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Predictive Modeling of High Throughput Bioassay 

Screening Datasets using Machine Learning Algorithms 

 

Sonam Arora 

Delhi Technological University, Delhi, India 

 

1. ABSTRACT 

 

Dynamic and differential regulation and expression of genes form the basis of cellular identity 

and organisation. This dynamic regulation is majorly governed by the complex interactions of a 

subset of biomolecules in the cell operating at multiple levels starting from genome 

organisation, protein post-translational regulation and to the organellar level. The regulatory 

layer contributed by the epigenetic layer has been one of the favourite areas of interest recently 

that largely comprises of DNA modifications, histone modifications and noncoding RNA 

regulation and the interplay between each of these major components. Also the dysfunctional 

genes and proteins involved in mitochondrial dynamics are shown to be central to development 

of a number of disease processes and has been explored as a potential target for drug 

development. The availability of datasets of high-throughput screens for molecules for 

biological properties offer a new opportunity to develop computational methodologies which 

would enable in-silico screening of large molecular libraries in search of potential biological 

activities, as a substitute for costly chemical biology approaches. In the present study, we have 

used four different high throughput screens available for the inhibitors of epigenetic modifiers 

and one assay for mitochondrial fusion inhibitors. Computational predictive models were 

constructed based on the molecular descriptors generation owing to the activity of molecules. 

Machine learning algorithms for supervised training, Naive Bayes and Random Forest, were 

used to generate predictive models for the compounds available. Random forest, with the 

accuracy of 80%, was identified as the most accurate classifier.The study was also 

complemented with substructure search approach filtering out the probable pharmacophores 

from the active molecules leading to drug molecules. We show that effective use of appropriate 

computational algorithms could be used to learn molecular and structural correlates of 

biological activities of small molecules. The computational models developed were used to 

screen the large libraries of anticancer cell lines to show one of the application of these models 

generated.  
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2. INTRODUCTION 

 

Next-generation sequencing and high throughput technologies have generated enormous 

amounts of data, management and utilization of which has become a cumbersome task. Huge 

chemical libraries have been generated to screen out the molecules for drug development. Drug 

discovery is the first step of drug development which involves screening of high throughput 

data to generate hits and then from hits to lead compounds which act as potential drug 

molecules. The whole process takes 10-15 years to launch the drug into the market. Moreover, 

a lot of times all the efforts go in vain because of the problems associated with virtual 

screening at the very first step. First is the access to freely-available curated data, second is the 

number of false positives that occur in the physical primary screening process, and third is that 

the data is highly-imbalanced with a low ratio of active to inactive compounds (Amanda C 

Schierz 2009). Hence demand is for predictive computational methods that can prioritize 

molecules for biological screening. We have used machine learning algorithms to build models 

on different classifiers to prioritize the molecules as actives or inactives. We used Naïve Bayes, 

Random forest algorithms and constructed models applying cost sensitive approach. Then we 

used unsupervised classification, often known as 'cluster analysis' to group the compounds into 

having similar sub-structures and showing drug-like activity. Hierarchical method was used for 

the same purpose. 

 

The individuality in an organism in terms of its phenotype, response to particular environment 

is attributed by the differential gene expression though having 99.99% genome similarity. The 

genome-wide abnormality of gene expression involves irreversible genetic lesions and 

epigenetic modifications. Epigenetic phenomenon includes DNA methylation mainly at the 

CpG islands using DNA methyl transferases and Histone modifications. Both of these changes 

regulates the expression at transcriptional level and involved in silencing of some important 

genes. Tumor suppressor genes can be silenced by DNA methylation during cancer 

development. Aberrant DNA methylation is closely associated with histone deacetylases, 

histone methyltransferases and histone demethylases that can modify histone amino-terminal 

lysines and develop specific histone codes, resulting in inactive chromatin formation. These 

processes change epigenetic information that builds up abnormal chromatin structure, and 

creates the unique features of cancer cells (Yoshikawa H 2007) 

Epigenetic modifications and their dysregulation has been implicated in the pathophysiology of 

a wide spectrum of diseases (Miller-Jensen K. 2011).Though the present knowledge of the role 

of epigenetic dysregulation  in these diseases is rudimentary, a number of diseases including 

cancers (Momparler RL. 2003) neuropsychiatric disorders (Graff et al., 2011), metabolic 

disorders (Volkmar et al., 2012) have been shown to have a strong association with epigenetic 

malfunction. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Yoshikawa%20H%5BAuthor%5D&cauthor=true&cauthor_uid=17301518
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Small molecule modulators of these epigenetic processes are currently sought as starting points 

for development of therapeutic agents and one of the  basic probes for biochemical 

mechanisms. The demethylases and histone lysine methyltransferases  are proposed as targets 

for the therapeutic modulation of transcription (Oliver et al., 2010). 

Dysregulation at cellular and organellar level also contributes to wide spectra of diseases. A 

deranged mitochondrial dynamics and balance between mitochondrial fission and fusion has 

been implicated in a number of cancers and neurodegenerative diseases including Alzheimer's 

(Hsiuchen et al., 2009; Michael et al., 2010). It has been suggested that mitochondria evade 

apoptosis in cancers through activating mitochondrial fusion (Sugioka et al., 2004). Many 

distinct pathways associated with mitochondrial fusion has been shown to be activated in 

cancers. Mitochondrial fusion proteins thus provides for an attractive target. We aimed to 

model the activities of inhibitors of mitochondrial fusion along with epigenetic modifiers. 

These models can be potentially used to quickly screen large molecular databases to prioritise 

and to discover potential new activities, thus significantly reducing the time and failures 

associated with high-throughput chemical biology screens. 
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3. REVIEW OF LITERATURE 

 

3.1 Epigenetics 

Various environmental factors such as diet, drugs, adverse conditions during early and 

sensitive phases (Jirtle et al.,2007; Murgatroyd et al 2011) of life can lead to metabolic, mental 

and cardiovascular diseases. This physiological and behavioural phenotypes are contributed by 

the alteration in expression at the genetic level (Gluckman et al., 2009; Murgatroyd et al., 

2009). The Genome-wide abnormality in gene expression is regulated by the ―epigenetic‖ 

mechanisms, which includes DNA methylation, post-translational histone modifications, 

nucleosome remodeling and non-coding RNAs. Epigenetics can be defined as ―stably heritable 

phenotypes resulting from changes in chromosomes without alterations in the primary DNA 

sequence‖ (Berger et al., 2009). Key processes involved in this gene-environment 

programming are DNA methylation and histone modifications. DNA methylation is essential 

for normal development and is associated with a number of key processes including genomic 

imprinting, X-chromosome inactivation, suppression of repetitive elements, 

and carcinogenesis. DNA methylation in eukaryotes occurs by the covalent modification of 

cytosine residues in CpG dinucleotide at position 5 of cytosine utilizing SAM as methyl source 

and DNMT (DNA methyl transferase) enzyme as depicted in Figure 1. Between 60% and 90% 

of all CpGs are methylated in mammals (Ehrlich et al., 1982; Tucker, 2001) .Those 

unmethylated stretches of CpG in DNA are referred to as  ―CpG islands‖(Illingworth et al., 

2009).  

  

 

Figure 1. Methylation of Cytosine at position 5using S-adenosylmethionine by the enzyme DNMT. 

 

DNMT 

http://en.wikipedia.org/wiki/Genomic_imprinting
http://en.wikipedia.org/wiki/Genomic_imprinting
http://en.wikipedia.org/wiki/X-chromosome_inactivation
http://en.wikipedia.org/wiki/Carcinogenesis
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Figure 2(A) Schematic of epigenetic modifications. Strands of DNA are wrapped around histone octamers, forming 

nucleosomes, which to be organized into chromatin, the building block of a chromosome. Reversible and site-specific histone 

modifications occur at multiple sites through acetylation, methylation and phosphorylation. DNA methylation occurs at 5-

position of cytosine residues in a reaction catalyzed by DNA methyltransferases (DNMTs). Together, these modifications 

provide a unique epigenetic signature that regulates chromatin organization and gene expression.  

Figure 2(B) Schematic of the reversible changes in chromatin organization that influence gene expression: 

genes are expressed (switched on) when the chromatin is open (active), and they are inactivated (switched off) when the 

chromatin is condensed (silent). White circles = unmethylated cytosines; red circles = methylated cytosines. ( adapted from 

Basic Principles of Genetics by: Professor Le Dinh Luong). 

Epigenetic mechanisms provide an "extra" layer of transcriptional control that regulates how 

genes are expressed. These mechanisms are critical components in the normal development and 

growth of cells. The basic principles of epigenetics i.e.  DNA methylation and histone 

modifications are described in Figure 2A and 2B.  

 

Two types of normal methylation processes are known in eukaryotic cells i.e. Deno 

methylation and maintenance methylation. De novo methylation is involved in the 

http://cnx.org/member_profile/ledinhluong
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rearrangement of methylation pattern during embryogenesis or differentiation processes in 

adult cells [(Monk 1990;  Razin et al., 1993). De novo methyltransferases  newly methylate 

cytosines at position 5 after recognising specific marks (Figure 3). DNMT3a and DNMT3b are 

the de novo methyltransferases that set up DNA methylation patterns early in development. 

 

 
           Figure 3: Methylation at new sites by recognising specific marks by DNMT 3a and DNMT 3b. 

 

Maintenance methylation is responsible for maintaining the methylation pattern once 

established. DNA methylation is preversed after every cellular DNA replication cycle. 

Maintenance methyltransferases add methylation to DNA when one strand is already 

methylated. Without the DNA methyltransferase (DNMT), the replication machinery itself 

would produce daughter strands that are unmethylated and, over time, would lead to passive 

demethylation (Figure 4). DNMT1 is the maintenance methyltransferase that copies DNA 

methylation patterns to the daughter strands during DNA replication 

 

 
Figure 4: Maintenance methylation to preserve the already existing methylation patterns through 

replication by DNMT1. 

 

50-70% of the promoters are embedded within CpG islands (Sandelin et al., 2007) and 

methylation of such islands is responsible for transcriptional repression. CpG methylation 

patterns are frequently altered in tumor cells and an increased methylation contributes to 

promoter inactivation of tumor suppressor genes leading to cancers of various types (Figure 5). 

    

http://en.wikipedia.org/wiki/DNA_methyltransferase
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Figure 5: Silencing of tumor suppressor genes by methylation of unmethylated CpG islands of normal cells 

leading to cancer. Promoters of TSG become hypermethylated  during tumorigenesis(adapted from Luiz et al., 2005) 

 

A genetic and epigenetic alteration leads to aberrant gene functions and changes in expression 

and stability of genome. The epigenetic changes in chromatin in contrast to the genetic ones are 

biochemically reversible and involve changes in structure and function through post-

translational modifications of histone proteins. This justifies the interest into deciphering the 

regulatory pathways involved in establishing and maintaining chromatin structures in normal 

and cancerous cells (Radhika et al.,2011) 

 

3.1.1 Histone modifications 

The genetic or the heredity information in mammals is organised in the form of chromatin. 

Nucleosome is the structural and functional unit of chromatin, which consists of an octamer of 

the core histones H2A, H2B, H3 and H4 around which 147 bp of DNA are wrapped (Luger et 

al., 1997). The linker histone H1 binds the DNA entering and exiting the nucleosome enabling 

further compaction of chromatin. 

Chromatin structure is regulated by chromatin remodeling factors, histone exchange, linker 

histone association, and histone modification.  Eukaryotic chromatin is highly dynamic and can 

continuously exchange between transcriptionally active conformation in open form and a 

compacted silenced one. Various post-translational modifications that occur in histone tails and 

their sites are described in Figure 6. Three main mechanisms have been proposed to regulate 

chromatin dynamic structure by compaction and decompaction which decides its accessibility 

for nuclear proteins (Adams-Cioaba et al., 2009) 

First, the energy liberated from ATP hydrolysis is used by chromatin remodelling complexes to 

actively move and change the position of nucleosomes along the DNA (Kunert et al., 2009). 

Second, histone variants are incorporated at specific locations where they define a precise 

chromatin state (Talbert et al., 2010) and third, covalent modifications of histones or DNA can 

be key to regulation of chromatin structure and all DNA dependent processes (Kouzarides 

2007; Campos et al., 2009). 

DNMTs 

Me- binding proteins 

HKMT 

HDAC
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Figure 6. Sites of post-translational modifications on the histone tails. The modifications shown include acetylation 

(purple), methylation (red), phosphorylation (blue) and ubiquitination (orange). Note Lys 9 in H3 can be either acetylated or 

methylated (adapted from Radhika et al.,2011). 

