
Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 1 | P a g e

Chapter 1: Introduction

1.1 Research Objective

The Department of Defense (DoD) uses simulation models to enhance

training and support decision-making. These models help test war plans

against adversaries, influence force structure decisions, determine what

equipment to acquire, decide the best combination and use of weapons, and

explore potential changes in doctrine or tactics [1]. Since there are many

factors that can potentially affect military conflicts, most of the traditional

community simulations are extremely complex and resource intensive. The

scenario generation process for these high-resolution simulations is man-hour

intensive and requires detailed knowledge of the simulation models‘

underlying data and operating assumptions. The time-intensive data

collection/scenario generation process, coupled with long run times, often

limits analysts to a small set of simulation runs.

Combat simulation systems are used by Armed forces around the world as an

important tool to train its personnel and to devise new doctrines and

strategies. In a realistic training exercise the cost of involving human players

in the battle space is very expensive. Computer Generated Forces (CGF)

comes to the rescue here. CGF [2,8] have been used in training as well as

tactics development. CGF can potentially replace humans in Combat

simulation systems to reduce cost of training exercises.

Over the previous decade, there has been a significant amount of work

done on the development of intelligent, Computer Generated Forces (CGF)

capable of combat behavior within synthetic battlefields. Irreducible Semi-

Autonomous Adaptive Combat (ISAAC) was an attempt to model land combat

using agent-based simulation techniques. . The central thesis of ISAAC is

that land combat can be thought of as a complex adaptive system - combat

forces are composed of large numbers of nonlinearly interacting parts and are

organized in a command and control hierarchy .Completed in 1997, the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 2 | P a g e

central thesis of Ilachinski‘s model [2] is that land combat can be thought of as

a complex adaptive system - combat forces are composed of large numbers

of nonlinearly interacting parts and are organized in a command and control

hierarchy.

Historically computer simulation has been used for the evaluation of

acquisitions and of force development options. But modeling and simulation

for this purpose is becoming increasingly complex as multi-role, multi-platform

and multi-system aspects are taken into consideration. The complexity of this

task is further increased by the difficulty in modeling human decision-making

with sufficient fidelity using conventional software approaches. Current

implementations of Computer Generated Forces, such as ModSAF, have

proven to be very useful, but do not model human reasoning and cannot

easily model team behavior.

War games are commonly used as a means for exploring the effects of

improved equipment or revised operational approaches on force capability.

One commonly used war game is CAEN (Close Action Environment),

developed by the Defence Evaluation Research Agency in the UK. CAEN

allows analysists to model engagements and operations from the level of the

individual soldier to the company level, and is used for both rural and urban

environments. However, war games, such as CAEN, are currently limited by

the need to provide detailed pre-prepared scripts describing the actions to be

followed by the simulation entities.Consequently these entities are neither

autonomous, nor do they provide the ability to model team behavior.

In conventional simulation modeling environments (such as CAEN [9] or

ModSAF), a war game is a tightly scripted scenario in which the activity of

each entity is pre-programmed in isolation with respect to the simulation clock.

An entity ‗moves‘ and ‗acts‘ in the simulation according to the script, which

tells exactly when and how the entity should act throughout the scenario,

almost independently from other entities. The conventional simulation

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 3 | P a g e

environment offers only a very minimal level of situational awareness, for

example, such that an entity may decide to fire or not fire its weapon

depending on whether or not another entity is sighted. However, more

complex behavioral variations, such as choosing where or whether to cross a

road, cannot be expressed within the scripted scenario.

Early applications of intelligent agents in simulations to represent operational

military reasoning have proved highly effective. This success comes from the

capability of agents to represent individual reasoning and from the

architectural advantages of that representation to the user due to the ease of

setting up and modifying operational reasoning or tactics for various studies.

In addition, the BDI class of agents extends the modeling of reasoning to

explicitly model the communications and coordination of joint activities

required for team behavior.

Intelligent agents has the potential of representing complex behavior & team

modeling capability [3] using agent based simulation [ABS]. ABS[4]

represents a shift from the traditional force-on-force attrition calculations

(typically containing scripted entities or utilizing humans for decision-making)

to considering how high-level properties and behaviors of a system emerge

out of low-level rules applied to individual agents. The conceptual focus shifts

from finding a mathematical description of an entire system to a low-level rule

based specification of the behavior of individual agents making up that system

[2].

Agent-based modeling and simulation [5] is a maturing approach to modeling

combat systems comprising of autonomous, interacting battlefield entities

which have individual goals as well as overall group goals, that must be

balanced to achieve the global objective. These entities, represented as

agents, interact with some degree of autonomy and continually make

decisions to satisfy a variety of sometimes conflicting objectives. This

technique can be used to model battlefield scenarios where multiple entities

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 4 | P a g e

sense and stochastically respond to conditions in their local environments,

mimicking large-scale combat system behavior which is essentially a non-

linear complex system. In such systems, normal linear modeling and

simulation techniques do not satisfactorily model or explain the behavior that

the system exhibits because processes and actions are not directly

proportional to, or related to input. Further, since these complex systems have

many components that interact, cause and effect cannot be separated.

ABSs are based on the idea that is possible to represent in computerized form

the behavior of entities which are active in the world, and that it is thus

possible to represent an emergent collective behavior [4] that results from the

interactions of an assembly of autonomous agents [6].

Military combat has many of the key features of complex adaptive systems

[2]. Combat forces are composed of large numbers of nonlinearly interacting

parts that are organized in a command and control hierarchy

Command & control functions in combat simulations require human decision

makers in loop. The need to automate process of C&C arises [7] when either

simulation is carried in close loop or human decision makers are not available

or cost effective. Further, command decisions are based on static knowledge

base of strategic doctrines, tactical situation and experience of the

commander. A command decision model based on such static knowledge

acts as decision support system for the commanders.

Each battlefield entity in C&C hierarchy has some local objective which it

continuously tries to fulfill, in order to satisfy the overall group objective. Each

of the individual agents may have partial information (decentralized data) and

capability (simple rules) for problem solving and thus a limited view. Each

soldier on the battlefield has some degree of autonomy and is continually

making decisions to satisfy a variety of sometimes conflicting objectives. For

example, a soldier may simultaneously desire to move towards an objective,

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 5 | P a g e

remain unobserved by the enemy, obey his commander‘s orders, stay close

to his friends, etc. In addition, each of the soldiers in a unit may value the

various objectives differently. Consequently, there may often appear to be

disorder at the local level, but long-range order at the global level.

Indeed, using very simple models, Ilachinski [2] has observed ―an impressive

array of emergent behaviors,‖ such as frontal assaults, retreats, guerrilla-like

attacks, flanking maneuvers, encirclements, and many more.

The contemporary trend towards the integration of multi-role forces, together

with the high cost of live exercises, has required the development of more

realistic training environments.

Using intentional software agents [8,9] in simulation greatly enhances the

capability for modeling entity and group behaviors based upon situation

awareness. This makes it feasible to express tactics where entity activity is a

combination of goal-directed and reactive behaviors dependent on the

developing tactical situation.

Intelligent agents allow the Computer Generated Forces in training systems to

behave in a more human-like manner, with a much richer set of behaviors

including team responses, and dynamic role re-allocation. The result is a

more effective training environment with realistic tactical behavior

represented, whilst avoiding the expense of having humans involved to

provide this.

Ralph Rönnquist [9] in his work, describes the Simulation Agent Infrastructure

(SAI), which uses intelligent agents to improve war-gaming with enhanced

tactics modeling. SAI offers a modern war-gaming solution with a clear cut

separation between the simulation models, the simulation engine, and the

simulation scenarios. This makes it easier to use and maintain the software,

and it facilitates verification of individual scenarios. Further, it

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 6 | P a g e

compartmentalizes behavioral models and models of tactics into distinct agent

capabilities, and allows entities in a simulation to be guided not merely by

what time it is, but also by the current simulated situation.

The emphasis on timely, accurate information in modern warfare, and the

availability of modern communications, have led to the development of more

and more complex command and control systems. It is important to

understand the behavior of these C3 systems capability [3,7] under a variety

of circumstances. However, as they are difficult to analyse manually,

advanced modeling and simulation tools for C3 systems development are

required. The challenge in C3 systems is to model the reasoning associated

with different roles in the command and control hierarchy. Intelligent agents

can represent the reasoning and command capabilities associated with their

assigned roles in the hierarchy, allowing different command and control

strategies to be quickly evaluated under varying circumstances. This power

comes from the suitability of the BDI architecture for representing individual

and team objectives and roles.

The team modeling extension also includes the capability of progressing a

scenario with different ‗team granularity‘ [9]. For instance, a scenario may

involve a number of platoons whose behaviors are detailed at the

macroscopic level (as ‗indivisible‘ entities), together with other platoons that

are aggregations modeled through the behaviors of the individual soldiers.

Such aggregation granularity may also be dynamic and change throughout a

simulation run. The team modeling framework [10,11] then provides the

concept and language constructs that make it possible to define this kind of

simulation model.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 7 | P a g e

1.2 Previous Work done in this Area

Realistic military simulations are needed for analysis, planning and training.

Defense organizations are primarily interested in conducting successful and

efficient military operations for which intensive analysis and training is

required. All Analysis and Training Tools are based on various modeling and

simulation techniques. One of the candidate technologies for modeling the

decision-making behavior of simulated battlefield entities is the Intelligent

Agent Technology. Intelligent Agent Technology is a valuable software

concept with the potential to be widely used in military simulation & and

command decision modeling. They provide a powerful abstraction mechanism

required for designing simulations of complex and dynamic battlefields. .

During battlefield simulation these entities generally represent individualistic

behavior, taking operational order from higher control and executing relevant

plans. Their ability to model the tactical decision-making behavior of

battlefield entities gives an edge over many other software techniques

because such a problem maps easily into agent based programming. This

study demonstrates the strength of this technology in modeling and simulating

the battlefields. As a case study [12] the tactical and reactive behavior of

lower level battlefield entities such as tanks has been modeled using JACKTM

Intelligent Agent Framework.

In this study, the tanks have been modeled as Intelligent Agents that have

tactical behavior, plans and capabilities. The Red tank tries to reach its target

point by traversing the shortest path (proactive behavior). However, if it comes

across an obstacle while moving, its initial plan of reaching the target by the

shortest path fails and it is forced to react to the external event: ―encounter of

obstacle‖. It displays reactive behavior by moving around the obstacle. Since

its goal is persistent, it still tries to reach the target by the shortest path around

the obstacle. Whenever it detects the enemy in the firing range, it neutralizes

it.

During battlefield simulation lower level entities (soldiers/ tanks) generally

represent individualistic behavior, taking operational order from higher control

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 8 | P a g e

and executing relevant plans. A complex battlefield scenario typically involves

thousands of entities, their coordinated team behavior should also be

considered to make the simulation more realistic. Teamwork requires both

coordination and shared goals. The primary contribution of first study is in

demonstrating a proof-of-concept model for simulating Armour tanks as

agents, as simply as possible. It can be extended to model various kinds of

battlefield entities, organized as a collection of agents. This will result in the

development of team-oriented behavior, which is a powerful representation of

the military command and control hierarchy. In addition to individual beliefs,

goals, plans and intentions, a team of agents will also have mutual beliefs,

joint goals and combined plans. Our next study[13,14] demonstrates the use

of Intelligent Agent based team-behavior modeling concepts in simulating the

Armored tanks in a tactical Masking Scenario. In this study, we have

considered a scenario in which a Combat Group (CG) of Combat Command

(CC) has been assigned the task of capturing an objective. (Fig. 1.1). Combat

Group starts from forward assembly area and sends a Recce troop (one

section). This troop detects some enemy and informs the Combat Group

commander. Combat Group then sends two troops for masking operation so

that main armour may move swiftly to the objective. Simultaneously, the

masking team keeps on engaging enemy in enemy zone until the main

armour moves out of enemy range. This masking team thereafter re-joins the

main armour and moves on towards the objective.

