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ABSTRACT 

Appropriate solution to illustrious Cache Coherence Problem in shared memory multiprocessors 

system is one of the crucial issue for improving system performance and scalability. In this paper 

we have surveyed various cache coherence mechanisms in shared memory multiprocessor. 

Various hardware based and software based protocol have been investigated in depth including 

recent protocols. We have concluded that hardware based cache coherence protocol are better 

than software based protocol according to presently available protocols, but hardware based 

protocol have added the cost to implement them.  As software based cache coherence protocol 

are more economical therefore more devotion is needed for software based protocol as they show 

great promise for future work. 

After thoroughly studying about MESI protocol and MARSSx86 (Micro Architectural and 

System Simulator) simulator, which is an open source therefore its code is available without a 

hitch. In this project we have enhanced the performance of the system. While level 2 cache as 

shared we have made existing invalid to invalid transition zero at the Level 1 Data Cache at user 

level with dual cores and reduced this transition at the great extent when it comes to the 

FERRET, SWAPTIONS and CANNEAL programs of PARSEC (Princeton Application 

Repository for Shared-Memory Computers) benchmark. The experiment results have proved that 

with dual cores we have increased cycles per second for above mentioned programs of PARSEC 

benchmark and at quad cores we have increased commits per second. When it comes to octet 

cores we have enhanced the commits per second for FERRET, cycles per second for 

SWAPTIONS AND CANNEAL program of PARSEC benchmark.  
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While keeping level 2 cache as private we have also enhanced the system performance in terms 

of cycle per second and commits per second by modifying the existing Invalid to Invalid (II) in 

MESI protocol’s code of the MARSSx86 simulator. In fact by doing so we have successfully 

made invalid to invalid transition zero for the programs of PARSEC (Princeton Application 

Repository for Shared-Memory Computers) benchmark for dual cores. Experiments have shown 

that for quad cores configuration we have reduced invalid to invalid transition significantly by 

99% on an average. When we tested for octet cores configuration invalid to invalid transition is 

decreased by 99% with CANNEAL, 99% with FERRET and 70% with SWAPTIONS. As shown 

in experimental results we are actually depreciating the bus traffic and improving the system 

performance. 
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Chapter 1: Introduction 
 

The demand of multiprocessors is growing continuously in recent years and commercial 

machines with tens of processors are readily available today. In 2000, the sales of shared-

memory systems with more than eight processors passed $16 billion [1]. This has been driven by 

the continuing need for computational power beyond what state-of-the-art uniprocessor systems 

can provide. 

 
 
 
 
 
 
 
 
 
 
 

        System bus 
 
 
 
 

Figure 1.1: Typical Uniprocessor Cache Configuration 

Multiprocessors architecture varies depending on the size of the machine and differs from vendor 

to vendor. Shared-memory architectures have become dominant in small and medium-sized 

machines that have up to 64 processors. They provide a single view of memory, which is shared 

among multiple processors, and a shared memory model for programming, where 

communication is achieved through accesses to the same memory location. The success of this 

model is due to the ease of transition it provides from uniprocessor to multiprocessors. The 
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Main Memory

I/O ControllerCache 
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programming model is similar to uniprocessor and it allows for the increased parallelization of 

sequential code, while achieving a very good performance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.2: Alternate Cache Configuration 
 
Shared-memory DSM (Distributed Shared Memory) machines require a coherence protocol to 

manage the replication of data and to ensure that a parallel program sees a consistent view of 

memory [2][3][4][5][6]. In general, coherence protocols allow at most a single 2 processor to 

modify a shared location, either invalidating outstanding copies or updating copies with the new 

value. A protocol determines, to a large extent, the performance of a shared-memory program 

since communication occurs through loads and stores to shared data. But, applications have very 

different patterns of communication, and no single, general-purpose protocol has proven well 

suited to all programs. This has prompted interest in systems that enable users to select from a set 

of coherence protocols [7][8] and, more recently, in systems in which a protocol is implemented 

in flexible software instead of being forever encoded in hardware [9][10]. 

To achieve high performance, the shared view of memory is implemented in hardware. The 

predominant architecture for small systems is based on a bus. At about 32 processors, this 

architecture reaches its limits [11]. For larger systems, other types of interconnection networks, 

Processor 

Cache

I/O Controller

Main Memory
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often hierarchical, are used and the memory is distributed throughout the machine. This type of 

architecture is referred to as a distributed shared-memory multiprocessor. 

As in uniprocessors caching is used to achieve good performance,  in multiprocessors it reduces 

the latency of accesses by bringing the data closer to the processor and it also reduces the 

communication traffic and bandwidth requirements in the network by satisfying requests without 

having to access the network. Processors typically have primary and secondary caches and the 

multiprocessors itself may have higher-level caches as well. The importance of caching 

continues to increase as systems become large and have multiple levels of hierarchy. Achieving 

the shared memory model in the presence of caches requires special mechanisms to maintain a 

coherent view of memory. These mechanisms enforce a cache coherence protocol and are 

usually implemented in hardware for performance. The choice of coherence protocol and its 

implementation play an important role in the performance of a multiprocessor system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1.3: Typical Shared Bus Multiprocessors Architecture 
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1.1 Motivation 

Much of the computer systems research over the last decade has focused on systems whose main 

goals are high performance and scalability to hundreds of processors. The commercial success of 

such multiprocessors in industry is mild. Successful multiprocessors, achieving wide-spread use, 

have been relatively small-scale systems. They exhibit good performance, cost-effectiveness and 

usability. The architectures of these systems are usually based on a bus and are built with 

commodity components to keep costs low. As the market continues to grow, medium-scale 

machines with tens of processors are emerging in a reasonable price range. The best choice of 

design alternatives for a multiprocessor that can scale to the medium range, up to 64 processors, 

is not clear still.  

The primary motivation underlying parallel computing is simple: Users can obtain higher 

performance by distributing a computation across a set of processors and running those portions 

concurrently. Unfortunately, as many have discovered, programming parallel computers can be 

requires lots of effort than programming sequential computers. The task is easier if a parallel 

system supports a shared address space, since this abstraction allows processors to share a 

common pool of memory and frees a programmer from the concern of correctness of the data 

layout and movement. Distributed Shared Memory (DSM) computers, which partition the 

physical memory among a collection of workstation like computing nodes, are emerging as a 

popular way to implement parallel computers because they assure scalability and high 

performance. 
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The key for any multiprocessors system is the interconnection network. It directly affects cost, 

performance and usability. For medium to large-scale distributed shared memory (DSM) 

multiprocessors, the long latency of accesses to remote data is an issue which is becoming larger 

as processor speeds continue to increase faster than the speed of memory and interconnection 

networks. In addition, the advances in processor technology and increases in system sizes also 

increase the communication demands. The importance of the interconnection network has been 

recognized by both academia and industry. 

A variety of cache coherence protocols exist and differ mainly in the scope of the sites that are 

updated by a write operation. These protocols can be complex and their impact on the 

performance of a multiprocessor system is complex to assess. The performance of a system is 

directly related to the latency associated with processor accesses. The latency of an access often 

depends on congestion in the system, which is directly related to the amount of communication 

traffic. Analyzing the processor data sharing behavior and determining its effect on the cache 

coherence communication costs is the first step in understanding the overall performance. 

1.2 Research Objective 

In this thesis we have targeted the MESI protocol existing in MARSSx86 (Micro Architectural 

and System Simulator) simulator. After thoroughly studying the MESI (Modified, Exclusive, 

Shared and Invalid) protocol and the code of MARSSx86 (Micro Architectural and System 

Simulator) simulator, it was found that in the existing code of MESI (Modified, Exclusive, 

Shared and Invalid) protocol invalid to invalid transition still exists there. We thought if it can be 

modified or eliminated then it should increase the system performance by making this transition 

zero or reducing it at very high extent and in terms of cycles per second and commits per second 
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also. We are actually trying to overcome this deficiency of MESI (Modified, Exclusive, Shared 

and Invalid) protocol or optimizing it. 

 

1.3 Related Work: 

We have thoroughly studied the existing code of MARSS (Micro Architectural and System 

Simulator) simulator and noticed that invalid to invalid transitions exist there. After doing lots of 

research on this transition we concluded that if this transition can be eliminated or can be 

reduced then it can enhance the system performance and also it can change cycles per second and 

commits per second. Then we initiated with the standard results, while taking these we kept 

level-2 cache as both private and shared.  

We used PARSEC (Princeton Application Repository for Shared-Memory Computers) 

benchmark for getting all the results. We keep on differing number of cores viz. 2 (dual), 4 

(quad), and 8 (octet) for getting standard results and results with modified code. After getting the 

standard results of our experiment on CANNEAL, FERRET and SWAPTIONS (programs of 

PARSEC benchmark) we proceeded with the actual task of modifying the code of MESI 

protocol. After extensive study of MARSSx86 simulator’s code which is available without a 

hitch as open source, we have transformed the code of the file which contains the nitty-gritty of 

MESI protocol while executing with MARSSx86 simulator. In this file invalid to invalid 

transitions are present. We have modified the code precisely at this segment. Then again 

compiled and run this code with CANNEAL, FERRET and SWAPTIONS (programs of 

PARSEC benchmark) with the variation of number of cores i.e. 2, 4 and 8. After getting 

experiment results in the form of stats files (results of experiments comes in the form of stats 
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file) we have thoroughly compared them with the standard result’s stats files. We have noticed 

that by keeping number of cores 2 i.e. dual core we have made invalid to invalid transition as 

zero successfully for all 3 programs of PARSEC benchmark viz. CANNEAL, FERRET and 

SWAPTIONS. 

