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ABSTRACT 

 

Information Security is an area which is concerned about secured transferring of data over 

public networks. The technologies usually used for providing security require more number 

of bits, memory and power, and also requires more time to perform operations. Elliptic Curve 

Cryptography (ECC) is used to overcome these disadvantages and further improve the 

characteristics of the digital image. 

Data encryption is widely used to ensure security in open networks such as the internet. With 

the fast development of cryptography research and computer technology, the capabilities of 

cryptosystems such as of RSA and Diffie -Hellman are inadequate due to the requirement of 

large number of bits. The cryptosystem based on Elliptic Curve Cryptography (ECC) is 

becoming the recent trend of public key cryptography. This paper presents the 

implementation of ECC by first transforming the message into an affine point on the Elliptic 

Curve (EC), over the finite field GF(p). In ECC we normally start with an affine point called 

Pm(x,y) which lies on the elliptic curve. 

In recent years, Elliptic Curve Cryptography (ECC) has attracted the attention of researchers 

and product developers due to its robust mathematical structure and highest security 

compared to other existing algorithms like RSA (Rivest Adleman and Shameer Public key 

Algorithm). It is found to give an increased security compared to RSA for the same key-size 

or same security as RSA with less key size. 

An elliptic curve over a finite field Fp is defined by the parameters a, b Є Fp where a, b satisfy 

the relation 4a
3
+27b

2
 ≠ 0, consists of the set of points (x, y) Є Fp that satisfying the equation  

Y
2
 mod p=X

3
+aX+b mod p 

The set of points on E (Fp) also include point O, which is the point at infinity and which is the 

identity element under addition [17]. 
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Each values of a, b give a different elliptic curves. ECC is a public key cryptography 

technique so it needs two keys one for encryption and another for decryption these keys are 

called public and private key respectively. Private Key is any random number and public key 

is a point lie on elliptic curve that is obtained by multiplying the private key with the 

generator point G in the curve. The generator point G, and the curve parameters ‘a’ and ‘b’ 

together with few more constants constitutes the domain parameter of ECC.      
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CHAPTER 1 

INTRODUCTION 

1.1 Overview: 

In the ever expanding digital world, cryptography is becoming extremely important to 

provide services such as encryption, decryption, key establishment and digital signature to 

make data more secure. Cryptography is applied into those places where main need of user is 

security e.g. when a communication takes place between two users in a insecure network and 

any other user called adversary can easily obtain data from network then security is needed so 

that adversary is not able to obtain data from communication.  

As an another example, user is more concern about credit cards information while doing 

online transaction so that no one can steal their confidential information, and need more 

security while sending mail so that no one could try to steal the message, alter selected 

portions, or pretend to be the user by sending his/her own messages to another user.  

 

 It should be evident from these examples that a communicating entity is not necessarily a 

human, but could be a computer, smart card, or software module acting on behalf of an 

individual or an organization such as a store or a bank [13]. So cryptography helps to secure 

data from being viewed or altered and offers a secure communication over insecure channel. 

To achieve confidentiality, data is encrypted by using cryptographic algorithms and data 

signature ensures authentication, non-repudiation, and data integrity of the origin of 

information. If data is encrypted using cryptographic algorithms, transmitted in an encrypted 

state and decrypted by the intended party then it is difficult to decrypt the encrypted data by 

third party who intercepts in network channel.   



Chapter 1                                                                                                        INTRODUCTION 
 

Elliptic Curve Cryptography On An Image Page 2 
 

Cryptography is broadly categories into two category public key and private key 

cryptography. Those categories are based on discrete logarithm problem, factoring problem, 

and elliptic curve. The use of elliptic curves in public key cryptography was first proposed by 

Koblitz and Miller in 1980’s. The methodologies based on discrete logarithm problem have 

sub-exponential complexity like sieve method based on discrete logarithm problem using a 

general number in Fp
* 

can be solved in sub-exponential time [10]. Whereas a discrete 

logarithm on an elliptic curve E(Fp
*
) has exponential complexity in the size n= log2q of the 

field element. 

1.2 Associated Problems: 

Cryptography plays a major role in modern era. It is used in every field such as in any 

organization, in military, in research, and also used for certificates, for PGP, for internet 

security, for transport layer security, for blind signature, for secret sharing, and for digital 

elections etc. There are so many algorithms used in cryptography that fall into a few broad 

classes such as: inherent key, secret method, hidden key, secret key, public key, and private 

key. There are many problems or issues associated with those classes that are described 

below: 

When a user uses secret method then he is not aware of dangers that is easy to perform 

decryption function to decrypt the message because encryption function of secret method is 

both easy to implement and easy to use,  

If data, is encrypted using hidden key cryptography, can be read or viewed using encryption 

software on your computer by someone who can have access to your computer, or to any 

other computer on the local network. They don't need any keys or special skill to do this, 

because the encryption software already has the built in ability to perform cryptanalysis.  
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There is a key sharing problem in private key cryptography because encryption and 

decryption function both uses same key. Large key size is needed during encryption process 

and same as decryption process.  

Public key cryptography also has some drawbacks.  

First, it is very slow when raising a large number to a large power modulo, than a 

computation performed on large number required a lot of time, even with the most 

complicated techniques.   

Second, if an attacker able to obtain a person's private key, then it becomes easy to read entire 

messages that break security. 

1.3 Motivation:  

Security in digital world and in embedded system has need of an option of an appropriate 

implementation platform. Elliptic curve cryptography can solve problems in exponential time 

so it provides an efficient algorithm for finite field Fp
*
. It offers better security with smaller 

key sizes and computationally more efficient algorithm compared to traditional public key 

cryptosystems such as RSA [10] and Diffie hellman algorithm. 

For instance, the elliptic curve digital signature algorithm requires efficient addition, 

multiplication and inversion in finite field of size larger than 2
160 

[10]. This poses significant 

problem in embedded systems where computational power is quite restricted and public-key 

operations are time consuming [10]. A scalar point multiplication operation is performed 

using a subsequence of huge number of field multiplications and inversions in elliptic curve. 

To perform an inversion method becomes more complex and many times more costly as 

compare to multiplication. One of the possible solutions with the above problem is to use 

projective coordinates for indicating the points on the curve. But this solution is not sufficient 

because projective coordinates require considerably more temporary storage that is a 

drawback of it. Affine coordinates are used at the place of projective coordinates so reduces 



Chapter 1                                                                                                        INTRODUCTION 
 

Elliptic Curve Cryptography On An Image Page 4 
 

above problem. Projective coordinates is not essential if the complication of inversion can be 

reduced considerably. So in this thesis, an issue that is discussed above is reduced by 

proposing a new method that helps to perform inversion method easily. 

1.4 Problem Definition: 

Operation that plays major role in public key cryptography is finite field arithmetic operation 

in which an operation is performed on limited numbers that exists within finite field and 

result is also closed in same field. But the operation performed in RSA, Diffie Hellman key 

exchange and DSA is modular exponentiation, which can be performed by decomposing into 

many modular squaring and modular multiplication. Even though modular squaring operation 

is performed comparatively more efficient than modular multiplication, both operations 

follow same procedure i.e. a modular multiplier.    

Cryptosystems based on elliptic curve perform point multiplication operation which consists 

of succeeding point doublings and point additions/subtractions operations. An efficient way 

to perform modular multiplication is iterative multiplication method that helps to achieve a 

substantial speedup compared to the recursive multiplication method. Using the iterative 

multiplication method, encryption method is performed in exponential time complexity and 

also reduces required memory spaces to maintain each recursively calling function, their 

domain parameters, registers, and backtracking. Using this method, multiplication of large 

numbers can be performed only in finite iterations and no need of extra temporary storage.  

Affine points are used in ECC for representing points on curve and are also used to reduce 

required temporary storage. Inversion method is more complex and several times more costly 

than multiplication. So in this thesis discrete logarithm problem is used to perform inversion 

method to reduce cost and make it easy.  
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1.5 Organization of Thesis: 

This chapter start to give a introduction of cryptography, and then describes all techniques 

that is used in cryptography, discuss all problem that occur in different technique of 

cryptography that break the security and discuss all facts which motivate to do work on ECC, 

discuss all the drawback of previously generating techniques.  

Remaindering chapters of the thesis are organized as follows. 

Chapter 2 starts to give an introduction of cryptography. Then describes all algorithms which 

are used for implementation of the cryptography, and cryptanalysis and all the methods for 

cryptanalysis are also introduced. 

Chapter 3 describes public key cryptography; apply discrete logarithm problem and 

factorization problem and comparison between them. Then describe different algorithms for 

solving problem related to DLP.  

Chapter 4 starts to give an introduction of elliptic curves, and describes different methods 

which represents points and used to perform elliptic curve mathematically. Describe all law 

of group that applied on curve and Elliptic curve applied on general number, real numbers 

and finite fields. 

Chapter 5 describes elliptic curve cryptography for public-key encryption, digital signatures, 

and key establishment, generation and validation of domain parameters and key pairs. 

Describe algorithms which are used to solve Elliptic curve discrete logarithm problem. 

Chapter 6 describe all aspects that help to implement elliptic curve cryptography in software 

and hardware. Examined the generation techniques of keys and also explain key distribution. 

After that explain encryption function and decryption function and gives a mathematical 
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explanation of encryption and decryption methods. This chapter also describes the new 

methodology of multiplication operation that is iterative multiplication method. 

Chapter 7 starts to give a software implementation and give complete information of results 

that is obtained after applied software on an input. This chapter describes how to applied 

encryption and decryption methods on an image and what output is generated after 

implementation.  

Chapter 8 describes the entire conclusion related to work and discussed about future possible 

work in this field. This describes how to apply ECC on IPV4 and how efficiently it is 

working and in future how ECC is helpful to provide security on IPV6.  
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CHAPTER 2 

CRYPTOGRAPHY 

2.1 Introduction: 

Cryptography is a science in which a message is encrypted and decrypted using mathematics, 

which means perform transformation of readable form of information into non-readable form 

and vice versa using mathematical language. Readable form of message is called plain text 

and the art of transformation of readable form of message into unreadable format is called 

cipher text. The process of transferring plain text into cipher text is called encryption and the 

reverse process of encryption is called decryption process. Encryption and decryption process 

needed keys for transferring one form of data into another form. Before transferring data on 

network users need to encrypt the message using secret key and that message can be decipher 

into plain text by the only those who holds a secret key. Cryptanalysis is a technique through 

which encrypted message sometimes can be broken, that also known as code breaking, 

although modern cryptography techniques are virtually unbreakable. New form of 

cryptography came soon after the widespread development of computer communication. 

Cryptanalysis is the art and science of analysing information system in order to study the 

hidden aspect of the system. Cryptanalysis is used to breach cryptographic security systems 

and gain access to the contents of encrypted message, even if the cryptographic key is 

unknown. Hidden aspects of system that are used in secure communication are data 

authentication, integration, confidential, and non-repudiation.  

In literature of cryptography taking two users A and  B who are communicating to each other 

and another user C who is adversary and should not able to access the secret information. 

User A has some confidential information and want to share to user B but not obtained by 

user C. if user A send information over insecure line then user C can retrieve everything. 

How can user A keep his information secure?  This can be achieved by scrambling the 
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information in such a way that only user B can obtain information by descrambling it. 

Scrambling of the message can be performed by encryption schemes. Encryption scheme 

needs keys that is used on sender side to scramble the message and used on receiver side to 

descrambling the message to obtain original message.   

In this era, the use of internet and communication through electronics become extensive and 

due to this reason security also have an importance in human beings. So Cryptography is 

applied due to security purpose which is provided by making data as confidential that not 

only protect data from alteration and stolen but also used to provide authentication. Corporate 

data, electronic messages, confidential information and information of credit card, smart card 

are protected by cryptography. Confidentially is supplied by encryption function that 

provides a secure communication and protect stored information from disclosure and prevent 

access of data by unauthorized user. Various cryptographic techniques, including 

methodology of digital signature and authentication can provide security against spoofing and 

message forgeries. An essential tool that required to make information secure is cryptography 

and it is eagerly available on internet to user. There are so many cryptographic systems but 

‘Pretty Good Privacy’ is one of these which are used on internet because it is freely available 

and effective.  