In order to model and simulate this scenario using team-oriented concepts,

first of all the key abstractions have to be identified. This will enable us to

clearly structure the team and define roles and responsibilities of the team

members. From the textual narrative stated above, we can directly identify the

team controller as the Combat Group Commander, whose top-level goal is to

move towards the assigned objective without any enemy interference. It is

obvious that three sub teams will be involved, namely: recce team, masking

team, and main armour team, each performing its respective role by executing

the appropriate plans. For example, Recce team will handle recee events by

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 9 | P a g e

having plans for detecting enemy location and informing team controller.

Similarly masking team will have plans for engaging the enemy so as to

distract him. The masking team will join the main armour, when the enemy

detection range between enemy and main armour is beyond reach or when

the enemy has suffered more causality then desired threshold limit. The roles,

responding events and the corresponding plans for this scenario is given in

Table 1.1 below:

Main Team Sub Team

(Role
Performer)

Roles Responding
events

Plans

(event
handlers)

Team
Controller

recee_team

mask_team

armour_team

RECEE_ ROLE

MASK_ ROLE

ARMOUR_ROLE

recee_event

mask_event

armour_event

recee_plan

mask_plan

armour_plan

Table 1.1: Teams and their roles, events and plans

Figure 1.1 Masking Scenario Displaying Agent Oriented Team Behaviour of a

Combat Group

Since team behavior is modelled as an extension of agent concepts, we have

identified two types of agents in this armour-masking scenario: the tank

agents and the team agents that have all the capabilities of agents and also

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 10 | P a g e

encapsulate team behaviour. The tank agents have been modeled so as to

display tactical behaviour like movement along a route, obstacle avoidance,

patrol, firing, etc. A team controller (representing the Combat Group) and

three sub-teams are involved. The team controller is also called the ―role

tenderer‖. It is composed of sub-teams that perform roles on its behalf. Role is

a behaviour that the ―role tenderer‖ may request the ―role performer‖ to

achieve. It represents behaviour of a team member (sub-team) participating in

a particular tactical operation. As an example, in the above scenario, consider

a troop of tanks. Depending on the battlefield situation, that troop may perform

the role of recee, masking, engagement or marching. When a troop performs

a given role, it presents a particular view to its battlefield environment at that

instance. The other entities that are interacting with it expect certain behaviour

at that time, depending on the role that it plays at that time. For example, an

instance of the troop in the role of masking would have a different set of

capabilities than if that troop was playing the role of main armour heading for

assigned objective.

A Infantry ambush scenario [15] have also been modeled taking their team

behavior into consideration. In this ambush scenario, when the infantry first

platoon enters enemy kill zone, it encounters enemy ambush fire. First

platoon immediately informs the team controller (commander) to change the

predefined path of other infantry platoons, thus representating coordinated

team behavior. These infantry scenario has been successfully modeled using

JACK Teams.

1.3 Motivations

Motivation for our work comes from the successful implementation of above

mentioned armour and infantry scenarios, exhibiting individual combat entity

as well as team coordinated tactical behavior. These study demonstrates the

strength of Agent technology in modeling and simulating the battlefields

entities individual tactical and coordinated team behavior. In our study we

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 11 | P a g e

took a battlefield scenario, where each top level entity refereed to as

command agent takes a dynamic reactive response on unforeseen condition

based on the updated synthesized belief , derived from the lower level sub

ordinate units belief, thus enabling more realism in simulation.

1.4 Scope of the work

This paper presents a role-based BDI framework to facilitates representation

of military hierarchy, modeling of behavior based on agent current belief,

teammate‘s belief propagation, and cooperation and coordination issues. This

BDI framework is extended and based on the commercial agent software

development environment known as JACK Teams. This BDI framework builds

teams using a simplified, abstract framework called Team-Oriented

Programming (TOP) and allows team based tactical operation of military

doctrine to be captured in an effective way and be played out in simulation

scenario with minimal effort. It also enable handling of dynamically changing

combat situation , reasoning on team goal failure at the team level, as well as

automatic sharing and aggregation of belief between team and sub teams for

accessing of current battlefield situation .

This paper also demonstrates the use of intelligent agent-based team

behavior modeling, team belief propagation based situation awareness and

generation of expert based appropriate reactive response (past expertise

stored in team belief) using a infantry attack scenario exhibiting a infantry

company attack against a platoon. The company commander entity (CGF) is

modeled as an command agent (CA), which synthesizes the belief derived

from its platoons beliefs and generated immediate reactive response to any

unforeseen battlefield situation. Similarly the Platoon commander is modeled

as an command agent , which synthesizes the belief derived from its sections

beliefs and generated immediate reactive response to any unforeseen

battlefield situation. The sections in turn synthesizes the belief from its

soldiers which are actual combat units & propagates the belief to its platoon

commander.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 12 | P a g e

1.5 Organization of the thesis

In this chapter, we have highlighted the usefulness of intelligent agents to

model the tactical behavior & team behavior of the combat entity which serves

as the motivation for the work reported in this thesis. Furthermore we have

also outlined the specific objective of our research and related research work

that has occurred in the past. Chapter 2 provides problem description and an

overview of the methodology used in this study describing the model

infrastructure, command agents, classes of data/information at different level

of military hierarchy, Observe ,Orient ,Decide and Act (OODA) Information

model. It also briefly introduces the command agent architecture used in the

study. Chapter 3 introduces the Team oriented programming approach of

modeling Intelligent agent & their team behavior. It describes Team work in

detail, which is a central feature of many activities in the modern military.

Chapter 4 introduces the Intelligent Agent technology describing in detail the

BDI Framework, Agent Team Framework, JACK Team concepts &

Implementation. Chapter 5 introduces Tropos: An Agent-Oriented Software

Development Methodology in detail. It also identifies the stakeholders & actor

diagram in the proposed system. Chapter 6 introduces Agent Unified

modeling language (AUML) , an extensions to the UML for designing of

agents. Chapter 7 provides an overview of the software detailed design using

the JACK™ Development Environment (JDE). It describes the details of

plans, events, (messages, percepts), data/knowledge of all agents / teams

involved in this system. Chapter 8 gives the implementation details of the

system using JACK Tool Kit .Finally, Chapter 9 concludes the thesis and

gives some suggestions for future work.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 13 | P a g e

Chapter 2. Methodology

 2.1 Concept Demonstration (Scenario)

Concept demonstration of the command agent software

To demonstrate the functionality and capability of the command agent, we

have chosen a deliberate attack scenario (see Figure 2.1). The objective is for

a mounted infantry company located at Point A to attack an enemy formation

occupying a position in the vicinity of Point B. The company commander

agent is to produce a plan and courses of action to carry out four phases for

the attack, namely 1) preparatory, 2) assault, 3) exploitation and 4)

reorganisation5. The company organization consists of three platoons. Each

platoon is comprised of three sections, each of which has nine soldiers. To

prosecute the attack, the company splits into a fire support platoon and two

assaulting platoons. The agent plans the routes, form-up positions and

coordination parameters for the attack. The agent will monitor the location and

status of its own troops and the enemy and will respond to situations which

require changes to the plan. In planning and executing the attack, the agent

will apply documented military doctrine and make appropriate use of terrain.

Figure 2.1: The scenario for demonstrating the agent capabilities. The objective is for a mounted

infantry company located at Point A to attack an enemy formation occupying a position in the

vicinity of Point B.

Objective : An infantry company attacking an enemy area (protected by

platoon) using two assault platoon and one support platoon.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 14 | P a g e

2.1.2 Detailed Scenario

If we see a larger picture a Battalion is going to attack a enemy company.

There are three company in Battalion (two assault company & one support

company). If we seen the military command hierarchy ,each company (Figure

2.2) there are three platoon. Each platoon in turn consisting of three section

(two assault section & one support section). In each section there are 9

soldiers. Each section consists of two grenadiers, three gunners & two MMG

men & four rifle men.

Mission plan to capture a objective is developed in Battalion HQr. As a part of

main mission objective each company has to capture its objective , with in

which each platoon of company has to capture its sub objective designated by

company commander. If we further zoom our focus to platoon level , each

platoon has been assigned the task of capturing one objective protected by

enemy section.

When the first platoon starts executing its plan to capture the given objective,

it may encounter several obstacles, minefield created by enemy units. Initially

the three section of the platoon moves in some given formation , towards the

objective. If the first section encounters the minefield, then as part of tactics all

other section aligns them in rod formation to allow minimum causalities,

showing the coordinated team effort.

There is a firebase group with major weapons (MMG/LMG) situated outside

the minefield but near to enemy area. This fire base group fires at enemy,

while the three sections are crossing the minefield. When one of the section

(assault role) encounters the mine field, it request the platoon commander to

give arty fire support from fire base.

 While the first section crosses the minefield (Figure 2.3) with slow speed, it

may further encounter ambushed enemy firing from the hidden enemy

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 15 | P a g e

consisting of three to four soldiers. This enemy action creates some

suppression / causality to the assault section. But the section keeps on

moving till the suppression of the section goes beyond a particular threshold

point. In this case this assault section stops movement & start firing towards

the enemy area, while the support section with high morale value gives the

support fire to assault section. Meanwhile ,If the enemy ambush section

suffers heavy loss , it moves back to safe place through safe route to avoid

further damage to its personnel.

Figure 2.2 : Military command Hierarchy

This support fire action of the support section continues until the enemy is

suppresses from further firing or the support section suffers heavy causality.

The assault section crosses the minefield, it request platoon commander to

stop the arty firing and also issues order to support section to stop engaging

the enemy ambush section further. Finally all the three section crosses the

mine filed and spread in front of enemy section, covering it from front side so

as to isolate the enemy section. While the platoon is spreading in lean on

fashion , the enemy arty / mortar group may fire at the three sections, causing

their causality. The enemy arty / mortar group fires at three section, only when

the arty fire on them is fully stopped.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 16 | P a g e

Figure 2.3 Platoon crossing a enemy minefield

The demonstration scenario for this Model is a company attack in plain

terrain. The scenario chosen was such that a company which has three

platoons will perform an attack on an enemy force whose positions and intent

were assumed to be known. The command agent‘s (CA) role is to deploy

forces and tactics according to military doctrine. The CA needs to generate a

plan for maneuvering the troops taking into account the enemy‘s LOS and

their weapon fire ranges. Other resources issues to be considered are: fuel,

ammunition, food, health, morale, etc. In a company attack, the commander is

impounded with information from different sources. It is therefore necessary to

fuse the information on which knowledge is based.

Having the knowledge, one is then able to acquire an adequate understanding

of:

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 17 | P a g e

1) Belief about health, morale, leadership factor, suppression factor,

casualty & location of its own units.

2) Resource level of its own units such as fuel, ammunition, food,

3) Enemy‘s intent based on their locations, movements and weapons

deployed;

4) The availability of friendly forces and resources

2.2 Model Infrastructure & Implementation

In an attempt to model the behaviors of a company commander, one must

consider the following:

1) Sensor data consisting of lower level actual entities (soldiers),section unit

data,

2) Platoon reports, data, and situation awareness.

3) Information compilation from raw data, reports to commander belief data

4) Information retrieval from Commander Belief data set

5) Integration of propagated belief from lower level entities to upper level

6) Effective plan generation derived from commander Belief /knowledge

7) Decide and select the most viable plan and

7) Act upon those COA and control and monitor the plans.

8) Handle uncertainties / enemy intent

9) Modify current plan, if required

Model is implemented using ‗JACK Teams‘, which is based on multi-agent

framework and BDI (Belief, Desire, Intention) reasoning. JACK Teams [6,7,8]

was developed for operations analysis in the military environment. It provides

mechanisms for modeling key aspects of team operations deployed in land

operations such as:

1) A hierarchical command structure,

2) Team oriented activities,

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 18 | P a g e

3) Team intentions,

4) Extensive reasoning over plan failure,

5) Team reformation and re-organization,

6) Connection of beliefs between teams up and down the command hierarchy;

and

7) Autonomy at each command hierarchy level.

