CANDIDATE'S DECLARATION

I hereby certify that the work which is being presented in the major project entitled **"PARAMETRIC STUDY OF VAPOUR-COMPRESSION VAPOUR-ABSORPTION CASCADE REFRIGERATION SYSTEM"** in partial fulfilment of the requirements for the award of the degree of Master of Engineering in Thermal Engineering, submitted to the Department of Mechanical Engineering, is an authentic record of my own work carried under the supervision of **Dr. B.B. ARORA**, Associate Professor and **Prof. R.S. MISHRA**, Professor of Mechanical Engineering Department, Faculty of Technology, University of Delhi, Delhi.

I have not submitted the matter embodied in this major project as whole or in part, for the award of any other degree.

GIRISH KUMAR College Roll No. 05/Thr/2008 University Roll No. 13842

CERTIFICATE

This is to certify that the above statement made by GIRISH KUMAR is true to the best of my knowledge and belief.

Dr. B.B. ARORA Associate Professor Department of Mechanical Engg. Delhi College of Engineering, Delhi **Prof. R.S. MISHRA Professor** Department of Mechanical Engg. Delhi College of Engineering, Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to everybody who helped me throughout the course of this major project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisors **Dr**. **B.B. Arora**, **Associate Professor** and **Prof. R.S. MISHRA**, **Professor** in the Department of Mechanical Engineering, Delhi College of Engineering for their invaluable guidance, encouragement, and patient review. Their continuous inspiration only has enabled me to complete this major project.

I would also like to take this opportunity to present my sincere regards to my teachers for their kind support and encouragement.

I am thankful to my family members, friends and classmates for their unconditional support and motivation.

GIRISH KUMAR

College Roll No. 05/Thr/2008

University Roll No. 13842

ABSTRACT

The study carried out to analyse a refrigeration system in cascade with a compression system at the low temperature stage and an absorption system at the high temperature stage to generate cooling at low temperatures. NH_3 has been considered as refrigerant in the compression stage and the pair LiBr–H₂O in the absorption stage. The analysis has been realized by means of a mathematical model of the refrigeration system implemented in a computer program and the study also carried out the effect of efficiency of the condenser-evaporator heat exchanger on the COP of the cascade system. The intermediate temperature level is an important design parameter that causes an opposite effect on the COP of the compression and absorption systems. Therefore, the cascade system COP presents a maximum when the intermediate temperature is varied. The intermediate temperature that produces the maximum COP depends on the evaporation temperature of the compression system.

INDEX

Student's Decla	aration	••	•	•	•	•	•		i
Certificate		•	•	•	•	•	•	•	i
Acknowledgem	nent	•	•						ii
Abstract		•							iii
Index .		•	•						iv
Lists of tables		•							vi
List of Figures	5.	•							vii
Nomenclature		•							viii

1.	INTR	ODUCTION	1-16
	1.1	VAPOUR COMPRESSION REFRIGERATION SYSTEM	1
	1.2	VAPOUR ABSORPTION REFRIGERATION SYSTEM.	2
	1.3	COMPARISON BETWEEN VAPOUR COMPRESSION	
		AND VAPOUR ABSORPTION SYSTEM	5
	1.4	PRINCIPLES OF VAPOUR ABSORPTION SYSTEM	5
	1.5	COMMON REFRIGERANT – ABSORBENT SYSTEMS .	6
	1.6	DESIRABLE PROPERTIES OF A PRIMARY REFRIGERANT	7
	1.7	DOUBLE EFFECT H ₂ O-LiBr ₂ ABSORPTION SYSTEM	8
	1.8	CASCADE REFRIGERATION SYSTEM	10
	1.9	COMPRESSION-ABSORPTION CASCADE	
		REFRIGERATION SYSTEM	12
	1.10	REFRIGERATION SYSTEM AND SIMULATION MODEL	15

iv

2.	LĽ	FERATURE REVIEW	. 17-24
	2.1	SUMMARY	17
3.	MA	ATHEMATICAL MODELLING OF COMPRESSION-ABS	SORPTION
	CA	SCADE REFRIGERATION SYSTEM	25-37
	3.1	SYSTEM DESCRIPTION	25
	3.2	MODELLING APPROACH	27
		3.2.1 ASSUMPTIONS	27
		3.2.2 EXERGY METHOD	28
		3.2.3 MODELLING OF EACH COMPONENT	29
	3.3	VAPOUR ABSORPTION CYCLE ANALYSIS	29
		3.3.1 ENTHALPY AND ENTROPY CALCULATION	31
		3.3.2. ENERGY ANALYSIS	33
		3.3.3 EXERGY ANALYSIS	34
	3.4	VAPOUR COMPRESSION CYCLE ANALYSIS	35
	3.5	CASCADE SYSTEM EXERGY ANALYSIS	37
4.	PA	RAMETRIC INVESTIGATION	39-49
5.	RE	SULTS AND DISCUSSION	50-63
6.	CO	NCLUSION AND SCOPE OF FUTURE WORK	64-65
	6.1	CONCLUSION	64
	6.2	SCOPE OF FUTURE WORK	65
	RE	FERENCES	66-68