2.2 Various aspects of system: 

In above paragraph various aspects of system are considered so these are described below: 

2.2.1 Data confidentiality: a simplest way to scramble the data using encryption and 

decryption so that only sender and receiver can obtain data. Encryption is a conversion of 

readable form of data into cipher text which helps to provide security and maintain the 

privacy while sending the data from sender to receiver and through decryption original data 

can be obtained back form cipher text that is just reverse process of encryption function. The 

concept of encryption and decryption needs keys. In some situation both encryption and 
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decryption may need same key while in some situations, encryption and decryption may need 

different keys. 

 2.2.2 Authentication: Authentication is a mechanism which ensures that the originator of 

the message is the one who claimed in the message. This can be made possible by the 

following process. Suppose, user A sends a message and receiver receives the message but he 

does not know about originator so he needs a proof which proves the identity of originator 

that the message is originated by the user A. This can be possible if user A performs an action 

on message which gives a proof of originator from where message was originated. This is the 

basic fundamental procedure to check for Authentication. 

 2.2.3 Integrity: In communication system there is another problem that is the loss of 

integrity of message being sent by communicating parties. This tells that a message sent by 

sender can be modified by adversary over communicating path so cryptography process 

should ensure that the messages sent by sender would not be modified anywhere and receiver 

receives the original message without any alteration. Cryptographic hash is a methodology 

which is used to verify the integrity of message 

 2.2.4 Non Repudiation: there can be a situation where user A sends a message to user B but 

later on denies that she has actually sent the message. In such situation that is explained 

above, the originator or sender can be prevented by cryptography to act in such a way. Digital 

signature is one of the popular method through which this problem can be reduced. 

2.3 Cryptanalysis:  

As the cryptanalysis discussed above but here a brief introduction is given with the different 

types of cryptanalysis such as known plain text analysis, chosen plain text analysis, cipher 

text only analysis, man in middle attack, and timing/ differential power analysis  and after 

discussing types, introducing all basic techniques [2].  
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2.3.1 Overview: Cryptanalysis refers to the study of ciphers, cipher text, or cryptosystems 

that is, to secret code systems in order to obtain weaknesses in the system that will allow 

retrieval of the plaintext from the cipher text, without knowing the key or the algorithm. This 

process is known as breaking the cipher, cipher text, or cryptosystem. Cryptography is a field 

of study the complexity and mathematical challenges. It applied on data or message and 

message or data being an unreadable format so that no one would be able to read the message 

that was not intended to reader. Before being encrypted a message is known as the plain text. 

And after applying encryption function it is known to be the cipher text.  

Cryptanalysis is a study of cipher text and attempt to bring back the message to plaintext. 

Cryptanalysis has same level of mathematical challenge and complexity as cryptography. 

Because of the difficulty concerned with cryptanalysis is only focused on the basic 

techniques of cryptography needed to encryption mono-alphabetic encryption ciphers and 

cryptograms. 

Cryptanalysis breaks the security that used interchangeably with weakening. It finds the weak 

points of designing and implementation of the cipher and breaks the security by using brute 

force attack. Weak points reduce number of keys or attempts required by attack that applies 

every possible combination of keys until the accurate key s not found. For example, let an 

implementation uses 128 bits to represent key: this means that a brute force attack would 

required to attempt all 2^128 possible combinations of key to find the correct key to perform 

the transformation from cipher text to plaintext. Though, a cryptanalysis discloses a technique 

that would allow the plaintext to be found in 2^40 rounds. Figure 2.1 is showing how to 

determine all the strength and weaknesses of the cipher and break the security by calculating 

the key through all the possible combinations and convert cipher text into plaintext.    
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Numerous techniques are available for performing cryptanalysis that depends on the access 

that the cryptanalyst has to be known the plaintext, cipher text, or other aspects of the system. 

Some of the most common types of cryptanalysis or attack are discussed in section 2.3.2. 

 

    Fig-2.1 Cryptanalysis 

2.3.2 Types of cryptanalysis: 

Above paragraph gives a brief introduction of cryptanalysis. Cryptanalysis can be performed 

in many ways depends on situations and known values like if plain text is known then apply 

in different way, if plain text is not known but cipher text is known then use cryptanalysis in 

different way etc [14]. Cryptographic attacks are designed to subvert the security of 

cryptographic algorithms, and they are also applied to decrypt data without knowing the key 
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and prior knowledge of encryption function. These attacks are part of Cryptanalysis, which is 

the skill of deciphering encrypted data [26]. 

2.3.2.1 Known-plaintext analysis: With this procedure, the cryptanalyst has the ability to 

obtain the portion of the plaintext from the cipher text. Using this information, the 

cryptanalyst attempts to deduce the key used to produce the cipher text. 

2.3.2.2 Chosen-plaintext analysis (also known as differential cryptanalysis): The 

cryptanalyst is able to have any plaintext encrypted with a key and obtain the resulting cipher 

text, but the key itself cannot be analyzed. The cryptanalyst is able to deduce the key by 

evaluating the entire cipher text with the original plaintext. The encryption technique that is 

somewhat vulnerable to this type of analysis is called The Rivest-Shamir-Adleman technique. 

2.3.2.3 Cipher text-only analysis: The cryptanalyst has no knowledge of the plaintext and 

must work only from the cipher text. This requires accurate guesswork as to how a message 

could be framed. This analysis helps to have some knowledge of the writing style of the 

cipher text writer and/or the general subject matter. 

2.3.2.4 Man-in-the-middle attack: This differs from the above in that it involves tricking 

individuals into giving their keys. The cryptanalyst/attacker puts him or herself in the 

communication channel between two parties who wish to exchange their keys for secure 

communication (via asymmetric or public key cryptography). The cryptanalyst/attacker then 

exchanges their keys, with the original parties believing that the keys are being exchanged 

with each other. The two parties then finally use the keys that are called cryptanalyst/attacker. 

This type of attack can be overcome by the use of a hash function. 

2.3.2.5 Timing/differential power analysis: This is a new technique made public in June 

1998, which is mostly useful against the smart card that measures differences in electrical 

consumption over a time period when a microchip executes a function to make secure 
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information. This technique helps to expand information about key computations used in the 

encryption algorithm and other functions related to security. The technique can be applied 

less effectively by introducing random noise into the computations, or modifying the 

sequence of the executables to make it harder to monitor the power fluctuations.  

2.4 History of Cryptography: 

Cryptography is discussed above in 2.1 but this section tells about the origin of cryptography, 

from where cryptography is started and discusses all the requirements of different techniques, 

what the reason behind all new methods of cryptography. This section also discussed all 

techniques on which cryptography is based and used in elderly time these are: Random 

Number Generation, Primality test, Integer Factorization and Discrete logarithm.    

2.4.1 Random Number Generator (RNG)  

A random number generator (RNG) is a computational device designed to generate a 

sequence of numbers that lack any pattern, i.e. appear random. The many applications of 

randomness have led to the development of several different methods for generating random 

data [20]. Many of these have continued living from earliest time; including dice, coin 

flipping, and the shuffling of playing cards, the use of yarrow stalks (by divination) in the I 

Chin, and many other techniques. Because of the mechanical nature of these techniques in 

which they generate large amounts of adequately random numbers (important in statistics) 

required a lot of work and time. Therefore, results would now and then be collected and 

distributed as random number tables. Nowadays, after the introduction of computational 

random number generators, it is growing and used in the government-run lotteries, and lottery 

games, instead of more traditional drawing methods. RNG is also used to conclude the odds 

of modern slot machines.  

Applications of RNGs are statistical sampling, gambling, cryptography, computer simulation, 

randomized design, and used in other areas where unpredictable results are point of attraction 



Chapter 2  CRYPTOGRAPHY 

 

Elliptic Curve Cryptography On An Image Page 14 
 

[20]. By using same key, Sender and receiver can generate the same set of numbers 

automatically.  

RNG plays a vital role in Group Signatures. A basic property of any Group Signature is that it 

should be untraceable and RNGs help satisfy the property. Each time a member signs a 

message; randomness in the algorithm ensures that the signatures are different from each 

other and that no outsider can reveal the identity of the signer from the signature, neither can 

he claim that two signatures are signed by the same member. RNGs also help reduce the 

burden of assigning values to parameters required to setup the group.  

2.4.2 Primality Test  

Primality test is an algorithm used to determine whether an input number is prime. Unlike 

integer factorization,  Primality tests  is not able to generate prime  factors of a number, it is 

only stating  whether  the input  number  is prime  or not.  As of 2010, Primality testing is 

comparatively easy (its running time is polynomial in the size of the input) [44] while 

factorization is a computationally difficult problem because it helps to generate factors.  

Some of the Primality tests able to prove that whether a number is prime or not, whereas others 

prove that a number is composite or not like Miller-Rabin. Consequently call the final 

compositeness tests instead of Primality tests. 

Primality tests appear in two categories:  deterministic and probabilistic. 

2.4.2.1 Deterministic Algorithm: A deterministic Primality testing algorithm accepts an 

integer and always outputs a prime or a composite. Deterministic tests determine with 

absolute certainty whether a number is prime. Until recently, all deterministic algorithms 

were so insufficient at finding larger primes that they were considered infeasible. In 2002, 

Agrawal, Kayal and Saxena announced that they had found an algorithm for Primality testing 

with polynomial time complexity of O ((log
12

 n)). 
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2.4.2.2 Probabilistic Algorithm:   Probabilistic tests can probably falsely identify that a 

composite number is a prime with small probability (although not vice versa).  Though, it is 

much faster as compare to deterministic tests. Numbers which are approved by a probabilistic 

prime test are consequently properly referred to as probable primes until their Primality can 

be established deterministically. 

Fermat’s Test: The first probabilistic method is discussed in the Fermat Primality test: 

If n is a prime, then a
n−1

 ≡ 1 (mod n) 

Note that if number n is prime then it must be hold congruence but it does not mean that if a 

number holds congruence, then it is prime.  The integer can be prime or composite.  We can 

define the following as Fermat’s test: 

If n is a prime, then a
n−1

 ≡ 1 mod n 

If n is composite, it is possible that a
n−1

 ≡ 1 mod n 

All primes pass the Fermat’s test. Composite may also pass the Fermat’s test as well. The bit 

operation complexity of Fermat’s test is same as the complexity of an algorithm that 

calculates the exponentiation. 

Square Root Test: In modular arithmetic, The square root of 1 is either +1 or   -1 if n is a 

prime. The square root is +1 or -1 if n is composite, but there may be other roots. This is 

known as square root Primality test. 

If n is a prime, sqrt (1) mod n= +1 or -1 

If n is a composite, sqrt (1) mod n= +1 or -1 and possibly other values. 

Miller-Rabin Primality Test: The Miller-Rabin Primality test combines the Fermat’s test 

and square root test in a very elegant and efficient way to find a strong pseudo prime (a prime 
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with a very high probability of being a prime).  In Miller Rabin Primality test n-1 is written as 

the product of an odd number and a power of two. 

n-1 = m* 2
k
 

In other words, instead of calculating a
n−1

 (mod n) in one step, we can do it in k+1 steps. The 

benefit is that the square root test can be performed in each step repeatedly. This process is 

performed until square root test fails when it failed then stop and declare that n is a composite 

number. In each step it is assured that the Fermat’s test is passed and the square root test is 

satisfied between all pairs of adjacent steps, if applicable. It is a probabilistic method that 

helps to find whether a number is prime or not. There exists a proof in which each time a 

number passes for the Miller-Rabin Primality Test and the probability of a number that is not 

a prime is 1/4.  If the number passes m tests (with m different bases) the probability that it is 

not a prime is (1/4) 
m

. 

2.4.3 Discrete Logarithm 

Discrete logarithms are group-theoretic analogues of ordinary logarithms.  Exactly, an 

ordinary logarithm loga (b) is a solution of the equation a
x
 = b over the real or complex 

numbers.  Correspondingly, if g and h are elements of a finite cyclic group G then a solution 

x of the equation g
x
 = h is called a discrete logarithm to the base g of h in the group G [4]. 

In general, let G be a finite cyclic group with n elements. Let b be a generator of G; then 

every element g of G can be written in the form g = b
k
 for some integer k. Furthermore, any 

two such integer’s k1 and k2 representing g will be a congruent modulo n. Then consequently 

a function can be defined as: 

logb: G → Zn 

Where Zn denotes the ring of integers modulo n by assigning to each g is a congruence class 

of k modulo n. This function is a isomorphism group, called the discrete logarithm to base b. 
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The familiar base change formula for ordinary logarithms remains valid: If c is another 

generator of G, then equation is given as:  

logc (g) = logc (b) * logb (g) 

No efficient classical algorithm for computing general discrete logarithms logb g is known.   