2.2.1 Command Agents

Within the Command Agent (CA), we identify three key capabilities (Figure

2.4): planning for action, control of action and reporting on action. These three

capabilities operate on a shared belief structure that contains the CA current

beliefs regarding the WG simulation.

Planning for action: A number of possible scenarios are examined and

evaluated in the processes of planning and re - planning. Re-planning is

important in that it allows the CA to deal with wide variety of circumstances.

Hence increasing the robustness of the CA.

Controlling of act: The CA is to manage the teams in a timely manner whilst

keeping track of the planned activities. This involves observing and monitoring

the planned activities throughout the execution phases of the plans.

Reporting on action: In a multi-agent framework representing Military

command & control has a hierarchical structure, reporting mechanism must

make provision for collaboration between agent-and-agent and agent-and

human.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 19 | P a g e

 Figure 2.4 Command agent Capability

2.2.2 Classes of data / information at different levels

Figure 2.5 : OODA Model

In the following, we will explain the classes of data/information (Figure 2.5) at

different levels namely: sensors, aggregated reports, information, knowledge,

decide and act.

Sensor data: Sensor data or raw data is obtained by the

platoons. This data is in a very crude unprocessed form.

Aggregation and reporting: In the platoons, the raw data is aggregated and

condensed into summary reports which typically give information such as

enemy‘s physical location, velocity, contacts, incidence, status,

attacks, moves, etc. These reports usually do not contain enemy intent.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 20 | P a g e

Information: At this level, information contains such things as terrain line-of-

sight (LOS), weapon effective range (footprints), speed limits in terrains, slope

gradients in terrain, etc. They can be further summarized and turned into

tables (matrices) of discrete data informing the commander of things like:

enemy movements, contacts, detail notes about enemy intent, friendly forces‘

health, morale, status and so on. This information is supposed to give an

adequate level of understanding about the situation. From this, the

commander is then able to assess the situation.

Knowledge: In the knowledge level, the commander will generate plans

based on the information and facts derived using a cognitive model. In our

case, a cognitive model based on CWA is used to evaluate the COA based on

the particular scenario. Subsequently, the commander is able to generate

plans, execute plans and monitor the progress of team activities throughout

execution of the plans.

Decisions: In decide level, the commander needs to select the most viable

plan for a scenario. It is desirable to have a selection process that includes

human factors such as personality and importance. This will give a degree of

variability in terms of how human decision is biased by personality

differences.

Act: The commander must act upon the COA in a plan which was selected by

the decision processes.

There will be following teams & actual combat units in the scenario

Teams: (Command Agent type team)

 Battalion Commander

 Company Team

 Platoon Team

 Section Team

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 21 | P a g e

Actual combat Units as Agent (Non Team Type)

 Soldiers Agent (Actual combat Units)

2.3 Observe ,Orient ,Decide and Act Information model
(OOAD)

A similar four-step decision making process is used by researchers in military

applications and is called the Observe – Orient – Decide - Act (OODA) loop or

four box method [16]. The cycle was developed from Boyd‘s studies of air-to-

air combat in the Korean War to assist pilots to achieve knowledge superiority

and avoid information overload in order to win a battle.

Each of the team of command Agent type will follow information model shown

in figure below:

OOAD Loop (see figure 2.6) , which stands for :

 Observe (O)

 Orient (O)

 Decide (D)

 Act (A)

This is the first level of a agent based model in which tangible and intangible

functions are classified. For instance, an commanding agent (company level)

entity observes the environment when looking out for threats, infantry in

sections and platoons will send out sensor data (section causality, morale,

suppression status ,speed, minefield cross status ,friendly force location

,enemy location, enemy detection status) and contact reports in a very crude

form.

Similarly, the dispatcher agent role (Soldier) is to deliver the raw data such as

location, status , morale, causality status, minefield cross status etc to its

section team. The section team role is to process data to gain adequate level

of situation awareness (belief based military doctrine) of battlefield

environment & take necessary action to be performed by the actual combat

entities (soldiers).

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 22 | P a g e

These reports are processed and the CA needs to orientate itself and assess

the situation. From this, the CA acquires an adequate level of situation

awareness. Next, information/knowledge is processed based on the

commander beliefs such as friendly unit position, status, morale, mine

crossing status, enemy position, enemy‘s intent, weapon, front line status, etc.

Commander agent stores all above information in its belief structure. Changed

or modified belief may sometime lead to triggering of some critical events,

which may further lead to new goal or sub goal generation fro the combat

units. Present friendly, enemy status parameter & current battlefield

situational parameters are matched with commander‘s past combat result

beliefs and the most accurate matched belief is retrieved as solution. This

solution is the most viable plan as per the current environmental, combat

condition & constrains In the ―decide‖, the CA determines which plan is the

most viable one to be deployed.

Finally, in ‗Act‘ layer, the CA executes the courses of actions specified in the

plan. In this level, the COA (which is translated to WG simulation commands)

is executed via the interface between CA and the WG simulation.

Figure 2.6: Flow diagram of OODA Model

2.3.1 Command Agent Belief about Minefield crossing status of the soldiers
(Example Scenario)

This example scenario depicts the decision phase of Platoon command

agents ,when its sections are crossing the enemy mine fields. Initially the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 23 | P a g e

section has belief that none of its soldiers has crossed the minefield (Table

2.1). But during the course of time, if any soldiers encounters the minefield , it

informs its respective section about mine filed crossing status. The section

then reorients its soldiers position to arrange in rod formation so as to get less

casualty further in battlefields. The section also informs its platoon team

commander about its mine filed cross status. The platoon commander then

updates (Table 2.2) its belief about section minefield cross section. The

changed minefield status of the platoon triggers an event to other section,

which eventually change their formation to rod so as to minimize causality.

Each platoon has following belief structure , which stores the minefield belief

crossing status of its three sections as;

Belief PlatoonSectionsMinefieldCrossBelief extends Openworld
{
Value field int section1_pre_status;
Value field int section2_pre_status;
Value field int section3_pre_status;
Value field int section1_cur_status;
Value field int section2_cur_status;
Value field int section3_cur_status;

Post event ChangeFormationtoRodEvent ev;
;
;
}

PlatoonSectionsMinefieldCrossBelief has value in its Tuple:

section1

_pre_status

 section2

 _pre_status

section3

_pre_status

section1

_cur_status

section2

_cur_statu

s

section3_

cur_status

0 0 0 0 0 0

Table 2.1 : Mine Cross Old Belief

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 24 | P a g e

If section 1 crosses the mine filed then the platoon belief
PlatoonSectionsMinefieldCrossBelief is updated to:

section1

_pre_status

 section2

 _pre_status

section3

_pre_status

section1

_cur_status

section2

_cur_statu

s

section3_

cur_status

0 0 0 1 0 0

Table 2.2 : Current Mine Cross Belief

In PlatoonSectionsMinefieldCrossBelief belief structure , there is a

callback , which is triggered as soon as a new belief about minefield is

updated by any of its sections :

In this callback following condition triggers/posts the event to platoon ,which

inturn directs other sections to change their formation to rod

#post event ChangeFormation ev;

If(section1_pre_status== 0 & section2_pre_status==0& section3_pre_status
==0 & section1_pre_status==1 & section2_pre_status==0 &
section3_pre_status==0)
{
// event ev handled by other sections to change their formation to rod

post(ev.ChangeFormation());
;
}

In next iteration , the belief tuple of platoon is updated to :

section1

_pre_status

section2

_pre_status

section3

_pre_status

section1

_cur_status

section2

_cur_status

section3_cur

_status

1 0 0 1 0 0

Table 2.3 : Updated Mine Cross Belief

Note : Since the belief is again changed , but the above condition does not
hold , so no event will be fired.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 25 | P a g e

2.4 Team Roles

Figure 2.7 depicts the relationships between company team, commander-team,

platoon-team and section-team. Notice that we have made the distinction of ―Teams‖

and ―agents‖. In contrast to Teams, agents also have the same BDI framework

except they do not have team behaviors. The dispatcher agent‘s role is to deliver raw

data from the war-game simulation to the section-team. The section-team‘s (which

consists of 3 sections) role is to process the raw data, to gain an adequate level of

situation awareness (orientate) and consequently, inform the respective platoon-

team agent the status of both friendly and opposition forces. The platoon-team‘s

(which consists of 3 platoons) role (see table 1) is to process the raw data, to gain an

adequate level of situation awareness (orientate) and consequently, inform the

company-team agent the status of both friendly and opposition forces. The

Company-Team‘s role (which consists of 3 platoon leaders and a commander) is

therefore to generate plans and COA, and then submit them to the Commander-

Team (which consists of the company commander and its teams) who will decide

which plan and COA are supposedly the most viable one to take given the

constraints. In return, the Company-Team then sends out movements (orders) to the

platoon-team.

Figure 2.7 : Mission order delegation between commander-team, company
team , Platoon-team and section-team

2.4.1 Role structure Requirement

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 26 | P a g e

Level in Hierarchy Role requirement Role performer

(Team) /Agent

Role / Agent

Instances

Battalion CoympanyRole CoympanyTeam Company1,

Company2,

Company3

Company PlatoonRole PlatoonTeam Platoon1,

Platoon2,

Platoon3

Platoon SectionRole SectionTeam Section1,

Section2,

Section3

Section -- Soldier Agent (1..10 Soldiers)

Table 2.4 : Role structure Requirement

2.5 Software architecture of command Agent

2.5.1 Command agents

The command agents (CA) operate within a well-defined command and

control structure which can be modeled as a hierarchy of teams. This

command and control structure is also expressed within the war game

simulation at the lower levels constructive entities and by human players at

the upper levels.

As an example, one may choose to model battalion behavior using human

players, company and platoon behavior using command agents and platoon

member behavior using OTB entities. In this situation, the platoons are

represented in both the simulation layer and the command agent layer.

Decisions regarding platoon behavior (eg move to form up point, retreat) are

made by the command agents, but decisions relating to individual platoon

member behaviors (eg maintain formation, contact drill) are made by the

behavior models within the simulation. The platoon command agents are

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 27 | P a g e

aware of which simulation entities are under their control and monitor their

position and status. This information is used to make local decisions. The

platoon CAs interact with their company command agent; they receive

commands and send aggregated reports in accordance with appropriate

military doctrine. The company CA is responsible for planning and executing a

mission; in this regard it determines the tasks that are required to be

performed and allocates them to platoons.

The command agent architecture is summarized in Figure 2.9. Note that the

focus of this diagram is the command agent layer.

Figure 2.8: Command agent Layer Architecture. Levels 0 and 1 refer to the level
within the command and control hierarchy (eg Platoon and Company)

In Figure 2.8, Company CA11 (level 2), consists of three Platoons, CA01

,CA02, CA03 (level 1). The members for CA01 to CA12 are modeled in the

simulation layer and are not shown. Platoons CA01 consists of three sections

namely CA04, CA05 and CA06 (level 0) modeled as Commanding agents.

Similarly Platoons CA02, CA03 are modeled as Commanding Agents. Each

section further consists of dispatcher agents (10-12 Soldiers) . Orders and

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 28 | P a g e

reports are exchanged between platoon agents CA01, CA02 , CA03 and their

members via the dispatcher over bi-directional links. Similarly Within each

command agent, we identify three key capabilities:

1) Planning for action,

2) Control of action and

3) Reporting on action.

These three capabilities operate on a shared belief structure that contains

the command agent‘s current beliefs regarding the world. The architecture is

summarized in Figure 2.9

Figure 2.9 : Command Agent Architecture

The planning-for-action capability allows the command agents to take a

command from the level above and by using the appropriate military doctrine,

generates commands for the entities under its direct control. The progress of

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 29 | P a g e

the resulting action is then monitored by the control of action capability.

Implementation of the planning and control capabilities is described in further

Section titled JACK Teams.

The reporting on action capability provides reports back to the command

level. The content of these reports is derived from messages provided by the

subordinates using the message aggregation process.