Histone modifications affect the chromatin structure and function in two ways: The disruption 

of contacts between adjacent nucleosomes or between histones and DNA e.g. by charge 

changes alters the function of chromatin. The acetylation of histone lysine can neutralize the 

positive charge of lysines, thus weakening the affinity between histone and DNA, forming 

more accessible and open chromatin state (Choi et al., 2009). The second mechanism to 

regulate chromatin dynamics is the recruitment of specific binding proteins by histone marks. 

According to the so called ‗histone code‘ hypothesis (Turner 1993; Strahl et al., 2000),protein 

complexes that read these marks can recognise single or combinations of histone 

modifications, converting them into specific functional chromatin states and regulate 

downstream responses. 

Histone modifying machinery can be catagorized as writers, erasers and readers of epigenetic 

information. Enzymes that acetyl or methyl groups like histone acetyltransferases (HATs also 

called KATs) and histone lysine methyltransferases (KMTs) are referred to as ―writers‖ of the 

histone code (Baker et al., 2008). Enzymes that remove these groups are called ―erasers‖ ; eg. 

Histone deacetylases (HDACs or KDMs) and histone lysine  demethylases (KDMs).  Group of 

proteins possessing effector domains including plant homeodomain (PHD), tudor, chromo or 

bromo domains are called ―readers‖ because they  recognize specific modified residues 

(Taverna et al., 2007). 

 

The gene expression is further regulated by the ―epigenetic landscape‖ that shows interactions 

between DNA methylation machinery and histone modifying enzymes. Altered function of 

either of writer, eraser or reader can change the normal cells into cancerous by affecting the 

transcriptional state of cells. In order to reverse such types of chromatin aberrations, efforts are 
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on to develop small molecules coined as ―epidrugs‖ to provide targeted molecular strategies 

(Radhika et al., 2011) 

3.1.2 Histone methylation 

All chromatin dependent processes are regulated by the post-translational modifications of 

histones that occurs in their unstructured N-terminal tails as well as globular domains. This 

involves methylation of lysine, arginine and histidine residues, acetylation, ubiquitylation and 

SUMOylation of lysines and phosphorylation of serine and threonines (Berger et al., 2007). 

Lysine acetylation usually results in transcription activation, lysine methylation can both 

activate or repress transcription depending on the residue and degree of methylation (mono-, 

di- or trimethylated forms). Site and state-specific lysine methylation of histones is catalyzed 

by a group of lysine methyltransferases (KMT) containing the evolutionarily conserved SET 

domain [Su(var), enhancer of zeste, Tritorax]. They have been sub-grouped into seven main 

families, named according to their founding member: SUV39, SET1, SET2, EZ, RIZ, SMYD 

and SUV4-20 (Dillons et al., 2005). 

Methylation of H3 at lysine 9 and 27 residues as well as H4 at lysine 20 results in gene 

silencing, whereas H3K4, H3K36 and H3K79 functions in gene activity(Nielsen et al., 2001; 

Peters et al 2002). 

H3K27 methylation has an important role in the repression of HOX genes during development 

and in X chromosome inactivation and imprinting (Plath et al., 2003; Zhang et al 2004; Cao et 

al., 2008). In the case of H4K20 each methylation state is implicated in different biological 

processes. H4K20me1 peaks in M phase and is involved in cell-cycle progression and 

chromosome condensation (Huen et al., 2008; Pesavento et al 2008; Yang et al., 2009). 

Outside of mitosis H4K20me1 is a mark for active transcription (Vakoc et al.,2006). 

H4K20me2 has a role in DNA repair (Botuyan et al., 2006) and H4K20me3 is enriched in 

heterochromatin and is implicated in heterochromatin maintenance and telomere stability 

(Schotta et al., 2004; Wang et al., 2009) 

H3K4 methylation occurs in mammals in several distinct genomic distributions. Strong 

enrichments of H3K4me3 are found at transcription start sites (TSS) of active genes whereas 

H3K4me2 is present across the genes, where they contribute to transcriptional initiation and 

mRNA processing respectively (Santos-Rosa et al., 2003; Vakoc et al., 2006; Lee et al., 2008). 

H3K4me1 peaks instead at the 30 end of active genes both in yeast and mammals (Morillon et 

al., 2005; Rando et al., 2009). Targeting of H3K4 methylation to these sites can occur via the 

interaction of H3K4 specific KMTs with the active, phosphorylated form of RNA Pol II, 

providing a direct link with transcription (Krogan et al., 2003). Interestingly large domains of 

H3K4 methylation covering both genic and intergenic regions are evident at specific locations 

such as the HOX genes cluster. 
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3.1.3 Histone Demethylases 

Histone lysine demethylases (KDM) have been categorised into two groups. The first group of 

amine oxidase-domain containing enzymes is represented by LSD1 (also known as AOF2) and 

LSD2 (also known as AOF1). LSD1 demethylates H3K4me1/me2 (Shi et al.,2004) and 

H3K9me1/me2 (Mrtzger et al.,2005)  its activity on nucleosomes substrates requires the 

transcriptional co-repressor CoREST (Lee et al., 2005).  LSD is stimulated by HDAC1 (histone 

deacetylase 1) revealing a functional interconnection between histone demethylation and 

deacetylation (Lee et al., 2006). LSD2 has been recently identified and shown to be specific for 

H3K4me1/me2 (Karytinos et al., 2009). 

The second group of KMTs is represented by the Jumonji domain-containing proteins (jmjC), 

the members of this group are Fe(II) and 2-oxoglutarate (2OG) dependent oxygenases 

(Tsukada et al., 2006). The jumonji-C (JmjC) domain-containing enzymes constitute the 

largest class of histone demethylases. JmjC enzymes are able to revert all three histone lysine 

methylation states (Klose et al., 2006; Agger et al., 2007), unlike that of LSD1 that can remove 

only mono and di-methyl groups. Based on the presence of additional domains beside the jmjC 

domain, JmjC histone demethylases (JHDM) enzymes have been classified into seven 

evolutionary conserved subgroups (JHDM1, PHF2/PHF8, JARID, JHDM3/JMJD2, 

UTX/UTY, JHDM2 and JmjC domain only). JmjC-domain demethylases are linked with 

diseases, including androgen-dependent prostate cancer (Lee et al., 2008), obesity (Choi et al., 

2009), and X-linked mental retardation (Robinson et al., 2008), suggesting that these enzymes 

may constitute novel targets for therapeutic intervention. 

In order to maintain global histone methylation patterns lysine-specific demethylases (KDMs) 

work in coordination with histone lysine methylases. The histone demethylases that belongs to 

the amine oxidase demethylate its substrate in a flavin adenine dinucleotide (FAD)-dependent 

reaction and those belonging to  oxygenase super families (Figure 7a and 7b) eg. the JmjC 

proteins demethylate histones in a α-keto-glutarate and Fe(II)-ion dependent manner. 
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Figure 7a : Histone demethylation. Amino oxidase family demethylate histone tails. LSD1 demethylates H3K4me2/1 to 

H3K4me0 in a FAD-dependent reaction (adapted from Radhika et al.,2011). 

 

 

Figure 7(b): Histone demethylation. JMJD2 catalyzes demethylation of H3K36me3/2 and H3K9me3/2 to H3K36me1 

and H3K9me1 in the presence of α-ketoglutarate and Fe2+ ions (adapted from Radhika et al.,2011). 

 

3.1.4 Histone Modifications Cross-Talk  

The chromo-like domains (chromo, MBT, Tudor) specifically bind methylated lysines, 

whereas acetylation is specifically recognized by bromodomains (Winter et al., 2008; Adams et 

al., 2009; Sanchez et al., 2009).  For example the histone methyltransferases G9a and its 
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interaction partner Glp1 bind H3K9me1/me2 methylate neighbouring histones on H3K9 via a 

distinct catalytic domain (Collins et al., 2008). This product-binding capacity of G9a/Glp1 

illustrates a general ‗feed forward loop‘ mechanism how cells can maintain and propagate 

histone modifications and functionally defined chromatin states (Collins et al., 2010). 

 The modifications of the histone tails regulate nucleosome function by affecting the binding of 

effector proteins, whereas modifications within the histone fold domain can directly regulate 

nucleosome structure (Tropbereger 2010; Cosgrove 2004). 

Histone modifications distinctly regulate many downstream functions by affecting other 

modifications taking place. Also, this cross-regulation may occur between histones on same 

nucleosome or across different nucleosome. For eg. Chromo domain of heterochromatin 

protein 1 (HP1) bind H3K9me3 specifically. Also, H3K9me3 is involved in formation and 

propagation of heterochromatin (Lachner et al., 2001; Bannister et al., 2001). However, in 

mitosis HP1 is released from condensed chromatin despite the persistence of its recruiting 

mark H3K9me3 (Fischle et al., 2005; Hirota et al., 2005). In interphase the removal of HP1 

from chromatin depends on H3S10 phosphorylation and is a pre-requisite for transcriptional 

activation (Crosio et al., 2003). 

 

 

3.1.5 KMTs/KDMs in cancer 

 

Di- and tri- methylated lysine of H3 are located mainly at the gene promoters. H3K4me1 on 

the other hand is associated with gene enhancers. Several marks are associated with the 

transcribed region of active genes and these include H3K9me1, H3K27me1, H3K36me3, 

H3K79me2/3 and H2BK5me1. H3K27me3 is found at transcriptionally repressed promoters 

and it displays a broader pattern than H3K4me3. Misregulation of KMT/KDM activities target 

expression of specific genes depending on the tissue type. Lysine methylation of histones 

depends on S-adenosylmethionine (SAM or AdoMet) as the methyl donor (Figure 1).  The 

KMT enzymes are specific for the histone residue and the degree of methylation . All KMTs 

have a SET domain harboring the enzymatic activity except for the H3K79-specific DOT1L 

methylase. The activity of KMT depends on the histone residue and degree of methylation. 

Table 1 summarises global histone lysine methylation patterns in eukaryotes. 

Lysine methyltransferases have been linked in several instances to the pathogenesis of cancer 

(Table- KMT implicated in cancer). The SET-domain containing protein, G9a (KMT1C), 

forms heterodimeric complex with GLP/Eu HMTase (KMT1D), which regulates H3K9 

methylation of euchromatin (Tachibana et al., 2001; Tachibana et al., 2002; Tachibana et al., 

2005). Higher expression of G9a has been found in hepatocellular carcinomas than in non-

cancerous liver tissue (Kondo et al., 2007). Furthermore, gastric cancer cells were found to 

exhibit hypoxic silencing of the RUNX3 tumor suppressor dependent on the expression of G9a 

(Lee at al. 2009). Thus, whereas Suv39h1/2 methylation of H3K9 is involved in genome 

stability, the G9a/GLP complex is associated with the regulation of gene expression.   
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Histone 

Modification 

Alteration in cancer 

cells compared to 

normal cell 

Associated Cancer 

H3K4me1 
Decreased; Increased 

upon progression 
Prostate 

H3K4me2 
Decreased; Increased 

upon progression 

Lung, Kidney, Prostate, Lung 

carcinoma, Hepatocellular 

carcinoma, breast, Pancreatic 

adenocarcinoma 

H3K4me3 
Increased upon 

progression 
Prostate 

H3K9me2 Decreased 
Pancreatic adenocarcinoma, Prostate, 

Kidney 

H3K9me3 

Increased 

 

Decreased 

Gastric adenocarcinomas 

Prostate 

H3K27me3 

Decreased 

 

Increased 

Breast, Ovarian, Pancreatic, 

Paragangliomas 

H4K20me3 Decreased 
Lymphomas, Colorectal 

adenocarcinomas, Breast carcinomas 

                              Table 1 : Global Histone Lysine methylation patterns in cancer 

Human cells contain three isoforms of heterochromatin protein 1 (HP1α, β, γ), that specifically 

binds to methylated H3K9, a repressive mark that occurs both in euchromatin and in 

heterochromatin (Jacobs et al., 2002; Grewal et al., 2007) via its chromodomain. A first link 

between HP1 proteins and tumorigenesis was put forward through the observation that HP1 (α, 

γ) interacts with the pRB tumor suppressor protein (Williams et al., 2000; Nielson et al., 2001). 