1.4 Organization of Thesis 

In this chapter, we have highlighted the problems faced by users in the cache coherence with 

shared memory multiprocessors and multiple cores which serves as the motivation for the work 

reported in this thesis. Furthermore we have also outlined the specific objective of our research 

and related research work that has occurred in the past. 

Chapter 2 provides a brief overview of the basics and concepts of coherence in cache memories 

and policies of cache replacement policies. It is also representing the write policies of cache viz. 

write through and write back policies. 

Chapter 3 introduces the software and hardware based cache coherence strategies. Its giving the 

detail overview of all the existing software and hardware based cache coherence protocols viz. 

MSI, MESI, MOSI, MOESI, DRAGON protocol, Snoopy protocol, Directory based protocol and 

Hybrid protocol. 

Chapter 4 is representing the overview of the MARSS (Micro Architectural and System 

Simulator) simulator and the program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark used for experimental results. 

Chapter 5 presents the proposed idea on which we have worked through this project. Chapter 6 

presents the performance study conducted on the proposed idea. Each conducted experiment is 
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discussed and detailed comments on the results are given. Finally, Chapter 8 concludes the thesis 

and gives some suggestions for future work. 
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Chapter 2: Concepts and Background 

This chapter describes the basics and terminology for understanding caches memories, 

interconnection networks, and the underlying problem of cache coherence in multiprocessors 

systems. Although this chapter reviews some concepts of cache coherence and interconnection 

networks, it is not an introduction to them. Rather, it is intended to give insight on the different 

concepts related to cache memories; in further chapters we can have insight to cache coherence 

protocols. We refer the reader to the established textbooks on this topic for further background 

and introductory material (e.g., [12][13][14][15]). 

2.1 Basis of Cache Memories 

No one memory technology can supply all the memory needs of a computer since fast memories 

are usually low capacity memories (low bit density). As a   consequence, they are expensive: cost 

per bit increases as access time decreases. 

Consequently, several memory types with very different physical properties placed at different 

levels of the memory hierarchy have to be used in typical computer systems. Main memory is a 

large (but slow) memory implemented with DRAM technology. To reduce the speed disparity 

between CPU and main memory, one or more intermediate small-sized memories called caches 

are used. The term cache refers to a fast intermediate memory within a larger memory system 

[16][17]. Caches, which might be implemented with SRAM technology, directly address the Von 

Neumann bottleneck by providing the CPU with fast access to memory. 

Caches store copies of items located in main memory. Memory words are stored in a cache data 

memory and are grouped into small pages called cache blocks or lines. The contents of the 

cache’s data memory are thus copies of a set of main memory blocks. Each cache block is 

marked with its block address, referred to as a tag, so the cache knows to what part of the 
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memory space the block belongs. The collection of tag addresses currently assigned to the cache 

is stored in the cache tag memory. Note that, for a cache to improve the performance of a 

computer, the time required to check tag addresses and access the cache’s data memory must be 

much lower than the time required to access main memory.  

When the CPU issues a memory address, the cache compares it to the contents of its tag 

memory. If a match (hit) occurs, the memory access is completed by the cache; otherwise (miss), 

a block that includes the addressed item is retrieved from main memory and placed into the 

cache. Temporal locality tells us that we are likely to need this word again in the near future, so 

it is useful to place it in the cache where it can be accessed quickly. Spatial locality tells us that 

there is a high probability that the other data in the block will be needed soon. Hence, because of 

locality principle and the higher speed of smaller memories, a memory hierarchy can 

substantially improve performance. A basic measure of this performance is the hit ratio, which is 

the fraction of all memory references that are satisfied by cache.  

2.1.1 Block Placement Policy 

When a block is retrieved from main memory, a block placement policy is used to know where 

the newly entered block can be placed into the cache. This policy influences when a tag address 

is presented to the cache, since it must be quickly compared to the stored tags to determine 

whether a matching occurs. Depending on the restrictions on where a block can be placed, we 

can categorize placement policy in three categories of cache organization given as below: 

• If each memory block has only one place where it can be allocated in the cache, the cache is 

said to be direct mapped. In this case, the cache is divided into sets, each of which stores a block. 

With direct mapping, each block in main memory is mapped into one specific block of cache.  
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The main drawback of this organization is that the cache’s hit ratio drops sharply if two or more 

frequently used blocks map onto the same region in the cache (known as collision), whereas the 

main advantage is its simplicity. 

• If a block can be placed anywhere in the cache, the cache is said to be fully associative. 

Associative memories are also commonly known as content-addressable memories (CAMs). To 

implement fast tag comparison, the input tag can be compared simultaneously to all tags in the 

cache tag memory. The main disadvantage of this kind of memory is that they are expensive and 

complex. 

• If a block can be placed in a restricted set of places in the cache, the cache is   set associative. A 

set is a group of blocks in the cache. A block in main memory is first mapped onto a set, and 

then the block can be placed anywhere within that set. If there are m blocks in a set, the cache 

placement is called m-way set associative.  

This approach reaches a trade-off between the advantages and disadvantages of the two previous 

proposals. Thus, it is considered a reasonable compromise between the complex hardware 

needed for fully associative caches (which requires parallel searches of all tags), and the simple 

direct-mapped scheme. The main disadvantage is similar to that in direct mapped caches, since 

collisions may occur. 

2.1.2 Replacement Policy 

When a miss occurs, a cache block must be selected to be replaced with the block retrieved from 

main memory. The main advantage of direct mapped policy is that hardware decisions are 

simplified since a replacement policy is not required: each block has only one place to be placed 

and only that block can be replaced. With fully associative or set-associative placement, there are 
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many blocks to choose from on a miss. The most employed strategies for selecting the block to 

replace are: 

• Random. The candidate block to replace is randomly selected. 

• Least-recently used (LRU). Relying on the past to predict the future, the    block replaced is the 

one that has been unused for the longest time. 

• First in, first out (FIFO). Because LRU can be complicated to calculate, this approximates 

LRU by determining the oldest block rather than the least-recently used one. 

2.1.3 Write Policy 

Another important aspect of caches is the write policy. There exist two different strategies when 

a write is carried out: write-through and write-back. In write-through, the information is written 

to both the block in cache and to the block in main memory. This policy is easy to implement, 

and it assures that main memory will never have stale information. In write-back, the information 

is written only to the block in cache. This modified cache block is written to main memory only 

when it is replaced because of any requirement. This technique has the disadvantage of temporal 

inconsistency, that is, cache and main memory can have different data associated with the same 

physical address. In addition, the write-back technique complicates recovery from system 

failures. On the other hand, write-through results in more write cycles to main memory than 

write-back does. 

To reduce the frequency of writing-back blocks on replacements, a feature called the dirty bit is 

commonly used. This status bit indicates whether the block is dirty (modified while in cache) or 

clean (not modified). If it is clean, the block is not written back on a miss, since identical 

information to the cache is found in main memory. 
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2.1.4 Structure 

Table 2.1 illustrates some of the diversity of commercial cache types. As clock speeds separated 

from main memory speeds, fast and small cache memories began to be included to boost 

performance. Thus, early computers employed a single, multichip cache that occupied one level 

of the hierarchy between the CPU and main memory. These caches were external to the 

processor and located on the motherboard (some versions of the 386 processor could support up 

to 64 KB of external cache). Later, due to the feasibility of including part of the real memory 

space on a microprocessor chip and the growth in the size (but not in the speed) of main 

memory, more cache levels were introduced, which addressed the increase of the miss penalty. A 

Level 1 (L1) cache is an efficient way to implement an on-die memory. It was named like that to 

differentiate it from the Level 2 (L2) cache, which was still located on the motherboard (off-die). 

The L2 cache is slower than L1 cache, but it is much larger. In general, caches of levels close to 

the CPU are smaller, but faster than caches of higher levels. Hence, with the appearance of the 

486 processors (and later in the Pentium MMX), an 8 KB cache began to be integrated directly 

into the CPU die. Later, the introduction of SDRAM to implement main memory and the 

growing difference between the bus speed and the CPU clock speed caused on-motherboard 

cache to be only slightly faster than main memory, which forced a new evolution. Thus, some 

processors such as Pentium Pro, Pentium II, and the first Pentiums III incorporated the 

secondary cache into the same cartridge as the CPU, but out of the die. 
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Table 2.1: Cache features in actual computers 

The desirability of additional levels increases with the size of main memory. As main memory 

size increases further, the latency difference between main memory and the fastest cache 

becomes larger. This makes even more cache levels to be desirable (for example, a third level of 

cache). This level can be implemented on a separated chip from the CPU (the IBM Power 4 

series support up to 256 MB L3 cache off-chip) or incorporated in the same chip (Itanium 2 

incorporated a 12 MB L3 cache on-die, the AMD Phenom series of chips carries a 2 MB on-die 

L3 cache, and the Intel Xeon MP features 16 MB on-die L3 cache). 

Multi-level caches can be classified in different types. A cache is said to be strictly inclusive 

when all data in L1 cache are also in L2 cache. Other processors (like the AMD Athlon) have 

exclusive caches, that is, a datum is either in L1 cache or in L2 cache, never in both. 

Caches are also distinguished by the kind of information they store. An instruction or I-cache 

stores instructions only, while a data or D-cache stores data only. Separating the stored data in 

this way recognizes the different access behavior patterns of instructions and data. A cache that 

stores both instructions and data is referred to as unified (such as in the PA-7100 LC processors 

[18]). On the other hand, a split cache consists of two associated but largely independent units: 
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an I-cache and a D-cache. While a unified cache is simpler, a split cache makes it possible to 

access programs and data concurrently.  