2.5.2 (Reporting for action) : Message aggregation

Message aggregation (MA) performs the role of aggregating data derived

from the entity models into reports issued at platoon or higher levels. MA

Reporting serves two purposes:

1) Reducing the volume of raw data on target acquisitions produced by the

entity models which otherwise cannot be used by the operator or agent, and

2) Formatting the data into accepted military reports.

The following reports are produced

 Situation Report,

 Location Status Report,

 Hostile Air Report,

 End of Hostility Report, and

 Contact/Incident Report.

2.6 Modeling Framework concept

The proposed modeling framework is an extension to JACK targeted the

modeling of ―systems with internal organization‖. To this end , the modeling

language includes the concept of teams as reasoning entities that form

organizational; structure by taking on roles within enclosing teams. This

organization modeling includes the means to capture both static & long term

obligation structure, such as those that compose the military command &

control hierarchy, and the transient skill based groupings that are formed to

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 30 | P a g e

perform individual missions. An obligation structure is then firstly defined as a

type, with each team type including the definition of its inner structure in terms

of roles it requires to perform team tasks. An actual obligation structure is

established by instantiating individual teams and sub teams, and then linking

them to each other in accordance with roles taken on by the sub teams. Sub

teams which are last in the hierarchy may also take actual Agents (not

teams) in order to perform the mission objectives. For example the scenario

implemented in our the study, the three teams type are identified as

Company Team, platoon team, section team. These team type are role

performer as well as role requirer at the same time. For example the platoon

team performing Platoon Role , but at the same time requires three section

team and one platoon H Qtr team to perform the task of platoon team. The

section last in military hierarchy contains 1-10 soldier agents acting as

combatant entities. Soldier agents perform their low level tasks such as

simple move towards an objective, attaining a particular formation (rod, two

up, one up) ,moving across the mine fields/ wire mesh , encountering

obstacles, moving across the river , detecting engaging enemy in range ,

reporting to its section teams etc . At the same time these soldier agents also

fulfill higher level tasks (move towards an objective, support fire role , stop

move, change formation etc) given by the section team commander. These

agents are part of sub teams and are governed by the order given by the

section team.

The modeling framework mentioned in this study allow the lower level entities

to propagate their belief / data [casualty, morale, leadership, fatigue,

suppression factor, location etc) to upper level teams (containing teams). In

this way the higher level teams are updating their latest information /

intelligence of battlefields by synthesizes the belief derived from lower level

sub teams. The belief of higher level teams may also be inherited to lower

level teams. The soldier agents inform their belief data [causality, morale,

leadership, fatigue, suppression factor, location etc) to their section

commander, which in turn propagates the section belief to its platoon.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 31 | P a g e

In addition to the modeling of team structure, the modeling framework

includes statements for expressing how a team operates by way of the

concerted activities of its sub teams. A team reasons about the coordination

between its members, and ultimately decides upon appropriate team plans by

which the members in concert achieve the required missions.

The expression of team activity, and its coordination, includes all the

performance primitives of JACK agents [17,18,19]. In addition, it offers

statements of parallel activity and issuing of directives or sub goals to its to its

sub teams. Notably, rather than combining the activities of cooperating agents

into emergent teamwork, the activity of a team is directly attributed to it. Also ,

it is modeled as team activity separately from the sub teams (performing their

roles). The consequential benefit is that coordinated activity can be

programmed and explored with reference only to roles involved, independent

of the sub teams eventually performing the activities.

2.6.1 Applications of benefits of the modeling infrastructure

The initial aim for the proposed modeling framework was to support the

modeling of tactics in computer simulation of military operations. These tactics

are typically team‘s tactics that involve coordination of sub teams activity. The

modeling framework also includes the mechanism of belief propagation by

lower level teams to its upper level teams ,thereby keeping the containing

teams abreast of the battlefield latest situation

This latest information / belief help the containing teams to take dynamic

reactive decisions under any unforeseen conditions.

2.6.2 .Command Agents Interaction with war-game simulation

A command agents is defined to be an intelligent agent capable of receiving

situational awareness from a war game (through belief propagation

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 32 | P a g e

mechanism of lower level teams) or simulation and to use this information to

carry out some planning and then interact back into the simulation

environment (figure 2.10) to effect some change in as individual simulation

entity or units (here soldier agent). Their role is to replace the crude, in built,

behavioral mechanism within a war game or simulation with a more flexible,

doctrine based reasoning agent that can autonomously plan and control

interactions.

Figure 2.10 : Command agents interaction with war-game simulation

The concept of command agent is introduced to reduce the workload of the

human war game operator by allowing the agent to autonomously plan and

execute a high level instruction passed to war game units. The unit is typically

composed of a number of individual entities with a command component, and

hence the employed modeling framework handles the team interactions and

coordination, which is required to carry out the order.

As an example, consider a command to a mounted infantry company to attack

a specific enemy position. The command agent (CA) dealing with this

instruction must follow doctrine in order to plan a basic concept for the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 33 | P a g e

execution. It might then pass on sob - goals for this concept to its sub team

members (who are command agents) who can the plan their components of

the attack. One unit may be assigned the role of providing covering fire ,

whilst another may flank the third unit who will carry out the actual assault.

This model aligns well with the concept of directive command , employed by

most military forces , where a commander directs his intentions to his sub

ordinate commanders , leaving them to work out their own plans and not

giving them direct instructions on what to actually do to execute the mission.

By using a hierarchy of command agents, linked through the team modeling

framework, it is practicable to break down the actual planning and problem

solving into smaller chunks, and focus on each military aggregated unit in

turn, rather than try and map the whole command process into one agent

representation.

2.7 Model Assumptions

2.7.1 Team structure

Only static pre defined team structure is used for team formation.

Command team up to company team is taken in the simulation

Soldier , the actual combatant entity are defined as agent , having behavior

such as move towards objective, move through minefield, stop move, adjust

position as per section order , detection , engagement etc.

The complex belief generation derived from Belief propagation mechanism of

the teams only takes three main sub teams (sec1,sec2, sec3) into account

.Therefore for the decision making of command agent , the belief of only three

sub teams is used.

2.7.2 Combat attrition model

The detection is based on maximum firing range of the soldier.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 34 | P a g e

The detection range for all soldier in red and blue forces is taken as same.

Plain terrain has been considered in this scenario.

The suppression of soldier is linearly proportional to their vicinity to enemy

firing range (i.e if they are within minimum firing rage , suppression id 100%,

otherwise the suppression is decreasing as they are moving away from

enemy firing range).

The soldier casualty in enemy mines and due to enemy engagement is based

on Monte Carlo model (probability based).

The mine density throughout the mines is assumed to be same.

The morale of the soldier is assumed to be inversely proportional to

suppression.

Initially fatigue factor of all soldiers is assumed to be 0 %.

The leadership factor of all soldier initially assumed to be 100%

The effect of fatigue & leadership is not taken in simulation. Only they are
used for belief propagation mechanism.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 35 | P a g e

Chapter 3. Team –Oriented Programming

3.1 Teamwork

Teams are more than just a collection of individuals pursuing their own goals.

A commonly accepted definition of teamwork is a collection of (two or more)

individuals working together inter-dependently to achieve a common goal [20].

The structure of a team may range from rigid, with clearly defined roles and a

hierarchical chain-of-command, to flexible, where individuals all have similar

capabilities, tasks are allocated flexibly to the best available team member,

and decisions are made jointly by consensus.

Teamwork is a central feature of many activities in the modern military. Many

of the activities in modern military combat operations involve teamwork.

Teams exist both within well-defined units, as well as cutting across echelons.

For example, a command staff at battalion and brigade levels consists of

multiple officers working together to help the commander make decisions, and

interactions and coordination between officers in the same staff section (e.g.

G2/S2-Intelligence) at different levels can also be characterized as teamwork.

At the lowest level, an infantry platoon, reconnaissance squad, or even tank

crew works as a team to achieve a variety of tactical objectives. At the

highest level, combined-arms operations and joint operations rely on

integrating various assets and capabilities for maximum effectiveness.

Accurate models of teamwork, including distributed decision making and

information flow, are needed for developing and evaluating new equipment

and procedures through human-behavior representation (HBR) studies.

Teams are viewed as groups of inter-dependent individuals working together

to accomplish a common goal. Team members must possess a mutual

awareness (shared mental model), which enables them to interact, anticipate

each other‘s actions and needs, and carry out team processes like

communication, coordination, and helping/back-up. These processes underlie

more advanced teamwork activities, such as distributed situation awareness

and command and control, of particular relevance to the military.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 36 | P a g e

3.2 Shared Goals

The notion of shared goals is essential to teamwork because it is what ties the

team together and induces them to take a vested interest in each other‘s

success, beyond acting in mere self-interest. Members of a team do not just

act to achieve their own goals, possibly at the expense of others, but rather

they look for synergies that can benefit others and contribute to the most

efficient overall accomplishment of the team goal. In addition to this positive

cooperativity, members of a team also have incentive to actively try to avoid

interfering with each other. Furthermore, commitment to shared goals leads

to other important team behaviors, such as backing each other up in cases of

failure. For example, if one team member assigned to do a task finds that he

is unable to complete it, other members of the team are willing to take over

since they ultimately share the responsibility.

The Teams extension provides a team-oriented modeling framework. Team-

oriented programming is an intuitive paradigm for engineering group action in

multi-agent systems. Team-oriented programming is conceptually powerful,

as it allows the software engineer to specify:

 What a team is capable of doing;

 Which components are needed to form a particular type of team;

 Whether a team is willing to take on a particular role within
another team;

 Coordinated behavior among the team members; and

 Team knowledge.

In short, the concept of team-oriented programming serves to encapsulate

coordination activity. It extends the agent concept by associating tasks with

roles. However, the flexibility of multi-agent systems is retained. Although

team members act in coordination by being given goals according to the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 37 | P a g e

specification, they are individually responsible for determining how to satisfy

those goals.

A team's structure can contain teams in any combination and in any number.

The hierarchy is not restricted to a two-level design or in fact to a hierarchy.

Layers of teams can be encapsulated within other levels, and the structure

can be added to or altered at any time during the process. In other words,

teams can be created in many layers, where each layer is encapsulated within

the next layer, and so on.

Both conceptually and explicitly in a model, teams entities exist independent

of their team members. For instance, teams can reason about how they

belong as members in enclosing teams, or about which teams they include as

sub-teams. The teams concept encapsulates coordination activity, and

extends the agent concept by associating tasks with roles.

3.3 Relationship between Teamwork and Command & Control

Teamwork is often associated with command-and-control (C2). Historically,

C2 has been seen as a hierarchical process of commanders directing their

subordinates on the battlefield (though generalized command-and-control also

has many non-military applications as well). However, more recently there

has been an increasing appreciation of the distributed nature of information

collection, often done by a staff in communication with various Recon

elements in the field that supports decision-making. Often decisions must be

coordinated laterally between multiple adjacent units involved, and

occasionally there is a need to push decisions further down to smaller units

closer to the battle, who have a better sense of tactical opportunities and

consequences of actions. Hierarchical command is now even viewed by

some as inflexible and sub-optimal. It was previously necessary for

maintaining control in chaotic environments, but is no longer so clearly

necessary with the advent of more powerful C3 networks and information

technology, enabling instantaneous consultation and coordination over a

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 38 | P a g e

distance. See further discussion in the report ―The Command Post is Not a

Place‖ [21].

Command-and-control is a complex topic in its own right [22]. In a military

context, C2 can be defined as the control of (spatially) distributed assets

(weapons and sensors) in the most effective way to achieve tactical goals,

which in the case of ground combat involves containing, attacking, defending,

clearing, or denying enemy access to areas of 2D terrain (including assets on

it, such as towns, airstrips, communication towers, ports, etc.)

One of the best known NDM models of C2 is the Recognition-Primed

Decision-Making (RPD) model [23]. According to this model, the C2 process

consists of a series of stages, beginning with:

 information gathering and situation assessment

 detection or identification of the situation as one a small number

of expected ―types‖

 proposal of a solution (some appropriate response drawn from

experience or practice)

 evaluation and refinement of the solution by projection of

consequences (how the situation is expected to develop) and

events into the near future (via ―mental simulation‖)

 execution of the response and continued monitoring of the

situation to ensure it proceeds as desired.