Downregulation of HP1α has been linked to the higher invasive potential of breast cancer cells 

(Kirschmann et al., 2000; Norwood et al., 2006; Koning et al., 2009), in papillary thyroid 

carcinoma, and medulloblastoma (Pomeroy et al., 2002; Wasenius et al., 2003) and several 

other cancer pathways (reviewed in Dialynas et al., 2007; Dialynas et al., 2008). The detection 

of all three isoforms of HP1 in granulocytes suggested that HP1 might serve as an indicator of 

potential oncological blood disorders (Lukasova et al., 2005; Popova et al., 2006). Global 

levels of histone modifications differ between cell types and they have been found to be 

associated with the clinical outcome and progression of different cancer types (Table 1) . Also 

the list of important Demethylases studied in is described in Table 2 along with the associated 

cancers.  
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Eraser New Name Alteration in 

Cancer 

Associated Cancer 

LSD1 KDM1 Overexpressed Prostate, 

neuroblastoma, breast 

JMJD2C KDM4C Overexpressed Prostate, oesophageal 

squamous cell 

carcinoma, MALT 

lymphoma 

JMJD3 KDM68 Overexpressed Prostate 

                           Table 2: Histone Lysine Demethylases implicated in cancer 

3.1.6 Epidrugs 

 

Chromatin modification as a drug target sparked in the minds of scientists knowing the fact 

that epigenetic modifications of chromatin are potentially reversible. Several inhibitors of 

histone deacetylases of natural or synthetic origin have been developed and biologically 

characterized already. HDAC and DNMT inhibitors are being investigated in clinical studies 

and used in cancer therapy. Nucleoside analogs 5-azacytidine and 5-aza-decitabine were 

among the first epigenetic drugs to be approved by the FDA for use in the treatment of 

myelodysplastic syndrome. Zebularine is another DNMT inhibitor which is being investigated 

for clinical use as it can be orally administered. In contrast, the search for inhibitors of HKMT 

and HKDM is still in its infancy, but molecular modeling and docking studies to understand 

inhibitor binding requirements have been guiding the synthesis of drugs targeting these 

enzymes (Spannhoff et al., 2009). Table 3 lists some known epigenetic inhibitors. 

 

 

 

 

 

 

 Inhibitors Specificity 

Chaetocin Suv39h1, G9a 

DZNep Ezh2, H4K20 methylation 

BIX-01294 G9a, GLP 

N-oxalylglycine JMJD2A, JMJD2C 

Disufiram, Ebselen JMJD2A 

N-oxalyl-D-tyrosine derivatives JMJD2 family 

                                                 Table 3: Some known KMT and KDM inhibitors. 
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3.2 Mitochondrial Dynamics 

Mitochondria are an essential set of organelles in most eukaryotic cells .They are essential for 

maintaining most fundamental physiological aspects as cellular energy balance, modulation of 

calcium signalling, redox balance and significant biosynthethic pathways (Duchen et al., 2010) 

The mitochondria comprises of a double membrane enclosing a circular genome of just over 16 

kilobases and encodes for 37 protein-coding loci (Anderson, S et al., 1981,Taylor et al., 2005). 

A number of proteins and transcripts including noncoding RNAs are imported into the 

mitochondria to maintain the integrity and function. A number of genetic disorders have been 

mapped to mitochondrial mutations (Taylor et al., 2005). Mitochondria in the cell, form a 

complex and interconnecting network, modulated through mitochondrial fusion and fission. 

 

Mitochondrial fission and fusion are known to be involved in the regulation of apoptosis. Drp-

1 (dynamin related protein), which belongs to family of large GTPases, is a highly conserved 

protein regulates the process of mitochondrial division and fusion (Westermann 2008).  The 

loss in function of Drp increases mitochondrial fusion which further attenuates the process of 

apoptosis by controlling the release of cytochrome c from mitochondria. 

 

3.2.1 Molecular Machinery of Mitochondrial Fusion 

 

The major components of the mitochondrial fusion and fission machineries have been 

evolutionarily conserved from yeast to man. Due to this conservation and the availability of 

sophisticated genetic, cytological, and biochemical assays, bakers‘ yeast (Saccharomyces 

cerevisiae) emerged as one of the prime model organisms to study the molecular mechanisms 

of mitochondrial membrane fusion and fission (Okamoto et al., 2005; Merz et al., 2007, 

Hoppins et al., 2007). 

The core machinery mediating fusion in yeast consists of three proteins: Fzo1 and Ugo1 in the 

outer membrane and Mgm1, an intermembrane space protein anchored to the inner membrane. 

Yeast cells lacking one of these components contain fragmented mitochondria and have defects 

in mtDNA inheritance.  Fzo1 is a large GTPase that assembles into a high molecular mass 

complex in the outer membrane. It has two transmembrane regions, with the major parts of the 

protein extending into the cytosol and a short loop exposed to the intermembrane space. The 

large N-terminal part consists of a GTPase domain flanked by two predicted coiled coils. The 

smaller C-terminal part contains another coiled-coil region (Rapaport et al., 1998; Hermann et 

al., 1998; Fritz et al., 2001). Fzo1-related proteins have been conserved throughout the fungal 

and animal kingdoms. 

 

Mammalian cells contain two ubiquitously expressed homologs termed mitofusins (MFN1 and 

MFN2). These proteins are 80% similar to each other and are broadly expressed in a wide 

range of cell types (Rojo et al.,, 2002; Santel et al.,, 2003). Most studies have described a 

uniform localization of human Mfn1 and Mfn2 to the mitochondrial outer membrane (Rojo et 

al.,, 2002; Santel and Fuller, 2001; Santel et al.,, 2003). 
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Steps involved in fusion 

 The first step in cellular membrane fusion events is the formation of trans complexes 

involving proteins on the surface of both fusion partners. Several lines of evidence indicate that 

Fzo1/mitofusins play a key role in formation of the trans complex. 

 

The second step in membrane fusion is lipid bilayer mixing. The capability to form _-helical 

rods by pairing of coiled-coil domains is a hallmark of membrane fusion machineries such as 

SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) and viral 

fusion proteins. Formation of these rods draws apposing membranes close together and 

There by initiates lipid bilayer mixing (Weber et al., 1998).  

 

Intriguingly, Fzo1/ mitofusins possess all domains that can be predicted to be present in a 

fusogen: they have several coiled-coil regions, two transmembrane domains, and a GTPase 

domain, which could provide energy to overcome the energy barrier of lipid bilayer mixing.  

 

After that fusion of the inner membrane is initiated that is particularly sensitive to dissipation 

of the electrical membrane potential and functionally separable from fusion of the outer 

membrane. Mgm1 is considered to be the mediator of inner membrane fusion. Similar to Fzo1 

in the outer membrane, Mgm1 has the capability to form trans complexes that tether apposing 

inner membranes. Coordinated activity of the machineries in the outer and inner membranes 

ensures the fidelity of double membrane fusion (Westermann 2008) 

 

3.2.2 Molecular Machinery of Mitochondrial Fission 

 

The core machinery of mitochondrial fission in yeast consists of four proteins: Fis1 in the outer 

membrane and three cytosolic proteins (Dnm1, Mdv1, and Caf4) that assemble at sites of 

mitochondrial division on the organellar surface. Yeast Dnm1 is a dynamin-related protein 

containing an N-terminal GTPase domain, a middle domain, an insert B of unknown function, 

and a C-terminal GTPase effector domain. Homologous dynaminrelated proteins have been 

shown to play a role in mitochondrial fission in mammals (DRP1, also termed DLP1), worms 

(DRP-1), and higher plants (ADL1 and ADL2) (13). 

 

3.2.3 Regulation of Mitochondrial Fusion and Fission 

 

An intricate balance of fusion and fission is required to maintain mitochondrial morphology in 

steady state. In response to intra- or extracellular signals, a shift toward fission or fusion 

allows the cell to reorganize the mitochondrial network and adapt its morphology to the 

cellular demands. Defects in mitochondrial dynamics lead to a variety of diseases. 

For example, OPA1 is the causative gene for type 1 autosomal dominant optic atrophy, a 

common form of inherited childhood blindness (Olichon et al., 2006), and mutations in the 

MFN2 gene lead to CMT type 2A, a neurodegenerative disorder clinically characterized by the 

gradual degeneration of peripheral neurons (A. Santel 2006). 
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Two mammalian pro-apoptotic Bcl-2 family members, Bax and Bak, induce mitochondrial 

fusion by regulating the assembly and submitochondrial distribution of Mfn 2. Their activity is 

required both in apoptosis and in healthy cells, pointing to an intimate connection of 

mitochondrial remodeling and programmed cell death (Karbowski et al., 2006). 

 

Apoptosis plays an important role in various biological events in metazoans, including 

development and maintenance of tissue homeostasis. A family of cysteine proteases called 

caspases cleaves various cellular proteins and thus drives the process of apoptosis. 

Mitochondria play a pivotal role in apoptosis by releasing several apoptogenic molecules (such 

as cytochrome c, Smac/DIABLO, Omi/HtrA2, AIF, and endonuclease G) into the cytoplasm 

from the intermembrane space, after which these molecules activate downstream 

destruction programs, including the caspase cascade (Wang. 2001). 

 

Recent studies have suggested that the processes of mitochondrial fusion/fission are  involved 

in the regulation of apoptosis. During the early stage of apoptosis, the mitochondrial 

network is destroyed in mammalian cells (Frank et al 2001; Karbowski et al., 2003; Bossy-

Wetzel 2003). It has also been shown that overexpression of a dominant-negative Drp1 mutant 

(Drp1K38A) prevents apoptotic fragmentation of the mitochondrial network, as well as the 

occurrence of cytochrome c release, and apoptosis (Frank et al 2001). Furthermore, silencing of 

Opa1 (a human homolog of Mgm1p) and overexpression of Fis1 both induce mitochondrial 

fragmentation, and reportedly also induce apoptosis (Olichon et al., 2003; James et al., 2003). 

 

Fzo1 Inhibits Etoposide -induced Apoptosis by Delaying Cytochrome c Release and Bax/Bak 

Activation.  Bax and Bak, which act as a gateway for various apoptotic signals at the 

mitochondria, are thought to exist as inactive forms in healthy cells, and various apoptotic 

stimuli may cause their activation through conformation changes and oligomerization, leading 

to cytochrome c release from the mitochondria (Tsujimoto 2003; Daniel et al., 2004). Fzo1 

delayed etoposide-induced and Fas-mediated release of cytochrome c, indicating that Fzo1 

acted upstream of cytochrome c release. Hence, overexpression of Fzo1 inhibited apoptotic 

mitochondrial localization of Bax, which might have led to a delay in Bax activation. Taken 

together, these findings indicate that Fzo1 expression delayed the activation of Bax/Bak and 

thereby inhibited both cytochrome c release and apoptosis (Sugioka et al., 2004). Thus, 

mitochondrial fusion proteins  provides for an attractive target. 
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3.3 Cheminformatics and Machine learning 

Cheminformatics (also known as chemoinformatics and chemical informatics) is a cross 

between Chemistry and Information technology. It is the process of storing, processing and 

retrieving the information about chemical compounds and a variety of problems in Chemistry 

using computer science.  We are using cheminformatics in the process of drug discovery.   

Virtual libraries are generated to virtually screen the compounds in-silico that possess desired 

biological properties to act as drug molecules. Machine learning, a branch of artificial 

intelligence, is used as a cheminformatics approach to screen the compounds. ML is a system 

that acquires and integrate knowledge through training, experience and analytical observation 

and used to make predictions and classification of compounds based on its learning (Figure 8). 

It can be defined as : "A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at tasks in T, as measured 

by P, improves with experience E" ( Mitchell, 1997). 

 

          Figure 8: The machine learning process showing learning and prediction as its two phases. 

In chemoinformatics (Gasteiger 2003), the objects to be categorised are usually molecules and 

ML is used to classify molecules as inactive or active against a particular target. A known 

sample is provided first, which trains the algorithm and then the corresponding knowledge 

acquired is used to test, analyse and interpret the unknown data. 

 

 

http://en.wikipedia.org/wiki/Drug_discovery
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Artificial_intelligence
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Machine learning algorithms can be broadly classified into two groups 

 Supervised learning generates a set of function that screens the inputs into desired outputs 

(labels). In this, the data is pre-assigned to particular classes that train the model. Also 

called inductive learning. 

 Unsupervised learning labels are not known during training. No pre-assignment of the 

data into classes. 

3.3.1 Supervised learning 

Supervised machine learning algorithms discover patterns in the data that relate data attributes 

with a target (class) attribute. These patterns are then utilized to predict the values of the target 

attribute in test data instances. The classes used for training are pre-determined and based on 

the patterns searched the mathematical models are constructed (Figure 9).These models then 

are evaluated on the basis of their predictive capacity in relation to measures of variance in the 

data itself. Supervised learning is mostly performed for classification tasks (Manchanda et 

al.,2007). Different supervised learning processes include decision trees, Bayesian 

Classification, Neural networks, Support Vector Machines, Genetic algorithm etc. 

 

 

 
                                               Figure 9: Process of supervised learning 

 

 

3.3.1.1 Naive Bayes 

 

Based on supervised learning, Naive Bayes classifier is a conditional probability model where 

the probability of occurrence of a feature in a class is independent of all other features present. 

It is based on Bayes' Theorem which is a theorem of probability theory originally stated by the 

Reverend Thomas Bayes. When a new object encounters the model the object is classified into 

a particular class based on two parameters i.e. the prior probability (determined during the 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Unsupervised_learning
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training of the data) and the likelihood of the object to belong to a particular class based on its 

feature comparison. The output shows the probability of its occurrence in a class.  