2.4.4 Integer Factorization 

Integer factorization or prime factorization both are used to break down a composite number 

into smaller non-trivial divisors, which when multiplied together equals the original integer. 

There is no efficient integer factorization algorithm for very large number; an effort 

concluded in 2009 by several researchers factored a 232-digit number (RSA-768) utilizing 

hundreds of machines over a period of 2 years. Many areas of mathematics and computer 

science face this problem, including quantum computing, elliptic curves, and algebraic 

number theory. 

Not all numbers of a given length are uniformly unbreakable to factor. Instances of these 

problems are semi primes and the product of two prime numbers.  

2.5 Types of Cryptography: 

Cryptography is categories into three basic techniques that are so important and valuable in 

modern era. 

 Secret key Cryptography 

 Public key cryptography 

 Hash function 
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2.5.1 Secret Key Cryptography 

In this cryptography single key is used for encryption and decryption of data. Sender and 

receiver both applies same key to encrypt and decrypt the message. This technique is called 

symmetric encryption because only single key is used by sender and receiver both so the 

biggest problem of this technique is key distribution. This is also called private key 

cryptography.  

 

    Fig-2.2 secret key cryptography 

In figure 2.2 describe the whole procedure of symmetric key cryptography in which a sender 

using a key and encrypting a message that is ‘abcd’ and send to another user who also use 

same key for decryption and decrypt the message and gets original message ‘abcd’.  

Symmetric-key encryption can use either stream ciphers or block ciphers.[4] 

 Stream ciphers encrypt the digits (typically bytes) of a message one at a time. 

 Block ciphers take a number of bits and encrypt them as a single packet, and padding the 

plaintext if required so that it is a multiple of the block size. Size of the commonly used 

block is 64 bits. The Advanced Encryption Standard (AES) algorithm approved 

by NIST in December 2001 uses 128-bit blocks [42]. 
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Block cipher based algorithms are AES, DES, Triple DES, CAST-128, IDEA, RC2, RC5 etc. 

and Stream cipher based algorithm is RC4.  

2.5.2 Public Key Cryptography: 

Two keys are involved in this type of crypto systems through which a secure communication 

can be established between communicating user over insecure communication channel. Since 

two different keys are applied here so this technique is also called asymmetric encryption. A 

complete procedure of public key cryptography is expressed by figure 2. 3. 

 

    Fig-2.3 public key cryptography 

During this procedure, each party generates two keys one of them is private key that is secret 

key and cannot be disclosed to all and another one is public key which is shared to all 

communicating users. If user A sends a message to user B, then public key of user B is shared 

to user A and used to encrypt the message by user A then send over communicating channel 

and user B uses own private key to decrypt the message. 

RSA, Diffie-Hellman Key Exchange, Digital Signature, Elliptic Curve Cryptography etc 

algorithms are based on public key cryptography. These are used when setup a public key 
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authentication to login from one server to another server in the backend without having to 

enter the password. 

2.5.3 Hash Functions: In this technique there is no use of any key. However it uses a hash 

value of fixed length which is determined on the basis of the plain text message. The integrity 

of the message is ensured by using hash functions and it also keeps a check that the message 

has not be modified, negotiated or affected by virus. 

  

     Fig-2.4 Hash function 

Functionality of hash function is showing in figure 2.4 and it is clearly that there is no need of 

any key and any encryption and decryption function, only a hash function is required to 

generate a hash code of plain text through which the integrity of the message is verified. 

2.6 ADVANTAGE AND DISADVANTAGE OF CRYPTOGRAPHY 

In cryptography, advantage of an adversary is a measure of how successfully it can attack a 

cryptographic algorithm, and identifying it uniquely from an idealized edition of that 

algorithm. Note that in this section, a person is not an "adversary" and an algorithm is acting 

as an adversary. 

Advantages are: 

-The messages are hidden by it and maintain privacy. 

-by using cryptography a message can be written in any way (any theme any symbol for the 
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code) to keep it secret. 

- Cryptography can be used without knowing the teacher. 

Disadvantages of cryptography are: 

-It is time-consuming to figure out the code. 

-It takes long time to generate the code. 

-If you have to send a code to another user in the past, it will take long time to get to that 

person. 

-Overall Cryptography is a lengthy process  
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CHAPTER 3 

PUBLIC KEY CRYPTOGRAPHY 

3.1 Encryption Scheme: 

In the introduction, we have introduced the notion of an encryption scheme. We now 

make this idea mathematically precise. 

Definition: An encryption scheme is a tuple (P; C; KE; KD; E; D), where P, C, KE and 

KD are arbitrary sets (not necessarily distinct), and E and D are sets of functions, such 

that for each k Є KE there is a function Ek : P→ C in E, and for every k Є KD there is 

a function Dk : C → P in D [23]. This tuple must satisfy the condition that for every  

t Є KE, there is a unique s → KD, such that Ds(Et(p)) = p for all p Є P [23]. 

The sets P, C, KE, KD in the above definition are called the plaintext space, the cipher 

text space, the encryption key space and the decryption key space respectively. The 

functions of E and D are encryption and decryption functions respectively. 

The main purpose of encrypting message is that someone who intercepts that message 

does not get knowledge of the original message. Therefore it seems reasonable to 

demand of encryption schemes so that it become hard to decrypt cipher text by 

someone who does not have decryption key. So methodology of cryptanalysis like 

guessing and calculating plaintext should be a difficult task and it should be easy to 

encrypt and decrypt by someone who knows the keys. 

Above some words like ‘difficult’, ‘hard’, and ‘easy’ are used. From now on, with an 

‘easy’ problem, mean a problem that can be solved by some algorithm in polynomial 

time, and a problem is ‘hard’ if it cannot be solved by any algorithm in polynomial 

time. This means that a hard problem take huge amount of time to solve while an easy 

problem can be solved relatively fast [6]. 
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If User A and User B want that no one can obtain plaintext from cipher text so they 

need to follow encryption schemes and need to keep the used encryption scheme 

secret. So that someone who wants to intercept the message does not know about 

encryption scheme otherwise he/she can obtain plaintext from cipher text by applying 

cryptanalysis.  

3.2 Public Key Cryptosystem (PKC): 

Encryption schemes are explained in previous section 3.1, where it is stated that in the 

keys used in encryption key and decryption are same in symmetric key. In this case 

there is no distinguishing between encryption key and decryption key and treats them 

as a single object. 

A big disadvantage of symmetric encryption scheme is sharing of key. Chosen key 

needs to share in a secure channel and must remain secret at all time.  Even if 

encryption scheme is highly sophisticated and extremely safe, but as soon as the key 

moves out in the open, security is violated. 

The biggest security-threat is the exchange of the key. When User A and User B 

communicate with each other about the key, there is frequently a chance for Eve to 

catch this key.  

To overcome this disadvantage of symmetric encryption scheme, public key 

cryptosystem were invented. Public key cryptosystem is based on asymmetric 

encryption scheme in which a key pair is used one of them is secret key that is used as 

a decryption key and another is shared to all communicating user that is used as a 

encryption key. An idea behind a PKC is that User A has a pair of key one of them is 

public key and another one is private key [3]. She chooses public key which she 

publishes. Now User B retrieve public key of User A and encrypt the message and 

send to User A. She chooses private key for herself and keep it secret. Then decrypt 
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the User B’s message with the help of her secret key. To get a secure cryptosystem 

this way, determining the secret key with the help of public key should be a hard 

problem. 

Public-key cryptography is based on asymmetric key algorithms and also referred by 

a more generic term "asymmetric key cryptography." The techniques used to conduct 

public key cryptography are done on the basis of mathematical relationships ones of 

being the integer factorization and discrete logarithm problems. In public key 

algorithm there is no need of initial exchange of keys in a secure channel between 

communicating users as needed in symmetric key algorithms. The authenticity of a 

message is also checked by the use of these algorithms with the help of a digital 

signature of the message using the private key, and then the public key is further used 

for verification. For signature verification purposes, only hash of the message is 

usually encrypted, so public key distribution and digital signature both operations are 

performed by public key cryptosystem [3]. 

3.3 Integer Factorization Problem: 

In number theory integer factorization and prime factorization are two things which 

means decompose a composite number into smaller nontrivial divisor in such a way 

that their multiplication gives the original number [24]. Factorization means 

decompose a positive integer into positive integers n1 and n2 such that their product is 

equal to n (i.e. n1.n2=n), and both n1 and n2 are larger than 1. Such n1 and n2 are 

called factors (or divisors) of n. if positive integers greater than 1 that cannot be 

decomposed or factored are called primes.  

Problem which is performing factorization of a composite integer is believed to be a 

hard. Of course, composition of small factors is easy to factor but large factors are 

hard and problem seems to be difficult. Widely used algorithm in cryptography is 
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based on the difficulty of factoring problem such as RSA. In RSA factoring modulus 

would allow an attacker to analyse the private key. Thus, messages can be decrypted 

and signatures can be forged by anyone who can factor the modulus. RSA algorithm 

becomes more secure if difficulty of factors is high and the absence of other types of 

attack. As namely, in RSA both parties choose large primes then take modulus of the 

product of those primes and hence an attacker requires more time and efforts to factor 

the larger primes. Thus far, consider that a number consists of large prime factors 

might hold definite properties making it easy to factor.   

There are two different version of problem described as follows:  

The function problem version: If an integer n is given then this version determine 

another integer n1 which satisfy the following constraint 1 < n1 < n that divides N 

[24]. This problem is insignificantly in FNP and it's not known whether it lies in FP or 

not. Most practical implementations can be used to solve this version. 

The decision problem version: If an integer n and another integer m is given with 

some constraint 1 ≤ m ≤ n, does N have a factor d with 1 < d < M? In this version 

most well-studied complexity classes are categories as decision problems, not 

function problems [24]. This version is used frequently for optimization problems, 

because it can solve a function problem in a logarithm number by applying decision 

problem version along with binary search. 

3.4 Discrete Logarithm Problem (DLP): 

In this thesis all public key cryptography‘s are based on the difficulty of the discrete 

logarithm problem (DLP). This problem is defined as: 

Let G be an abelian (additive) group, and g Є G. Now suppose that h Є <g>   G. We 

can ask ourselves which k Є Z satisfies the identity kg = h. Finding such a k is the 

discrete logarithm problem. More commonly: 
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Definition Let G be a finite cyclic group containing n elements. It is supposed that the 

group is written multiplicatively [4]. Let us assume that b be a generator of G then 

every element g of G can be written in the form g = b
k 

for some integer k. 

Furthermore, any two such integer’s k1 and k2 representing g will be 

congruent modulo n. We can thus define a function [4]. 

logb = G→ Zn 

Discrete logarithms are perhaps simplest to understand in the group (Zp)
×
 [4]. 

Discrete Exponentiation method used to determine k
th

 power of a number that can be 

done by determining k
th

 power of integer and then calculate remainder after dividing 

by p. For example, consider (Z17)
×
. To compute 3

4
 in this group, first compute 3

4
 = 81, 

and then divide 81 by 17, obtaining a remainder of 13. Thus 3
4
 = 13 in the group 

(Z17)
×  

[4]. 

The difficulty of the DLP depends on the underlying group. In this thesis, we will 

focus on the groups given by elliptic curves. In Section 3.6 we will encounter some 

general algorithms that will solve the DLP for any group. These algorithms take 

exponential time and are therefore slow. For the groups of the form F*P there exists a 

slightly faster algorithm, which we discuss in Section 3.6. This algorithm takes sub 

exponential time.  

3.5 Example of public key cryptosystem based on DLP: 

In section 3.2 we have discussed notion of a public key cryptosystem. Now we are 

describing the cryptosystem whose security based on the DLP. There are two 

cryptosystems that is Diffie Hellman Problem and ElGamal Cryptosystem. 

3.5.1 Diffie Hellman:  

A protocol that is based on symmetric key cryptosystem because it establishes a 

common key between two communicating parties is called Diffie hellman. This is 
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used for a large network of users; there can be complicated and logistic secure 

distribution of keys. So Diffie and Hellman produced a new methodology in 1976 

which reduces the above problem.  

