we have

Q ;T TA Q QR R 

                       

14 21 14

0 175 70 .

0 0 35

TR Q A

 
    
 
                                                              

(48)

 Relation to RQ decomposition

The RQ decomposition transforms a matrix A into the product of an upper triangular 

matrix R (also known as right-triangular) and orthogonal matrix Q. The only difference from QR 

decomposition is the order of these matrices. QR decomposition is Gram–Schmidt 

orthogonalization of columns A, started from the first column. RQ decomposition is Gram–

Schmidt orthogonalization of rows A, started from the last row.
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5.1 Introduction 

What is MATLAB? 

MATLAB is a high-performance language for technical computing. It integrates 

computation, visualization, and programming in an easy-to-use environment where problems and 

solutions are expressed in familiar mathematical notation.

 Typical Uses of MATLAB                                                                                                                                                                                                               

 Math and computation 

 Algorithm development 

 Data acquisition 

 Modeling, simulation and prototyping 

 Data analysis, exploration and visualization 

 Scientific and engineering graphics 

 Main features of MATLAB 

 Advance algorithm for high performance numerical computation especially in the field 

matrix algebra.

 A large collection of predefined mathematical functions and the ability to define one’s 

own functions.

 Two and three dimensional graphics for plotting and displaying data

 A complete online help system

 Powerful matrix or vector oriented high level programming language for individual 

applications.

 Tool boxes available for solving advanced problems in several application areas
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5.2 Algorithm

1. Initializing number of bits or symbols.

2. Also initializing number of transmitting and receiving antennas, here we are using 3×3 

and 4x4 antenna systems.

3. From transmitter section we generate zero’s (0) and one’s (1) randomly with equal 

probability.

4. Modulating the generated random sequence under BPSK modulation scheme.

5. Processing the symbols and grouping them into a matrix to create a channel for data flow.

6. Transmitting the signal using multiple antennas.

7. Generating Gaussian distribution noise with 0 mean.

8. Adding the generated noise with channel properties.

9. At the receiver end using QR- OSIC detector estimating the received data.

10. Now count the total number of errors by subtracting error data stream from main data 

stream.

11. Calculate the simulated BER by dividing the number of errors with total number of bits 

or symbols.

12. If BER is not minimized, then allocate the power at each transmitting antennas.

13. Repeat the above procedure for different SNR (Eb /_No_dB) values.

14. Plot all the above generated BER in Semi-log graphs.

15. End of the program.



Page | 67

MATLAB

5.3 Functions used in MATLAB

  Functions used in 

   MAT Lab Code

                                          

DESCRIPTON

Clear Erases variables and functions from memory

Clear x erases the matrix 'x' from your workspace 

Close by itself, closes the current figure window

Figure creates an empty figure window

hold on holds the current plot and all axis properties so that subsequent 

graphing commands add to the existing graph.

hold off sets the next plot property of the current axes to  "replace"

Find find indices of nonzero elements

STEM Discrete sequence or "stem" plot

SORT Sort in ascending or descending order

LEGEND Display legend

Save saves all the matrices defined in the current session into the file,  

matlab.mat, located in the current working directory 

ERROR   Display message and abort function

xlabel (‘'text' ’) writes 'text' beneath the x-axis of a plot

ylabel (‘'text' ‘) writes 'text' beneath the y-axis of a plot

title(‘text‘) places a title at top of graphics plot

subplot() Allows you to create multiple plots in the same window
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plot(x, y) creates a Cartesian plot of the vectors x & y

CONV

plot(y)

Convolution and polynomial multiplication

creates a plot of y vs. the numerical values of the elements in the 

y-vector

ERFC Complementary error function.

SQRT Square Root.

log log(x, y) plots log(x) vs log(y)

Grid creates a grid on the graphics plot

RANDN Normally distributed random numbers.
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FLOW CHART

                                         

             

NO

YES

Start

Give inputs like, number of 
antennas and total number of 

Generate BPSK signal

Add Gaussian Distribution Noise

At receiver end give the received data to the QR 
OSIC detector

Calculate the BER for theoretical and 
simulated cases, and also find SNR

    Is BER 
minimized

Stop

Plot the simulate results on the 
graphs

Transmitting the Signal using multiple Antennas

Power allocation to 
each Transmitting 
Antenna
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RESULT

We consider an uncoded MIMO system with 3*3, 4*4 transmit/receive antenna 

configurations and BPSK modulation. The effects of error propagation are not ignored and 

simulations are used to obtain the actual performance. For each of the MIMO systems and for a 

specific value of SNR, a quasi-static channel is assumed for the performance evaluation, for 

which the channel gain is constant over a frame and changed independently from frame to frame. 