 

For classification problems, we determine P(H|X), the probability that the hypothesis H holds 

given the ―evidence‖ or observed data tuple X or the probability that tuple X belongs to class 

C, given that we know the attribute description of X. 

   

 
 

P(H|X) -   Posterior probability, or a posteriori probability, of H conditioned on X. 

 

P(H) -       Prior probability, or a priori probability, of H.  

 

Let D be a training set of tuples and their associated class labels. As usual, each tuple is 

represented by an n-dimensional attribute vector, X = (x1, x2, . . . , xn), depicting n 

measurements made on the tuple from n attributes, respectively, A1, A2, . . . , An. Suppose that 

there are m classes, C1, C2, . . . , Cm. Given a tuple, X, the classifier will predict that X 

belongs to the class having the highest posterior probability, conditioned on X. That is, the 

naïve Bayesian classifier predicts that tuple X belongs to the class Ci if and only if 

 

 
 

Where 

 

 

                                 

 

As P(X) is constant for all classes, only P(X|Ci)P(Ci) need be maximized. If the class prior 

probabilities are not known, then it is commonly assumed that the classes are equally likely, 

that is, P(C1) = P(C2) = ··· = P(Cm), and we would therefore maximize P(X|Ci). Otherwise, 

we maximize P(X|Ci)P(Ci).  

 

The Naïve Bayes theorem has the following characteristics as advantages and disadvantages: 

Advantages: 

 Handles quantitative and discrete data 

 Robust to isolated noise points 

 Handles missing values by ignoring the instance 

 During probability estimate calculations 

 Fast and space efficient 

P (Ci|X) =   𝑷  𝑿 𝑪𝒊 𝑷  𝑪𝒊  
                  _____________ 

                   P(X) 
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 Not sensitive to irrelevant features 

 Quadratic decision boundary 

Disadvantages: 

 If conditional probability is zero. 

 Assumes independence of features. 

Naïve Bayesian prediction requires each conditional probability be non-zero. Otherwise, the 

predicted probability will be zero. 

 

 

 

3.3.1.2 Random Forest  

 

The algorithm is based on decision trees. Random Forests are a combination of tree predictors 

in which multiple classification trees are constructed from an independent identically 

distributed random input vector.  It is trained in such a way that each object is classified based 

on certain decisions made on the node of the tree which is dependent on certain pre-defined 

variables. Individual trees are constructed using bootstrapping, each with different attributes. . 

Each random redistribution is generated by randomly drawing with replacement N examples 

where N is the size of the training set. A tree is grown on a fixed-size subset of attributes 

(smaller than the total number of attributes) randomly drawn on each round (Figure 10).   

Multiple random trees are constructed by repeating this method. After a large number of trees 

are generated, each tree in the forest gives a classification or votes for a class and the most 

popular class gives the final classification (Breiman 2001). The misclassification error is 

calculated to predict the performance of the model
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Figure 10: Construction of ensemble of trees in random forest algorithm 

Training by RF algorithm for some number of trees T: 

1. Sample N cases at random with replacement to create a subset of the data (see top layer 

of figure above). The subset should be about 66% of the total set. 

2. At each node: 

i. For some number m (see below), m predictor variables are selected at random 

from all the predictor variables. 

ii. The predictor variable that provides the best split, according to some objective 

function, is used to do a binary split on that node. 

iii. At the next node, choose another m  variables at random from all predictor 

variables and do the same. 

Depending upon the value of m, there are three slightly different systems: 

 Random splitter selection: m =1 

 Breiman‘s bagger: m = total number of predictor variables 

 Random forest: m << number of predictor variables. Brieman suggests three possible 

values for m: ½√m, √m, and 2√m 

When a new input is entered into the system, it is run down all of the trees. The result may 

either be an average or weighted average of all of the terminal nodes that are reached, or, in the 

case of categorical variables, a voting majority. 



31 
 

 

Figure 11: Manual view of Random forest 

Strengths  

 Random forest runtimes are quite fast, and 

 They are able to deal with unbalanced and missing data. 

 Capable of handling of large input variables without over-fitting. 

 The accuracy is maintained on larger sets.  

Weaknesses 

 When used for regression they cannot predict beyond the range in the training data. 

 They may over-fit data sets that are particularly noisy. 

 

3.3.2 Unsupervised learning 

 The data have no target attribute. It is explored to find some intrinsic structures in them. 

Unsupervised learners are not provided with classifications. So, the basic task of unsupervised 

learning is to develop classification labels. Unsupervised algorithms seek out similarity 

between pieces of data in order to determine whether they can be characterized as forming a 

group. These groups are termed clusters, and there are a whole family of clustering machine 

learning techniques. Clustering groups the data instances that are similar to each other in one 

cluster and data instances that are very different from each other into different clusters (Figure 

12). Hence, clustering is often called an unsupervised learning task as no class values denoting 

an a priori grouping of the data instances are given. 
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Figure 12: Process of undupervised learning. 

Different types of clustering algorithms are known: k-means clustering, hierarchical clustering, 

Cobweb, overlapping clustering etc. 

 

3.3.2.1 Hierarchical Clustering 

Hierarchical Clustering algorithm produces a nested sequence of clusters, a tree, also called 

Dendrogram. The base of the hierarchy gives the initial structures and subsequent levels 

provide smaller to larger clusters. 

Types of hierarchical clustering 

 Agglomerative (bottom up) clustering:  

It builds the dendrogram (tree) from the bottom level, each data point forms a cluster (also 

called a node) and merges the most similar (or nearest) pair of clusters or nodes. It stops when 

all the data points are merged into a single cluster i.e., the root cluster (Figure 13).  It is more 

popular then divisive methods. 

Algorithm 

1. Make each data point in the data set D a cluster. 

2. Compute all pair-wise distances of x1,x2,….., xn € D. 

3. Repeat 

4. Find two clusters that are nearest to each other. 

5. Merge the two clusters and form a new cluster c. 

6. Compute the distance of c from all other clusters. 
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7. Repeat, until there is only one cluster left.  

 

Figure 13:Output of hierarchical clustering algorithm showing nested clusters (left) and dendogram (right) 

 

 Divisive (top down) clustering:  

It starts with all data points in one cluster, the root. The main root then splits into a set of 

child clusters. Each child cluster is recursively divided further. The iteration stops when 

only singleton clusters of individual data points remain, i.e., each cluster with only a single 

point. 
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4. METHODOLOGY 

4.1   Downloading the data 

The main resource for obtaining bioassay screening data is the PubChem repository of 

chemical compounds provided by the National Center for Biotechnology Information ( Bolton 

et al., 2008; Wang et al., 2009).   

 On the PubChem homepage (http://pubchem.ncbi.nlm.nih.gov/), Bioassay was selected 

in the options, and the corresponding AID was entered into the advanced search box 

(eg. 504332). 

 Active and inactive datasets were downloaded by clicking on them respectively from 

the ―Tested Compounds‖ option and then structure download was clicked ( Select the 

format to be sdf ). 

Compounds in PubChem are characterized to show drug-like properties based on Activity 

Score that is calculated using AC50. AC50 is the concentration at which 50% of the activity is 

observed. Compounds having AC50 values less than or equal to 20 micromolar with 

corresponding activity score between 40 to100 are considered as active compounds. 

Compounds having AC50 value greater than the highest concentration tested (for example 20 

micromolar) and activity score 0 were considered as inactive compounds. The rest compounds 

with activity score between 1 to 39 were considered as inconclusive compounds. We used only 

active and inactive compounds for predictive modelling. The datasets were downloaded 

corresponding to AID 504332, AID 504339, AID 2147 and AID 540317 for epigenetic 

modifiers and AID 1362 for mitochondrial fusion inhibitors. 

 

Bioassay Datasets 

Bioassay AID 504332: The qHTS was based on an assay developed for the inhibitors of G9a 

(Histone Lysine Methyltransferase) and included 30,875 active and 2, 67,000 inactive 

compounds. G9a is a histone methyltransferase which belongs to SET-domain containing 

family and specifically catalyzes methylation of Lys9 of histone H3 (H3K9) in mammalian 

euchromatic regions repressing the transcription (Shinkai et al., 2011; Tachibana et al., 2002) 

as described above. The knockdown of G9a results in transcriptional activation and inhibits 

cancer cells growth (Kondo et al., 2008). 

Bioassay AID 504339: The dataset contains inhibitors of JMJD2A-Tudor Domain, which is a 

jumonji-domain-containing histone demethylase (Lysine-specific demethylase 4A).  JMJD2A 

binds to trimethylated H3K4 and H4K20 via the tudor domains and causes demethylation 

which may result in both, transcriptional repression and activation (Ozboyaci et al., 2011; 

Cloos et al., 2008). Binding of JmjD2A to histone results in positioning of the enzymes  for  

methylating  adjacent regions causing rapid methylation over large area of chromatin 

(Vermeulen et al., 2010; Musselman et al., 2012). Targeting of the JMJD2A-tudor domain 

http://pubchem.ncbi.nlm.nih.gov/
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interaction with the methylation marks on lysine residues of histone, H3 and H4, tails may lead 

to selective demethylation of a given methyllysine locus based on the methylation state of 

adjacent histone marks. As the demethylase belongs to oxygenase superfamily, its activity 

follows radical attack mechanism using Fe (II) and α-ketoglutarate as co-factors. The substrate 

(mono, di or tri-methylated lysine) to be demethylated  are  determined by the association of 

enzymes with cofactors.  The data contain 16,919 active compounds and 3, 38,945 inactive 

compounds. 

Bioassay AID 2147: The dataset contains inhibitors of Human Jumonji Domain Containing 2E 

(JMJD2E). JMJD2E also belongs to the Fe (II) and 2-oxoglutarate oxygenase (2OG) 

superfamily. Histone lysine demethylases catalyze the removal of methyl groups from 

methylated lysine side-chains on histones H3 and H4, thus acting reversibly to the reactions 

catalyzed by histone lysine methyltransferases. The high throughput data contained a total of 

3,523 active and 1, 88,950 inactive compounds. 

Bioassay AID 540317: The assay was developed to identify the first inhibitors of protein 

methyltransferases. The dataset contained 2,142 active and 3, 67,962 inactive compounds 

screened for potential inhibitors of HP1-beta chromodomain interactions with methylated 

histone tails  HP1 (Heterochromatin protein). The N- terminal chromodomain containing HP1 

proteins bind to the methylated histones and further results in gene repression and 

heterochromatin formation. The interaction harbors  an N- terminal chromodomain that binds 

to the tri-methylated lysine 9 of histone H3, H3K9me3, and a C-terminal chromoshadow 

domain.  

All the datasets were obtained through the confirmatory bioassay screens conducted by NCGC, 

NIH Molecular Libraries Probe Production Network. The Amplified Luminescent Proximity 

Homogeneous Assay (AlphaScreen) from PerkinElmer was used for identification of these 

inhibitors. It is a homogeneous assay technology used for screening of different classes of 

targets and analytes. Donor and acceptor beads coated with a layer of hydrogel are utilized. The 

beads are conjugated with biological molecules. With excitation, ambient oxygen is converted 

to reactive singlet oxygen in the donor bead. The singlet oxygen species reacts with thioxene 

compounds in the acceptor bead to generate a chemiluminescent signal that emits at 370 nm. 

Streptavidin-coated donor and anti-IgG antibody-coated acceptor beads are used for detecting 

the methylation state of biotinylated-histone peptide. 

Bioassay AID 1362: The dataset comprising of high throughput assay for inhibitors of 

mitochondrial fusion containing 4,011 active and 1,90,149 inactive compounds was 

downloaded from PubChem. The assay was a growth based assay in S. cerevisiae strains 

developed to identify small molecules that inhibit mitochondrial fusion activity. Mitochondrial 

fission and fusion are known to be involved in the regulation of apoptosis. Drp-1 (dynamin 

related protein), which belongs to family of large GTPases, is a highly conserved protein 

regulates the process of mitochondrial division and fusion (Sugioka et al., 2004).  The loss in 

function of Drp increases mitochondrial fusion which further attenuates the process of 

apoptosis by controlling the release of cytochrome c from mitochondria. The assay was 

conducted using mitochondrial targeted GFP (Green Fluorescence Protein) and the effects of 
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compounds on the morphology of mitochondria was observed. The small molecules were first 

screened using primary growth based assay, the molecules identified as active were further 

taken for secondary analysis. 

 

 

4.2 Preprocessing of data 

The chemical structures from PubChem were downloaded in Structure Data Format (SDF) and 

imported into the molecular descriptor generator PowerMV to generate 2D molecular 

descriptors. 

 The downloaded PowerMV was  opened and the file was uploaded by clicking on SDF. 