Diffie hellman key exchange is a methodology to exchange keys which is 

implemented within the field of cryptography. If two parties that does not have any 

prior knowledge of each other but want to communicate then Diffie Hellman key 

exchange method allows them and establish a connection by sharing their secret key 

over an insecure channel. This secret key is used for encryption and decryption using 

symmetric key cipher.  

Definition. Public group G1 and an element a1 are given where a1 Є G1 of order n, two 

parties, says User A and User B follows these steps to establish common key: 

(a) User A chooses a random integer a1 Є Zn, calculates A=a1
a1 

and sends it to 

User B 

(b) User B chooses a random integer b1 Є Zn calculates B=a1
b1 

and sends it to User 

A 

(c) User A calculates B
a 1

=a1
b1a1 

and User B calculates A
b1 

=a1
a1b1 

their common 

key is  

k=a1
a1b1 

=a1
b1a1 

[30].
 
 

 
The eavesdropper, who knows G and ‘a1’ from the public directory, after intercepting 

A and B, is then faced with the following problem. 

Diffie Hellman problem (DHP) is a mathematical problem. The motivation for this 

problem is that mathematical operations are used in mostly preferred security systems 

which are computed fast, but not able to perform reverse or being difficult to reverse 

[29]. For example, encryption is performed on a message then performs reverse 
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operation of the encryption is difficult. If the DHP can be solved easily then these 

systems would be easily broken.  

Let G be a group and let a1 Є G. given A=a1
a1

 and B=a1
b1

 compute k=a1
a1b1

 

If anyone has solution to solve the discrete logarithm problem, then the Diffie 

Hellman problem can be solved easily without facing any problem. Consequently it is 

proving that the two problems are comparably equivalent and these equivalents are 

established for certain cases. At some places the Diffie Hellman key exchange scheme 

is securely build the Diffie Hellman problem hard. The Diffie Hellman key exchange 

scheme is widely used to generate “session keys”,  

3.5.2 ElGamal Cryptosystem: ElGamal system is one of the public-key 

cryptosystem which is based on the discrete logarithm problem. It provides both 

mechanism encryption and signature algorithms. The encryption algorithm is 

equivalent to the Diffie-Hellman key agreement protocol in nature [31]. 

A prime p and an integer g are the systems parameter, whose power 

modulo p generates number of elements, by following the same process as in Diffie-

Hellman. User A have two key private and public that are represented by ‘a1’ and ‘y’ 

respectively, where y = g
a1

 (mod p). Suppose User B want to send a message to User 

A. Initially a random is generated by user B with k ˂ p then determine 

y1 = g
k
 (mod p) and y2 = m xor y

k
,  

Where xor refers the bit-wise exclusive-or. A pair (y1,y2) is sent to user A from user 

B. After receiving the cipher text, User A determines m = (y1
a1

 mod p) xor y2 [31].  

The ElGamal signature is an algorithm where public and private key have the same 

form. 

ElGamal signature needs randomness that is main disadvantage of it which slow down 

its speed (especially for signalling). During encryption message expansion is required 
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by a factor of two that is another disadvantage of the ElGamal system [31]. However, 

if the cryptosystem is used only for exchange of secret keys then this disadvantage is 

negligible. 

3.6 Algorithms for solving DLP:  

This Section discussed about some algorithms for solving the discrete logarithm 

problem. This should also give us an idea of how hard the DLP actually is.  

Let G be an Abelian group, and g Є G an element of order n, and finally let h Є <g> 

G. There is an algorithm to find k with kg = h. In naive algorithm the value of b is 

raised to higher and higher up to powers k until desired value of g is not found; this is 

also known as trial multiplication. This algorithm needs linear time to applied on the 

group G and consequently exponential in the number of digits in the size of the group 

[25]. 

The naive algorithm is quite slow, in the sense that it takes exponential time. For big 

n, it becomes infeasible to run the algorithm. Can we do better than that? For general 

groups, there exist some faster algorithms. However, these still take exponential time. 

We will discuss two of them: the baby-step giant-step algorithm, and Pollard's ρ-

algorithm.  

3.6.1 The baby-step giant-step algorithm: The baby-step giant-step algorithm 

Again, pick an abelian group G, an element g Є G of order n, and some h in the 

subgroup generated by g. Let       . Now execute the following steps:  

1. Make a list L1 = {0, g, 2g, ….mg}. If h Є L1, we are done, otherwise go to next 

step. 

2. Make a list L2 = {h, h- mg, h- 2mg,….. h - m
2
g}: If 0 Є L2, we're done, otherwise 

go to next step. 

3. Determine x Є L1 ∩ L2. 
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4. x = ig = h - jmg for some 0 ≤ i; j ≥ m, hence h = (i + j m)g. 

Theorem 3.1. If h Є <g>, the baby-step giant-step algorithm will solve the DLP in 

O(           ) steps. 

Proof. We will need to show that the algorithm indeed gives the discrete logarithm of 

h to base g in G. Suppose h Є L1, then h = ig for some i, and we have found the 

discrete logarithm. Suppose 0 Є L2, then h - jmg = 0 for some j, and h=jmg, hence jm 

is the discrete logarithm. 

Now suppose that neither h Є L1 nor 0 Є L2. We have assumed h Є <g>, so the 

discrete logarithm of h to base g exists. Hence h = kg for some 0 ≤ k ≤ n. We can 

write k = qm + r for some q ≤ m and r < m (division with remainder). 

Hence h = (qm + r)g, so h - qmg = rg. Now h - qmg Є L2, and rg Є L1, so the 

intersection is non-empty. The element in the intersection can compute the discrete 

logarithm, so the algorithm indeed solves the DLP [34]. 

Now we will determine the running time. For step 3, two lists have to be compared. 

Using a binary search, this takes in the worst case O(m log(m)) steps. Making the first 

list takes m multiplications, and the same holds for the second list. In total, 2m 

multiplications are to be processed. Consequently the algorithm requireds  

O(m log(m) + 2m) = O(           ) steps. 

The baby-step giant-step algorithm solves the DLP significantly faster than the naive 

algorithm but it still takes exponential time. Another down side is that this algorithm 

could require a lot of memory, since two lists of size    need to be stored. 

3.6.2 Pollard ρ-algorithm 

Another algorithm for solving the DLP is the Pollard ρ-algorithm. It is slightly faster 

than the baby-step giant-step method and it needs much less storage. Suppose the 

identity kg = h holds in some abelian group G. Split the group G in three pair wise 
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disjoint subsets G1, G2, G3, such that the coming together consequential is G. Define 

a function f : G → G as follows: 

   

Now pick a random a0 ≤ n = ord G(g), and set x0 = a0g. This x0 is the first element of 

a sequence (x0, x1, x2, ….…), defined by the recursive relation xi+1 = f(xi). Every 

entry of this sequence can be written as a linear combination of g and h, so  

xi = aig + bih. We know a0, and of course b0 = 0. The ai's and bi's can be determined 

for i > 0 by the following recursive relations [33]:  

 

 

 

 

Eventually some entry of the sequence defined will have occurred before. More 

mathematically, there is some i ≥ 0, and some t ≥ 1, such that xi+t = xi. Then by 

definition of the function f, have x(i+1)+t = xi+1, x(i+2)+t = xi+2, and so on. In other the 

words, the sequence makes loops, starting from the smallest m for which xm is 

repeated. The size of the loop equals the smallest positive t for which xi+t = xi. 

The fact that a subsequence repeats itself comes in handy for us. If xi = xi+t, then 

aig+bih = ai+tg + bi+th. We can rewrite this to (ai - ai+t)g = (bi+t - bi)h, and by 

assumption this is equivalent with (ai - ai+t)g = (bi+t - bi)kg. From this concluded  

ai - ai+t - (bi+t - bi)k (mod n).  

Now set v = ai - ai+t and w = bi+t - bi. We thus have the congruence  

wk ≡ v (mod n)          (1) 

g+x if x  G1

2  if x  G2

h+x if x  G3

f x

 
 

  
  

 

i i

1 i i

i i

a  + 1 (mod n) if x   G1

2a  (mod n) if x   G2

a  (mod n) if x   G3

ia 

 
 

  
  

 

1

i i

i i

i i

b  (mod n) if x   G1

2b  (mod n) if x   G2

b  + 1 (mod n) if x   G3

ib 

 
 
 
 
 



 


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If w is invertible modulo n (or equivalently, if gcd(w, n) = 1), then the discrete 

logarithm k can be computed by k  ≡ vw
-1

 (mod n). So suppose d = gcd(w, n) ≥ 2. 

We can find an integer s satisfying sw  ≡  d (mod n). Now multiply both sides of 

(1) by this s to get 

dk  ≡  sv (mod n)          (2) 

But we know that d|n. Now dk = sv+qn for some q, so d/n implies d|sv. Therefore, 

k = 
     

 
 is an integer, and is a solution for congruence (2) for every 0 ≤ q ≤ d-1. 

And this k also satisfies congruence (1) for some value of q, and this k is a discrete 

logarithm of h to base g. 

Let's summarize the steps have taken to find the discrete logarithm: 

1. Define the function f, based on g and h. 

2. Pick some a0 and compute x0. 

3. If xi is known, compute xi+1 = f(xi). If xi+1 have already occurred before reaching to 

the next step if not, then again repeat same step. 

4. Solve the congruence ai-ai+t - (bi+t -bi)k obtained from the previous step. 

This algorithm solves the discrete logarithm problem. But in this form, every xi has to 

be stored so it still requires a lot of storage. Except it there is a clever solution for this 

memory problem. Besides the sequence (x0, x1, x2, ….), we make another sequence 

(y0, y1, y2, …….), where y0 = x0 and yi+1 = f(f(yi)). 

Hence yi = x2i. 

During making sequences discard every xi and yi from our memory that do not satisfy 

xi = yi (of course, after computing xi+1 and yi+1). So only two group elements have to 

be stored at all time. Once we've found the desired i, we have xi = yi = x2i, and we 

have a repetition in our original sequence. 
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One can ask if this procedure slows down the process of finding the discrete 

logarithm. The answer is no. In our original algorithm, the sequence gets into a loop 

that needs m steps to execute, after that loop itself takes t steps, so it takes m+t steps 

to find a repetition. In the `improvement', we need to find i for which xi = x2i. This 

happens if i ≥ m and  

i  ≡  2i (mod t). The equivalence implies that t divides i. But one of m, m + 1, m + 2, 

…….m + t - 1 is divisible by t. Hence x2i = xi for 1 ≤ i < t+ m. Hence our 

improvement does not slow down the process. 

The actual speed of the algorithm depends on chance, since it depends on the random 

a0, and the (random) partition of G. The expected value of m + t is approximately 1, 

25   . So it is likely that the Pollard ρ-algorithm takes O(  ) steps. 

3.6.3 The Pohlig-Hellman algorithm 

The next algorithm that presented here does not solve the DLP itself. However, it does 

speed up other algorithms (like the ones presented before) when the order of g is a 

composite number. But first, gives a method that speeds up an algorithm when the 

order of g is a power of a prime. So suppose that there is an algorithm that finds k 

satisfying k~g = h in an abelian group G in O(Sp) steps, where p = ordG(~g) is prime. 

Here Sp is a function of p. For instances, in Pollard's ρ-algorithm, Sp can be 

represented in the form of p that is expressed as: 

Sp = pp. 

Now assume that g Є G has order pe, and trying to find k such that kg = h for some h. 

It is well-known algorithm that can uniquely write k as 

k = k0 + k1p + . . . . . (ke -1)(p
e-1

); with 0 ≤ xi < p;      (3) 

since k < pe. Then determine the coefficients of this expression. Since g has order pe, 

the element (p
e-1

)g has order p. Then  
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(p
e-1

)h = (p
e-1

)kg  

 = p
e-1

(k0 + k1p + . . . . .  (ke-1)(p
e-1

))g  

 = (p
e-1

)k0g + peg(k1 + . . . .  (ke-1)(p
e-2

))  

 = k0((pe-1)g)  

and the equation k0((p
e-1

)g) = (p
e-1

)h is a DLP. So it can be solved by our assumed 

algorithm in O(Sp) steps. In other words, it can find the first coefficient of expression 

(3). 

Next compute  

P
e-2

h  = p
e-2

kg 

 = p
e-2

(k0 + k1p + . . . . . (ke-1)(p
e-1

))g  

 = (p
e-2

)k0g + (p
e-1

)k1g + peg(k2 + . . . .  (ke-1)(p
e-3

)) 

 = k0 (p
e-2

)g + k1((p
e-1

)g) 

Note that k0 is already know, hence compute  

h1 = (p
e-2

)h - k0 (p
e-2

)g  

     = (p
e-2

)(h - k0g).  