To concentrate our point on comparing ordering algorithms, we postulate the perfect channel 

estimation at the receiver and error free PA information at the transmitter.

Figure 5.3 Average BER performances of MIMO system with three transmit/receive

                    antennas.
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Figure 5.4 Average BER performance of MIMO systems with four transmit/receive 

antennas

         Fig 5.3 shows the average BER performance comparison for MIMO systems with three 

transmit/receive antennas and the simulation results of four transmit/receive antennas are 

depicted in Fig 5.4. Here, the dashed line indicates a system with the BER-minimized PA 

scheme, whereas the solid line represents a system without the PA. The QR receiver with the PA 

but no ordering, denoted as QR-SIC w/ PA, has similar performance to the open-loop OSIC 

systems without the PA.

This demonstrates the importance of the detection order for successive detection. As 

expected without the PA, the B-OSIC out performs the QR-OSIC receiver. Despite the reduced 

complexity, however power controlled MIMO systems employing the proposed ordering strategy 

achieve the improved error performance compared to those with the B-OSIC algorithm. It is 

sufficient to confirm the superiority of the proposed design because the ordering algorithms of 
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previous studies comply with the strategy of the B-OSIC. A further performance improvement in 

the high SNR region can be explained in terms of error propagation, since the PA scheme as well 

as the proposed QR-OSIC receiver is designed under the assumption of the error free decision in 

previous detection stages.
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CONCLUSION

Future wireless communication systems have to be designed to integrate features such as 

high data rates, high quality of service and multimedia in the existing communication 

framework. In recent years wireless communication has taken peak state. This increased demand 

has led to the demand for higher network capacity and performance. Higher bandwidth, 

optimized modulation offer practically limited potential to increase the spectral efficiency. Hence 

MIMO systems utilizes space multiplex by using array of antenna’s for enhancing the efficiency 

at particular utilized bandwidth. MIMO uses multiple inputs multiple outputs from single 

channel. These systems defined by spectral diversity and spatial multiplexing. MIMO describes 

the ways to send data from multiple users on the same frequency time channel using multiple 

antennas at the transmitter and receiver. A transmitter/receiver system uses multiple antennas not 

only transmitting data between corresponding antennas but also between adjacent antennas. The 

data is received in the form of MIMO Channel Matrix. MIMO system is used in many 

applications like Wi-Max, Wi-Fi, WLAN’s, and many more signal processing applications.

In this study, we investigate the QR-OSIC receiver design for the transmitter side power 

allocated MIMO system. Based on the properties of the Q -function and ordering results, we 

develop the efficient ordering algorithms in combination with the PA scheme. Inspite of less 

computational effort, the proposed ordering schemes decrease the overall BER in comparison 

with the previously derived B-OSIC scheme. Because of the post-detection SINR increment, the 

coded systems with the derived approach can also be expected to achieve the performance 

improvement.
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FUTURE SCOPE

In this project we have used QR OSIC algorithm. The future scope of the work is to 

improve the design further for the noise to be included in the channel and use any improved 

matrix inversion technique for improving the design frequency of operation. This can be done 

using MMSE Sorted QR Decomposition (SQRD) algorithm. 

 MIMO performance can be improved by using OFDM. By incorporating OFDM the 

performance of the overall system can be improved.

 In the design the channel is considered to be Gaussian distribution noise. In the future 

work the noise is to be assumed in more complex form and the estimation of channel 

using different channel models is to be carried. Different channel estimation is to be 

simulated in MATLAB and then taken to the complete VLSI flow. The frequency of the 

design is to be optimized. The complete backend flow has to be completed till the tape-

out of the design.

 In this project we have used BPSK modulation technique. It is however; only able to 

modulate at 1 bit/symbol and so it is unsuitable for high data-rate applications when 

bandwidth is limited. The scope of the project is to improve the performance using 

another modulation techniques such as QPSK  and QAM.



Page | 75

REFERENCES

1) G. J. Foschini and M. J. Gans “On limits of wireless communications in a fading 

environment when using multiple antennas,” Wireless Pers. Commun, Vol. 6, no. 3, pp. 

311–335, 1998.

2) A. Paulraj, R. Nabar, and D. Gore, “An Introduction to Space-Time Wireless 

Communications”. Cambridge, U.K. Cambridge University Press, 2003.

3) P. W.Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela,“V-BLAST: An 

architecture for realizing very high data rates over the  rich-scattering wireless channel,” in 

Proc. ISSSE’98, Pisa, Italy, Oct.1998, pp. 295–300.