3.4 Team Processes

To better understand how teams work, researchers often make a distinction

between taskwork and teamwork [20]. Taskwork refers to activities

individuals do in the course of performing their own parts of the team‘s

mission, more or less independently from others. Team members must of

course train for these activities as a pre-requisite to working in the team.

However, teamwork refers to those activities explicitly oriented toward

interactions among team members and are required for ensuring the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 39 | P a g e

collective success. Teamwork processes include: communication,

synchronization, load balancing, consensus formation, conflict resolution,

monitoring and critiquing, confirming, and even interpersonal interactions such

as reassurance. It is argued that these activities must be practiced as well to

produce a truly effective team. It is an unfortunate reality that most training in

industry and the military focuses on training individuals for taskwork (such as

acquiring knowledge of individual procedures in a cockpit), while relegating

teaching of teamwork to on-the-job training (e.g. indoctrination by peers) in

the operational environment.

3.5 Simulating Team Behavior with Multi-Agent Systems

Recent advances in intelligent agent research have opened up possibilities for

more sophisticated simulations of teamwork and cooperative behavior. Agent

models of teamwork are based on key concepts such as joint intentions [24]

and shared plans [25], which formally encode how teams do things together.

These concepts are derived from the BDI framework [26], which postulates

the importance of representing and reasoning about mental states such as

beliefs, desires, and intentions when interacting with other agents. Jennings‘

(1995) GRATE system exemplifies how useful BDI concepts (especially joint

responsibilities) can be to producing complex coordinated behaviors (the main

application of GRATE is a distributed industrial manufacturing and distribution

system). Another popular environment for developing and evaluating models

of agent teamwork is robotic soccer [27].

Perhaps the most widely known agent-based teamwork system is STEAM

[24]. STEAM is multi-agent system built on top of SOAR, a production-

system-based agent architecture, to which it adds rules for establishing and

maintaining commitments to joint intentions. STEAM produces robust

behaviors even in unanticipated situations by automatically generating

communications among team members to reconcile beliefs about achievability

of goals and to re-assign tasks. For example, this was illustrated in the

behavior of a simulated company of Army attack helicopters in a situation

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 40 | P a g e

where the lead aircraft gets shot down; with STEAM, the company was able to

re-group and continue with the mission. STEAM is also used in TacAirSoar

[28], which is a module that can be used to control aircraft and produce

tactical behavior in distributed simulations of air combat missions

Other multi-agent systems that employ some form of teamwork include

RETSINA [29], SWARMM [30], and CAST. All of these have been applied to

military combat simulations. In RETSINA, agents work to support humans by

gathering information or constructing plans that will achieve goals in a combat

environment. The agents‘ activities are fairly de-coupled, each working more

or less independently on separate parts of a task; opportunities for helping

each other are discovered through a ―match-making‖ intermediary. RETSINA

has been incorporated into the CoABS grid (http://coabs.globalinfotek.com).

SWARMM was specifically designed as a system for simulating air combat

teams. It breaks teams of fighters down into well-defined roles, such as lead

aircraft (commander) and wingman, which determines each team members‘

actions in a plan (mission or maneuver). In CAST, more general role

assignment is permitted through a flexible language for team structure and

process description. The agents decide dynamically during a scenario who is

the most appropriate member to carry out a task among several that can play

the role, and the others then automatically play backup. CAST also uses the

description of the team as a rudimentary form of a shared mental model to

automatically infer information exchange opportunities and derive information

flow based on analysis of needs of teammates. An alternative model of

teamwork is developed within JACK Teams TM which instead of requiring

shared goals and intentions amongst members, introduces a concept , team

entity. It is this team entity that holds the team goal and executes the team

plans. The team entity then coordinates the team members in doing their

parts to achieve the team goal. The model is hierarchical, so team members

may themselves be teams.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 41 | P a g e

Chapter 4. Intelligent Agents

4.1 Software Agents

Agents are characterized by their situatedness, autonomy and flexibility.

Situatedness refers to the interaction that the agent has with its environment

including communication with other agents. Autonomy refers to the ability of

an agent to initiate and control its own actions, and flexibility refers to the

ability of the agent to deal with new or unexpected situations.

4.1.1 Beliefs Desires and Intentions (BDI)

The belief-desire-intention (BDI) model of reasoning agents [31] is derived

from folk psychology and cognitive science. It explains the behavior of rational

agents (human or artificial) in terms of the concepts of beliefs, desires and

intentions, and uses this as a model to generate rational behavior. The use of

intelligent agents focused on the modeling of human reasoning. The power of

this model is the ability to describe folk-psychological notions of belief, desire

and intention(BDI), which helps to describe some aspects human decision

making. In terms of implementation, BDI agents are goal-oriented, meaning

that once they are set a goal (or desire), that goal will persist until it is

achieved. The agents use reactive planning to determine how to reach that

goal, usually by setting themselves a number of sub goals. If they fail to

reach any of these sub goals they will try other alternatives that may

eventually lead to the success of their original goal.

BDI agents differ from traditional artificial intelligence (AI) models with the

concept of intentionality. This rationale allows the search space to be pruned

and action to be taken, thus allowing efficient real-time behavior. It is the

flexibility of the BDI architecture however that makes it appropriate for an

agent that must display human-like behavior. The world is complex and in

general cannot be planned for because something unexpected will always

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 42 | P a g e

arise. The goal-directedness of BDI agents enables them to deal falling in a

heap.

4.1.2 JACK Teams Concepts

Jack Intelligent AgentsTM is an extension of the Java programming language,

which provides agent oriented programming, constructs for developing agent

applications. It also provides a goal oriented execution engine which persists

in trying all possible ways to achieve a goal choosing the method most

suitable at the current situation. It is based on the Beliefs, Desires, and

Intentions (BDI) model [32]. The BDI agent model is an event-driven

execution model providing both reactive and proactive behavior. In this model,

an agent has certain beliefs about the environment, has goals (desires) to

achieve, and has plans (intentions) describing how to achieve goals. JACK is

one of a family of implemented BDI systems which include PRS [33], JAM

[34], dMars [35] and Jadex [36]. JACK Teams is an extension of JACK

Intelligent Agents TM which provides constructs and support for Team

Oriented Programming In JACK Teams a team is a distinct entity with its own

representation. It incorporates the standard BDI reasoning mechanisms of

JACK and other similar systems, with respect to behaviors such as choice of

plans and persistence of goals if a particular plan fails. The team is in fact the

core entity in JACK teams and an individual agent is simply represented as a

team with no team members. We describe here some of the key concepts in

the team model implemented by JACK Teams.

4.1.3 Implementation Approach to the JACKTM Agent Language

The JACKTM Agent Language extends JavaTM to provide agent-oriented

programming support. These extensions are both syntactic and semantic.

Syntactic extensions include keywords (e.g. Agent, Plan, Event) and attributes

that define relationships such as which plans can be triggered by a given

event signature. Semantic extensions support the specification of reasoning

methods that conform to the BDI paradigm, rather than Java‘s imperative

model: each step is interleaved within the BDI execution model, allowing a

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 43 | P a g e

plan to be interrupted in response to new events.

The JACKTM Agent Compiler maps JACKTM Agent Language constructs

onto pure JavaTM classes and statements that can be used by other JavaTM

code. The JACKTM Agent Kernel is a set of classes that, amongst other

things, manages task concurrency and provides a high-performance

communications infrastructure for inter-agent messaging. This kernel also

supports multiple agents within a single process, allowing agents that share

much of their code to be grouped together.

4.1.4 JACKTM Agent Language Components

This section provides a brief overview of the JACKTM Agent Language [19].

A minimal JACKTM application is defined in terms of one or more agents /

teams, plans, events, and either belief sets or views. Optionally, the

application can also include capabilities. Agents and teams are used to

represent the autonomous computational entities of an application. The Team

class is used to encapsulate the coordinated aspects of (multiple) agent

behavior. Teams include much of the functionality of agents; for convenience,

we refer to such functionality as being a property of agent/teams.

Programming constructs in the JACKTM Agent Language include:

Team

Teams are an extension of the BDI paradigm that facilitate the modeling of

social structures and coordinated behavior. JACKTM introduces the notion of

teams as separate reasoning entities (separate from team members). Teams

are characterized at the highest level by the roles they can perform, and the

roles they require their team members to perform. They also contain a set of

team plans for doing tasks related to achieving specific goals, or reacting to

specific events. A team has a set of members which are (or can be) in a long

term relationship to the team. In JACK Teams the team members are

specified as belonging to a role container. Team members may be added and

removed dynamically. These members can be assigned to (or requested to

participate in) particular tasks (via JACK‘s task teams), according to the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 44 | P a g e

role(s) they can perform, and the roles required by a task as defined in the

team plan. JACKTM includes the communication facilities needed for

executing coordinated activity in an application.

Agent

Because JACKTM is based on the BDI paradigm, a JACKTM agent has

beliefs, desires and intentions. These are part of the internal state of the agent

and are not directly accessible by other agents in the system. Beliefs, as

described by Bratman et al. [37] are represented by the agent‘s plans, belief

sets and views. These define the knowledge that the agent has—procedural

knowledge in the case of plans, and facts in the case of belief sets and views.

The agent‘s procedural knowledge defines the action sequences that can

achieve its desires. Although JACKTM does not have an explicit

representation of desires, at any given moment in time a JACKTM agent‘s

desires are embodied in the set of plans that are applicable to the current

internal state of the agent. Each applicable plan loosely corresponds to a

desire, i.e. an activity the agent would embark upon if other desires were not

also competing for the same computational resources. When an applicable

plan is selected it becomes an intention, i.e. the agent commits to satisfying

the desire using the selected plan.

Capability

Capabilities are used to organise the functional components of an agent

(events, plans, belief sets and other capabilities) so that the components can

be reused across agents. Since capabilities can contain sub-capabilities, an

agent‘s competence can be defined as a hierarchy of capabilities. Capabilities

were added to JACKTM in response to a pressing software engineering

requirement to support the development of libraries of agent-oriented

functionality that can be re-used across applications.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 45 | P a g e

Team Members

Team members can be either teams - sometimes called sub-teams - or

individuals. An individual is represented in JACK as a team that does not

contain any members and does not require any roles. As team members can

themselves be teams, a team can be a hierarchical (or more complex)

structure.

Roles

A role specifies the part that a member plays, or can play, within a team. It is

defined in part by the goals for which that role is able to be responsible (or

equivalently the tasks which it can achieve, or the events which it can respond

to). In JACK Teams the beliefs or knowledge of the agent required for the role

are also specified as part of the role. JACK Teams also associates a role with

the events or goals generated by that role.

Plan

Plans are procedures that define how to respond to events. When an event is

generated, JACKTM computes the set of plans that are relevant to the event

(i.e. those plans that match the event). Each relevant plan is further filtered by

its context condition, i.e. a statement that defines the conditions under which

the plan is applicable. The set of relevant plans whose context condition is

satisfied by the current situation then becomes subject to a process of

deliberation, where the agent selects the plan that will form its next intention.

The JACK runtime infrastructure guarantees that plan step execution

(including reasoning method execution) is atomic.

Team Plans

Team plans are a set of steps specifying how a task is to be achieved by

members performing particular roles. Before a team plan can be executed. it

must be established which team members, in which roles, will participate in

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 46 | P a g e

this particular task. JACK Teams provides an establishment method which

can be customized if desired. This method assigns team members that can

perform the roles required within the plan. This sub-group is called a task

team within JACK Teams. Steps in the team plan are assigned to task team

members via the roles as used within the team plan. JACK Teams provides a

construct to allow members to perform steps in parallel if desired. As with

standard JACK plans, additional Java code can be incorporated within the

team plan if necessary. Team plans (like standard JACK plans) are

associated with a single goal to be achieved, event to be reacted to, or

message to be responded to.