And since (p
e-1

)g has order p, solve the DLP k1((p
e-1

)g) = h1 to get the second 

coefficient of (3). 

Then continue in this fashion. Assuming k0, . . . . .ki, are already computed and solve 

(ki+1)((p
e-1

)g) = (p
e-i-1

)(h - (k0 + k1p + . . . . + kip
i
)g) with the assumed algorithm. In 

total, apply the algorithm e times to obtain all coefficients of (3). Each algorithm takes 

O(Sp) steps, therefore this methods takes O(eSp) steps. 

If we use the Pollard ρ-algorithm, it takes O(    ) steps to solves the DLP if g has 

order p
e
. The method described above can reduce the number of steps to O(    ).This 

is a significant improvement when e ≥ 2.  

Now suppose kg = h in an abelian group G, with n = p1
e1

.p2
e2

….pt
et 

=ordG(g) 



Chapter 3                                                                  PUBLIC KEY CRYPTOGRAPHY 
 

Elliptic Curve Cryptography On An Image Page 35 
 

Compute k as follows: 

1. For each 1 ≤ i ≤ t, Let  

And  

 

And solve kigi=hi using the method described above. 

2. Solve the system k = k1 (mod p1
e1 

),…k =kt (mod pt
et
) using the Chinese remainder 

theorem. 

This method is known as the Pohlig-Hellman algorithm. If assume that solving the 

DLP for some base g with prime order p takes O(Sp) steps, we get the following 

theorem: 

Theorem 2.5.2. If h Є <g>, the Pohlig-Hellman algorithm will solve the DLP in 

O (                  
   ) steps. 

Proof. Suppose x is a solution for the system of congruence’s in step 2. Then for 

every i, we can write x=xi+qipi
ei

 for some qi. Compute  

 

    
(xg)=  

    
 ((xi+qipiei) g) 

 =   

    
        

 =xigi 

 =hi=

 

    
hi 

 

Hence (n=i )x _ (n=peii )k (mod n), since discrete logarithms are only defined modulo 

the order of g. Now the numbers (n/p1
e1 

), . . . , (n/ pt
et
) are pair wise relatively prime. 

Hence we can find C1 , . . ., Ct such that  

 

and 

 

ei

ig  = 
i

n
g

p

 

ei

ih  = 
i

n
h

p
 

i
iei

1

nc (  )=1
p

t

i


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From 
iei

n(  )x
p

≡ 
iei

n(  )k
p

(mod n) for all I  

 

 

And from this conclude that x ≡ k (mod n). So the algorithm indeed produces a 

discrete logarithm of h to base g. 

In step 2 the system of congruences can be solved in O(log2(n)) steps and solving 

each DLP of step 1 can be solved in O(eiSpi ) steps. So indeed, the Pohlig-Hellman 

algorithm takes O(  
1

2 
t

i

i

i pe S log n


 )  steps. 

Index calculus in Fp
*
 

For general groups, the only algorithm known to solve the DLP takes exponential 

time. For some specific groups however, there exist faster algorithms. We will now 

describe index calculus on Fp
*
, which solves the DLP in sub-exponential time. 

For details we refer to Section 4.6 of [4]. 

First we need some definitions: 

Definition Let n,B Є N. Then n is called B-smooth if every prime factor of n is 

smaller than or equal to B. If x Є (Z=nZ)*, then x is called B-smooth if its smallest 

positive representative in N is B-smooth. 

Definition Let : N ! N be the function that assigns to each n Є N the number of primes 

smaller than or equal to n. 

Let g Є Fp
*
 be an element of order p-1. Our first goal is to determine logg(l) for small 

primes l. Let us assume that gi is the smallest positive representative of g
i
. If g

i
 is B-

smooth for some number B, that can be written as:  

ig ≡ gi ≡  ( )

 

 pel i

l B

l mod


  

 

i i

1 1iei iei

n nc(  )x c(  )k (mod n)
p p

t t

i i 

 
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and therefore, 

I ≡  
 

.l

l B

e i


      (mod p-1) 

Note that this gives a linear equation in `logg(l)' with l prime. So if the number of  

B-smooth g
i
's exceeds (B), we get a system of linear equations with a unique solution. 

We expect to find (B) numbers that are B-smooth in sub exponential time. 

Once we have determined the `logg(l)', finding k such that gk = h in Fp
*
 is easy. We 

first search for a j, with 0 < j < p - 1, such that hg
-j
 is B-smooth. We only need one j, 

so we expect to find it quite fast. The B-smoothness implies hg
-j 

≡
 l B

 l
el 

(mod p). 

Thus  

logg(h) ≡ j + 
 l B

 el .logg (l) (mod p-1) 

And the discrete logarithm is founded due to need. 

The method described above also works in other groups, as long as the concept of  

B-smoothness exists. According to [8], there is also no index calculus possible in Fpk 
*
 

if p > 2 and k > 1. 

3.6.4 Consequences for cryptography 

In this Section four algorithms are describe that solve the discrete logarithm problem 

in general groups. There are no known algorithms that solve the DLP for general 

groups in polynomial time. But the exponential time algorithms do place some 

restrictions on the groups, elements and exponents For example, as already mentioned 

that the naive algorithm forces to use elements with very large order. The order should 

be > 280 according to [6]. Also, the exponent needs to be huge. But the number of 

steps needs to solve DLP is reduces by the baby-step giant-step algorithm and the 

Pollard ρ-algorithm dramatically. So in order to keep cryptosystems secure, the order 
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of the base needed to be dramatically larger, > 2160 to be precise. That's not all. The 

Poling-Hellman algorithm also incenses our choices. When the order of the base 

element is a product of small primes, this algorithm makes the DLP quite simple to 

solve. Therefore this process should have at least one enormous factor, larger than 

2160. It is also a bad idea to use Fp
*
 for cryptographic purposes, especially when p is 

small. Since then index calculus will give a discrete logarithm relatively fast. Of 

course, the speed of the algorithms described is relative. DLP requires long time to 

solve it. But there are some algorithms that finish exceptionally fast. For example, the 

running time of the Pollard ρ-algorithm depends on chance. Maybe some lucky shot, a 

discrete logarithm is solved in reasonable time by it. Furthermore, computers get 

faster every day. The time an algorithm needs to finish depends on the speed of 

computer calculations. Therefore, algorithms become faster. So the lower limit for 

order and exponent needs to be increased regularly. 

3.7 Application of public key cryptography: 

There are two main use of PKC. 

3.7.1 Confidentiality: This is an application of a public key encryption system in 

which a message being encrypted before sending and refer to decrypt after receiving 

the message using the recipient's public key and recipient's paired private key 

respectively [35]. This assumes, there is no flaw that is discovered in the basic 

algorithm used. 

3.7.2 Digital Signature: Digital signature is another application of public-key 

cryptography. This scheme helps to authenticate the sender and also used for non-

repudiation. To provide authentication, sender generate a digital signature of the 

message and sends it along with the message to the intended receiver [35]. To provide 
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confidentiality the whole message with digital signature is encrypted using the 

recipient’s public key. 

Many other cryptographic protocols and applications are constructed using these 

characteristics, such as digital cash, password-authenticated key agreement, multi-

party key agreement, time-stamping services, non-repudiation protocols, etc.  
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CHAPTER 4 

ELLIPTIC CURVE 

4.1 Introduction of Elliptic Curve: 

An elliptic curve (EC) is a flat, projective algebraic curve of one of its kind, on which there 

is a specified point O which serves the identity element [36]. Any elliptic curve can be 

written as a plane algebraic curve defined by an equation of the form: 

 

which is non-singular; that is, generated graph using that equation does not has any cusps or 

self-intersections. The point O is represented as "point at infinity" in the plane. 

If equation of curve is represented as y
2
 = P(x) and if P is a polynomial of degree three 

in x with no roots being repeated, then generate a non singular curve, which is an elliptic 

curve. If P is represented as a polynomial of degree four then generated curve is square free 

and again describes a plane curve of one of its kind; however, it does not have an option of 

identity element.  It is not an ellipse. An elliptic curve is a set of points on a plane which 

satisfy an equation of the form y
2
 = x

3
 + a x + b. For an instance an elliptic curve y

2
 = x

3
 - 3x 

+ 5: that is described by the figure 4.1 

The elliptic curve is the set of points which satisfy an equation like that. For the curve 

described below that points (1, 1) and (1, -1) lies on the curve and a mental calculation 

confirms that they fit into the equation. But the points on an elliptic curve form a structure 

which is sufficient to form a group. Being a group four things requires to be satisfied by 

points: closure to group, follow associative rule, contains inverse element and identity 

element also. If resultant of operation is exists in the group then it is closure to given group. 

This is true for all elements: (a + b) + c = a + (b + c). Group contains a zero element so that  
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‘a’ + 0 = ‘a’ that is identity element for addition. Finally that, for every element, there's a 

negative of that element (written -a), so that a + -a = 0. 

 

   

Fig-4.1 Elliptic Curve  

4.2 The Group Law:  

By adding up a point at infinite location, the projective description of this curve is 

accomplished. If two points P and Q are on the curve, then third point can be distinctively 

depicted that is an intersection of the curve by the line passing through P and Q. If a line 

passing through a point is tangent to the curve then point is counted two times: and if line is 

parallel to y-axis then the third point is defined as the point "at infinity". Hence, for any pair 

of points on an elliptic curve, one of the above condition holds good [36]. 

 Group operations can be introduced on curve for ‘+’ operation with the following 

properties: 0 is supposed to be the point at infinity; and if the points P, Q and R are 

intersected by a straight line, then require that in the group P + Q + R = 0. It can be used to 
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check that whether the curve can be turned into an abelian group and into an abelian variety 

or not. In figure 4.2 operations performed on group are represented. 

 

Fig 4.2 Group operations 

The above group can be described algebraically as well as geometrically. Given the 

curve y
2
 = x

3
−px−q over the field K and points P = (XP, YP) and Q = (XQ, YQ) on the curve, 

assume first that XP ≠ XQ. Let s be the slope of the line containing P and Q; i.e., 

 

 

Since K is a field, s is well-defined. Then we can define R = P + Q = (XR, −YR) by 

 

 

If XP = XQ, then there are two options: if YP = −YQ, including the case where YP = YQ = 0, 

then the sum is taken to be 0 and hence by reflecting the curve along the x-axis, the inverse of 

each point on the curve is evaluated. If YP = YQ ≠ 0 (second pane), then R = P + P = 2P = 

(XR, −YR)  
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is given by 

 

 

Associatively: The sum of the three values on any of the six lines is zero. The location of all 

nine points along with the location of a, b, c and zero is found with the help of elliptic curve. 

The central point of the nine lies on the line through a and b + c, and also on the line 

through a + b and c. Associativity of the addition law is equivalent to the fact that the curve 

passes through the central point in the grid. From this fact, the equality of −(a + (b + c)) and 

−((a + b) + c) follows [36]. 

The elliptic curve and the point zero are kept constant in this simulation 

while a, b and c move independent of each other. 

4.3 Elliptic Curve Over General Field: 

EC can be defined over any field K; the formal definition of an elliptic curve is a non-

singular projective algebraic curve over K with genus 1 with a given point defined over K. If 

the characteristic of K is neither 2 nor 3, then the equation of elliptic curve over K can be 

written in the form  

 

Where p and q are elements of K such that the right hand side polynomial x
3
 − px − q does 

not have any double roots. More terms need to be kept if the characteristic is 2 or 3, whereas 

if characteristic is 3, the most general equation is of the form 
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for arbitrary constants b2, b4, b6 such that the polynomial on the right-hand side has distinct 

roots. Even this much is not possible when the characteristic is 2, and the most general 

equation is  

 

provided, that the variety it defines is non-singular. If characteristic was not a hindrance, each 

equation would lessen down to the previous ones by a suitable change of variables [37]. One 

typically takes the curve to be the set of all points (x, y) which satisfy the above equation and 

such that both x and y are elements of the algebraic closure of characteristic K. K-rational 

points are the points of the curve whose both coordinates belong to K. 

4.4 Elliptic Curve Group Over Real  Number:    

An EC over real numbers may be defined as the set of points (x, y) which satisfy an  

                                        

Fig-4.3 elliptic curve with equation y2 = x3 - 4x + 0.67 
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elliptic curve equation of the form:  

y2 = x3 + a x + b, Where x, y, a and b are real numbers. 