 The file uploaded was right clicked and from the drop box opened, generate table was 

selected. 

 The three options ‗ Pharmacophore fingerprint‘, ‗ Weighted burden number‘ and ‗ 

Properties‘ were selected and ‗Generate‘ was clicked. 

 The file generated appeared in ‗.data‘ format which was saved in csv by right clicking 

on it and choosing ‗open in excel‘ option. 

 Descriptors of both the active and inactive data files were generated and outcome was 

written in the last column of the excel as ‗active‘ or ‗inactive‘ as per the data. 

 Both the files were appended into one. 

 Weka explorer was opened from Weka Gui Chooser and in the ‗Pre-process‘ tab ‗Open 

file‘ was clicked. 

 The appended file was uploaded. 

 Choose           Filters             Unsupervised            Attribute            RemoveUseless . 

 The file was saved in csv format again by clicking in ‗save‘. 

 The file was then split into train(80%) and test(20%) set by using the perl script given 

in AppendixV(b). 

 Both the files were then re-uploaded one-by-one in Weka and saved in ARFF format.   

 

PowerMV (Liu et al., 2005), is a popular toolkit that provides a software environment for 

viewing, descriptor generation and hit evaluation. Its capacity is limited only by available 

memory. If the number of compounds in the bioassay used are very large, the entire dataset file 

was split to smaller SDF files using a perl script available from MayaChemTools ( Sud M, 

2010). PowerMV generated a total of 179 molecular descriptors describing the 

physicochemical properties of the molecule (like hydrogen bond donors, acceptors, number of 

rotatable bonds, charge, polarizability, aromaticity etc.). The descriptors correspond to 147 

Pharmacophore fingerprints-bit string descriptors based on bioisosteric principles, 24 Weighted 

Burden number-continuous descriptors to measure one of the three properties electro 

negativity, Gasteiger partial charge or atomic lipophilicity and XLogP as well as 8 Properties 

descriptors useful for judging the drug-like nature of a molecule like H-bond donors, H-bond 
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acceptors, molecular weight, blood-brain indicator, XLogP etc. The descriptor file generated 

was saved in comma separated (CSV) format. Bioactivity values were appended and the last 

index labeled as ‗Outcome‘ depicting the class attribute which consists of nominal values 

―Active‖ and ―Inactive‖.    

The merged descriptor file was pre-processed by removing attributes having only one value 

throughout the dataset i.e. bit-string fingerprints containing all 0‘s or all 1‘s in them. These 

values useless and were removed by applying an unsupervised attribute filter available in the 

Weka suite of Machine Learning algorithms (Bouckaert et al., 2010). The descriptors were 

reduced to 155 from 179, list of which is provided in the Appendix I. The training cum 

validation set was used to build classification models. 

 

4.3 Processing of Data- Model building 

 

 Weka explorer was opened and train dataset was uploaded in the pre-process tab. 

 

 From the classify tab, ‗Choose‘ then ‗Bayes‘ then ‗Naïve Bayes‘ was selected. 

 

 Cross validation value was set to 5 in case of larger datasets and 10 in case of smaller 

datasets. 

 

 Build Model was clicked. 

 

All classification and analyses was performed on the Weka workbench (Bouckaert et al., 

2010).  Weka  (Waikato Environment for Knowledge Analysis) is a popular open source Java 

based software that contains implementations of a diverse range of classification and clustering 

algorithms. It  provides a simple GUI supporting the data from various sources and  in different 

file formats. It has multiple algorithms (including that of regression, association rule mining, 

clustering, classification etc.) and pre-processing tools that allow comparison of different 

methods. The workbench is used for both supervised as well as unsupervised algorithms. The 

data visualization facilities help in easy access and analysis of results. We used Weka 3.6.8 for 

generating our models.  The files saved in CSV form were then converted to ARFF (Attribute 

Relation File Format) compatible with Weka. The models were built using different 

classifications viz. Naive Bayes and Random Forest as described previously. 

 

4.3.1 Cost-sensitive Classifier 

One of the issues with high-throughput biological assays is that the datasets are often skewed 

or imbalanced. A dataset is termed imbalanced if at least one of the classes is represented by 

significantly less number of instances than the other. In this case the number of actives are far 

lesser than the number of inactives. Different approaches were proposed to derive classification 

rules for imbalanced data (Japkowicz, N. 2000). Introducing misclassification cost on false 

predictions makes the error-based classifiers cost-sensitive and increases the true predictive 
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ability of the classifier (Elkan, 2001). Setting of misclassification cost is always arbitrary and 

no generalized rule exists to set the cost. There are two ways of introducing misclassification 

cost in classifiers, first to design customized cost sensitive algorithms and second to build a 

wrapper class that can convert existing base algorithm into cost sensitive one. The later method 

is commonly referred to as metalearning (Sheng et al.,2006). In Weka meta-learning is used to 

introduce cost sensitivity in base classifiers.   

 

A cost matrix may be seen as an overlay to the standard confusion matrix used to evaluate the 

results of a predictive modelling experiment. The four sections of a confusion matrix are True 

Positives (TP) - in our case Active compounds correctly classified as Active; False Positives 

(FP) – Inactive compounds incorrectly classified as Active; True Negatives (TN) – Inactive 

compounds correctly classified as Inactive; False Negatives (FN) - Active compounds 

incorrectly classified as Inactive.  

The cost was applied on the false negatives so as to bring the false positive rate near to 20%. 

This misclassification cost is then used to build the predictive models.  

 For applying cost, ‗meta‘ was chosen from the ‗choose‘ option in ‗pre-process tab‘ and 

cost sensitive was selected. 

 In the cost sensitive option, choose Naïve Bayes and apply cost by clicking on the cost 

matrix. 

 Similarily ‗Random forest‘ was choosen from ‗trees‘ option to build RF model. 

The problem of cost-sensitive classifiers is that there are no standards or guidelines for setting 

the misclassification costs. The appropriate cost is dependent on the base classifier used. One 

of the difficulties in setting up the Weka cost matrix is that the costs are not a straightforward 

ratio. Weka normalises (reweights) the cost matrix to ensure that the sum of the costs equals 

the total amount of instances. The misclassification cost was incremented until a 20% False 

Positive rate was reached . The aim was to find the most robust and versatile classifier for 

imbalanced bioassay data and to find out the optimal misclassification cost setting for a 

classifier. All computation was performed on CDAC-Garuda supercomputing facility using the 

OSDD-Garuda web interface. 

 

4.3.2 Cross Validation 

The technique is implied during training of the classifiers. K-fold cross validation is one of the 

most popularly used methods of cross-validation of the accuracy of a model. In  k-fold cross 

validation, the entire data is divided into k subsets (folds) of equal sizes and training is done for 

(k-1) sets and testing is done on one set. The process is repeated k number of times so that each 

set is tested at least once. The process is shown in Figure 14. The average error rate is 

computed for all tests. We have used (k=5) or a 5-fold cross validation here since the dataset 

was large. The resulting model from the cross-validation is applied to the test set.  
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Figure 14: K fold cross validation. One subset is used for testing the model generated by rest of subsets as train sets. The 

action is repeated in such a way that each subset becomes a test set at least once. The average of all is the final model.   

 

4.4 Model performance evaluation 

 In the classify tab of Weka itself, Click on ‗ Supplied Test Set‘ and the test set was 

uploaded by browsing. 

 The model was also uploaded again if saved previously (and testing the models later) 

and ‗re-evaluate model on current test set‘ was chosen. 

 The 2X2 confusion matrix used by Weka contains the following values: 

● True positives (TP): class members classified as class members. 

● True negatives (TN): class non-members classified as non-members. 

● False positives (FP): class non-members classified as class members. 

● False negatives (FN): class members classified as class non-members. 

● True Positive Rate (TPR) is ratio of predicted true actives to actual number of actives 

(i.e. TP/ TP + FN).  

● False Positive rate (FPR) is ratio of predicted false actives to actual number of 

inactives (i.e. FP/FP + TN).  

● Also, TNR, FNR, Accuracy and ROC area was predicted. 
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 We used the following measures for the statistical evaluation of the models: 

● Sensitivity is the proportion of actual positives which are predicted positive, i.e.TP / 

(TP + FN). 

● Specificity is the proportion of actual negatives which are predicted negatives, i.e. TN / 

(TN + FP). 

● ROC is receiver operating characteristic curve which is a 2D curve parameterized by 

one parameter of the classification algorithm, e.g. some threshold in the true positive 

rate /false positive rate. 

● The Matthews correlation coefficient (phi coefficient) is a measure of the quality of 

binary (two-class) classifications. The MCC is a correlation coefficient between the 

observed and predicted binary classifications; it returns a value between −1 and +1.  

● Balanced Classification Rate (BCR) introduces a balance in the classification 

calculated as 1⁄2. (Sensitivity + Specificity). 

● Accuracy is the efficiency of the classifier to predict true values, i.e. TP+TN) 

/(TP+TN+FP+FN) * 100). 

 

4.5 Substructure Search 

To classify small molecule inhibitors on supervised platforms, models using Naïve Bayes and 

Random forest were generated.  To further cluster the compounds based on their molecular 

structure hierarchical clustering algorithm was followed. The molecules were aligned on the 

basic 3D structure to understand the structure-activity relation of the compounds and the active 

scaffolds lying inside them. With the aim of finding molecules which have similar properties to 

act as a drug, similarity search of compounds was done. Library MCS, a tool from ChemAxon 

(Budapest, H. 2008),  based on hierarchical clustering algorithm was used to cluster the 

molecules and find the potential bioactive substructures. It is based on  Maximal Common 

Substructure Search (MCS), which is the process of finding the largest structure that is a 

substructure or part of all the molecules in a given set. Initial structures are found at the bottom 

of the hierarchy. The next level contains the maximum common structures of clusters of initial 

molecules; subsequent levels provide larger clusters of smaller common substructures. After 

the clusters were formed using LibMCS, we got the molecular scaffolds in the form of sdf and 

SMILES file. The active and inactive 3D structure files were then used to search the similar 

substructures with the smiles generated. This was done using the jcsearch algorithm of 

ChemAxon  (Budapest, H. 2008). The similarity is calculated on the basis of the molecular 

descriptor or fingerprint of the chemical structures to compare. 
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The following steps were followed for clustering: 

 The SDF files were first converted into 3D SDF file  using molconvert tool of 

Chemaxon. 

 The active 3D file was then used for clustering by setting different MCS values on the 

Lib MCS platform.  

Minimal MCS size refers to the smallest size of the maximum common substructure 

searched for by the algorithm. For different datasets different values were considered 

owing to the number of top level clusters found and the level count. For AID 504332 

and 540317, minimal MCS size was taken 9 and for AID 504339 and 2147 it was 10 

and 11 respectively.  

 The cluster files were saved in sdf and smi formats. 

 The active and inactive 3D cluster files generated were used for similarity search with 

the smi file using jcsearch algorithm (Appendix V(a)). 

 The Substructures were evaluated for enrichment using chi-square test. The p-values 

were used to evaluate the significance of enrichment. The substructures which had at 

least 1% matches among the active dataset entries, p-value less than 0.01 and 

enrichment factor more than 5 were considered significant. 
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5. RESULTS 
 

5.1 Results for classification of small molecule inhibitors of Epigenetics 

 

5.1.1 Modeling results 

 

The datasets obtained from PubChem were processed to generate 2D molecular descriptors 

using PowerMV. The descriptors were finally culled to 155 from 179 descriptors after 

removing values which were either null or the same for the entire dataset and could not 

contribute to the classification (Appendix I). The complete data after splitting into train and test 

sets was loaded in Weka-3.6 to build different classifier models for the evaluation of 

compounds. Initially standard classification of the data was performed. However, since the 

datasets were skewed, cost sensitive classification was introduced. The misclassification cost 

was applied on false negatives and incremented until the rate of false positives reached 20%. 

The costs applied in different datasets for different models are shown in Appendix II. Naive 

Bayes used minimum cost for the classification of the objects. Table 4 describes the values of 

all statistical evaluations done on the models of epigenetic modifiers. 