2.2 Cache Coherence 
Although the microprocessor performance has been improving at a rate of about 50% per year, it 

may be increasingly difficult that a single processor becomes fast enough to satisfy the 

applications demands for ever greater performance.  

An attractive solution can be the parallel machines, since they are built from multiple 

conventional, small, inexpensive, low-power, massproduced processors.  

 

 
 
 
 
 
 
 
 

                             
 
 

(a)                                             (b) 

Figure 2.1(a) Multicomputer and (b) UMA Architecture 

Parallel machines are based on the MIMD architecture (Multiple Instruction stream, Multiple 

Data stream) and are usually classified in two different types: multicomputers and 

multiprocessors. 

In multicomputer systems, each processor has its own local memory. Therefore, the global 

memory of the system is physically distributed among all the processors as shown in Figure 

2.1(a). Each processor is tightly coupled to its memory, which, besides being physically separate, 
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is logically private from the memories of other processors. A global memory address does not 

exist; rather, each processor has its own private memory address space. This kind of system is 

also known as message-passing multicomputer, as it is the only way several processors can 

communicate among themselves.  

A multiprocessors is a parallel system compound of several interconnected processors which 

share a global physical address space that can be accessed from any processor. This kind of 

system is also known as shared-memory system. Depending on how the memory is shared, 

multiprocessors may be classified in different types: 

• In UMA (Uniform Memory Access) systems, the access to all shared data of main memory 

 
 
 
 

 
 
 
 
 
 
 
 
 

(c)                             (d) 
Figure 2.1(c) CC-NUMA and (d) COMA Architecture 

from any processor is uniform, that is, the access latency does not depend on the location of the 

physical address. As Figure 2.1(b) depicts, every processor has its own private cache and all the 

processors and memory modules attach to the same interconnect. These systems are also known 

as SMP (Symmetric Multiprocessing). The UMA systems that incorporate cache coherence are 

usually named as CC-UMA (Cache-Coherent Uniform Memory Access). 
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• In NUMA (Non-Uniform Memory Access) architectures, processors and memory modules are 

closely integrated such that the access to the local memory is faster than the access to the remote 

memories. Figure 2.2(a) illustrates the NUMA model, where the global memory is shared but 

local to each processor. This model is also known as DSM (Distributed Shared Memory). The 

main advantage of the NUMA architecture is that the access to the local memory is faster than 

that in the UMA model, although the access to a non-local memory is slower. There exists a CC-

NUMA (Cache-Coherent Non-Uniform Memory Access) model with distributed shared memory 

and cache directories to implement coherency. Besides, there exists another alternative, 

NCCNUMA (Non Cache-Coherent Non-Uniform Memory Access) where data are storable in 

the processor’s cache only if those data belong to its local memory, thereby not require 

maintaining coherence. 

• In COMA (Cache Only Memory Access) architecture, the local main memory is managed as a 

hardware cache, providing replication and coherence at cache block granularity. In COMA 

machines, every memory block in the entire main memory has a hardware tag associated with it. 

There is no fixed node where space is always guaranteed to be allocated for a memory block. 

Rather, data dynamically move to and are replicated in the main memories that access. These 

main memories are organized as caches, shown in Figure 2.2(b). Some authors consider this 

model as a special kind of NUMA machine where the distributed local memories become caches 

memories. The main advantage of the COMA model is that it frees parallel software from 

worrying about data distribution in main memory. However, COMA machines require a lot of 

hardware support, they have extra memory overhead, and the required coherence protocols are 

complex. 
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Coherence defines the behavior of reads and writes to the same memory location. The coherence 

of caches is obtained if the following conditions are met: 

1. A read made by a processor P to a location X that follows a write by the same processor P 

to X, with no writes of X by another processor occurring between the write and the read 

instructions made by P, X must always return the value written by P. This condition is 

related with the program order preservation, and this must be achieved even in mono-

processed architectures. 

2. A read made by a processor P1 to location X that follows a write by another processor P2 

to X must return the written value made by P2 if no other writes to X made by any 

processor occur between the two accesses. This condition defines the concept of coherent 

view of memory. If processors can read the same old value after the write made by P2, 

we can say that the memory is incoherent. 

3. Writes to the same location must be sequenced. In other words, if location X received two 

different values A and B, in this order, by any two processors, the processors can never 

read location X as B and then read it as A. The location X must be seen with values A 

and B in that order. 

These conditions are defined supposing that the read and write operations are made 

instantaneously. However, this doesn't happen in computer hardware given memory latency and 

other aspects of the architecture. A write by processor P1 may not be seen by a read from 

processor P2 if the read is made within a very small time after the write has been made. The 

memory consistency model defines when a written value must be seen by a following read  

instruction made by the other processors. 
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Figure 2.2: Multiprocessors with Shared memory cache 

There exist two different options to implement cache coherence protocols. On the one hand, the 

protocols that invalidate cache copies (other than the writer’s copy) on a write are called 

invalidation-based protocols. On the other hand, the protocols that update cache copies are called 

update-based protocols. In both cases, the next time the processor with the copy accesses the 

block, it will see the most recent value, thereby ensuring a coherent view of the memory system. 

Since invalidation-based coherence has been used in most recent systems (e.g., 

[19][20[21][22][23][24][25]), this dissertation only considers this kind of implementation. 

2.3 Summary 

In this chapter we have studied the basics of cache coherence in multiprocessors with shared 

memory architecture. We have gone through all the cache block placement and replacement 

strategies. We have also mentioned the write strategy of cache i.e. write through and write back 

strategy. 
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Chapter 3: Classification of Cache Coherence Protocol 

We have classified cache coherence protocol on the basis of usage of hardware. In software 

based solutions we do not use any hardware but in hardware based solution an additional 

hardware is used. As it is obvious that by using an additional hardware it will enhance the system 

cost. When it comes to software based solutions it is not using any additional hardware but again 

it is not as efficient as hardware based protocols are. The cache coherence protocols can be 

classified as shown below in figure 3.1. 

 

 

Figure 3.1: Classification of Cache Coherence Protocol 
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3.1 Software Based Solutions 

The hardware based cache coherence protocols which will be discussed in later in this chapter 

are based techniques to enforce the coherence is simple and efficient, the involvement of the 

extra hardware can be very costly and may not be very scalable. Software based solutions 

generally rely on the actions of the programmer or operating system in dealing with the 

coherence problem. Added to this the compilers can gather good data dependence information 

during compilation which may simplify the coherence task. There are some methods which allow 

the caching of shared data and accessing them only in critical sections, in a mutually exclusive 

way. Decisions about coherence related actions are often made statically during the compiler 

analysis (which tries to detect conditions for coherence violation). There are also some dynamic 

methods based on the operating system actions. Optimizing compilers can then be used to reduce 

coherence overhead, or in combination with operating system or limited hardware support, 

provide the necessary coherence at a lower cost. Software approaches are generally less 

expensive than hardware approach, though they may require considerable hardware support. It is 

also claimed that they are more convenient for large, scalable multiprocessors. On the other hand 

software based approach has some disadvantages, especially in static schemes, where inevitable 

inefficiencies are incurred since the compiler analysis is unable to predict the flow of program 

execution accurately and conservative assumptions have to be made. 

The software based approaches are classified as: 

* MSI Protocol 

* MESI Protocol 

* MOSI Protocol 
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* MOESI Protocol 

* DRAGON Protocol 

3.1.1 MSI Protocol 

MSI is a simple invalidation-based protocol for write-back caches. It is very similar to the 

protocol that was used in the Silicon Graphics 4D series multiprocessor machines [26]. The MSI 

protocol defines three states, modified (M), shared (S), and invalid (I), to distinguish valid blocks 

that are unmodified (clean) from those that are modified (dirty). Invalid means the block is not 

present in cache. Shared means the block is present in cache in an unmodified state, main 

memory is up-to-date, and zero or more other caches may also have an up-to-date (shared) copy. 

Modified means that only this cache has a valid copy of the block and the copy in main memory 

is stale. An invalid block can not be neither read nor written, a shared block can be read, but not 

written, and a block in the modified state can be read and written. 

Before an invalid block can be read or before a shared/invalid block can be written, the processor 

has to order such an operation (read or write) upon the block. To this end, the MSI protocol 

defines two different classes of requests: write requests and read requests.  

On a write miss, a write request is used to tell other caches about the impending write and to 

acquire an exclusive copy of the block. A cache is said to have an exclusive copy of a block if it 

is the only cache with a valid copy of it (main memory may or may not have a valid copy). 

Therefore, a write request serves to both order the write and cause the invalidation of all copies. 

The memory system (possibly another cache) supplies the data to the requester. Once the 

requester acquires the exclusive copy, the write can be performed in its cache. 
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Figure 3.2: State transition Model for MSI protocol 

On a read miss, that is, when there is no intention to modify the copy of a block, a read request is 

issued. The memory system (possibly another cache) supplies the data. 

Figure 3.2 shows the state transition diagram that governs a block in each cache for the MSI 

protocol. As shown, a processor read to a block that is invalid causes the issue of a read request 

to service the miss. The newly loaded block transitions from invalid to shared in the requesting 

cache, as shown in 3.2(a). Any other caches with the block in the shared state that observe the 

read request take no special action, allowing main memory to respond with the data. However, if 

a cache has the block in the modified state and it receives a read request, then it must respond 

with the data, update the copy in main memory, and its copy of the block transitions to the shared 

state, as shown in Figure 3.2(b). It is also possible not to update the copy in main memory, 

leaving memory still out-of-date, but this requires more states [27]. 