 

Each choice of the numbers ‘a’ and ‘b’ yields a different elliptic curve. For example, a = -4 

and b = 0.67 gives the elliptic curve with equation y
2
 = x

3
 - 4x + 0.67; the graph of this curve 

is shown below: If x
3
 + a x + b contains no repeated factors, or equivalently if 4a

3
 + 27b

2
 is 

not 0, then a group can be formed using the elliptic curve y
2
 = x

3
 + a x + b. The group formed 

by the elliptic curve over real numbers comprises of the points on the corresponding elliptic 

curve along with a special point O known as the point at infinity. 

4.5 Elliptic Curve Group Over Finite Field Fp: 

Calculations over the real numbers are time-consuming and erroneous due to round-off error. 

Cryptographic applications require quick and accurate arithmetic calculations; thus elliptic 

curve groups over the finite fields of Fp and F2
m

 are used in practice [37]. 

Recall that the field Fp uses the numbers from 0 to p - 1, and computations stop by taking the 

remainder after dividing by p. For example, in F23 the field comprises of integers ranging 

from 0 to 22, and any operation applied within this field will result in an integer that would 

also lie between 0 and 22.  

An elliptic curve with the underlying field of Fp can form by choosing the variables ‘a’ and 

‘b’ within the field of Fp. The elliptic curve includes all points (x, y) which satisfy the elliptic 

curve equation modulo p (where x and y are numbers in FP) [36].  For example:  

y
2
 mod p = x

3
 + ax + b mod p  

has an underlying field of Fp if a and b are in Fp.   

If x
3
 + ax + b contain no repeating factors, then a group can be formed with the help of 

elliptic curve.  
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Definition Let K = Fq be the finite field with q elements and E an elliptic curve defined 

over K. In general it is difficult to calculate the precise number of rational points of an elliptic 

curve E over K [36], the following estimate can be done with the help of Hasse's theorem on 

elliptic curves which also gives us the point at infinity: 

 

The set of points E(Fq) is known to be the finite abelian group, which is always cyclic or can 

also be the product of two cyclic groups.[18] The curve can be defined with the help of 

equation 

 

Over F71 has 72 points, 71 affine points including (0, 0) and one point at infinity over this 

field, whose group structure is given by Z/2Z × Z/36Z. The number of points on a specific 

curve can be computed with Schoof's algorithm that is defined n section 4.6. 

Studying the curve over the field extensions of Fq is facilitated by the introduction of the 

local zeta function of E over Fq, defined by a generating series defined by a generating series 

 

Where the field Kn is the (unique) extension of K = Fq of degree n (that is, Fqn). The zeta 

function is a rational function. There exist an integer ‘a’ such that the equation 

 

Moreover, 
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Fig- 4.4 Set of affine point over finite field F71 

With complex numbers α, β of absolute value  and hence, this result is a particular case of 

the Weil conjectures. The zeta functions of E over the field F2 is given by the equation: 

 

This follows from: 

 

Elliptic curves over finite fields are notably applied in cryptography and for 

the factorization of large integers. These methods frequently make use of the group structure 

on the points of E [36]. Algorithms that are applicable to general groups can also be applied 

to the group of points on an elliptic curve and one of its kinds is the discrete logarithm  

algorithm. The significance is that selecting an elliptic curve allows for more flexibility than 

choosing q. Also, the group structure of elliptic curves is generally more complicated.  
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4.6 Schoof’s Algorithm 

Schoof's algorithm is an efficient algorithm to count points on elliptic curves over finite 

fields. This algorithm can be applied in elliptic curve cryptography where it is essential to 

know the number of points to judge the difficulty of solving the discrete logarithm problem in 

the group of points on an elliptic curve [38].  

Previous to Schoof's algorithm, various approaches to counting points on elliptic curves such 

as the naive and baby-step giant-step algorithms were, for the most part, tedious and had an 

exponential running time. 

Definition. Let E be an elliptic curve defined over the finite field Fq, where q=p
n
 for ‘p’ a 

prime and n an integer ≥ 1. of characteristic ≠ 2, 3 an elliptic curve can be given by a (short) 

Weierstrass equation  

   

With A,B Є Fq [38]. The set of points defined over Fq consists of the solutions (a, b) Є 

Fq satisfying the curve equation and a point at infinity O. Using the group law on elliptic 

curves restricted to this set one can see that this set E(Fq) forms an abelian group, with O as 

the zero element. We compute the cardinality of E(Fq) to count the number of points on 

elliptic curve. Schoof's approach to computing the cardinality # E(Fq) makes use of Hasse's 

theorem that is describe in section 4.7, on elliptic curves along with the Chinese remainder 

theorem and division polynomials [39]. 

4.7 Hasse’s theorm : 

Hasse's theorem states that over the finite field Fq, if E/ Fq is an elliptic curve, then  

# E(Fq) satisfies the equation [38] 
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Defining  to be q+1- #E(Fq), and making use of the obtained result, the calculation of the 

cardinality of  modulo N where N>4  , is sufficient for determining , and thus #E(Fq).  
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CHAPTER 5 

Elliptic Curve Cryptography 

5.1 Introduction of Elliptic Curve Cryptography (ECC): 

Elliptical curve cryptography (ECC) is one of the public key encryption technique that refers 

elliptic curve theory  to create quicker, minor, and more efficient keys. Properties of the 

elliptic curve to generate keys rather than traditional method of generation of keys which 

prefer to generate keys using products of large prime numbers that mostly used in 

combination of encryption methods, such as RSA and Diffie-Hellman. ECC required small 

key in size to provide a high level of security while others required a large key size for same 

level of security for example ECC needs 64 bits while other requires 1024 bit for same 

security. ECC used in mobiles due to its lower computational power and battery resources 

usage [6]. 

Victor Miller (IBM) and Neil Koblitz (University of Washington) was proposed an 

alternative mechanism to implement public-key cryptography in 1985 that is Elliptic Curve 

Cryptography (ECC). Public-key algorithms help to distribute keys among large number of 

users in complex information system. ECC is based on discrete logarithm that is much more 

difficult to challenge at equivalent key lengths [7]. 

Asymmetric cryptography is a marvellous technology. It uses in many applications and 

varied such as used in distributed network environments, required during communications to 

provide secure communication, for reducing key distribution issues with a public key 

infrastructure (PKI). For designing or employing any network protocol or application 

requiring secure communications, for a practical solution asymmetric cryptography must be 

used. Every time when you buy something on the Internet, asymmetric cryptography is used 

to provide a secure transaction. If asymmetric cryptography is needed then you should 

concern about methodology that required less resources and ECC is the best choice, because: 
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• ECC offers significantly better security with a given key size 

• The smaller key size is needed for providing given security which can be applied on smaller 

chips and more compact software and these are able to run faster cryptographic operations 

that produce less heat and required less power. 

•Some efficient and compact hardware implementations are available for ECC operations that 

offer potential reduction in implementation of footprint even outside of those due to the 

smaller key length alone. 

In short: asymmetric cryptography is in demand. But if due to security reasons ECC has own 

place for providing better security as compare to other methodologies. This thesis describes 

elliptic curve cryptography in greater depth. ECC provides considerably large security with a 

given key size [9]. 

5.2 Cryptography Premise: 

The entire security of ECC depends on the ability to compute a point multiplication and the 

inability to compute the multiplicand given the original and product points.  

5.2.1 Point Multiplication: 

Point multiplication operation is not a simple arithmetic operation. This operation is used to 

performed a transformation of an affine point into coordinate form in which a scalar k  is 

multiplied with another point P that lies on elliptic curve to produce another point Q on the 

same elliptic curve i.e. k*P=Q 

Point multiplication is performed by applying two basic elliptic curve operations [7] 

• Point addition, adding two points P1 and P2 to produce another point P3 i.e., P3 = P2 + P1. 

• Point doubling, adding a single point P1 to itself to produce another point P3 i.e. P3 = 2P2. 



Chapter 5                                                                     ELLIPTIC CURVE CRYPTOGRAPHY 
 

Elliptic Curve Cryptography On An Image Page 52 
 

Point addition and doubling are discussed in sections 5.2.2 and 5.2.3 respectively  

A simple example is explained here to give a brief introduction of point multiplication 

operation. 

Let P be a point on an elliptic curve. Take a scalar point k that is multiplied with the point P 

to obtain another point Q on the curve. i.e. to find Q = kP [42]. 

If k = 23 then kP = 23.P = 2(2(2(2P) + P) + P) + P [42]. 

Thus point multiplication is performed by applying point addition and point doubling 

repeatedly to compute and produce the result. The above method is called ‘double and add’ 

method for point multiplication. 

5.2.2 Point Addition 

Point addition is an operation that performs addition of two points J and K that lies on an 

elliptic curve to compute another point L on the same elliptic curve. 

Geometrical Explaination: 

 

Fig- 5.1 Point Addition Operation 
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Consider two points J and K on an elliptic curve as shown in figure (a). If K ≠ -J then a line 

drawn through the points J and K will intersect the elliptic curve at exactly one more point  

–L. The reflection of the point –L with respects to x-axis produces [7] another point L, which 

contains the result of addition operation of points J and K.     

Thus on an elliptic curve L = J + K. 

If K = -J the line through this point intersect at a point at infinity O. Hence J + (-J) = O. This 

is shown in figure (b). O is the additive identity of the elliptic curve group. A negative of a 

point is the reflection of that point with respect to x-axis [7]. 

Analytical explanation 

Consider two distinct points J and K such that J = (X1, Y1) and K = (X2, Y2) 

Let L = J + K where L = (X3, Y3), then 

X3 = S
2
 – X1 – X2 

Y3 = -Y1 + S (X1 – X3) 

S = (Y1 – Y2)/(X1 – X2), S is the slope of the line through J and K. 

If K = -J i.e. K = (X1, -Y1) then J + K = O. where O is the point at infinity. 

If K = J then J + K = 2J then point doubling equations are used. 

Also J + K = K + J 

5.2.3 Point Doubling Operation: 

Point doubling is an operation that performs addition of a point J to itself that les on the 

elliptic curve to produce another point L on the same elliptic curve. 

Geometrical explanation 

To double a point J to get L, i.e. to find L = 2J, consider a point J on an elliptic curve as 

shown in figure (a). If y coordinate of the point J is not zero then the tangent line at J will 

intersect the elliptic curve at exactly one more point –L. The reflection of the point –L with 
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respect to x-axis gives another point L, which contains the result of doubling the point J. Thus 

L = 2J. 

 

    Fig- 5.2 Point Doubling Operation 

If y coordinate of the point J is zero then the tangent at this point intersects at a point at 

infinity O. Hence 2J= O when Y1 = 0. This is shown in figure (b) [7]. 

Analytical explanation 

Consider a point J such that J = (X1, Y1), where Y1 ≠ 0 

Let L = 2J where L = (X3, Y3), Then 

X3 = S
2
 – 2X1 

Y3 = -Y1 + S(X1 – X3) 

S = (3X1 
2
 + a) / (2Y1), S is the tangent at point J and a is one of the parameters chosen with 

the elliptic curve 

If Y1 = 0 then 2J = O, where O is the point at infinity. 
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5.3 Finite Fields 

Finite field is defined as a subset of real numbers. There is round off error occurred for real 

numbers when operations are performed on it. Due to this problem performance of system is 

slow and inaccurate. Cryptographic operations required to be performed more rapidly and 

produce accurate result. Two finite fields are acquiring on which curve cryptography is 

defined to perform operations more accurately and effectively on ECC.   

• Prime field Fp and 

• Binary field F2
m

 

Choose a field with a large number of primes that is suitable for cryptographic operations. 

Section 5.4 and 5.5 explains the EC operations on prime fields and binary fields respectively. 

In these sections affine coordinate system is referred to perform operations in which each 

point is represented by the vector (x,y).  

5.4 EC on Prime field Fp 

General equation of curve on a prime field Fp is 

 y
2
 mod p= x

3
 + a x + b mod p,  

where 4a
3
 + 27b

2
 mod p ≠ 0. Here finite field is also a subset of elements that are integers 

ranging between 0 and p – 1. All the operations such as subtraction, addition, multiplication 

and divisions engage with integers within 0 and p – 1. Choose a prime number p in such a 

way that there are large numbers of points generated on curve that are capable to provide a 

secure cryptosystem. [4]. 