Goals, Events and Messages

Goals and events to some extent capture respectively the proactive and

reactive character of agents (and teams). Messages capture the

communication between agents (or teams which are not related to each other

in the team hierarchy) which also requires some reaction or response.

In JACK Teams (as in JACK) these are all represented by a similar data

structure (Event and its subclasses) which contains arbitrary fields, and can

thus be used for passing whatever information is needed beyond the

particular goal/event/message type.

Event

Events are the central motivating factor in agents/teams. Without events, the

agent/team would be in a state of torpor, unmotivated to think or act. Events

can be generated in response to external stimuli or as a result of internal

computation. The internal processing of an agent/team generates events that

trigger further computation. JACKTM has two main categories of event:

Normal Events and BDI Events. Normal Events are used to represent

ephemeral phenomena such as environmental percepts; if the agent/team

does not successfully handle the event with its first attempt, the event is

discarded because the world will have changed in the interim.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 47 | P a g e

In contrast, BDI Events are used to represent goals rather than transitory

stimuli. When an agent/team services a BDI Event, it commits to successfully

handling the event; this can involve trying a number of alternative solution

paths until the goal is satisfied.

Beliefs

Beliefs in agent systems generally refer to all information the agent has about

both its environment and its own state. Belief sets are used to represent the

agent‘s declarative beliefs in a first order, tuple-based relational form. The

value fields of a belief set relation can be of any type, including primitive Java

types and user-defined classes. A belief set can be either open world or

closed world, and the JACKTM kernel ensures its logical consistency. Belief

sets provide a number of useful functions over and above standard

information retrieval, for example, an event can be automatically generated on

beliefset update, leading the agent to consider whether it should change its

activities. Joint beliefs, as mentioned earlier are the beliefs held by all

members of a team. Joint beliefs are not particularly important or supported in

JACK Teams and its underlying model of teamwork, although they can be

realized by belief propagation both up and down the team hierarchy. JACK,

and also JACK Teams provides a specialized data structure called a belief set

which is represented and can be accessed in similar ways to relations in a

relational database. JACK Teams allows specification of how beliefs are to be

propagated between a team and its members.

View

A view is a data abstraction mechanism that allows agents to use

heterogeneous data sources without being concerned with their interface. In

essence, they make the interface to an external data source the same as a

belief set.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 48 | P a g e

4.2 Agent / Team Execution Model

4.2.1 Agent Execution Model

A JACKTM application is made up of one or more autonomous agents/teams.

The execution proceeds as follows:

– Add any newly generated events to the event queue.

– Compute the set of plans that match the event at the head of the event

queue.

– Select one of these plans for execution (i.e. create an intention).

– If the selected plan matched a BDI Goal Event, then add the intention to the

intention stack that generated the BDI Goal Event. Otherwise, create a new

intention stack for the intention.

– Select an intention stack to execute. Select the intention from the top of the

stack and execute the next step in that intention. This step may involve the

generation of a new event.

– Repeat the cycle.

In the case of a BDI Goal Event, the selection of the plan that will form the

new intention (part of the deliberation process) can be quite complex. Meta-

level plans can be used to make an intricate choice from the set of applicable

plans. On plan failure, the agent can also reconsider alternative plan choices

in an effort to satisfy the goal. Alternatively, it can re-compute the applicable

plan set (in the new context) and exclude the failed plan.

4.2.2 Team Execution Model

In contrast to agents, the team execution model consists of two phases, an

initial team formation phase and a loop that corresponds to the agent

execution model (but includes extra team-specific operations). In the initial

phase the team is formed by selecting the team members. A team definition

includes a number of roles, i.e. definitions of the events that entities must

handle if they are to fill the tendered role. Each prospective team member has

a corresponding definition of the events a team tenderer (i.e. the containing

team) must handle if it is to take on the entity as a role filler. At runtime, team

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 49 | P a g e

formation is triggered by the posting of a TEAMFORMATIONEVENT by the

JACK Teams infrastructure. This event is handled by a plan that selects the

actual instances that will fill the tendered roles. If the user does not provide a

plan to handle the TEAMFORMATIONEVENT, a system provided default plan

is used. This initialization process is triggered automatically as part of the

team instance construction. Furthermore, role fillers (also referred to as sub-

teams) can be detached and attached at runtime, thereby supporting dynamic

team formation and re-formation.

4.2.3 JACK Teams Plan Execution

When a team decides to execute a particular team plan, the first step is to

establish which team members will participate in the team plan. JACK Teams

calls this establishing the task team.

This is done by assigning team members from the relevant role containers, to

each required role within the plan. An establishment method can be defined to

choose amongst the members within a role container. Additional members

can also be added to the team dynamically, in order to allow them to be used

for the particular task.

Once the relevant team members have been identified for the particular task,

the team plan can start execution. Steps within the plan request members to

achieve particular goals. Requests are essentially messages containing the

goal data structure, which has fields that can contain information relevant to

the goal. This can also be used to pass back relevant information once the

goal is achieved. Steps complete by either succeeding, in which case

execution proceeds, or failing, in which case execution terminates, and a fail

plan is executed. Failure of any step in a plan causes the plan to fail, at which

point a new plan is searched for to achieve the same goal. When a team

member receives a request to achieve a goal it uses its own reasoning

processes to determine how to achieve that goal - including using its own

team members to delegate to. The team entity is not concerned with how the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 50 | P a g e

member carries out its responsibilities.

The control flow available in JACK Team plans includes the standard Java

sequential, selective and repetitive constructs, plus also a parallel block. The

parallel block allows various nuances. An AND variant requires all branches

to succeed, whereas an OR variant requires only one. There are also

variations regarding whether branches are terminated if a sibling branch

succeeds or fails, as well as exception handling details.

4.3 Belief propagation

Once the team formation phase is complete, the team execution model

repeats a cycle that is very similar to that for agents. However, team

execution includes a belief propagation step that handles dissemination of

information up and down the team hierarchy. A team can have access to a

synthesized belief set that is derived from the beliefs of its sub-teams.

JACKTM supports the definition of filters that determine if and when

the propagation should occur, and what subset of beliefs should be

propagated to the containing team. Similarly, sub-teams can inherit a

synthesized subset of the beliefs of the containing team. Belief propagation is

triggered by changes to a team or team member‘s belief set.

4.4 JACK Development Environment

JACKTM was augmented with a set of graphical tools that support the design,

implementation and tracing of agent applications. The JACKTM Development

Environment (JDE) provides a set of graphical tools for building agent-

oriented applications. In this graphical interface, agents, team structures, and

their components are represented by icons connected by lines that show their

relationship to one another. This diagrammatic representation uses natural

language to describe the goals, contexts, reasoning steps, and actions of

agents/teams. The graphical and natural language descriptions can then be

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 51 | P a g e

fleshed-out by programmers to produce executable behavior models whose

computational structure maps closely to the SME/analyst specifications.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 52 | P a g e

Chapter 5. Tropos: An Agent-Oriented Software
Development Methodology

5.1 Agent Oriented Programming

Agent Oriented Programming (AOP, from now on) is most often motivated by

the need for open architectures that continuously change and evolve to

accommodate new components and meet new requirements. More and more,

software must operate on different platforms, without recompilations, and with

minimal assumptions about its operating environment and users. It must be

robust, autonomous and proactive. Examples of applications where AOP

seems most suited and which are widely quoted in literature [38-40] are

electronic commerce, enterprise resource planning, air-traffic control systems,

personal digital assistants, and so on. To qualify as an agent, a software or

hardware system is often required to have properties such as autonomy,

social ability, reactivity, and proactivity. Other attributes which are sometimes

required [40] are mobility, veracity, rationality. The key that makes a software

system possess these properties is that it is conceived and programmed at a

knowledge level [41]. Thus, in AOP, we talk of mental states and beliefs

instead of machine states, of plans and actions instead of procedures and

methods, of communication, negotiation and social ability instead of

interaction and I/O functionalities, of goals, desires, and so on. Explicit

representations of such mental notions provide, at least in part, the software

with the extra flexibility needed in order to deal with the intrinsic complexity of

applications such as those mentioned earlier. The explicit representation and

manipulation of goals and plans facilitates, for instance, a run-time adaptation

of system behavior in order to cope with unforeseen circumstances, or for a

more meaningful interaction with other human and software agents.

An Agent-Oriented Software Development Methodology (Tropos) ,allows us to

exploit all the flexibility provided by AOP.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 53 | P a g e

In a nutshell, the two novel features of Tropos are:

1. The notion of agent and related mentalistic notions are used in all software

development phases, from early requirements analysis down to the actual

implementation. Our mentalistic notions are founded on belief, desire, and

intention (BDI) agent architectures [42].

2. A crucial role is given to early requirements analysis that precedes the

prescriptive requirements specification of the system-to-be. This means that

we include in our methodology earlier phases of the software development

process than those supported by other agent or object oriented software

engineering methodologies

5.2 The Tropos Methodology: An Overview

The Tropos [43-45] methodology is intended to support all analysis and

design activities in the software development process, from application

domain analysis down to the system implementation. In particular, Tropos

rests on the idea of building a model of the system-to-be and its environment,

that is incrementally refined and extended, providing a common interface to

various software development activities, as well as a basis for documentation

and evolution of the software.

Tropos is intended to support five phases of software development:

 Requirements analysis

o Early Requirements

o Late Requirements

 Architectural Design

 Detailed Design

 Implementation

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 54 | P a g e

Requirements analysis in Tropos is split in two main phases: Early

Requirements and Late Requirements analysis. Both share the same

conceptual and methodological approach. Thus most of the ideas introduced

for early requirements analysis are used or late requirements as well. More

precisely, during the first phase, the requirements engineer identifies the

domain stakeholders and models them as social actors, who depend on one

another for goals to be achieved, plans to be performed, and resources to be

furnished. By clearly defining these dependencies, it is then possible to state

the why, beside the what and how, of the system functionalities and, as a last

result, to verify how the final implementation matches initial needs. In the Late

Requirements analysis, the conceptual model is extended including a new

actor, which represents the system, and a number of dependencies with other

actors of the environment. These dependencies define all the functional and

non-functional requirements of the system-to-be.

The Architectural Design and the Detailed Design phases focus on the

system specification, according to the requirements resulting from the above

phases. Architectural Design defines the system‘s global architecture in terms

of sub-systems, interconnected through data and control flows. Sub-systems

are represented, in the model, as actors and data/control interconnections are

represented as dependencies. The architectural design provides also a

mapping of the system actors to a set of software agents, each characterized

by specific capabilities.

The Detailed Design phase aims at specifying agent capabilities and

interactions. At this point, usually, the implementation platform has already

been chosen and this can be taken into account in order to perform a detailed

design that will map directly to the code.

The Implementation activity follows step by step, in a natural way, the

detailed design specification on the basis of the established mapping between

the implementation platform constructs and the detailed design notions

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 55 | P a g e

5.3 The Key Concepts

Models in Tropos are acquired as instances of a conceptual metamodel

resting on the following concepts/relationships:

Actor, which models an entity that has strategic goals and intentionality within

the system or the organizational setting. An actor represents a physical, social

or software agent as well as a role or position. While we assume the classical

AI definition of software agent, that is, a software having properties such as

autonomy, social ability, reactivity, proactivity, as given, for instance in [46], in

Tropos we define a role as an abstract characterization of the behavior of a

social actor within some specialized context or domain of endeavor, and a

position represents a set of roles, typically played by one agent. An agent can

occupy a position, while a position is said to cover a role.

Goal, which represents actors‘ strategic interests. We distinguish hard goals

from softgoals, the second having no clear-cut definition and/or criteria for

deciding whether they are satisfied or not. According to [47], this different

nature of achievement is underlined by saying that goals are satisfied while

soft goals are satisfied. Soft goals are typically used to model non-functional

requirements. For simplicity, In the rest of the paper goals refer to hard goals

when there is no danger of confusion.