On a write miss (writing into an invalid or shared block), a write request is issued. This request 

causes all other cached copies of the block to be invalidated, thereby granting the requesting 

cache exclusive ownership of the block. 
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The block in the requesting cache transitions to the modified state, and the desired bytes are then 

written into it. A common optimization to reduce data traffic is to introduce a new request, called 

upgrade request. An upgrade request obtains exclusive ownership just like a write request, by 

causing other copies to be invalidated, but it does not cause main memory or any other device to 

respond with the data for the block. Upgrade requests are useful on write misses for shared 

blocks. 

A replacement of a block from a cache causes its eviction. This replacement causes the state 

machine for two blocks to change states: the one being replaced changes to invalid, and the one 

being brought in changes either to shared or to modified. If the block being replaced was in 

modified state, the block is written back to main memory. However, if the block being replaced 

was in shared state, a silent eviction is performed (it is not necessary to inform about the 

eviction). 

3.1.2 MESI Protocol 

Another aspect of the MSI model susceptible to be improved is the following: a cache with a 

block in modified state does not distinguish between an exclusive copy that has been modified 

and an unmodified exclusive copy that is only held by that cache (since any other cache does not 

currently have a valid copy). This situation can lead to unnecessary data traffic, as the 

replacement of unmodified exclusive blocks cause the blocks to be written back to main 

memory. Besides this problem, another concern arises when the MSI model is used in a 

multiprocessor running a sequential application. In this case, when a processor reads in and 

modifies a memory block, the MSI model generates two consecutive cache misses (even though 
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there are no sharers), since the first cache miss retrieves the block in shared state and the second 

it is necessary to convert S state to M state. 

The two aforementioned situations are avoided by adding a state indicating that the block is the 

only (exclusive) copy but it is not modified. This new state, called exclusive (E), indicates an 

intermediate level of binding between shared and modified. It is exclusive, so unlike the shared 

state, the cache can perform a write (directly transitioning to the modified state). However, the 

exclusive state does not imply ownership (memory has a valid copy), so unlike the modified 

state, the cache does not need to reply when observing a request upon the block. Variants of this 

MESI protocol [28] are used in may microprocessors, including the Intel Pentium, PowerPC 601, 

and the MIPS R4400 used in the Silicon Graphics Challenge multiprocessors. 

3.1.3 MOSI Protocol 

The main advantage of the MSI model is its simplicity, but it has numerous drawbacks. For 

instance, when a cache block transitions from modified to shared, the block has to be written 

back to main memory, which may generate a lot of data traffic. Besides, the requests for blocks 

shared by two or more processors are always served by main memory, which is slow (memory-

to-cache transfer). To improve these aspects, some models add a new owned state (O). 

This state in a processor’s cache allows read only access to the block (much like shared), but also 

signifies that the value in main memory is not up-to-date. In addition, a cache is said to be the 

owner of a block if it must supply the data upon a request for that block [27]. This permits that in 

some implementations of the MOSI model (such as those based on IBM NorthStar/Pulsar 

processors [29][30][31]) the latency of cache misses lowers since data are usually supplied by 

caches (cache-to-cache transfer) instead of main memory (memory-to-cache transfer). 
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Figure 3.3 shows the state transition diagram for the MOSI protocol. As illustrated, if a cache 

holds a block in modified state and it receives a read request for it, it must provide the data to the 

requester and its copy transitions to owned. Note that, unlike the MSI model, the block is not 

written back to main memory, leaving memory still out-of-date, thereby lowering the data traffic. 

 

Figure 3.3: State Transition Diagram for MOSI Protocol 

For a memory block, only one cache can have a copy of it in owned state, while the other copies 

of the block can be in shared state. The cache holding a block in owned state is in charge of 

supplying the data to all the caches that request a copy. Note that, if a read request has been 

observed, the owned cache remains in the same state, but if a write request has been observed, 

the block transitions from owned state to invalid state. Like in modified state, the replacement of 

a block in owned state causes the block to be written back to main memory. 
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3.1.4 MOESI Protocol 

To join the major advantages of MOSI and MESI models, the MOESI protocol was proposed. 

Figure 3.4 shows the state transition diagram for this model. The final definition of the states is 

as follows. A cache has a block in modified state when it is the only valid copy of the block in 

the system. This copy has been modified and the copy in main memory is stale. A cache with the 

block in modified state can read and write that block. On a replacement, the block has to be 

written back to main memory. The modified state implies ownership. 

Therefore the data must be supplied to both read requesters (transitioning to owned) and write 

requesters (transitioning to invalid). A cache has a block is in owned state when that cache and, 

at least, another one have a valid copy of the block. The copy in main memory may be stale, 

therefore, on a replacement, the block is written back to main memory. A cache with the block in 

owned state can only read it. Like the modified state, this state implies ownership. Therefore, it 

must supply the data when observing a read request (remaining in owned state) or a write request 

(transitioning to invalid state). 

A cache has a block in exclusive state if it is the only cache with a valid copy and  
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Figure 3.4: State Transition Diagram of MOESI protocol 

its value matches with the value in main memory. On a replacement, the block does not have to 

be written back to main memory. A cache with a block in exclusive state can write it (making a 

silent transition to modified state) and read it (remaining in the exclusive state). Unlike the 

exclusive state defined in the MESI model, the exclusive state in the MOESI model implies 

ownership. Therefore, a cache with a block in that state has to serve both read requests 

(transitioning to owned state) and write requests (transitioning to invalid state) upon the block. 

A block is in shared state when there exist several valid copies of the block throughout the 

system. A cache with a block in shared state can only read it. This state does not imply 

ownership. Therefore, it is not in charge of serving requests. A block is in invalid state when the 

cache does not have a valid copy of it. The issue of a request will be required to be able to access 

the block. 
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3.1.5 Dragon Protocol 

This protocol was first proposed by researchers at Xerox PARC for their Dragon multiprocessors 

system. The Dragon protocol consists of four states: Exclusive-clean (or exclusive), has the same 

meaning as in other protocol only one cache (this cache) has a copy of the block, and it has not 

been modified (the main memory is up-to-date). Shared-clean, means that potentially two or 

more caches (including this one) have this block, and main memory may or may not be up-to-

date. Shared-modified, means that potentially two or more caches have this block, main memory 

is not up-to-date, and it is this cache's responsibility to update the main memory at the time this 

block is replaced from the cache; a block may be in this state in only one cache at a time; 

however it is quite possible that one cache has the block in this state, while others have it in 

shared-clean state. Modified, state signifies exclusive ownership as before; the block is modified 

and present in this cache alone even main memory is stale and it is this cache's responsibility to 

supply the data and to update main memory on replacement. 

Note that there is no explicit invalid state as in the MOESI protocols, because it is an update-

based protocol. The protocol always keeps the blocks in the cache up-to-date, so it is always 

okay to use the data present in the cache if the tag match succeeds. However, if a block is not 

present in a cache at all, it can be imagined in a special invalid or not-present state. 

3.2. Hardware Based Solutions 

Implementing cache coherence protocols in hardware has been the route taken by most 

commercial manufacturers. Once a suitable cache coherence protocol has been defined and 

implemented in digital logic, it can be included at every node to manage cache operations 

transparently from the programmer and compiler. Although the hardware costs may be 
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substantial, cache coherence can be provided in hardware without compiler support and with 

very good performance. The increased cost is well justified by significant advantages of the 

hardware-based approach, these advantages are: 

• Hardware schemes deal with coherence problem by dynamic recognition of inconsistency 

conditions for shared data entirely at run time. They promise better performance, 

especially for higher levels of data sharing, since the coherence overhead is generated 

only when actual sharing of data takes place. 

• Being totally transparent to software, hardware protocols free the programmer and 

compiler from any responsibility about coherence maintenance, and impose no 

restrictions to any software layer. 

•  Various proposed hardware schemes efficiently support the full range from small to 

large scale multiprocessors. 

• Technology advances made their cost quite acceptable, compared to the system costs. 

Due to aforementioned reasons, hardware cache coherence protocols are much more 

investigated in the literature, and also much more frequently implemented in commercial 

multiprocessor systems. 

A variety of hardware methods were developed depending on the size of the multiprocessor. The 

hardware based cache coherence protocol can be classified as: 

1. Snoopy Cache Coherence Protocol 

2. Directory Based Cache Coherence Protocol 

Snooping protocols work well for small numbers of processors, but do not scale well when the 

number of processors increase beyond 32. Directory-based protocols can support hundreds or 

thousands of processors at very good performance, but may also reach scalability barriers beyond 
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that point. Current commercial systems use directory-based protocols with very good 

performance. 

3.2.1 Snoopy Protocol 

Snooping protocols were designed based on a shared bus connecting the processors which is 

used to exchange coherence information. The shared bus is also the processors’ path to main 

memory. The idea behind snooping protocols is that every write to the cache is passed through 

onto the bus (write-through cache) to main memory. When another processor that is caching the 

same data item detects the write on the bus, it can either update or invalidate its cache entry as 

appropriate. A processor effectively "snoops" memory references by other processors to maintain 

coherence. 

Since an update is immediately visible to all processors, a snooping protocol generally 

implements strong consistency. Snooping protocols are simple, but the shared bus becomes a 

bottleneck for a large number of processors. Although inventive bus schemes have been 

proposed to increase the bus bandwidth, they often resulted in a greater memory delay. Adding 

more than one bus or different connection buses is limited by the fact that all processors share 

the relatively slow memory and bus resources. Thus, snooping protocols are limited to small-

scale multiprocessors of typically less than 32 processors. 