v

LIST OF TABLES

- Table 3.1Fuel-Product-Loss Definition
- Table 3.2Definition of Exergetic Terms
- Table AOperating conditions for the cascade system
- Table 4.1
 Cascade Heat Exchanger Efficiency Vs COPc
- Table 4.2Cascade Heat Exchanger Efficiency Vs COPa
- Table 4.3Cascade Heat Exchanger Efficiency Vs COPg
- Table 4.4 Intermediate temperature Vs COPc at $T_{evap} = -30$ $^{\circ}C$
- Table 4.5 Intermediate temperature Vs COPc at $T_{evap} = -25$ ^oC
- Table 4.6 Intermediate temperature Vs COPc at $T_{evap} = -20$ °C
- Table 4.7Intermediate temperatureVs COPa
- Table 4.8 Intermediate temperature Vs COPg at $T_{evap} = -30$ $^{\circ}C$
- Table 4.9 Intermediate temperature Vs COPg at $T_{evap} = -25$ $^{\circ}C$
- Table 4.10 Intermediate temperature Vs COPg at $T_{evap} = -20$ $^{\circ}C$
- Table 4.11
 Exergetic Analysis of Cascade System

LIST OF FIGURES

T ' 1 1	
Fig.1.1	Typical vapour compression refrigeration cycle diagram.
Fig.1.2	T-s Diagram for vapour compression refrigeration cycle
Fig.1.3	Vapour Absorption system
Fig.1.4	Schematic diagram of double effect H2O- LiBr refrigeration system
Fig.1.5	Schematic diagram of the compression-absorption cascade refrigeration system
Fig.1.6.	for NH ₃ -H ₂ O in absorption system Schematic diagram of the compression–absorption cascade refrigeration system
Fig.1.7	Schematic diagram of the compression-absorption cascade refrigeration system
8	for LiBr $-H_2O$ in absorption and NH ₃ in compression system
Fig.3.1	Schematic diagram of the compression-absorption cascade refrigeration system
E' 2.2	for LiBr-H ₂ O in absorption system and NH_3 in compression system
Fig.3.2 Fig. 3.3	Energy Flow balance for absorption cycle. Availability flow balance for the absorption cycle.
Fig. 3.4	Mass balance of the cycle
Fig.5.1	Cascade Heat Exchanger Efficiency Vs COPc
Fig.5.2	Cascade Heat Exchanger Efficiency Vs COPa
Fig.5.3	Cascade Heat Exchanger Efficiency Vs COPg
Fig.5.4	Cascade Heat Exchanger Efficiency Vs COPc, COPa, COPg
Fig.5.5	Intermediate temperature Vs COPc at $T_{evap} = -30^{\circ}C$
Fig.5.6	Intermediate temperature Vs COPc at $T_{evap} = -25$ ^o C
Fig.5.7	Intermediate temperature Vs COPc at $T_{evap} = -20$ °C
Fig.5.8	Intermediate temperature Vs COPa
Fig.5.9	Intermediate temperature Vs COPg at $T_{evap} = -30$ °C
Fig.5.10	Intermediate temperature Vs COPg at $T_{evap} = -25$ °C
Fig.5.11	Intermediate temperature Vs COPg at $T_{evap} = -20$ °C
Fig.5.12	COP of compression system Vs Intermediate Temperature at different evaporator temperature
Fig.5.13	COP of cascade system Vs Intermediate Temperature at different evaporator temperature
Fig. 5.14.	COPc, COPa & COPg VS Intermediate Temperature for different evaporator temperature

NOMENCLATURE

COP	Coefficient of Performance

- E Electrical power (kW), Exergy
- EEE Equivalent Electric Efficiency
- P Pressure (kPa)
- Q Heat (kW)
- Q₀ Cooling Duty (kW)
- T Temperature (^{0}C)

Subscripts

a	Absorption System
с	Compression System
com	Compression, Compressor
con	Condensation, Condenser
eva	Evaporation, Evaporator
g	Global, Cascade
gen	Generation, Generator
int	Intermediate
р	Pump
W	Water
she	Solution Heat Exchanger
Х	Mass Fraction of Lithium Bromide (%)
$\Delta \psi$	Availability Difference
ψ	Availability (kJ/kg)
1-22	Stations in the Cascade Refrigeration Cycle (see Fig. 3.1)