Plan, which represents, at an abstract level, a way of doing something. The

execution of plan can be a means for satisfying a goal or for satisfying a

softgoal.

Resource, which represents a physical or an informational entity.

Dependency, between two actors, which indicates that one actor depends,

for some reason, on the other in order to attain some goal, execute some

plan, or deliver a resource. The former actor is called the depender, while the

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 56 | P a g e

latter is called the dependee. The object around which the dependency

centers is called dependum. In general, by depending on another actor for a

dependum, an actor is able to achieve goals that it would otherwise be unable

to achieve on its own, or not as easily, or not as well. At the same time, the

depender becomes vulnerable. If the dependee fails to deliver the dependum,

the depender would be adversely affected in its ability to achieve its goals.

Capability, which represents the ability of an actor of defining, choosing and

executing a plan for the fulfillment of a goal, given certain world conditions

and in presence of a specific event.

Belief, which represents actor knowledge of the world.

5.4 Modeling Activities

Various activities contribute to the acquisition of a first early requirement

model, to its refinement and to its evolution into subsequent models. They

are:

Actor modeling, which consists of identifying and analyzing both the actors of

the environment and the system‘s actors and agents. In particular, in the early

requirement phase actor modeling focuses on modeling the application

domain stakeholders and their intentions as social actors which want to

achieve goals. During late requirement, actor modeling focuses on the

definition of the system-to be actor, whereas in architectural design, it focuses

on the structure of the system to- be actor specifying it in terms of sub-

systems (actors), interconnected through data and control flows. In detailed

design, the system‘s agents are defined specifying all the notions required by

the target implementation platform, and finally, during the implementation

phase actor modeling corresponds to the agent coding.

Dependency modeling, which consists of identifying actors which depend on

one another for goals to be achieved, plans to be performed, and resources to

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 57 | P a g e

be furnished. In particular, in the early requirement phase, it focuses on

modeling goal dependencies between social actors of the organizational

setting. New dependencies are elicited and added to the model upon goal

analysis performed during the goal modeling activity discussed below. During

late requirements analysis, dependency modeling focuses on analyzing the

dependencies of the system-to-be actor. In the architectural design phase,

data and control flows between sub-actors of the system-to-be actors are

modeled in terms of dependencies, providing the basis for the capability

modeling that will start later in architectural design together with the mapping

of system actors to agents.

A graphical representation of the model obtained following these modeling

activities is given through actor diagrams , which describe the actors (depicted

as circles), their goals (depicted as ovals and cloud shapes) and the network

of dependency relationships among actors (two arrowed lines connected by a

graphical symbol varying according to the dependum: a goal, a plan or a

resource). An example is given in Figure 5.1.

Figure 5.1 : Actor Diagram Modeling the stakeholder of the e Culture

System

Goal modeling rests on the analysis of an actor goals, conducted from the

point of view of the actor, by using three basic reasoning techniques: means-

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 58 | P a g e

end analysis, contribution analysis, and AND/OR decomposition. In particular,

means-end analysis aims at identifying plans, resources and soft goals that

provide means for achieving a goal. Contribution analysis identifies goals that

can contribute positively or negatively in the fulfillment of the goal to be

analyzed. In a sense, it can be considered as an extension of means-end

analysis, with goals as means. AND / OR decomposition-combines AND and

OR decompositions of a root goal into sub-goals, modeling a finer goal

structure. Goal modeling is applied to early and late requirement models in

order to refine them and to elicit new dependencies.

During architectural design, it contributes to motivate the first decomposition

of the system-to-be actors into a set of sub-actors.

Plan modeling can be considered as an analysis technique complementary

to goal modeling. It rests on reasoning techniques analogous to those used in

goal modeling, namely, means-end, contribution analysis and AND/OR

decomposition. In particular, AND/OR decomposition provides an AND and

OR decompositions of a root plan into sub-plans.

Capability modeling starts at the end of the architectural design when

system sub actors have been specified in terms of their own goals and the

dependencies with other actors. In order to define, choose and execute a plan

for achieving its own goals, each system‘s sub-actor has to be provided with

specific ‗‗individual‘‘ capabilities. Additional ‗‗social‘‘ capabilities should be also

provided for managing dependencies with other actors. Goals and plans

previously modeled become integral part of the capabilities. In detailed

design, each agent‘s capability is further specified and then coded during the

implementation phase.

Following Stake-holder were identified for the MTS System.

Stake-holder

Players: who will actually the war-game to enhance their skills

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 59 | P a g e

War-Game centre : war game facility provider. War game centre wants Govt.
funding to build / improve their service to the players.

Actor Diagram (Figure 5.2) specifying the stake holders and their main goal
dependencies

Figure 5.2: Actor Diagram specifying the stake holders and their main
goal dependencies

Rational Diagram (Figure 5.3) for the proposed system are as follows:

Figure 5.3 : Rational Diagram for the Military Training System (MTS)

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 60 | P a g e

Figure 5.4 : Actor Diagram for MTS System

Figure 5.5 : Sub Actor Decomposition for War – game System

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 61 | P a g e

Figure 5.6 : Extended Actor Diagram

Figure 5.7 : Rationale Diagram for the Goal Scenario Generation

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 62 | P a g e

Figure 5.8 : Rationale Diagram for the Belief Propagation from

section  PlatoonCompany

Next phase is detailed designing. In Detailed design each agent of the

system architecture is defined in further detail in terms of internal and

external events, plans, beliefs and agents communication protocols. For

detailed designing, Agent Unified modeling language (AUML), an

extensions to the UML has been used for the design of agents and are

implemented in the JACK language. Agent Unified modeling language is

described in next chapter in detail.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 63 | P a g e

Chapter 6. Agent UML (AUML) based Designing
using Jack Agent Design Tool

6.1 Agent UML (AUML)

Mainstreaming and industrializing agent technologies requires suitable

methodological and technological support for the various engineering

activities associated with managing the complexity of any software system

development. Despite its origins in object oriented software engineering the

UML provides a rich and extensible set of modeling constructs that can be

applied to agent oriented technologies. UML is a standard software

engineering modeling language and when supported with tools such as

Rational‘s ROSE provides the basis for much of the organizations software

development. Agent Unified modeling language (AUML) [48][49] , is an

extensions to the UML and is used for the design of agents that are to be

implemented in the JACK language. These extensions provide the capacity to

model the behaviour of agents for the purposes of design and, though the

extensions are language specific, future generalisation and application to

other agent languages can be supported as a industry-wide consensus about

the nature of agency emerges over the next few years.

6.2 The Components of a JACK Agent

A JACK agent is a computational implementation of the above BDI model and

as such it provides a reasoning framework with a specific set of language

constructs. These constructs are just one possible implementation of the BDI

model but provide the programmer with a modeling framework that is a mix of

the high-level representational abstraction of the BDI model and the low level

detail of the JAVA language. This paper will concentrate on the modeling of

the specific high level agent concepts and ignore the modeling of the JAVA

aspects of JACK programming . The following section lists and briefly

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 64 | P a g e

describes the major components of a JACK agent that need to be considered

at design time.

AGENT The agent is the primary entity within the BDI model and is

implemented within JACK as an autonomous module composed of

capabilities, plans, databases, and events. Agents can address other agents

and post events to them thus modelling inter-agent communication.

DATABASE The Database is the JACK implementation of the beliefs of the

agent. These represent the agents view of the world as first order relational

statements that are maintained as consistent through the specification of

constraining key fields.

EVENT Events are those things that an agent responds to. They arise

internally to an agent as reasoning progresses, as a result in a change in the

agents beliefs, or on receipt of a communication from another agent.

PLAN A plan is a specification of a sequence of actions to undertake in

response to an event. The plan contains a #handles event declaration that

defines the event that the plan is suitable for. The system selects from

amongst a number of suitable plans through examination of the context. The

context method defines in detail the exact agent states under which the plan

is applicable. The main part of the plan is its body. The body is a function that

can mix standard JAVA code with Jack Agent Language (JAL) statements

that can alter the agents beliefs, post new events, or send messages. From a

design perspective the plans are the modular procedures that provide the

building blocks for specifying the behvaiour of the agent.

CAPABILITY Capabilities are sets of plans, events, and databases that are

functionally grouped to provide a specific capability to an agent.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 65 | P a g e

6.3 Stereotypes: The UML Extension Mechanism

The main UML extension mechanism is that of the stereotype. A stereotype

can be considered as a label that is applied to a UML modeling element that

changes the meaning of the element to a definition specified by the domain in

which the stereotype is applied in. A UML stereotype is indicated by placing

the name in double angled brackets (<<stereotype>>), and can be applied to

any UML element including classes, associations, use cases, attributes,

and methods.

6.4 Jack Extensions to the UML

Work in extending the UML to accommodate agent oriented systems such as

the AUML [1], has to date concentrated on high level architectural issues such

as communication protocols between multiple agents. To date, there haven‘t

been any extensions that will allow a software engineer to design an agent

oriented system with UML down to the detailed design level. This is partly due

to the fact that agents are a relatively young technology and there hasn‘t been

any dominant agent languages (such as C++, Java, Python and Eiffel in the

OO world) that have a large enough user base to influence international

standards such as the UML. UML can be extended to accommodate Jack

specific constructs through the definition of some Jack specific stereotypes.

Although the stereotypes can be generalized to allow the modeling of any BDI

based agent system using UML, in this paper the focus is on Jack.

Generalizations will be looked at a later date. Due to the fact that Jack is built

on top of an object oriented foundation in Java, extending UML to handle Jack

is quite easy. Although it is possible to extend UML to accommodate a BDI

language such as dMARS[35] it requires a bit more work than the Jack case.

So what type of stereotypes do we need to add to the UML so that we can

design Jack agents before getting into the code? The stereotypes required fall

into a number of general categories.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 66 | P a g e

High Level Jack Constructs - we require stereotypes to describe high level

Jack modeling components such as an agent, plan, database, event and

capability.

Associations - we need stereotypes to describe the special Jack

relationships between plans, events, databases etc.

Low Level Constructs - we need some stereotypes to handle low level Jack

constructs such as database fields, reasoning methods etc.

Once these stereotypes have been defined a mapping between the UML

notation and Jack code can be built. This mapping can then be used by the

detail designer or programmer to progress the agent system from architectural

design, to detailed design and eventually to code.

High Level Stereotypes

High level constructs in Jack include agent, plan, database, event and

capability. Since a capability is used to group functionally related agents,

plans, databases and events, a <<capability>> stereotype can be defined for

UML packages. In object oriented applications UML packages are usually

used to group functionally related classes into packages, subsystems or

modules. In addition to Jack specific constructs – agents, plans, databases

and events can have attributes and methods just like any other Java class.

Hence, it make sense to define class level stereotypes for these Jack

constructs as defined in Table 6.1

Stereotype Description

<<agent>> Class level stereotype that defines a Jack agent.

<<plan>> Class level stereotype that defines a Jack plan.

<<database>> Class level stereotype that defines a Jack database.

<<event>> Class level stereotype that defines a Jack event.

<<capability>> Package/Subsystem level stereotype defining a Jack capability.

Table 6.1: High Level UML Stereotypes for Jack

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 67 | P a g e

Association Level Stereotypes

When building Jack agents, developing a set of plans, events and databases

isn‘t enough to define the behavior of an agent. We need to show how these

entities are related to each other. For example, we need to know which plans

and databases are used by what agents, which plans handle specific events

and what databases plans can modify. In UML uni-directional associations

can be used to define relationships between agents, plans, databases and

events. A set of stereotypes defined in Table 6.2 can be used to label these

associations according to specific type of Jack relationship that needs to be

represented.

Stereotype Description

<<posts>> Indicates a database posting an event.

<<uses>> Indicates an agent using a plan.

<<modifies>> Indicates a database which a plan can modify.

<<handles>> Indicates an event handled by a plan.

<<private database>> Indicates a private database owned by an agent.

<<uses agent>> Indicates a plan using an agent implementing an interface.