 

AID Classifie

r 

TP 

rate 

FP 

rate 

TN 

rate 

FN 

rate 

ROC Accuracy BCR MCC 

504332 Naive 

Bayes 

43.2 21.5 78.5 
 

56.8 
 

0.665 74.8418 60.89 0.1556 

 Random 

Forest 

69.7 19.5  80.5  30.3 0.821 79.3907 75.11 0.3549 

504339 Naive 

Bayes 

45.8 19.6 80.4 54.2 0.685 

 
 

 

79.4326 

 

 
 

63.08 

 
 

 

0.1048 

 
 

 Random 

Forest 

66.8 20.8 79.2 33.2 0.794 78.8841 

 

72.99 0.1789 

2147 Naive 

Bayes 

51.9 

 
 

20.0 

 
 

80.0 

 
 

48.1 

 
 

0.724 

 
 

79.5848 

 
 

65.97 

 
 

0.0989 

 
 

 Random 

Forest 

67.2 20.7 79.3 32.8 0.801 79.129 73.24 0.1409 

540317 Naive 

Bayes 

54.9 

 
 

20.4 

 
 

79.6 

 
 

45.1 

 
 

0.742 79.4596 

 
 

67.25 

 
 

0.0647 

 
 

 Random 

Forest 

76.9 20.3 79.7 23.1 0.858 79.6717 78.28 0.1059 
 

Table 4: Statistical evaluation and accuracy prediction of all the datasets 
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Evaluation of models included various statistical parameters. The accuracy of Random forest 

was predicted to be the highest for all the datasets. A comparison between the sensitivity of 

both the classification models amongst different datasets was made depicting the sensitivity of 

Random forest more than the Naive Bayes in all cases. Figure 15 shows the plot between 

sensitivity of Naive Bayes and Random Forest amongst AID 504332, 504339, 2147 and 

540317. Similarly the specificity was compared where Naive Bayes outperforms in AID 

504339 and 2147. In case of AID 540317 specificity of both was comparable and Random 

Forest showed higher specificity in AID 504332. Figure 16 is the comparative graph between 

the specificity of both classification models amongst all four datasets. 

 

 

 

Figure 15:   Graph between sensitivity of Naive Bayes and Random Forest amongst AID 504332, 504339, 

2147 and 540317. 
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Figure 16: Comparative graph between the specificity of both classification models amongst all four 

datasets. 

 

The sensitivity and specificity were used to calculate the balanced classification rate for each 

model. Random forest showed the most balanced classification out of both. As a measure of 

quality, Matthews‘s correlation coefficient (MCC) was calculated. The Matthews correlation 

coefficient (MCC) describes a correlation between the actual and predicted classifications. The 

statistic is also known as the phi coefficient. Table 2 shows the classification results of all the 

datasets along with the statistical evaluation. 

A perfect test would have 100% sensitivity and 100% specificity. It would positively identify 

all the true cases of active drugs, and it would never mislabel anything. In realistic scenarios, 

however this is seldom achieved and a balance between sensitivity and specificity is desirable. 

For that, a relation of sensitivity and specificity on a graph, called a "ROC curve". (ROC means 

Receiver-Operator-Characteristic) was plotted. Figure 17 summarises the ROC plot for 

Random Forest classification model for the four datasets. The Area under the curve for the 

ROC-plots was 0.82, 0.68, 0.80 and 0.67 for the AID 504332, AID 504339, AID 2147 and AID 

540317 respectively. 
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Figure 17:   ROC plot for Random Forest classification model for the four datasets. 

 

5.1.2 Evaluation of significantly enriched scaffolds 

In the process of drug discovery the local similarity between the structures proved to be useful 

in designing of new chemical compounds as potential drugs. We used JChem module, LibMCS 

and clustered the active compounds of all the datasets.  

 

Clustering analysis of AID 504332 

The 30875 active compounds clustered into a total of 5,150 clusters of which the 726 top level 

cluster compounds were considered. The compounds were clustered upto level 6 out of which 

258 singletons were removed. The enrichment and its significance, was analyzed by chi-square 

test. Analysis revealed 19 significantly enriched scaffolds which had p-value less than 0.01 and 

an enrichment factor > 5 (Table 5) 
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Scaffol

d No. 

Scaffold 

Structure 

Matche

s in 

Actives 

Matches 

in 

Inactive

s 

Chi- 

square 

P-value Enrichmen

t  

Factor 

  

1 

 

  

54 

  

8 

  

392.99 

  

1.85E-87 

  

58.372 

  

2 

 

  

45 

  

9 

  

309.521 

  

2.78E-69 

  

43.239 

  

3 

 

  

50 

  

15 

  

309.998 

  

2.19E-69 

  

28.826 

  

4 

 

  

39 

  

14 

  

228.039 

  

1.60E-51 

  

24.090 

  

5 

 

  

31 

  

14 

  

165.918 

  

5.77E-38 

  

19.149 

  

6 

 

  

44 

  

29 

  

195.765 

  

1.75E-44 

  

13.121 

7 

 

 

65 

 

7 

 

495.016 

 

0.00E+0

0 

 

80.301 

8 

 

 

143 

 

17 

 

1075.639 

 

0.00E+0

0 

 

72.743 

9 

 

 

60 

 

13 

 

405.463 

 

0.00E+0

0 

 

39.913 

10 

 

 

188 

 

91 

 

977.218 

 

0.00E+0

0 

 

17.866 



47 
 

11 

 

 

420 

 

274 

 

1883.334 

 

0.00E+0

0 

 

13.256 

12 

 

 

394 

 

328 

 

1522.280 

 

0.00E+0

0 

 

10.388 

13 

 

 

60 

 

52 

 

225.126 

 

6.89E-51 

 

9.978 

14 

 

 

159 

 

167 

 

518.185 

 

0.00E+0

0 

 

8.234 

15 

 

 

50 

 

56 

 

154.603 

 

1.71E-35 

 

7.721 

16 

 

 

614 

 

723 

 

1827.784 

 

0.00E+0

0 

 

7.344 

17 

 

 

197 

 

242 

 

563.554 

 

0.00E+0

0 

 

7.04 

18 

 

 

162 

 

212 

 

437.612 

 

0.00E+0

0 

 

6.608 

19 

 

 

147 

 

202 

 

379.241 

 

1.82E-84 

 

6.293 

                       

Table 5: Depicts significantly enriched scaffolds found in AID 504332. 
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Clustering analysis of AID 504339 

A total of 16919 active compounds were clustered upto 6 levels at MCS size 10. 416 singletons 

were removed and 1026 compounds obtained at top level were taken for further analysis. We 

obtained 9 substructures prioritized by p-value (less than 0.01) and enrichment factor > 5 

structures of which are described in Table 6. 

 

 

Scaffold 

No. 

Scaffold 

Structure 

Matches 

in 

Actives 

Matches 

in 

Inactives 

Chi- 

square 

P-value Enrichment 

factor 

  

1 
 

  

110 

  

25 

  

1755.742 

  

0.00E+00 

  

88.147 

  

2  

  

118 

  

27 

  

1880.831 

  

0.00E+00 

  

87.553 

  

3 

 

  

277 

  

87 

  

4095.734 

  

0.00E+00 

  

63.784 

  

4 

 

  

96 

  

90 

  

902.365 

  

0.00E+00 

  

21.369 

  

5 

 

  

228 

  

629 

  

905.729 

  

0.00E+00 

  

7.262 

  

6 

 

  

248 

  

762 

  

876.910 

  

0.00E+00 

  

6.520 

  

7 

 

  

119 

  

396 

  

383.609 

  

0.00E+00 

  

6.020 

 

8 

 

96 335 292.48 2.04E-85 5.74 

9 

 

135 476 406.42 0.00E+00 5.68 

 

Table 6: Shows the significant substructures found in AID 504339 along with their p-value and chi-square 

statistics. 
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Clustering analysis of AID 2147 

The 3523 compounds were clustered keeping MCS size as 11, we obtained 3791 total clusters. 

A total of 702 compounds were obtained at level 5 out of which 365 singletons were removed.  

The final prioritization was done keeping p value less than 0.01 and enrichment factor > 5, the 

analysis resulted in 9 substructures (Table 7).  

 

Table 7: Shows the enriched substructures in AID 2147 with a threshold of 5 for enrichment factor and p-

value less than 0.01. 

Scaffold 

No. 

Scaffold 

Structure 

Actives Inactives Chi- 

square 

P-value Enrichment 

Factor 

1 

 

 

53 

 

52 

 

1383.557 

 

0.00E+00 

 

54.665 

2 

 

 

56 

 

74 

 

1231.663 

 

0.00E+00 

 

40.587 

3 

 

 

65 

 

113 

 

1192.95 

 

0.00E+00 

 

30.851 

4 

 

 

168 

 

322 

 

2879.753 

 

0.00E+00 

 

27.983 

5 

 

 

85 

 

254 

 

1021.041 

 

0.00E+00 

 

17.948 

6 

 

 

38 

 

123 

 

425.079 

 

0.00E+00 

 

16.569 

7 

 

 

44 

 

198 

 

360.54 

 

2.15E-80 

 

11.919 

8 

 

 

35 

 

182 

 

247.184 

 

1.07E-55 

 

10.314 

9 
 

 

33 

 

286 

 

128.915 

 

7.08E-30 

 

6.188 
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Clustering analysis of AID 540317 

The 2142 active compounds were clustered upto 6 levels keeping MCS size as 9. We obtained 

216 compounds at top level after removing 93 singletons. Analysis revealed 8 significantly 

enriched scaffolds which had p-value less than 0.01 and an enrichment factor > 5 shown in 

Table 8.                   

Scaffold 

No. 

Scaffold 

Structure 

Actives Inactives Chi- 

square 

P-value Enrichment 

factor 

1 

 

 

81 

 

69 

 

7442.527 

 

0.00E+00 

 

201.659 

2 

 

 

28 

 

92 

 

1080.152 

 

0.00E+00 

 

52.282 

3 

 

 

43 

 

486 

 

524.773 

 

0.00E+00 

 

15.199 

4 

 

 

66 

 

791 

 

757.322 

 

0.00E+00 

 

14.333 

5 

 

 

116 

 

1516 

 

1214.422 

 

0.00E+00 

 

13.144 

6 

 

 

42 

 

559 

 

429.800 

 

0.00E+00 

 

12.907 

7 

 

 

40 

 

859 

 

234.642 

 

5.80E-53 

 

7.999 

8 

 

 

31 

 

800 

 

143.777 

 

3.98E-33 

 

6.657 

 

Table 8: Shows significantly enriched substructures in AID 540317. 

The summary of all clustering reports including details of MCS size used, number of final 

scaffolds enriched and total cluster count are provided in Appendix III. 
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5.2 Results for classification of small molecule inhibitors of Mitochondrial 

Fusion 

 5.2.1 Modeling Results 

The primary screen dataset obtained from PubChem contained a total of 1, 94, 156 molecules, 

out of which 4,011 were annotated as active and 1, 90, 149 were annotated as inactive.  A total 

of 179 molecular descriptors were generated for all the 4, 011 molecules using PowerMV 

summarised in After careful analysis, we found 24 descriptors were not useful in demarcating 

between actives and inactives by virtue of having the same values all across the datasets or 

having null values, and were removed from the further analysis. After discarding the useless 

descriptors, further analysis was performed for the 155 descriptors (Appendix I).  

The descriptor files were transformed to native Weka formats using bespoke scripts and 

models were created using Naive Bayes, Random Forest and J48, a set of popular classification 

approaches extensively used by our lab and others for high-throughput bioassay data sets. As 

described in the materials section, a cost-sensitive approach was used for the classification as 

the number of inactives far exceeded the number of actives. Different costs were applied on 

different classifiers. Naive Bayes used a minimum cost of 5 and Random Forest used 

maximum misclassification cost as 1,460. Details of the cost for each of the methods are 

detailed in Appendix II. 

 

The models were evaluated on the test set as described in the materials and methods section 

and quantitative measures for the performance of the model was evaluated. Random Forest 

outperformed the other two methods in all the estimates of model accuracy (Table 9). Figure 18 

and Figure 19 describes the comparative plots of these classifiers performance. Additionally a 

receiver operator characteristic plot, which  is the plot between the True positive and the False 

positive rates was plotted and area under the curve for each of the model was evaluated. 

Random Forest model had an area under the curve of 0.79, while Naive Bayes had AUC values 

of 0.72. (Figure 20). 

 

Classifier  TPR FPR TNR FNR ROC Accuracy BCR MCC 

Naïve 

Bayes 

53.7 20.1 79.9 46.3 0.72 79.37 66.79 0.117 

Random 

Forest 

66.8 

 

19.5 

 

80.5 33.2 0.796 80.171 73.64 0.166 

 

Table 9: Accuracy parameters for predictive models of mitochondrial fusion inhibitors. 
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Figure 18: Plot of Accuracy and BCR for the two models generated. RF showing more accuracy and BCR 

than NB. 

 

 

 

 

 

 

 

 
 

Figure 19: Plot comparing the sensitivity and specificity of both the models of AID 1362. 
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Figure 20: ROC plot for NB and RF showing predictive ability of the models. 

 

 

 

 

5.2.2 Evaluation of significantly enriched sub-structures of Mitochondrial fusion 

inhibitors 

     

Similarity search of the compounds using LibMCS, and jcsearch softwares from ChemAxon 

resulted in a total of 12 scaffolds that can act as potential drugs against the mitochondrial 

fusion enzymes. The MCS size was chosen to be 11 that gave upto 6 levels in the hierarchy. 