As the bus is an important commodity in these systems, various approaches were taken to reduce 

bus traffic. The choice between write-update and write-invalidate protocols is especially 

important in these systems due to the large number of messages broadcast to maintain strong 

consistency. Hybrid protocols between WU and WI were developed in [20] and [3] to reduce 
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consistency traffic. These protocols use write caches to reduce traffic in WU, and allow a cache 

to dynamically determine whether to invalidate or update a data item based on its access pattern.  

3.2.2 Directory Based Protocol 

Directory-based coherence protocols eliminate the need for a shared bus by maintaining 

information on the data stored in caches in directories. By browsing a directory, a processor can 

determine which other processors are sharing the data item that it wishes to access and send 

update or invalidate messages to these processors as required. Directory-based protocols scale 

better than bus-based protocols because they do not rely on a shared bus to exchange coherence 

information. Rather, coherence information can be sent to particular processors using point-to-

point connections. A processor communicates with the directory if its actions may affect 

consistency. Inconsistency may occur when the processor attempts to write a shared data value. 

The directory maintains information about which processors cache what data blocks. Before a 

processor is allowed to write a data value, it must get exclusive access to the block from the 

directory. The directory sends messages to all other processors caching the block to invalidate it, 

and waits for the acknowledgements of the invalidation requests. Similarly, if the processor tries 

to read a block that is held exclusively by another processor P, a cache miss occurs and the 

directory will send a message to processor P to write back its results to memory and obtain the 

most current value of the block. Depending on how long the directory waits before granting 

block access to the requesting processor determines which consistency model is supported. If the 

system waits for invalidation and write-back acknowledgments before letting a processor to 

proceed, the system implements strong consistency. Better performance can be obtained by 

delaying the processor only when accessing a synchronization variable, as in weak consistency. 

By using directory information and a cache controller which accesses and maintains the 
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directory, these multiprocessor systems are no longer limited by the performance of a shared bus 

and/or memory.  

Figure 3.5 depicts a very basic directory scheme. A system with two processors, P1 and P2, and 

a memory, M, is assumed. For this example, a write-back/invalidate protocol is used to maintain 

coherence. The directory consists of two presence bits, P1 and P2, which indicate which 

processors have a copy of a given cache block, and a state bit, V (valid), which indicates the 

status of the cache block. The memory initially has the only valid copy as shown in Figure 

3.5(a). The directory information, with both presence bits set to zero and the valid bit set to one, 

indicates that neither processor has a copy of this cache block A. Assume that processor P1 now 

reads a copy of cache block A. The directory in Figure 3.5(b) indicates that P1's cache contains a 

copy of block A by having P1's presence bit set. Next, processor P2 wants to write A and  
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Figure 3.5: Cache coherence with Directory based protocol 

sends a request for an exclusive copy of A to the memory. The cache coherence mechanism at 

the memory sends an invalidation to processor P1 followed by a copy of the cache block to P2 as 

shown in Figure 3.5(c). The directory reflects this change: P2 has the only (dirty) copy of the 

cache block which is indicated by the P2 presence bit being set to one and the valid bit being set 

to zero. If P2 reads another cache block B, which maps to the same location in its secondary 

cache, then it rejects the cache block A from its secondary cache and writes it back to the 

memory as shown in Figure 3.5(d). The directory updates its information indicating that the only 

valid copy is in the memory. Many versions of directory schemes have been proposed and many 

machines with hardware cache coherence have been built [32] [33] [34] [35]. When designing a 
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directory protocol, it is important that it perform well for typical workloads and data sharing 

patterns. 

Now, the processors and their memories can be distributed in space, and connected with point-to-

point networks which have much better scalability characteristics. Multiprocessor systems which 

use directory-based protocols can scale to hundreds or even thousands of processors. Many 

commercial multiprocessor systems implement directory-based coherence including the new SGI 

Origin which can have 1,024 processors in a maximal configuration. 

The directory can be organized in several ways. We can categorized directory as (shown in 

figure 3.6): 

• Full mapped Directory Protocol 

• Limited Directory Protocol 

• Chained Directory Protocol 
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Figure 3.6: Three types of Directory Organization 

 

3.2.2.1 Full mapped Directory Protocol 

The main characteristic of these schemes is that the directory is stored in the main memory, and 

contains entries for each memory block. An entry points to exact locations of every cached copy 

of memory block, and keeps its status. Using this information, coherence of data in private 
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caches is maintained by directed messages to known locations, avoiding usually expensive 

broadcasts, burden for maintaining correct value of this bit. The main advantage of the full-map 

approach is that locating necessary cached copies is easy, and only caches with valid copies are 

involved in coherence actions for a particular block Because of that, they deliver best 

performance of all directory schemes. But there are some of disadvantages. Centralized 

controller is inflexible for system expansion by adding new processors. Also, these schemes are 

not scalable for several reasons. Since all requests are directed to the central directory, it can 

become a performance bottleneck. The most serious problem is significant memory overhead for 

full-map directory storage in multiprocessor systems with a large number of processors. One 

approach to alleviate this problem is to reduce directory size. 

3.2.2.2. Limited Directory Protocol 

To cope-up with the problem of memory overhead in full-map directory schemes led to 

centralized schemes with partial maps or limited directories. They replace the presence bit vector 

with a small number of identifier pointing to cached copies (Figure 4.2(b)). Size difference 

between a full mapped and a limited directory, for small i and large N, is significant (where i is 

the number of pointers and N is the number of processors). This concept is justified by findings 

of some studies that the number of simultaneously existing cached copies of the same block is 

usually small. Entries in limited directories contain a fixed number of pointers. Special actions 

have to be taken when the number of cached copies exceeds the number of pointers. The 

schemes with broadcast capability allow that situation, because they can invalidate all copies 

using a broadcast signal when necessary. If protocol disallows broadcasts, one copy has to be 

invalidated, to free the pointer for a new cached copy. These protocols put an upper limit on the 

number of simultaneously cached copies of a particular block. The scalability of limited 
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directory protocols, in terms of memory overhead for directory storage, their performance 

heavily depends on sharing characteristics of parallel applications.  

3.2.2.3. Chained Directory Protocol 

The other way to insure scalability of directory schemes, with respect to tag storage efficiency, is 

the of chained directory protocol. It is the most important that whatever approach we are using 

does not limit the number of cached copies of shared data block. Entries of such a directory are 

organized in the form of linked lists, where all caches sharing the same block are chained 

through pointers into one list (Figure 3.6(c)). Unlike the full mapped directory and limited 

directory approaches, chained directory approach is spread across the individual caches. Entry in 

main memory is used only to point to the head of the list and to keep the shared data block status. 

Requests for the block are issued to the memory, and subsequent command through the list, 

using the pointers. The chained directories can be organized in the form of either singly or 

doubly linked lists.  

The main advantage of chained directory approach is their scalability; its performance is almost 

as good as in full-map directory schemes. Because of better handling of the replacement 

situation, doubly linked lists perform slightly better compared to singly linked lists, at the 

expense of being more complex and using twice as much storage for pointers 

3.2.3. Hybrid Cache Coherence Protocol 

As we know that different data blocks may exhibit different types of access behavior, a system 

which uses more than one cache coherence protocol has the potential to lead to an improvement 

in performance. Using the appropriate protocol can lead to a reduction in cache misses and 
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coherence traffic which can result in performance improvement. A hybrid cache coherence 

protocol can use any one of the basic protocols, such as invalidate or update for each cache 

block.  

In addition to this the data access behavior for a particular cache block may change during the 

execution of an application. Hybrid protocols are also known as competitive-update protocols 

which are still suboptimal for migratory data. Migratory data is data that is read, modified, and 

written by many processors in turn. WI (Write invalidate) by itself is better for migratory data, as 

updates are wasted for migratory data. To handle migratory data in competitive-update protocols 

in better way the migratory data is dynamically detected in With WI (Write invalidate), a read 

request is sent to the home site of the data, and then an invalidate message is sent when the data 

is updated. Since the processor knows that it will both read and write migratory data, these two 

messages can be combined into a read-exclusive request.  

The protocol which is being used at a certain time during the execution is determined by a 

decision function, which can be implemented in hardware or software. The ultimate goal of this 

function is to change the protocol for each cache block at an appropriate time to improve the 

performance of the system. The function can be based on some heuristic to reduce the amount of 

traffic generated or latency. If the decision function is not accurate and makes a wrong decision, 

then it can increase traffic. Various dynamic hybrid cache coherence protocols have been 

proposed and implemented. They differ mainly in the implementation of the decision function 

and the amount of hardware support provided for alternate protocols. The decision function can 

select the appropriate protocol prior to or during the execution of an application.  

We can classify decision function as: 
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• Online Decision Function 

• Offline Decision Function 

To further increase the potential for performance improvement, the protocol for a block can be 

changed during the execution of an application. These protocols are known as dynamic or 

adaptive hybrid cache coherence protocols. 

Lock Based Protocol 

The recent improvement on directory-based protocols is Lock based protocol. This protocol 

promises to be more scalable than directory-based coherence by implementing scope 

consistency. Scope consistency is a compromise between lazy release consistency and entry 

consistency. When processor P acquires lock L from processor Q, it does not pick up all 

modifications that have been visible to Q as in lazy release consistency. Rather, it picks up only 

those modifications written by Q in the critical section protected by L. 