The curve generated by this elliptic curve equation is not a smooth curve. Therefore point 

addition and doubling operation performed on real numbers will not work here. Though, the 

algebraic rules for point addition and point doubling can be adapted for elliptic curves over 

Fp. 
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5.4.1 Point Addition 

Consider two distinct points P1 and P2 such that P1 = (X1, Y1) and P2 = (X2, Y2) 

Let P3 = P1 + P2 where P3 = (X3, Y3), then 

X3 = S
2
 – X1 – X2 mod p 

Y3 = -Y1 + S (X1 –X3) mod p 

S = (Y1 – Y2)/(X1 – X2) mod p, S is the slope of the line through P1 and P2. 

If P2 = -P1 i.e. P2 = (X1, -Y1 mod p) then P1 + P2 = O. where O is the point at infinity. 

If P2 = P1 then P1 + P2 = 2P1 then point doubling equations are used. 

Also P1 + P2 = P2 + P1 

5.4.2. Point Subtraction 

Consider two distinct points P1 and P2 such that P1 = (X1, Y1) and P2 = (X2, Y2) 

Then P1 – P2 = P1 + (-P2) where –P2 = (X2, -Y2 mod p) 

Point subtraction is used in certain implementation of point multiplication such as NAF [1]. 

5.4.3. Point Doubling 

Consider a point P1 such that P1 = (X1, Y1), where Y1 ≠ 0 

Let P3 = 2P1 where P3 = (X3, Y3), Then 

X3 = S
2
 – 2X1 mod p 

Y3 = -Y1 + S(X1 – X3) mod p 

S = (3X1
2
 + a) / (2Y1) mod p, S is the tangent at point P1 and a is one of the parameters 

chosen with the elliptic curve 

If Y1 = 0 then 2P1 = O, where O is the point at infinity. 

5.5 EC on Binary field F2
m 

General equation of elliptic curve for binary field is described below: 

y
2
 + xy = x

3
 + ax

2
 + b 

where b ≠ 0. 
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Finite field consists of elements that are integers and length of these integers is at most m bits 

while these numbers can be measured in degree of m-1 as a binary polynomial and 

coefficients are represented by either 1 or 0. In binary polynomial all the operations such as 

addition, subtraction, multiplication and division are performed in degree m-1 or lesser. 

Value of m is chosen in such a way that make the cryptography secure. The curve generated 

by this equation is not a smooth curve; so point addition and doubling cannot be applied over 

real numbers. Though, these rules are adapted for elliptic curve over F2
m

.  

5.5.1 Point Addition 

Consider two distinct points P1 and P2 such that P1 = (X1, Y1) and P2 = (X2, Y2) 

Let P3 = P1 + P2where P3 = (X3, Y3), then 

X3 = S
2
 + S + X1 + X2 + a 

Y3 = S (X1 + X3) + X3 + Y1 

S = (Y1 + Y2)/(X1 + X2), S is the slope of the line through P1 and P2. 

If P2 = -P1 i.e. P2 = (X1, X1 + Y1) then P1 + P2 = O. where O is the point at infinity. 

If P2 = P1 then P1 + P2 = 2P1 then point doubling equations are used. 

Also P1 + P2 = P2 + P1 

5.5.2. Point Subtraction 

Consider two distinct points P1 and P2 such that P1 = (X1, Y1) and P2 = (X2, Y2) 

Then P1 – P2 = P1 + (-P2) where –P2 = (X2, X2 + Y2) 

Point subtraction is performed in some implementation of point multiplication such as NAF 

[1]. 

5.5.3. Point Doubling 

Consider a point P1 such that P1 = (X1, Y1), where X1 ≠ 0  

Let P3 = 2P1 where P3 = (X3, Y3), Then 

X3 = S
2
 + S + a 
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Y
3
 = X1 

2
 + (S + 1)*X3 

S = X1 + Y1/ X1, S is the tangent at point P1 and a is one of the parameters chosen with the 

elliptic curve 

If X1 = 0 then 2P1 = O, where O is the point at infinity. 

5.6 Elliptic Curve Domain parameters 

There are many parameters apart from ‘a’ and ‘b’, that must be approved by both sender and 

receiver used in secured and trusted communication using ECC [19]. Both binary field and 

binary have different domain parameters that are described below.  

5.6.1 Domain parameters for EC over field Fp 

p, a, b, G, n and h  are domain parameters for Elliptic curve over Fp.  

Where p = prime number defined for finite field Fp.  

‘a’ and ‘b’ = parameters that is used to describe the curve y
2
 mod p= x

3
 + ax + b mod p. 

 G = generator point (XG, YG), that is a point on curve chosen for cryptographic operations.  

n = order of the curve [19].  

The scalar for point multiplication is chosen as a number between 0 and n – 1.  

h = cofactor where h = #E(Fp)/n. #E(Fp) is the number of points on an elliptic curve.   

5.6.2. Domain parameters for EC over field F2
m

 

For elliptic curve over F2
m 

a, b, G, m, f(x), n and h are domain parameters.  

Where m is an integer defined over finite field F2
m

. The elements of the finite field F2
m

 are 

integers of length at most m bits. f(x) is the irreducible in polynomial of degree m used for 

elliptic curve operations [42]. ‘a’ and ‘b’ are the parameters defining the curve y
2
 + xy = x

3
 + 

ax
2
 + b. G is the generator point (XG, YG), a point on the elliptic curve chosen for 

cryptographic operations [42].  The order of the elliptic curve is n [19]. The scalar value is 

chosen as a number between 0 and n – 1 for point multiplication. h is the cofactor where h = 

#E(F2m)/n. #E(F2m) is the number of points on an elliptic curve.  
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5.7 Discrete Logarithm Problem (DLP): 

The security of ECC depends on the difficulty of Elliptic Curve Discrete Logarithm Problem 

[42]. Let there is two points P and Q that exists on an elliptic curve such that kP = Q, where k 

is a scalar [42]. If value of P and Q are given, then it is computationally infeasible to obtain k, 

if k is sufficiently large. Here k is the discrete logarithm of Q to the base P [42]. 

As discrete logarithm problem is discussed in section 3.4, public key cryptosystems based on 

DLP is discussed in section 3.5 and different algorithms for solving DLP in section 3.6. This 

section is included to show that ECC depends on difficulty of DLP and how it helps to 

provide a security and a secure communication between two users. 

5.8 Advantages- 

a) Key size and digital signature that are generated through ECC are very shorter in size 

compare to other Cryptography scheme. 

b) This is based on discrete logarithmic form so easily can be converted into elliptic curve 

form. 

c) No time consumes for permutation and combination and less time taking for encryption. 

d) Till date no solution found for breaking the Discrete Logarithmic approach so brute force 

attack on ECC takes too many years (uncountable). 

e) Very much suitable for handheld devices such as palm top mobile phones PDA because 

they are low memory devices and ECC can work better on this. 

5.9 Disadvantages- 

a) ECC uses curves generators fields’ etc. This is more complex to calculate so this is not 

good for processor health. 

b) ECC systems are much slower than RSA in large no. of public key generation. 
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c) For performing calculations on more complex variables so it is also not good for device’s 

resources such as memory, processor etc. 

5.10 Applications- 

a) Simple Key generation by ECC is a great application in cryptography. 

b) Shorter Certificate 

c) Shorter Signature can also be generated with the help of ECC. 

 Generally till date ECC worked only in constrained environment such as less memory 

shorter devices and limited ROM and limited processing speed so it may be our new future 

work to make ECC more independent from system and devices and constrained environment. 

  Now we are moving to the IPV6 because there are some drawbacks in IPV4 

such as when transfer data over network then IPSEC protocol and IPV4 can’t work 

simultaneously so it is unable to provide a secure transmission. To make a secure 

transmission and make it better for doing a better work, elliptic curve cryptography is the 

solution for this because when data is transferred by using the RSA (Rivest-Shamir-Adleman) 

algorithm then a long key in size is required for encryption and decryption function and there 

may be possibility that data becomes corrupted and inconsistent in middle of the way but 

elliptic curve cryptography reduces size of key as compare to RSA and the transmitting data 

also become safe so that no one can become corrupted data and it provides less possibility of 

altering of data through by adversary [17]. 
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CHAPTER 6 

PROPOSED WORK 

6.1 Elliptic curve cryptography (ECC): 

The proposal of using Elliptic curves in cryptography was introduced by Victor Miller and N. 

Koblitz as an alternative to established public-key systems such as DSA and RSA [18]. In 

Elliptical curve Discrete Log Problem (ECDLP) makes it difficult to break an ECC as 

compare to RSA and DSA where the problem of factorization or the discrete log problem can 

be solved in sub-exponential time [18]. This means that ECC considerably utilizes smaller 

parameters rather than other systems like RSA and DSA. So ECC being capable in having a 

key small in size consequently leads to faster computations. 

Elliptic curve is already introduced in section 4 and introduced about ECC in chapter 5 so 

don’t need to discuss again about elliptic curve and ECC. This chapter tell about how do ECC 

work and implement on a system? How all the operations like point multiplication, addition, 

and doubling is performed on a message and when? How users distribute their keys on 

network? 

Elliptic curve is used by elliptic curve cryptography which restricts to all the variables and 

coefficients to be elements of a finite field. This procedure is initiated with an affine point in 

ECC called Pm(x,y). These affine points may be some other point nearest to the Base point 

(G) or to be the Base point itself. Base point refers to the smallest (x,y) co-ordinates, which 

satisfy the EC [18]. 

Take an example let users A and B want to communicate and they know about ECC. They 

start with elliptic curve and generate points that help to generate their keys. How these points 

help them? After generating point’s user A choose a random number that is a private key and 

keeps secret. As user A, user B also choose a random number and used as a private key and 

also keeps secret. Let user A choose 13 and user B choose 15 and perform multiplication 
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operation on base point, which is a smallest point of curve, with private key let base point is 

G (1, 1). Multiplication is performed by performing point addition and doubling continually.      

Hence (private key).(base point)=13G=(G+2(2(G+2G))) 

So 2G is representing doubling operation. Why? Here a base point G is added with self to 

generate another point. And then resultant is added with base point G and generates another 

result and this process will be continuing recursively until it does not reach to parent calling 

function.  

 6.2 Generate Public and Private Key and key distribution: 

User A’s (or User B’s) public and private keys are associated with a particular set of elliptic 

key domain parameters {p, Fp, a, b, G, n, h} where 

• p: prime power, p=q or p= 2
m 

, where q is a prime 

• Fp: field representation of the method used for representing field elements ∈ Fq 

• a, b: field elements, they specify the equation of the elliptic curve E over Fq,  

    y
2 

= x
3 

+ ax + b 

• G: A base point represented by G= (Xg, Yg) on E (Fq)  

• n: Order of point G , that is n is the smallest positive integer such that nG = O 

• h: cofactor, and is equal to the ratio #E(Fq)/n, where #E(Fq) is the curve order  

Private Key is a random number which is generated by user and keep secretly and public is 

generated by multiplying a base point G with private key of user. Let private key of user A is 

nA and public key of user A is generated as PA=nAG if private key nA is 15 then  

PA=15(G)=G+2(G+2(G+2G))  
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After generating keys public key is distributed over network which is used for 

communicating user for the encryption of message so confidentiality become remain until 

someone does not get private key of user that is so difficult to obtain from public key because 

that multiplication is not arithmetic operation, it’s point multiplication which is performed by 

performing addition and doubling repeatedly. User B also follows the same procedure as user 

A follows and generates public and private key. Both share their public keys over secure 

communication and generate secret key so that they can share their keys easily [18]. 

6.2.1 Mathematical Analytical: 

Let user A and user B want to communicate then 

Global Public Element:    

Ep(a,b)  elliptic curve with parameter a, b, and p in the equation  

   Y
2
 mod p=(X

3
+aX+b) mod p 

Q   Base point on elliptic curve  

User A key generation: 

Select private key     nA   nA < n 

Calculate public key PA     PA  = nA G 

User B key generation: 

Select private key     nB   nB < n 

Calculate public key PB   PB =nB G 

Generation of secret key by user A: 

  S1=K=nA PB 
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Generation of secret key by user B:  

  S2=K=nB PA  

These both calculation generate same result because 

nA PB =   nA nB G = nB (nA G) = nB PA  

To crack this system, if G & kG is given then an attacker would require to be able to obtain k, 

which is tough to determine. 