4) G. J. Foschini, G. D. Golden, R. A. Valenzuela, and P.W. Wolniansky, “Simplified 

processing for high spectral efficiency wireless communication employing multi-element 

arrays”. IEEE J. Sel. Areas Commun, Vol. 17, no. 11, pp. 1841–1852, Nov. 1999.

5) J. Benesty, Y. Huang, and J. Chen, “A fast recursive algorithm for optimum sequential 

signal detection in a BLAST system”. IEEE Trans. Signal Process, Vol. 51, no. 7, pp. 1722–

1730, Jul. 2003.

6) Z. Yan, K. M. Wong, and Z. Q. Luo, “Optimal diagonal precoder for multi antenna 

communication systems”. IEEE Trans. Signal Process, Vol. 53, no. 6, pp. 2089–2100, Jun. 

2005.

7) N. Wang and S. D. Blostein, “Approximate minimum BER power allocation for MIMO 

spatial multiplexing systems”. IEEE Trans. Commun, Vol. 55, no. 1, pp. 180–187, Jan. 

2007.



Page | 76

8) D. Wubben, R. Bohnke, V. Kuhn, and K. D. Kammeyer, “MMSE extension of V-BLAST 

based on sorted QR decomposition”. In Proc. IEEE Vehicular Technology Conf., Oct. 2003,

pp. 508–512.

9) Y. Jiang, W. W. Hager, and J. Li, “Tunable channel decomposition for MIMO 

communications using channel state information”. IEEE Trans.Signal Process. Vol. 54, no. 

11, pp. 4405–4418, Nov. 2006.

10) B. Hassibi, “An efficient square-root algorithm for BLAST”. in Proc. IEEE Int. Conf. 

Acoustic, Speech, Signal Process., Istanbul, Turkey, Jun. 2000, pp. 5–9.

11) Ilan Hen, Mobility Group, Intel Corporation “MIMO Architecture for Wireless 

Communication”. Intel Technology Journal, Vol 10, Issue 2, 2006

12) Nirmalendu Bikas Sinha, R.BERA, M.MITRA. “Capacity And V-BLAST Techniques for

MIMO Wireless Channel”. Journal of Theoretical and Applied Information Technology © 

2005 - 2010 JATIT. All rights reserved.

13) P. W. Wolniansky, G. J. Foschini, G. D. Golden, R. A. Valenzuela. “V-BLAST: 

Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless 

Channel”. Bell Laboratories, Lucent Technologies, Crawford Hill Laboratory 791 Holmdel-

Keyport Rd, Holmdel, NJ 07733

14) Daniel W. Bliss, Keith W. Forsythe, and Amanda M. Chan “MIMO Wireless

Communication”. Lincoln Laboratory Journal Vol 15, Num 1, 2005

15) Youngtaek Bae and Jungwoo Lee “Low complexity antenna selection for V-BLAST 

systems with OSIC detection”. Bae and Lee EURASIP Journal on Wireless 

Communications and Networking 2011, 2011:6 



Page | 77

16) Joaquin Cortez-Gonzalez1, Miguel Bazdresch, Deni Torres-Roman “An Efficient 

Architecture for Detection of Layered Space-Time Block Codes Based on QR 

Decomposition”.



Page | 78

ABBREVIATIONS

MIMO Multiple-input Multiple-output

MISO Multiple-input Single-output

SISO Single-input Single-output

SIMO Single-input Multiple-output

BLAST Bell Laboratories Layered Space Time

D-BLAST Diagonal Bell Laboratories Layered Space Time

V-BLAST Vertical Bell Laboratories Layered Space Time

B-OSIC Blast Ordered successive interference cancellation

PA Power allocation

BER Bit error rate

MMSE Minimum-mean-square error

BPSK Binary Phase Shift Keying

CCI Co-Channel Interference

ISI Inter Symbol Interference

GSM Global System for Mobile

LOS Line-of-sight

STC Space-time coding

OFDM Orthogonal frequency-division multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

SNR Signal to noise ratio

CSI Channel state information

HSPA High-Speed Packet Access 

LTE Long Term Evolution

MRC Maximum ratio combining

SER Symbol error rate

QAM Quadrature Amplitude Modulation

ML Maximum Likelihood

ZF Zero Forcing
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MMSE Minimum Mean Square Error

SINR Signal to interference noise ratio

IID Independent and Identically Distributed

AWGN Additive white Gaussian noise

STBC Space-time block codes

FER Frequency error rate

MBER Minimum bit-error rate

DFE Decision-feedback equalization

IID Identically and independently distributed

TDD Time-division duplex

FDD Frequency-division duplex

LSE Least squares error

CMA Constant modulus algorithm