In this protocol there is no directory and all coherence actions are taken through reading and 

writing notices to and from the lock which protects the shared memory. The lock release sends 

all write notices to the home of the lock and all modified memory lines. On lock acquire, the 

processor knows from the lock’s home which lines have been modified and can retrieve 

modifications. A processor is stalled until all previous acquire events have been performed. This 

method is more scalable because directory hardware is not needed, although lock release may be 

slow as a processor must wait for all writes to be transmitted and receive the acknowledgements.  

3.3 Summary 

In this chapter we have thoroughly surveyed all the existing software and hardware based cache 

coherence approaches. After their analysis we can conclude that though software based cache 
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coherence protocols are cost effective but if we compare their performance with hardware based 

protocols then it is very low. But again with hardware based cache coherence protocols cost 

factor is getting increased. Lots of work can be done over software based protocols. 
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Chapter 4: Proposed Idea and Related Work 

4.1 Introduction: 

Another aspect of the MSI model susceptible to be improved is the following: a cache with a 

block in modified state does not distinguish between an exclusive copy that has been modified 

and an unmodified exclusive copy that is only held by that cache (since any other cache does not 

currently have a valid copy). This situation can lead to unnecessary data traffic, as the 

replacement of unmodified exclusive blocks cause the blocks to be written back to main 

memory. Besides this problem, another concern arises when the MSI model is used in a 

multiprocessor running a sequential application. In this case, when a processor reads in and 

modifies a memory block, the MSI model generates two consecutive cache misses (even though 

there are no sharers), since the first cache miss retrieves the block in shared state and the second 

it is necessary to convert S state to M state. 

The two aforementioned situations are avoided by adding a state indicating that the block is the 

only (exclusive) copy but it is not modified. This new state, called exclusive (E), indicates an 

intermediate level of binding between shared and modified. It is exclusive, so unlike the shared 

state, the cache can perform a write (directly transitioning to the modified state). However, the 

exclusive state does not imply ownership (memory has a valid copy), so unlike the modified 

state, the cache does not need to reply when observing a request upon the block. Variants of this 

MESI protocol [95] are used in many microprocessors, including the Intel Pentium, PowerPC 

601, and the MIPS R4400 used in the Silicon Graphics Challenge multiprocessors. 

MESI protocol [11] also referred to as Illinois protocol due to its development at the University 

of Illinois at Urbana-Champaign is very renowned cache coherence protocol and it supports 
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write-back cache. In this protocol every cache line can have one of the following states (as 

shown in figure 4.1): Modified, Exclusive, Shared, Invalid. There explanation is given below: 

Modified: In this the cache line is present only in the current cache, and hence is dirty; also it’s 

been modified from the value available in main memory. So, the cache is required to write the 

data back to main memory at some time in the future, before permitting any other read of the (no 

longer valid) main memory state. The write-back will change the state of the line to the 

Exclusive state. 

Exclusive: The cache line is present only in the current cache, but is clean; it matches main 

memory. It may be changed to the Shared state at any time, in response to a read request. 

Alternatively, it may be changed to the Modified state when performing write to it. 

Shared: Indicates that this cache line may be stored in other caches of the machine as well and is 

"clean"; it matches the main memory. The line may be discarded (changed to the Invalid state) at 

any time. 

Invalid: Indicates that the cache line is invalid. The detailed explanation is shown in figure 2. 

It is better than MSI protocol [36] since for every write operation two transitions are performed, 

even when the data block taken into consideration is not shared. In the first transition it gets the 

memory block in the shared state and in second transition causes write, which also changes the 

state of that data block to shared state from modified state. It adds a new state to MSI protocol 

i.e. Exclusive state which reduces the traffic because of write operation performed for the shared 

data block [11]. 
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deficiency of MESI (Modified, Exclusive, Shared and Invalid) protocol. Infact by doing this we 

have achieved success at great extent with dual cores (i.e. 2 cores), quad cores (i.e. 4 cores) and 

octet cores (i.e. 8 cores) on programs of PARSEC (Princeton Application Repository for Shared-

Memory Computers) benchmark viz. CANNEAL, FERRET and SWAPTIONS. We thought of 

actualizing this idea on both level 2 cache as Shared and level 2 cache as Private. 

4.3 Related Work 

The MARSSx86 (Micro Architectural and System Simulator) is a simulator that works only on 

64-bit operating system and 64-bit processor. So first we have installed LINUX (UBUNTU 

11.10) on the system. After successfully installing 64-bit operating system, we installed 

MARSSx86 simulator with the help of github. The www.github.com is a website used to share 

open source simulator code and via this we can easily update the code existing in the system if 

required. Though we confront lots of problems while compiling and running the MARSSx86 

simulator but finally we conquered all the issues with lots of efforts. Then we initiated with the 

task of getting standard results i.e. stats file (as MARSS simulator output comes in term of stats 

file.), while taking these we kept level-2 cache as private once and at the second time we kept 

level 2 cache as shared. 

We used PARSEC (Princeton Application Repository for Shared-Memory Computers) 

benchmark for getting all the standard and modified code results i.e. stats file. We keep on 

differing number of cores viz. 2 (dual cores), 4 (quad cores), and 8 (octet cores) for getting 

standard results and the results with modified code. After getting the standard results of our 

experiment on CANNEAL, FERRET and SWAPTIONS (programs of PARSEC benchmark) we 

proceeded with the actual task of modifying the code of MESI protocol. After extensive study of 

MARSSx86 simulator’s code which is available without a hitch as open source, we have 
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transformed the code of file mesiLogic.cpp which contains the nitty-gritty of MESI protocol 

while executing with MARSSx86 simulator. In this file invalid to invalid transitions are present. 

We have modified the code precisely at this segment. Then again compiled and run this code 

with CANNEAL, FERRET and SWAPTIONS (programs of PARSEC benchmark) with the 

variation of number of cores i.e. (dual cores), 4 (quad cores), and 8 (octet cores). After getting 

experiment results in the form of stats files (results of experiments comes in the form of stats 

file) we have thoroughly compared them with the standard result’s stats files. We have noticed 

that by keeping number of cores 2 i.e. dual core we have made invalid to invalid transition as 

zero successfully for all 3 programs of PARSEC benchmark viz. CANNEAL, FERRET and 

SWAPTIONS. 

4.4 Summary: 

In this chapter we have proposed an idea to overcome the existing deficiency in the code of 

MESI protocol of MARSS (Micro Architectural and System Simulator) simulator. In fact in 

further chapters we will notice that this proposed idea worked successfully by 99% for dual 

cores, quad cores and octet cores. Then we have mentioned the work done for getting results via 

MARSS simulator. 
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Chapter 5: Evaluation Methodology 

This chapter presents the simulation tools used for evaluating the performance and the relative 

behavior of our proposals. Since it is not to evaluate our proposals on all possible system 

configurations, we have performed a relative accurate comparison between the different 

approaches by using a simulation model of current multiprocessors. 

MARSS provides a unique x86 a complete system simulation framework to simulate or emulate 

multiple cores systems running unmodified operating system, their libraries and their 

applications. The capability of MARSS to simulate various IO devices with a cycle-accurate 

processor model and collect region specific performance statistics makes MARSS crucial tool in 

complete system analysis. These features and  ability to model heterogeneous core designs, 

presents MARSS as an attractive framework for evaluating design alternatives of future systems 

as well as different processor microarchitectures.  

5.1 Introduction  

Single and multiple cores processors implementing the x86 instruction set architecture (ISA) are 

deployed at many computing platforms today, beginning from high-end servers to desktops and 

ultimately down to mobile devices, including smart phone market segment and beyond. The one 

principle advantage of using the x86 processors in the complete range of the product spectrum is 

to facilitate the swift deployment of the wide variety of x86 application binaries. It is thus 

important to have a complete system simulation tool that comprises realistic simulation models 

for other systems level components such as the chipset, DRAM, network interface cards and 

peripheral devices in addition to accurate simulation models for single and multiple cores 
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processors implementing the x86 ISA. Such a tool is useful for evaluating and developing 

products that will use current and emerging single and multiple cores x86 chips. This diagram 

presents an open source full system simulation tool, called MARSS – Micro Architectural and 

System Simulator (shown in figure 5.1), which meets this crucial need. The x86 CPU simulation 

components of MARSS is based on an extended and modified version of PTLsim [36]. The 

specific features of MARSS are:  

• MARSS uses a cycle-accurate simulation models for out-of-order and in-order single 

core and multiple cores CPUs implementing the x86 ISA. These are integrated into the 

QEMU [37] complete system emulation environment.  

• MARSS supports seamless switching between the cycle-accurate simulation mode and 

the native x86 emulation mode of QEMU, allowing the fast-forwarding of simulation in 

the emulation mode to a region of interest where cycle-accurate simulation is needed.  

• Unmodified operating systems can be booted on MARSS and the execution of 

unmodified x86 binaries of applications and existing libraries can be simulated on 

MARSS.  

• MARSS includes cycle-accurate models of a contemporary memory hierarchy for single-

core and multiple cores processor chips, including coherent caches and a DRAM memory 

system. Simulation speeds of 200 to 400 kilo instructions per second are realized in the 

cycle-accurate simulation mode of multiple cores processor chips[38].  

• MARSS allows system-level data to be imported into the simulator from the underlying 

emulated system. This not only permits the use of realistic data but also enables users to 

judge the effect of core designs on the rest of the system and vice-versa.  
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logic of PTLsim while requiring use of the Simics simulation framework. Zesto is implemented 

on top of the well-used Simplescalar simulator and primarily focuses on microarchitectural 

details of x86 implementations, supporting additional features that are not implemented in 

PTLsim or in its variants. Bochs [42] is a system-level emulator, capable of “booting” several 

operating systems and emulates only single core CPUs implementing the 32-bit x86 ISA.  