The cluster count at the top level was 632 and total cluster count was 4157. The singletons 

were removed after which we obtained 386 scaffolds . We used of more than 1% matches in 

actives, p-value less than 0.01 and enrichment factor more than 10 which gave us final 12 

enriched scaffolds. Table 2 depicts the scaffold structures along with the p-value, chi-square 

and enrichment factor values of the significantly enriched 12 scaffolds (Table 10). 
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Scaffold 

# 

Scaffold 

Structure 

Actives Inactives Chi-

square 

P-

value 

Enrichment 

factor 

 1 

 

6 4 165.907 0.00 71.110 

 2 

 

5 6 102.363 0.00 39.506 

 3 

 

5 9 78.354 0.00 26.337 

 4 

 

8 15 121.701 0.00 25.284 

 5 

 

5 14 55.232 0.00 16.931 

 6 

 

7 26 59.804 0.00 12.763 

 7 

 

15 57 125.395 0.00 12.476 

 8 

 

5 19 41.788 0.00 12.475 
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  9 

 

7 28 55.652 0.00 11.852 

 10 

 

6 24 47.701 0.00 11.852 

 11 

 

7 29 53.751 0.00 11.443 

 12 

 

5 21 37.869 0.00 11.287 

Table 10: Significantly enriched substructures of AID 1362. 

 

 

 

5.3 Proof of concept application of models to understand potential 

mechanism of action of molecules with anti-cancer effect. 

 

One of the major applications of a predictive model for specific molecular activities is to 

potentially understand the mechanisms of action of molecules. The inhibitors of mitochondrial 

fusion would act as anticancer agents. Such an approach would additionally enable 

prioritisation of molecules for including or excluding a set of potential molecular activities. 

The recent availability of anticancer activities against a number of cell-lines using high-

throughput screening provides an immense opportunity towards mapping potential additional 

molecular activities or mechanisms of action for these molecules. We briefly pre-processed the 

active molecules and molecular descriptors of 66 different cancer cell lines were computed as 

described in the materials section (Appendix IV). The molecules were screened in-silico 

against the Random Forest model. Out of the total 9, 410 molecules, a total of 2, 732 molecules 

were predicted having potential inhibitory effect on mitochondrial fusion. The number of 

molecules active against each cell-line tested and the fraction of the molecules active against 

mitochondrial fusion are summarised in Table 11. 

 

Cell lines Total no. of molecules active 

against cell line (PubChem) 

No. of molecules found active 

against mitochondrial fusion 
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Breast Cancer Cell 

line 

352 101 

CNS Cell line 476 126 

Colon Cell line 479 142 

Leukemia Cell line 4911 1482 

Melanoma Cell 

line 

477 117 

Non-small Cell 

Lung Cell line 

761 205 

Ovarian Cell line 287 92 

Prostate Cell line 43 13 

Renal Cell line 492 129 

Small Cell Lung 

Cell-line 

1132 325 

All  9410 2732 

Table 11: Number of molecules active against each cell-line tested and the fraction of the molecules active 

against mitochondrial fusion. 
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6. CONCLUSION 

 
The availability of high-throughput screens for inhibitors of specific assays provides a novel 

opportunity to model the activities based on machine learning approaches and molecular 

descriptors. Increasingly such models have been created for mining large datasets in silico and 

provide a new opportunity to create a systematic map of biological function or activities of 

molecules. The recently available confirmatory dataset of small molecule inhibitors of 

mitochondrial fusion as well as of epigenetic modifiers were used in this present study to create 

accurate computational models. Our analysis revealed Random Forest models to be highly 

accurate, with accuracies over 80 per cent and Area under the curve of Receiver Operator 

Characteristics plot of 79 approximately. The sub-structure approach was further used to filter 

the number of active compounds based on the structural features as well as the p-value and chi-

square test conducted.  

 

The potential application of such computational models is twofold. On one side, it offers a 

useful methodology to parse large molecular data sets presently available in public domain 

towards prioritising molecules for experimental analyses. On the other end, it provides for a 

new way towards understanding mechanism of action of molecules. 

We have used the mitochondrial fusion inhibitors models to predict the potential activities of a 

set of anticancer molecules screened against 66 cell lines. The molecules were screened in-

silico against the Random Forest model. Out of the total 9, 410 molecules, a total of 2, 732 

molecules were predicted having potential inhibitory effect on mitochondrial fusion. 
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7. DISCUSSION AND FUTURE PERSPECTIVE 

 

Understanding the function and regulation of epigenetic modifier proteins have been recently 

an actively pursued area of research (Piekarz et al., 2009). This has been more so, with the 

increasingly understood mechanisms of epigenetic regulation in the pathophysiology of a 

number of diseases. The role of epigenetic modifiers has been extensively studied in a variety 

of neoplasms (Shu et al., 2007; Kaneda et al., 2005; Mund, C. 2010, Vlerken et al. 2013; Leong 

et al. 2013). It has also been discussed that molecules that could target epigenetic modifiers 

could be a potential new avenue for drug development (Mund, C. 2010). In fact, targeting 

epigenetic modifiers as potential drug targets have been extensively discussed and pursued (Xu 

J et al., 2001; Unoki, M. 2011).  

Mitochondrial dynamics has been increasingly recognised as an important process to maintain 

the mitochondrial function and integrity. Processes which modulate mitochondrial dynamics, 

including mitochondrial shape, fission and fusion are also increasingly being molecularly 

deciphered to great detail and in context of their associations with human diseases (Robert et 

al., 2005). In fact mitochondrial fusion has been recently one of the major areas of interest, due 

to its close association in the pathophysiology of a number of cancers and neurodegenerative 

processes (Hsiuchen et al., 2009).  Inhibition of mitochondrial fusion offers a novel alternative 

opportunity to target cancers. Nevertheless screening a large number of molecules for specific 

activities is both costly, tedious and time consuming.  

 

The cornerstone of any rational drug discovery process starts from systematic screening of 

molecular libraries against target proteins, and assaying them for their biological outputs or 

phenotypes. Testing large libraries of molecules for specific biological activities are usually 

time consuming and extremely costly. Computational methods for pre-selecting molecules 

from large libraries would offer a plausible time and cost-effective alternative (Kumar et al., 

2006). It has been suggested that accurate methodologies to pre-select molecules for in-depth 

biological assays would accelerate the process of drug discovery. A number of methodologies 

including molecular docking (Diller et al., 2001; Huang et al., 2010) and other 

cheminformatics methods (Sean et al., 2006; Rabinowitz JR et al., 2008; Lv S et al., 2012) 

have been extensively used to prioritise molecules in drug discovery process. Machine learning 

approaches have been used extensively now for building predictive models for pre-selecting 

molecules form large molecular databases (Periwal et al., 2011; 2012; Jamal et al., 2012; 

http://www.ncbi.nlm.nih.gov/pubmed?term=Rabinowitz%20JR%5BAuthor%5D&cauthor=true&cauthor_uid=18470285
http://www.ncbi.nlm.nih.gov/pubmed?term=Lv%20S%5BAuthor%5D&cauthor=true&cauthor_uid=22917481
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2013). The availability of datasets of high-throughput screens on large molecular libraries of 

small molecules which are quite diverse offers an enormous opportunity to learn molecular and 

structural properties of molecules and their association or correlation with phenotypic or 

biological outcomes.  

In the present report, we create accurate cheminformatics models based on chemical 

descriptors and artificial intelligence for specific biological activities against four well studied 

epigenetic modifiers. We show that machine learning based approaches can provide 

computational models which are highly accurate which could be potentially used to screen 

large molecular libraries. The study is not without caveats, the first being the paucity of data 

sets in public domain encompassing inhibitors for a large number of epigenetic modifiers 

precludes us from creating a comprehensive suite of predictive models, which could be 

eventually possible with more data sets being available in public domain. The second major 

caveat is the potential issues with extrapolating the models based on the yeast system to human 

systems. The mitochondrial systems, including the proteins modulating the mitochondrial 

integrity and function in eukaryotic systems are well conserved between eukaryotic systems 

which makes a legitimate possibility of extending the model based on a yeast system to predict 

potential effects on human anticancer molecules. Nevertheless the additional molecular 

mechanisms of anticancer molecules suggested through this approach needs to be 

experimentally verified.  

 

To explain the application of our models we have used the model to prioritise potential actives 

from a set of anticancer molecules screened against 66 cell lines.  

 

 In the future, many such computational models could be integrated to provide for desirable set 

of properties or biological activities and has the potential to be integrated into drug discovery 

pipelines, with significant gains in the cost and timespan associated with a conventional drug 

discovery process (Ekins et al., 2013) The present study also provides the first comprehensive 

overview and cheminformatics analysis of small molecule modulators of epigenetic modifiers.   
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9. APPENDIX 

Appendix I : List of molecular descriptors used for modeling of epigenetic 

modifiers and mitochondrial fusion inhibitors. 

Pharmacophore  

Fingerprint 

 

Weighted Burden Number 

 

Property 

 

NEG_01_NEG- NEG_07_NEG 

NEG_03_POS-NEG_07_POS 

NEG_01_HBD-NEG_07_HBD 

NEG_03_HBA-NEG_07_HBA 

NEG_02_ARC-NEG_07_ARC 

NEG_02_HYP-NEG_07_HYP 

POS_03_POS-POS_07_POS 

POS_02_HBD-POS_07_HBD 

POS_03_HBA-POS_07_HBA 

POS_02_ARC-POS_07_ARC 

POS_02_HYP-POS_07_HYP 

HBD_03_HBD-HBD_07_HBD 

HBD_03_HBA-HBD_07_HBA 

HBD_02_ARC-HBD_07_ARC 

HBD_02_HYP-HBD_07_HYP 

HBA_03_HBA-HBA_07_HBA 

HBA_03_ARC-HBA_07_ARC 

HBA_02_HYP-HBA_07_HYP 

ARC_01_ARC-ARC_07_ARC 

ARC_02_HYP-ARC_07_HYP 

HYP_01_HYP-HYP_07_HYP 

 

WBN_GC_L_0.25, 

WBN_GC_H_0.25, 

WBN_GC_L_0.50, 

WBN_GC_H_0.50, 

WBN_GC_L_0.75, 

WBN_GC_H_0.75, 

WBN_GC_L_1.00, 

WBN_GC_H_1.00, 

WBN_EN_L_0.25, 

WBN_EN_H_0.25, 

WBN_EN_L_0.50, 

WBN_EN_H_0. 50, 

WBN_EN_L_0.75, 

WBN_EN_H_0.75, 

WBN_EN_L_1.00, 

WBN_EN_H_1.00, 

WBN_LP_L_0.25,  

WBN_ LP _H_0.25, 

WBN_ LP _L_0. 50,  

WBN_ LP _H_0. 50, 

WBN_ LP _L_0.75,  

WBN_ LP _H_0.75, 

WBN_ LP _L_1.00,  

WBN_ LP _H_1.00 

 

 

 

 

XLogP,  

PSA,  

NumRot, 

NumHBA, 

NumHBD,  

MW, 

BBB, 

 BadGroup 
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Appendix II: Misclassification costs used for different models in different 

datasets. 

 

AID Classifier 

Misclassification 

Cost 

504332 Naïve Bayes 2 

 Random Forest 50 

504339 Naïve Bayes 10 

 Random Forest 1000 

2147 Naïve Bayes 45 

 Random Forest 3000 

540317 Naïve Bayes 30 

 Random Forest 25000 

1362 Naïve Bayes 5 

 Random Forest 1460 

 

Appendix III: Summary of clustering report for all datasets 

 

AID MCS size 
No. of 

SMILES 
Level Count 

Top level 

cluster 

count 

No. of 

enriched  

scaffolds 

found 

504332 9 468 6 726 
19 

504339 10 610 6 1026 
9 

2147 11 337 5 702 
9 

540317 9 123 6 216 
8 

1362 11 386 6 632 
12 
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Appendix IV: Details of cancer cell lines datasets used for testing 

mitochondrial fusion inhibitors model. 