For example, scalar multiple k is 5; G ≡ (2,2) then let 5G= D≡(153,108) for a=0, b=-4, 

q=211. It is difficult to find out the scalar multiple k=5 [18], the values of G and D are given. 

6.3 Elliptic Curve Encryption and Decryption: 

(1) Let a message ‘m’ sending from user A to user B. User A chooses a random positive 

integer ‘k’, a private key ‘nA’ and generates public key PA=nAG and produces the cipher text 

‘Ct’ is a pair of points Ct ={kG, Pm+kPB}. 

Where G is the base point lies on elliptic curve and selected from generated points, PB=nBG is 

the public key of User B with private key ‘nB’. 

(2) To decrypt the cipher text, user B multiplies the 1
st
 point in the pair by user B’s secret key 

and subtracts the result from 2
nd

 point  

Pm + kPB - nB(kG) = Pm + k(nB G) – nB(kG)=Pm  

(3) Then apply decrypt logarithm problem on Pm and get the original message m. 

6.4 Implementation of encryption procedure:  

Before transmitting image on network encryption of image is needed so to perform 

encryption process first generate points on elliptic curve and then keys are generated that are 
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so helpful in encryption and decryption of an image. After that perform encryption in which 

scalar values are transformed into affine values.     

6.4.1 Generate points on elliptic curve: 

 There is a regular need to maintain a database for points that satisfy the elliptic curve 

equation, for generating points follow the code mentioned below to check all Y co-ordinates 

for specified X co-ordinates that satisfy equation has been incorporated. Equation of elliptic 

curve is given below: 

   y
2
 mod p=(x

3
+ax+b) mod p 

Where, p is a prime number. 

Algorithm input a, b, p 

Step 1 take x=0 or any other positive integer 

Step 2 loop until x<p 

I. Y
2
=(X

3
+aX+b) mod p 

II. If Y
2
 is perfect square  

           Print(X, square root (Y)) 

       Else  

           X=X+1 

    Step 3 End. 

For example p=37 a=-1 b=1 

X Y 

1 1 
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3 24 

6  1 

8 30 

14 3 

24 27 

25 22 

31 1 

32 17 

33 29 

36 21 

 

     Table 6.1 elliptic points 

6.4.2 Code to find public key: 

Input:  XG=X co-ordinate of G 

 YG=Y co-ordinate of G 

 nA be the private key. (A scalar multiple) 

Let PA be the public key. PA= nA×G 

We perform recursive addition of point G for nA times to get the point PA. 

For example: G= (2, 2), nA=5, (153,108) = 5(2, 2). So, PA= (153,108) is the public key for 

[18] private key 5. 

6.4.3. Multiplication operation: 

This is an optimized approach of multiplication operation, which reduces required memory 

spaces to save state of calling function and their variables in recursion approach, which is 

based on iterative method in which we just need some iteration to perform operation. In this 

approach first we generate binary code of scalar value and number of iteration equals to 
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(number of bits-1) to represent scalar value. If bit value is zero (0) then perform only 

doubling operation and if bit value is one (1) then perform both doubling and addition 

operation. 

Example  

7*(1, 2) then 

7*(1,2)=(1,2)+2((1,2)+2(1,2)) here number of doubling operation=2 and number of addition= 

2 mean total number of operation= 4 using recursion.  

Using iteration-  

Binary of 7= 111 number of bits =3 so number of iteration= 2 

In first iteration bit value is 1 so perform addition and doubling and then in second iteration 

bit value is 1 so again perform addition and doubling so total number of operation= 4 but 

number of iteration is reduced.    

Algorithm input k, B  

 Funmul(k,B) // here k is scalar value and B is any coordinate value 

{ 

 Binary=convert scalar value in to binary 

 For 1=1 : binary-1 

  If  binary(i)==0 

   Perform doubling operation 

  Else  



Chapter 6                                                                                                     PROPOSED WORK 

 

Elliptic Curve Cryptography On An Image Page 68 
 

   Perform addition and doubling operation 

  End 

 end 

} 

6.4.4 Encryption: 

Elliptic curve cryptology is applied on an image that is a transformation of an image into 

affine points lie on elliptic curve by performing multiplication operation. Let a is a scalar 

value representing to a pixel value of an image then PML=a* PM yield a coordinate value that 

is a transformation of scalar value in to affine point and it is evaluated by performing 

multiplication on affine point PM with pixel value. After that PML is added with KPUB where 

K is a random number and PUB is a public key of user B. Completion of encryption generates 

cipher text CF={KG,PML+KPUB} here first part KG formed a coordinate form mean (x1,y1) 

and second part of cipher text PML+KPUB  is also formed a  coordinate form i.e. (x2,y2) and 

finally cipher text is CF={(x1,y1),(x2,y2)}. This is an encrypted data that is yield by 

encryption procedure. 

Algorithm input c, Pm, NB, G 

EccEncrypt (c, Pm, NB, G) 

Step 1-For all c (i.e. pixel value) 

Find Pml=c *Pm // c is pixel value, Pm is random point in elliptic curve 

Step 2- Find PUB=PRB*BP //BP is the base point Of   Elliptic curve, 

Step 3- End; 



Chapter 6                                                                                                     PROPOSED WORK 

 

Elliptic Curve Cryptography On An Image Page 69 
 

Encrypted data= (kBP, Pml+k*PUB) 

6.5. Implementation of Decryption: 

On receiver side receiver receives cipher text i.e. non readable form of message it is a 

combination of two pair of coordinate kBP and Pml+k*PUB. kBP is first point of cipher text 

and Pml + k*PUB is second point of cipher text then perform multiplication on first part with 

private key of user.  

kBP *PRB =first point * private key of user B and obtain result that is subtracted from second 

point i.e. 

Pml + k*PUB – k*BP*PRB=Pml  

After getting Pml i.e. Pml=c*Pm from cipher text apply discrete logarithm problem and get 

original message i.e. c.  

6.5.1 Discrete logarithm problem: 

Algorithm  input r0,r1 that is x-coordinate and y-coordinate [4] 

         decryption(r0,r1) 

  g=1; 

  while(rem(r0,2)==0 && rem(r1,2)==0) 

      r0=r0/2; 

      r1=r1/2; 

      g=2*g; 

  end 
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  u=r0; 

  v=r1; 

  a=1; 

  b=0; 

  c=0; 

  d=1; 

  count=1; 

  while(count) 

      while(rem(u,2)==0) 

          u=u/2; 

          if(rem(a,2)==0 && rem(b,2)==0) 

          a=a/2; 

          b=b/2; 

          else 

          a=(a+r1)/2; 

          b=(b-r0)/2; 

          end 

     end 

      while(rem(v,2)==0) 
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           v=v/2; 

          if(rem(c,2)==0 && rem(d,2)==0) 

          c=c/2; 

          d=d/2; 

          else 

          c=(c+r1)/2; 

          d=(d-r0)/2; 

          end 

      end 

      if(u>= v) 

      u=u-v; 

      a=a-c; 

      b=b-d; 

      else 

      v=v-u; 

      c=c-a; 

      d=d-b; 

      end 

      if(u==0) 
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      gcd=v*g; 

          if(gcd==1) 

          fprintf('in verse is exist and it is %d mod %d i.e. )',d,r0); 

         count=0; 

             r=mod(r0,d);  

            fprintf('%d',r); 

         return ; 

         end 

      else 

         fprintf('\n \n value value value of d and r0 is %d   %d ',d,r0); 

         count=1; 

          r=0;         

     end 

 end 

This algorithm helps us to perform invertible of encryption operation. 
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CHAPTER 7 

RESULT AND ANALYSIS 

Elliptic curve cryptology is performed by taking elliptic curve. A general Elliptic Curve is 

taken that is represented by the following equation:  

E: Y
2
=(X

2
+aX+b) mod p 

Where X, Y are elements of GF(p) and a, b are integers modulo p, satisfying : 

4a
3
+27b

2
≠0 (mod p)  

  Generate elliptic curve values for which a=-1, b=1 and p=37 

Generated values are given that satisfied both curve and a constrained applied on ‘a’ and ‘b’. 

X Y 

1 1 

3 24 

6  1 

8 30 

14 3 

24 27 

25 22 

32 17 

33 29 

      Table 7.1 lookup table 
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Then generate private and public key pair for user A and user B 

Let private key of user A is PRA=13, and 

Private Key of user B is PRB =17 and public keys of user A and B are a multiplication of 

private keys and base point of curve. 

Base point BP= (1, 1). 

And take another point that is affine point PM (6, 1). 

Now cipher text mean unreadable form of data CF =(PRA*BP,PML+PRA*PUB)  

7.1 Encryption 

Takes an image and read each pixel value and transform scalar value of pixel into coordinate 

form by performing multiplication of pixel value with affine point.     

    

Fig 7.1 original image 

SML=a*PM  

Where a is pixel value of an image  

And PM is affine point  
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First takes binary value of pixels then using iteration method perform multiplication 

operation. Let pixel value i.e ‘a’ is 4 then Binary value of ‘a’ is 100. 

Only 2 iterations is needed to perform multiplication operation and binary representation of 

pixel value contain 1, 0, 0 so perform only doubling operation two times and result is   

4(6, 1) = (7.395623e+002, -2.011233e+004) 

Then PRA*PUB   where PUB is public key of user B it’s a multiplication of private key of user 

B with base point  

PUB = PRB * BP =17 (1, 1) = (5.482019e+000, -1.300886e+001) 

PUB = (5.5, -13.00) (round off) 

 PRA *PUB =13*(5.5, -13.0) = (1.427888e+001, 5.407907e+001) 

PRA *PUB = (14.2788, 54.0790) (round off) 

SML+PRA* PUB= (1.926959e+001, 8.468695e+001) 

SML+PRA* PUB = (19.2696, 84.6869) (round off) 

Encrypted Data- 

CT = ((PRA*BP), (SML+PRA* PUB)) 

CT = ((0.9867, -0.9734), (19.2696, 84.6869)) 
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Fig 7.2 encrypted image 

 

7.2 Decryption At receiver side- 

At receiver side, receiver receives cipher text that has two coordinate values first one is (PRA 

*BP) and another one is (SML+PRA* PUB) then multiply first value with private key of user B 

PRA *BP *PRB= (1.67234e+004,-6.85974e+007) 

PRA *BP *PRB =(16.7234e+003,-68.5974e+006) 

Subtract this value from second coordinate value then resultant is an encrypted value of pixel 

so  

(s1, s2) = (1.817513e+005, -7.748475e+007) 

Now by the Discrete Logarithmic Problem get the original pixel value  
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Fig 7.3 decrypted image 

Conclusion is that results are not clear and not exactly same as supplied in original because if 

looked on encrypted points then analyzed that they are not integer they are real numbers but 

after that approximate same result is obtained. 
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

From starting to last looking that ECC is successfully implemented on an image till date this 

is the latest and with less overhead and shorter key public key cryptography scheme which 

reduces system’s effort in encryption. 

  This thesis summarizes that what is elliptic curve cryptography and what are 

the operations involved in the Encryption and decryption and analyze the results on an image. 

And also analyzed the look up table which contains the base point and all other affine points 

and more about elliptic curve, further discussed about what are type of attacks are possible in 

very much brief on ECC cryptography. Their countermeasures are not discussed so much 

because that is not our concern. Applications Elliptic curve cryptography in the real world 

and also in constrained environment, in some area this cryptography technique cannot be 

used. In the next generation ECC can be applied to IPV6 and now it is using the IPV4 

protocol so in the new era ECC is build up a secure and effective protocol for IPV6.  

 ECC is applied on an image but it is not able to obtain exactly same result because in 

this thesis modular ECC is applied to get the result rather than Binary ECC. Why modular 

ECC is applied rather than binary ECC? Because modular ECC is based on modular calculus 

in which a mod value of the equation is determine. So the pixel values become closer as most 

possible so image display is a little bit different from original image but this is not our 

concern. 

  It has proven that ECC is a successful Public key generation and encryption 

technique. In this age when people is becoming more dependent on internet for 

communication and transferring files over public network such as internet then a such 

technology is necessary which is secure and unbreakable from network attacks i.e. ECC. In 

future this is a very wide area for research because many secrets of ECC can be disclosed that 
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are unrevealed still and that day is not so far on which ECC replaces RSA and other public 

key encryption techniques. 
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