5.2 Overview of MARSS  

MARSS is a very unique cycle-accurate simulation framework built on top of QEMU's [37] solid 

and versatile emulation framework. QEMU's emulation framework consists of various 

components viz. a CPU emulator, memory management unit, IO devices, chipsets etc. Figure 1 

shows a high-level view of various components of QEMU along with the added CPU simulation 

framework of MARSS.  

5.3 Simulation Framework  

MARSS uses PTLsim [36] a cycle-accurate simulator, as the basis of its CPU simulation 

environment on the top of QEMU. PTLsim provides a cycle-accurate simulation model for out-

of-order (OOO) x86 CPUs, modeling the decomposition of x86 instructions into RISC-like μops 

and using basic block buffers to form traces of x86 μops, as in many real x86 implementations. 

PTLsim provides full system simulation capabilities by using the Xen Virtual Machine 

Framework and a modified Xen hypervisor. PTLsim was extensively modified to realize some 

key features of the MARSS simulation or emulation framework and extensive changes were 

done to port it to QEMU. The PTLsim substrate was also augmented to model multiple cores 

microprocessors with coherent caches, a DRAM memory system and interconnection, on-chip 

interconnections and to support MMX instructions. The original PTLsim OOO-core supports 
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SMT models where many core resources are shared among different threads and on-chip caches 

are shared among these threads. MARSS extends this design to model asymmetric heterogeneous 

cores and coherent caches.  

5.4 Benchmark 

The Princeton Application Repository for Shared-Memory Computers (PARSEC), a benchmark 

suite for studies of Multiprocessors and multiple cores. Previously available benchmarks for 

multiprocessors have focused on high-performance computing applications and used a limited 

number of synchronization methods. PARSEC includes emerging applications in recognition, 

mining and synthesis (RMS) as well as systems applications which behave as large-scale multi-

threaded commercial programs. There characterization shows that this benchmark suite is diverse 

in working set, locality, data sharing, synchronization, and off-chip traffic. The benchmark suite 

is available to the public. 

The applications are divided into three phases: an initial serial phase, a parallel phase, and a final 

serial phase. The parallel phase is called the region of interest (ROI) and is marked in the 

application source code by calls to the PARSEC hooks library. The hooks library can be used to 

perform certain actions upon entering and leaving the ROI.  

There are certain programs in PARSEC benchmark viz. CANNEAL, FERRET, SWAPTIONS, 

RAYTRACE, BODYTRACK, BLACKSHOLES, DEDUP, FACESIM, FLUIDANIMATE, 

FRQMINE, STREAMCLUSTER and VIPS. We have done experiments on 3 programs of 

PARSEC benchmark viz. CANNEAL, FERRET and SWAPTIONS whose description is 

mentioned in this chapter. 
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5.4.1 CANNEAL Overview 

• Minimizes the routing cost of a chip design with cache-aware simulated annealing 

• Electronic Design Automation (EDA) kernel (Princeton) 

• Input is a synthetic netlist 

• Fine-granular parallelism, no problem decomposition 

• Uses atomic instructions to synchronize 

• Synchronization strategy based on data race recovery rather than avoidance 

• Huge working sets, communication intensity only constrained by cache capacity. 

5.4.2 SWAPTIONS Overview 

• Prices a portfolio of SWAPTIONS with the Heath-Jarrow-Morton framework 

• Computational finance application (Intel) 

• Input is a portfolio of derivatives 

• Coarse-granular parallelism, static load-balancing 

• Medium-sized working sets, little communication 

5.4.3 FERRET overview: 

• Search engine which finds a set of images similar to a query image by analyzing their 

contents 

• Server application for content-based similarity search of feature-rich data (Princeton) 

• Input is an image database and a series of query images 

• Pipeline parallelism with multiple thread pools 

• Huge working sets, very communication intensive 
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5.5 Summary 

In this chapter we have thoroughly studied about the MARSS (Micro Architectural and System  

Simulator) simulator which is an open source and we have studied about PARSEC (Princeton 

Application Repository for Shared-Memory Computers) benchmark whose three programs viz. 

CANNEAL, FERRET and SWAPTIONS are used for getting experimental results. 
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Chapter 6: Experimental Results 
 

For taking results on MARSSx86 (Micro Architectural and System Simulator) simulator I have 

taken PARSEC (Princeton Application Repository for Shared-Memory Computers) benchmark. 

We have varied the configuration with number of cores and with the status of LEVEL 2 cache as 

PRIVATE and SHARED. For achieving these experimental results I have taken number of cores 

as 2 (Dual Cores), 4 (Quad Cores), and 8 (Octet Cores). I have taken results on CANNEAL, 

FERRET and SWAPTION program of PARSEC (Princeton Application Repository for Shared-

Memory Computers) benchmark. The results come in the form of stats file of (Micro 

Architectural and System Simulator) simulator. The standard results are compared with the 

results of modified code and its comparison is shown in sections given below.  

6.1. Results while keeping LEVEL 2 Cache as private: 

6.1.1. Results with number of cores as 2: 

While keeping number of cores as two we noticed that we have completely eliminated invalid to 

invalid transitions with CANNEAL, FERRET and SWAPTIONS programs of PARSEC 

(Princeton Application Repository for Shared-Memory Computers) benchmark. We have kept 

level 2 cache as private in this section. 

6.1.1.1. Results with CANNEAL: 

The simulation result of CANNEAL program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark has shown that we have not only made invalid to 

invalid transitions zero (as shown in table 6.1), but also enhanced performance in other concerns 
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too. The cycles per second is increased at kernel and user level. Infact the commits per second 

are also increased. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

CANNEAL 2349 0 

12705 0 

5376 0 

29079 0 

Table 6.1: Invalid to Invalid transitions with CANNEAL taking 2 cores with L2 private 

The graph of figure 6.1 is also showing the variation of standard results and results with 

modified codes. There is a huge height difference between result of the experiment of standard 

code and result of the experiment of modified code of MESI protocol. 

 

Figure 6.1: Invalid to Invalid transitions with CANNEAL taking 2 cores with L2 private 

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4

Standard Code Result

Modified Code Reuslt



Pooja Arora (Computer Technologies And Applications)  70 
 

6.1.1.2. Results with FERRET: 

The simulation results of FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark are presenting that I have not just reduced invalid to 

invalid transitions to zero (as shown in table 6.2), but also increased the system performance in 

other concerns too. The cycles per second are increased at kernel and user level. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

FERRET 1288 0 

7550 0 

90 0 

21096 0 

Table 6.2: Invalid to Invalid transitions with FERRET taking 2 cores with L2 private 

The graph of figure 6.2 is also showing the variation of standard results and the results with 

modified codes for FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark. There is zero in place of modified code invalid to 

invalid transition.  
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Figure 6.2: Invalid to Invalid transitions with FERRET taking 2 cores with L2 private 
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Table 6.3: Invalid to Invalid transitions with SWAPTIONS taking 2 cores with L2 private 

The graph of figure 6.3 is also showing the variation of standard results and the results with 

modified codes for SWAPTIONS program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark. There is zero in place of modified code invalid to 

invalid transition.  

 

Figure 6.3: Invalid to Invalid transitions with SWAPTIONS taking 2 cores with L2 private 
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6.1.2.1. Results with CANNEAL: 

The simulation result of CANNEAL program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark has shown that I have achieved success till 99% in 

reducing invalid to invalid transitions at the great extent, as shown in table 6.4. Infact cycles per 

second and commits per second are increased at kernel and user level. 

 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

CANNEAL 84305 1748 

48865 4031 

74570 8549 

56536 1507 

Table 6.4: Invalid to Invalid transitions with CANNEAL taking 4 cores with L2 private 

The graph of figure 6.4 is also showing the variation of the standard results and the results with 

modified codes. There is a huge difference between result of the experiment of standard code and 

result of the experiment of modified code of MESI protocol. 
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Figure 6.4: Invalid to Invalid transitions with CANNEAL taking 4 cores with L2 private 
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79802 24664 

Table 6.5: Invalid to Invalid transitions with FERRET taking 4 cores with L2 private 

The graph of figure 6.5 is also showing the variation of standard results and the results with 

modified codes for FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  

 

 

 

 

Figure 6.5: Invalid to Invalid transitions with FERRET taking 4 cores with L2 private 
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transitions are  reduced by 70% (as shown in table 6.6), but also cycles per second are increased 

which is enhancing the system performance. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

SWAPTIONS 6758 2070 

69371 24058 

72187 25127 

80460 30244 

Table 6.6: Invalid to Invalid transitions with SWAPTIONS taking 4 cores with L2 private 

The graph of figure 6.6 is also showing the variation of standard results and the results with 

modified codes for SWAPTIONS program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  

 

Figure 6.6: Invalid to Invalid transitions with SWAPTIONS taking 4 cores with L2 private 
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6.1.3. Results with number of cores as 8: 

Now I kept number of cores as 8 i.e. octet cores are during simulation on CANNEAL, FERRET 

and SWAPTIONS programs of PARSEC (Princeton Application Repository for Shared-Memory 

Computers) benchmark. Now again after analyzing the results of actual code of MESI protocol 

and modified code on MESI protocol we concluded that success in reducing invalid to invalid 

transitions is achieved at very high extent as mentioned in further sections. 