 

AID BioAssay Description Actives Inactives Activity 
Class 

Target Organism 

119 NCI human tumor cell line growth inhibition assay. 
Data for the CCRF-CEM Leukemia cell line.   

3595 35320 Target 
(Cell) 

Homo sapiens 

125 NCI human tumor cell line growth inhibition assay. 
Data for the HL-60(TB) Leukemia cell line. 

3401 33647 Target 
(Cell) 

Homo sapiens 

115 NCI human tumor cell line growth inhibition assay. 
Data for the SR Leukemia cell line.  

3335 30183 Target 
(Cell) 

Homo sapiens 

123 NCI human tumor cell line growth inhibition assay. 
Data for the MOLT-4 Leukemia cell line.  

3200 37107 Target 
(Cell) 

Homo sapiens 

121 NCI human tumor cell line growth inhibition assay. 
Data for the K-562 Leukemia cell line.  

2967 37019 Target 
(Cell) 

Homo sapiens 

113 NCI human tumor cell line growth inhibition assay. 
Data for the RPMI-8226 Leukemia cell line.  

2757 35103 Target 
(Cell) 

Homo sapiens 

23 NCI human tumor cell line growth inhibition assay. 
Data for the LOX IMVI Melanoma cell line. 

2542 35645 Target 
(Cell) 

Homo sapiens 

37 NCI human tumor cell line growth inhibition assay. 
Data for the SK-MEL-5 Melanoma cell line. 

2254 37689 Target 
(Cell) 

Homo sapiens 

31 NCI human tumor cell line growth inhibition assay. 
Data for the UACC-62 Melanoma cell line. 

2195 37778 Target 
(Cell) 

Homo sapiens 

29 NCI human tumor cell line growth inhibition assay. 
Data for the MALME-3M Melanoma cell line 

2010 36061 Target 
(Cell) 

Homo sapiens 

25 NCI human tumor cell line growth inhibition assay. 
Data for the M14 Melanoma cell line 

1995 38207 Target 
(Cell) 

Homo sapiens 

33 NCI human tumor cell line growth inhibition assay. 
Data for the UACC-257 Melanoma cell line 

1690 38853 Target 
(Cell) 

Homo sapiens 

35 NCI human tumor cell line growth inhibition assay. 
Data for the SK-MEL-2 Melanoma cell line 

1638 36538 Target 
(Cell) 

Homo sapiens 

39 NCI human tumor cell line growth inhibition assay. 
Data for the SK-MEL-28 Melanoma cell line 

1488 38735 Target 
(Cell) 

Homo sapiens 

27 NCI human tumor cell line growth inhibition assay. 
Data for the M19-MEL Melanoma cell line 
[Confirmatory] 

807 13682 Target 
(Cell) 

Homo sapiens 

79 NCI human tumor cell line growth inhibition assay. 
Data for the HCT-116 Colon cell line 

2533 38041 Target 
(Cell) 

Homo sapiens 

81 NCI human tumor cell line growth inhibition assay. 
Data for the SW-620 Colon cell line. 

2464 38625 Target 
(Cell) 

Homo sapiens 

67 NCI human tumor cell line growth inhibition assay. 
Data for the COLO 205 Colon cell line.  

2168 38321 Target 
(Cell) 

Homo sapiens 

65 NCI human tumor cell line growth inhibition assay. 
Data for the HT29 colon cell line. 

2161 38625 Target 
(Cell) 

Homo sapiens 

71 NCI human tumor cell line growth inhibition assay. 
Data for the HCT-15 Colon cell line 

2145 38361 Target 
(Cell) 

Homo sapiens 

73 NCI human tumor cell line growth inhibition assay. 
Data for the KM12 Colon cell line 

2049 38542 Target 
(Cell) 

Homo sapiens 

77 NCI human tumor cell line growth inhibition assay. 
Data for the HCC-2998 Colon cell line 

1859 34616 Target 
(Cell) 

Homo sapiens 

75 NCI human tumor cell line growth inhibition assay. 
Data for the KM20L2 Colon cell line [Confirmatory] 

703 12943 Target 
(Cell) 

Homo sapiens 
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69 NCI human tumor cell line growth inhibition assay. 
Data for the DLD-1 Colon cell line [Confirmatory] 

781 13186 Target 
(Cell) 

Homo sapiens 

59 NCI human tumor cell line growth inhibition assay. 
Data for the U251 Central Nervous System cell line. 

2220 38653 Target 
(Cell) 

Homo sapiens 

49 NCI human tumor cell line growth inhibition assay. 
Data for the SF-539 Central Nervous System cell line 

2125 36059 Target 
(Cell) 

Homo sapiens 

55 NCI human tumor cell line growth inhibition assay. 
Data for the SNB-75 Central Nervous System cell 
line 

2102 35695 Target 
(Cell) 

Homo sapiens 

47 NCI human tumor cell line growth inhibition assay. 
Data for the SF-295 Central Nervous System cell line 

2081 38732 Target 
(Cell) 

Homo sapiens 

45 NCI human tumor cell line growth inhibition assay. 
Data for the SF-268 Central Nervous System cell line 

2057 38330 Target 
(Cell) 

Homo sapiens 

53 NCI human tumor cell line growth inhibition assay. 
Data for the SNB-19 Central Nervous System cell 
line 

1737 38619 Target 
(Cell) 

Homo sapiens 

51 NCI human tumor cell line growth inhibition assay. 
Data for the XF 498 Central Nervous System cell line 
[Confirmatory] 

790 10927 Target 
(Cell) 

Homo sapiens 

57 NCI human tumor cell line growth inhibition assay. 
Data for the SNB-78 Central Nervous System cell 
line [Confirmatory] 

597 12723 Target 
(Cell) 

Homo sapiens 

131 NCI human tumor cell line growth inhibition assay. 
Data for the CAKI-1 Renal cell line 

2105 35996 Target 
(Cell) 

Homo sapiens 

139 NCI human tumor cell line growth inhibition assay. 
Data for the ACHN Renal cell line 

2071 38229 Target 
(Cell) 

Homo sapiens 

133 NCI human tumor cell line growth inhibition assay. 
Data for the RXF 393 Renal cell line 

2065 34190 Target 
(Cell) 

Homo sapiens 

145 NCI human tumor cell line growth inhibition assay. 
Data for the SN12C Renal cell line 

2007 38544 Target 
(Cell) 

Homo sapiens 

143 NCI human tumor cell line growth inhibition assay. 
Data for the UO-31 Renal cell line 

1923 38279 Target 
(Cell) 

Homo sapiens 

129 NCI human tumor cell line growth inhibition assay. 
Data for the A498 Renal cell line 

1659 33500 Target 
(Cell) 

Homo sapiens 

141 NCI human tumor cell line growth inhibition assay. 
Data for the TK-10 Renal cell line 

1314 38318 Target 
(Cell) 

Homo sapiens 

135 NCI human tumor cell line growth inhibition assay. 
Data for the RXF-631 Renal cell line [Confirmatory] 

503 10244 Target 
(Cell) 

Homo sapiens 

99 NCI human tumor cell line growth inhibition assay. 
Data for the OVCAR-3 Ovarian cell line 

2146 37486 Target 
(Cell) 

Homo sapiens 

109 NCI human tumor cell line growth inhibition assay. 
Data for the OVCAR-8 Ovarian cell line 

2128 38944 Target 
(Cell) 

Homo sapiens 

101 NCI human tumor cell line growth inhibition assay. 
Data for the IGROV1 Ovarian cell line 

2086 38376 Target 
(Cell) 

Homo sapiens 

103 NCI human tumor cell line growth inhibition assay. 
Data for the SK-OV-3 Ovarian cell line 

1567 37094 Target 
(Cell) 

Homo sapiens 

105 NCI human tumor cell line growth inhibition assay. 
Data for the OVCAR-4 Ovarian cell line 

1563 37281 Target 
(Cell) 

Homo sapiens 

107 NCI human tumor cell line growth inhibition assay. 
Data for the OVCAR-5 Ovarian cell line 

1340 38516 Target 
(Cell) 

Homo sapiens 

1 NCI human tumor cell line growth inhibition assay. 
Data for the NCI-H23 Non-Small Cell Lung cell line 

2104 38796 Target 
(Cell) 

Homo sapiens 

19 NCI human tumor cell line growth inhibition assay. 
Data for the A549/ATCC Non-Small Cell Lung cell 
line 

2019 39154 Target 
(Cell) 

Homo sapiens 

13 NCI human tumor cell line growth inhibition assay. 1984 33804 Target Homo sapiens 
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Data for the HOP-92 Non-Small Cell Lung cell line (Cell) 

9 NCI human tumor cell line growth inhibition assay. 
Data for the HOP-62 Non-Small Cell Lung cell line 

1913 37711 Target 
(Cell) 

Homo sapiens 

3 NCI human tumor cell line growth inhibition assay. 
Data for the NCI-H226 Non-Small Cell Lung cell line 

1859 35655 Target 
(Cell) 

Homo sapiens 

5 NCI human tumor cell line growth inhibition assay. 
Data for the NCI-H322M Non-Small Cell Lung cell 
line 

1581 37895 Target 
(Cell) 

Homo sapiens 

21 NCI human tumor cell line growth inhibition assay. 
Data for the EKVX Non-Small Cell Lung cell line 

1483 38388 Target 
(Cell) 

Homo sapiens 

15 NCI human tumor cell line growth inhibition assay. 
Data for the NCI-H522 Non-Small Cell Lung cell line.  

2762 34230 Target 
(Cell) 

Homo sapiens 

7 NCI human tumor cell line growth inhibition assay. 
Data for the NCI-H460 Non-Small Cell Lung cell line 

2415 37159 Target 
(Cell) 

Homo sapiens 

63 NCI human tumor cell line growth inhibition assay. 
Data for the DMS 114 Small Cell Lung cell line 
[Confirmatory] 

953 13271 Target 
(Cell) 

Homo sapiens 

61 NCI human tumor cell line growth inhibition assay. 
Data for the DMS 273 Small Cell Lung cell line 
[Confirmatory] 

913 12229 Target 
(Cell) 

Homo sapiens 

17 NCI human tumor cell line growth inhibition assay. 
Data for the LXFL 529 Non-Small Cell Lung cell line 
[Confirmatory] 

734 12595 Target 
(Cell) 

Homo sapiens 

11 NCI human tumor cell line growth inhibition assay. 
Data for the HOP-18 Non-Small Cell Lung cell line 
[Confirmatory] 

611 10326 Target 
(Cell) 

Homo sapiens 

93 NCI human tumor cell line growth inhibition assay. 
Data for the NCI/ADR-RES Breast cell line 

1469 26850 Target 
(Cell) 

Homo sapiens 

97 NCI human tumor cell line growth inhibition assay. 
Data for the HS 578T Breast cell line 

1463 24746 Target 
(Cell) 

Homo sapiens 

89 NCI human tumor cell line growth inhibition assay. 
Data for the BT-549 Breast cell line 

1282 23724 Target 
(Cell) 

Homo sapiens 

95 NCI human tumor cell line growth inhibition assay. 
Data for the MDA-MB-231/ATCC Breast cell line 

1453 26033 Target 
(Cell) 

Homo sapiens 

83 NCI human tumor cell line growth inhibition assay. 
Data for the MCF7 Breast cell line. 

2357 25878 Target 
(Cell) 

Homo sapiens 

41 NCI human tumor cell line growth inhibition assay. 
Data for the PC-3 Prostate cell line 

1623 26342 Target 
(Cell) 

Homo sapiens 

43 NCI human tumor cell line growth inhibition assay. 
Data for the DU-145 Prostate cell line 

1536 26318 Target 
(Cell) 

Homo sapiens 
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Appendix V (a) : Perl script for Jcsearch  
 

 

open (xyz,">jmagic.bat") or die "error in open:$!"; 

print "Enter your file name in .txt format\n\n"; 

$smile=<540317_9.txt>; 

open (FILE,"$smile") or die "error in open:$!";  

$i=1; 

 @read=<FILE>; 

 open file,$smile; 

foreach(@read){ 

$hit=<file>; 

chomp($hit); 

 $command="jcsearch -q \"$hit\" -f sdf -o C:/jcsearch/$i.sdf 540317_inactives_3d.sdf & "; 

push(@get,$command); 

$i++; 

} 

@s=@get; 

$lst=pop(@s); 

$dlt=chop($lst); 

$dlt=chop($lst); 

$dlt=chop($lst); 

push(@s,$lst); 

print @s; 

print xyz@s; 

close FILE; 

close xyz; 

close file; 
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Appendix V(b) : Perl script for splitting the dataset  into train and test sets. 

 

 

 

 

 

use strict; 

use warnings; 

 

open(FILE"processed_weka.csv"); 

my@file= <FILE>; 

close FILE; 

 

my $len=scalar(@file); 

my $header=$file[0]; 

my @test, my @train, my $i; 

push(@test,$header); 

push(@train,$header); 

for($i=1;$i<$len;$i++) 

{ 

my $num= $i/5; 

if($num=~/^\d*$/){ 

my$test=$file[$i]; 

push(@test,$test); 

}elseif($num=~/^\d*\.\d*$/){ 

my $train = $file[$i]; 

push(@train,$train); 

} 

} 

open(TRAIN,">newtrain.csv"); 

print TRAIN "@train\n"; 

close TRAIN; 

open(TEST,">newtest.csv"); 

print TEST"@test\n"; 

close TEST; 

exit; 

 