6.1.3.1. Results with CANNEAL: 

The simulation result of CANNEAL program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark has shown that I have achieved success till 99% in 

reducing invalid to invalid transitions at the great extent, as shown in table 6.7. Infact cycles per 

second and commits per second are increased at kernel and user level. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

CANNEAL 233495 2134 

217475 2027 

343174 42124 

324403 44442 

Table 6.7: Invalid to Invalid transitions with CANNEAL taking 8 cores with L2 private 
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The graph of figure 6.7 is also showing the variation of the standard results and the results with 

modified codes. There is a huge difference between result of the experiment of standard code and 

result of the experiment of modified code of MESI protocol. 

 

 

Figure 6.7: Invalid to Invalid transitions with CANNEAL taking 8 cores with L2 private 
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Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

FERRET 16900 1844 

11162 1705 

15806 1920 

19059 2669 

Table 6.8: Invalid to Invalid transitions with FERRET taking 8 cores with L2 private 

The graph of figure 6.8 is also showing the variation of standard results and the results with 

modified codes for FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  

 

 

Figure 6.8: Invalid to Invalid transitions with FERRET taking 8 cores with L2 private 
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6.1.2.3. Results with SWAPTIONS: 

The simulation results of SWAPTIONS program of PARSEC (Princeton Application Repository 

for Shared-Memory Computers) benchmark are showing that not only invalid to invalid 

transitions are  reduced by 70% (as shown in table 6.9), but also cycles per second are increased 

which is enhancing the system performance. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

SWAPTIONS 85713 28196 

83509 33813 

105853 38416 

191566 66612 

Table 6.9: Invalid to Invalid transitions with SWAPTIONS taking 8 cores with L2 private 

The graph of figure 7.9 is also showing the variation of standard results and the results with 

modified codes for SWAPTIONS program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  
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Figure 6.9: Invalid to Invalid transitions with SWAPTIONS taking 8 cores with L2 private 
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Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

CANNEAL 3179 0 

3932 0 

114 0 

171 0 

Table 6.10: Invalid to Invalid transitions with CANNEAL taking 2 cores with L2 shared 

The graph of figure 6.10 is also showing the variation of standard results and results with 

modified codes. There is a huge difference between result of the experiment of standard code and 

result of the experiment of modified code of MESI protocol. 

 

 

Figure 6.10: Invalid to Invalid transitions with CANNEAL taking 2 cores with L2 shared 
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6.2.1.2. Results with FERRET: 

The simulation results of FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark are presenting that I have not just reduced invalid to 

invalid transitions to zero (as shown in table 6.11), but also increased the system performance in 

other concerns too. The cycles per second are increased at kernel and user level. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

FERRET 118 0 

242 0 

969 0 

3279 0 

Table 6.11: Invalid to Invalid transitions with FERRET taking 2 cores with L2 shared 

The graph of figure 2 is also showing the variation of standard results and the results with 

modified codes for FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark. There is zero in place of modified code invalid to 

invalid transition.  
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Figure 6.11: Invalid to Invalid transitions with FERRET taking 2 cores with L2 shared 
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Table 6.12: Invalid to Invalid transitions with SWAPTIONS taking 2 cores with L2 shared 
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The graph of figure 6.12 is also showing the variation of standard results and the results with 

modified codes for SWAPTIONS program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark. There is zero in place of modified code invalid to 

invalid transition.  

 

Figure 6.12: Invalid to Invalid transitions with SWAPTIONS taking 2 cores with L2 shared 
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Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

CANNEAL 4994 340 

3537 298 

13500 307 

2068 295 

Table 6.13: Invalid to Invalid transitions with CANNEAL taking 4 cores with L2 shared 

The graph of figure 6.13 is also showing the variation of the standard results and the results with 

modified codes. There is a huge difference between result of the experiment of standard code and 

result of the experiment of modified code of MESI protocol. 

 

Figure 6.13: Invalid to Invalid transitions with CANNEAL taking 4 cores with L2 shared 
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6.2.2.2. Results with FERRET: 

The simulation results of FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark are representing that invalid to invalid transitions are 

depreciated around 99% as shown in table 6.14. I have not just reduced invalid to invalid 

transitions to zero (as shown in table 6.14), but also increased the commits per seconds are 

increased at kernel and user level. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

FERRET 8489 397 

15320 167 

6898 261 

1262 261 

Table 6.14: Invalid to Invalid transitions with FERRET taking 4 cores with L2 shared 

The graph of figure 6.14 is also showing the variation of standard results and the results with 

modified codes for FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  
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Figure 6.14: Invalid to Invalid transitions with FERRET taking 4 cores with L2 shared 

6.2.2.3. Results with SWAPTIONS: 

The simulation results of SWAPTIONS program of PARSEC (Princeton Application Repository 

for Shared-Memory Computers) benchmark are showing that not only invalid to invalid 
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Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

SWAPTIONS 3303 232 

2183 268 

2976 164 

2332 170 

Table 6.15: Invalid to Invalid transitions with SWAPTIONS taking 4 cores with L2 shared 
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The graph of figure 6.15 is also showing the variation of standard results and the results with 

modified codes for SWAPTIONS program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  

 

Figure 6.15: Invalid to Invalid transitions with SWAPTIONS taking 4 cores with L2 shared 
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reducing invalid to invalid transitions at the great extent, as shown in table 6.16. Infact cycles per 

second and commits per second are increased at kernel and user level. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

CANNEAL 13346 841 

4468 834 

3317 448 

9845 57 

Table 6.16: Invalid to Invalid transitions with CANNEAL taking 8 cores with L2 shared 

The graph of figure 6.16 is also showing the variation of the standard results and the results with 

modified codes. There is a huge difference between result of the experiment of standard code and 

result of the experiment of modified code of MESI protocol. 

 

Figure 6.16: Invalid to Invalid transitions with CANNEAL taking 8 cores with L2 shared 
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6.2.3.2. Results with FERRET: 

The simulation results of FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark are representing that invalid to invalid transitions are 

depreciated around 99% as shown in table 6.17. I have not just reduced invalid to invalid 

transitions to zero (as shown in table 6.17), but also increased the system as commits per second 

are increased at kernel and user level. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

FERRET 9151 466 

3447 328 

10893 285 

32800 327 

Table 6.17: Invalid to Invalid transitions with FERRET taking 8 cores with L2 shared 

The graph of figure 6.17 is also showing the variation of standard results and the results with 

modified codes for FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  
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Figure 6.17: Invalid to Invalid transitions with FERRET taking 8 cores with L2 shared 

6.2.3.3. Results with SWAPTIONS: 

The simulation results of SWAPTIONS program of PARSEC (Princeton Application Repository 

for Shared-Memory Computers) benchmark are showing that not only invalid to invalid 

transitions are  reduced by 70% (as shown in table 6.18), but also cycles per second are increased 

which is enhancing the system performance. 

Benchmark Invalid to Invalid transition in 
Actual Code 

Invalid to Invalid transition in 
Modified Code 

SWAPTIONS 62990 5666 

57966 8564 

77083 10325 

48071 9698 

Table 6.18: Invalid to Invalid transitions with SWAPTIONS taking 8 cores with L2 shared 
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The graph of figure 6.18 is also showing the variation of standard results and the results with 

modified codes for SWAPTIONS program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark.  

 

 

Figure 6.18: Invalid to Invalid transitions with SWAPTIONS taking 8 cores with L2 shared 
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Chapter 7: Conclusion and Future work 
 

7.1 Conclusions 

We successfully implemented a optimized version MESI protocol. The difficulties we faced 

were that the simulator is very difficult to understand without proper documentation and 

comments. We spent most of our time in understanding the existing code, compiling, getting 

results, and implementing and debugging the MESI protocol code. We finally ran PARSEC on 

our MESI code and compared it to PARSEC run on MESI. We realized that it is very difficult to 

implement an update based protocol on a simulator that is based on a bus which is not atomic. 

However, we learnt immensely from this project and thoroughly enjoyed looking at cache and 

bus logs to find bugs in our code. 

The simulation results have shown that we have made invalid to invalid transitions zero for dual 

cores with CANNEAL, FERRET and SWAPTIONS programs of PARSEC benchmark with 

level 2 cache as SHARED and PRIVATE. 

The simulation result of CANNEAL program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark with level 2 cache as shared and private have shown 

that we have reduced invalid to invalid transition by 99% with quad cores and octet cores.  

The simulation result of FERRET program of PARSEC (Princeton Application Repository for 

Shared-Memory Computers) benchmark with level 2 cache as shared and private have shown 

that we have reduced invalid to invalid transition by 99% for quad cores and octet cores. 

The simulation result of SWAPTIONS program of PARSEC (Princeton Application Repository 

for Shared-Memory Computers) benchmark with level 2 cache as shared and private have shown 

that we have reduced invalid to invalid transition by 70% for quad cores and octet cores. 
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7.2 Future Scope 

Though MARSS (Micro Architectural and System Simulator) is amazingly flawless open source 

simulator, but as we all know that nothing is perfect that applies with this simulator too. 

As it comes to the future scope of project done by me is huge because till now MARSS (Micro 

Architectural and System Simulator) is the only simulator which is fully open source. One 

possible improvement which we can suggest is given below. 

As if there are two processors P1 and P2, and right now P1 wants to perform write operation but 

that shared data block is currently occupied by P2 processor, now P1 has to wait at this moment. 

Instead of waiting like this we can utilize this time more efficiently by making P1 to release all 

the previously made update. In this way we can have the recent values of the entire shared data 

blocks which is modified by processor P1. 
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