Table 6.2: Association Level UML Stereotypes for Jack

Low Level Stereotypes

In addition to the class/package and association level stereotypes, some

stereotypes at the attribute and method level are also required. For example,

fields specified in Jack databases need to be distinguished between key and

value fields. Attribute level <<key field>> and <<value field>> stereotypes are

defined to achieve this distinction. Similarly in Jack plans, the ability to

distinguish between regular Java methods and Jack reasoning methods

(where special Jack commands can be used) is required. Again, we can

define a method level stereotype <<reasoning>> that can be used to decorate

a method to distinguish it from a regular Java method. A non exhaustive list of

attribute and method level stereotypes is shown in Table 6.3.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 68 | P a g e

Stereotype Description

<<key field>> Attribute level stereotype indicating a key field in a database.

<<value field>> Attribute level stereotype indicating a value field in a database.

<<indexed query>> Method level stereotype indicating an indexed query in a database.

<<posted as>> Method level stereotype indicating how an event gets posted.

<<reasoning>> Method level stereotype to indicate a reasoning method in a plan.

Table 6.3: Method Level UML Stereotypes for Jack

6.5 Software Detailed Design

6.5.1 Detailed design: The behavior of each architectural component is

defined in further detail.

Detailed design process includes:

• Agent overview and capabilities

• Process diagrams for view of agent processing

• Develop plans and plan structure

• Details of plans, events, (messages, percepts),

 data/knowledge

Following teams & actual combat units were identified in the scenario:

Teams: (Command Agent type team)

 Company Team

 Platoon Team

 Section Team

Actual combat Units as Agent (Non Team Type)

 Soldiers Agent / Actual combat Units

 Detector Agent

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 69 | P a g e

 Kill Damager Agent

 Master Agent

In detailed design phase , details of capability, plans, events, (messages,

percepts), data/knowledge of each team entity (company , Platoon & Section

Team) and actual combat Agent (soldier, Detector, Kill Damager ,Master

agent) were identified in fully detail. For detailed designing , The JACK™

Development Environment (JDE), is used for detailed designing of agents /

teams.

The JACK™ Development Environment (JDE) is a cross-platform graphical

editor suite written entirely in Java for developing JACK™ agent and team

based applications. Extensive use of drag-and-drop and context-sensitive

menus assist the construction of agents. The JDE allows the definition of

projects, aggregate agents and teams, and their component parts under these

projects.

The JDE is a purpose-built toolkit that facilitates the construction of

agent/team models. In many situations an application will consist of a single

model. However, the JDE also supports the co-operative development of the

models required for an application. It also supports the reuse of model

components and in the case of co-operative development, the sharing of

components.

Company Team capability, event and plans and belief data base are :

public team CompanyTeam extends Team
 {
 // team declarations and definitions
 // company team perform company Role
 #performs role CompanyRole;

 // company team requires follwong Roles to perform its tasks

 #requires role PlatoonRole pla1(3,3);
 #requires role PlatoonRole pla2(3,3);
 #requires role PlatoonRole pla3(3,3);
 #requires role PlatoonRole coy_hqr(1,1);

// events required fot company Team

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 70 | P a g e

 #handles event StartCoyExe;
 #uses plan StartCoyExeplan;

 #posts event StartCoyExe pfv11 ;

 #posts event ReadStatus1 rfv1;
 #handles event ReadStatus1;
 #uses plan ReadStatusPlan1;

 #handles event UpdateCoyStatus ev;
 #uses plan UpdateCoyStatusPlan;

 // to update other belief from coy status belief ,CoyLevelStatusInfo coystatusinfo()

 #handles event UpdateCoyOtherBeliefs;
 #uses plan UpdateCoyOtherBeliefsPlan;

 // post Update Coy cas belief event
 #posts event UpdateCoyCasBeliefEvent;

 // Handle Update cas belief event
 #handles event UpdateCoyCasBeliefEvent;
 #uses plan UpdateCoyCasBeliefPlan;

 // send msg to support fire to platoons to support Ist Platoon

 #sends event PlatoonSuportFireEvent;

 #synthesizes teamdata CompanyStatus
coy_status(pla1.pla_status,pla2.pla_status,pla3.pla_status,coy_hqr.pla_status);

 // this bel contains all platoons bel

 #private data CoyLevelStatusInfo coystatusinfo();

 // CASULITY BEL

 // post event GetCoysIstPlatoonSupEvent through belief set
"CoyLevelPlaCasStatusInfo.Bel"

 // when ist sec of paltoon suffers heavy loss , it requires fire support

 #posts event GetCoysIstPlatoonSupEvent;
 #handles event GetCoysIstPlatoonSupEvent;
 #uses plan CoyIstPlaSupPlan;

 // Other Belief made from main status belief , plstatusinfo();

 // Coy level pla cas belief
 #private data CoyLevelPlatoonCasStatusInfo CoyPlaCas();

 int No_Of_Soldiers;

 // four platoons name holder incl HQr platoon

 public String RolePerformer[]= new String[4];

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 71 | P a g e

 // all JACK agent declarations can also be used

 // constructor
 public CompanyTeam (String name,int No_Of_Soldiers1)
 {
 super(name);
 No_Of_Soldiers=No_Of_Soldiers1;

 }
 public void Start_Company_Exec(String s1)
 {
 postWhenFormed(pfv11.CoyExec(s1));
}
}

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 72 | P a g e

6.5.2 AUML Diagrams

6.5.2.1 Company capability

Figure 6.1 : Company capability

Company team performs company role & requires four platoon teams

performing Platoon Roles. It has its own private belief structure

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 73 | P a g e

CompanyStatus.Bel (Figure 6.1) used to synthesize/ derive belief of its

Platoon Teams .It also contain individual information about its four platoons in

belief structure CoyLevelStatusInfo.Bel. This belief is updated frequently by

company Team whenever the Platoon teams sends the event

UpdateCoyStatus to company team. The event UpdateCoyStatus is handled

by company plan UpdateCoyStatusPlan modifies the belief

CoyLevelPlatoonStatusInfo.Bel. CoyLevelPlatoonStatusInfo.Bel contains

information of all platoons, such as platoon name, morale,leadership

value,suppression factor, fatigue value ,causality value,loc_x & loc_y .

Initially company team posts itself an event StartCoyEvent ,which is handled

by StartCoyExePlan. This plan in turn posts ReadStatus event to itself

repeatedly. This event is handled by ReadStatusPlan which update the

synthesized belief (CompanyStatus.Bel) of its platoon Team.

Company Team also posts event UpdateCoyOtherBelief, repeatedly to update

other belief of Company. For example the company has casualty belief of all

three Platoon in CoyLevelPlatoonStatusInfo.Bel.

The UpdateCoyOtherBeliefPlan handles the event UpdateCoyOtherBelief &

modifies the belief CoyLevelPlatoonCasStatusInfo.Bel containing the casualty

information of its platoons. This Belief is used by company commander to

keep track of its platoon‘s casualty. if the casualty value of the assault platoon

increases beyond threshold level, the company take decision to send the

other platoon (having high morale) for fire support Role.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 74 | P a g e

6.5.2.2 Company team initiating platoon team formation (Team
Platoon1,pletoon2,platon3,Coy HQr)

Figure 6.2 : Company team formation

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 75 | P a g e

Initially company team posts to itself startCoyExe event , which is handles by

its StartCoyExeplan . This StartCoyExeplan plan (Figure 6.2) is responsible

company team formation forming four team

(platoon1,platoon2,platoon3,coy_Hqr platoon) based on role requirement .

Plan StartCoyExeplan requires platoon Role to perform its tasks of team

formation. Platoon Role is applicable from plan StartCoyExeplan . This plan

in turn triggers event InitPlatoonTeamFormation through platoon role , which

is handled by the plan InitPlatoonTeamFormationPlan of Platoon team,

performing that role.

6.5.2.3 Task delegation down the Hierarchy

InitPlatoonTeamFormationPlan of Platoon team in turn triggers the event

StartPlatoonExeEvent to platoon team. This event is responsible for Platoon

level Team formation. The plan StartPlatoonExePlan of Platoon team handles

this event. The plan StartPlatoonExePlan requires the four Section Role to

perform its tasks. Section Role is applicable from the plan

StartPlatoonExePlan of Platoon Team. The plan StartPlatoonExePlan of

Platoon team sends the event startsection (through Section Role) to Section

team performing Section Role. Event startsection of Section Team is handled

by the StartPlan , which in turn sends the event start_move_event to all its

Soldiers .

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 76 | P a g e

Figure 6.3: Task delegation down the Hierarchy

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 77 | P a g e

6.5.2.4 Belief propagation from Section Team to Platoon Team using
Role structure

Figure 6.4 Belief propagation form section to Platoon

Section team has private data Status section_status. Section Team

performing SectionRole (Figure 6.4) synthesizes teamdata Status

section_status. The beliefset section_status of Belief type Status extends

ClosedWorld, and has the #propagates changes;

declaration in its definition.

Platoon team class synthesizes teamdata PlatoonStatus in its class

definition as :

#synthesizes teamdata PlatoonStatus;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 78 | P a g e

platoon_status(sec1.section_status,sec2.section_status,sec3.section_status,p

lhqr.section_status);

teamdata PlatoonStatus is special team data extending from Status,

containing the code connection method & team synthesizing method of its

lower level units.

6.5.2.5 Arty fire start / stop request from platoon team on mine cross/
crossed event.

Figure 6.5 Arty fire request from platoon team on mine cross

6.5.2.5.1 Platoon triggering arty fire start message

PlatoonLevelSecMineCrossStatusInfo.Bel of Platoon team (generated from

the synthesized belief PlatoonLevelStatusInfo.Bel) triggers event

GetPlatoonLevelSecMineCrossEvent whenever the any of the platoon assault

section encounters mine first time while movement to its objective. The event

GetPlatoonLevelSecMineCrossEvent is handled by plan

PlatoonLevelSecMineCrossPlan. This plan is only valid for assault section

and further triggers event ArtyFireEvent to Firebase Team for support Arty

fire.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 79 | P a g e

Arty fire event ArtyFireEvent from platoon team is handled by Plan

ArtyFireStartPlan of the Firebase team. This plan ArtyFireStartPlan sends the

ArtyFireInfo event to MASTER agent to inform fire status. This arty fire status

is further sent to all soldier agents by MASTER agent for arty fire information.

The soldiers engages the enemy if and only if the arty fire status is off. If on ,

the soldier fires if the position of soldier is not in arty fire range.

6.5.2.5.2 Platoon triggering arty fire stop message to Firebase team

Similarly PlatoonLevelSecMineCrossStatusInfo.Bel of Platoon team

(generated from the synthesized belief PlatoonLevelStatusInfo.Bel) triggers

event GetPlatoonLevelSecMineCrossedEvent whenever the platoon‘s

assault section crosses mine completely.

GetPlatoonLevelSecMineCrossedEvent is handled by plan

PlatoonLevelSecMineCrossedPlan. This plan is only valid for assault section

and further triggers event ArtyFireEvent to Firebase Team for stopping

Arty fire.

Figure 6.6 : Platoon triggering arty fire stop message to Firebase team
6.5.2.5.3 Platoon ordering to take rod position on mine cross event

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 80 | P a g e

The plan PlatoonLevelSecMineCrossPlan also sends the event

ChangeTempGolePosToSecEvent to other section to change the goal

(assault section position) temporarily so as to adjust in rod formation to avoid

heavy casualty .

When any of the section adjusting to the rod position, encounters the mine

field, this plan PlatoonLevelSecMineCrossPlan sends the original goal of

platoon to its other section other then assault section.

Figure 6.7 : Platoon ordering sections to take rod formation

6.5.2.6 Soldier Capability

Soldier capabilities including the behaviour of simple move, move across mine

field, move across wire mesh,move across obastacle triggred by start_move

event

Start_move event is handles by the appropriate plan satisfying the context

according to soldier belief/data.

Soldier Capability

Soldier Capability consists of following events : start_move_event.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 81 | P a g e

Soldier Capability (Figure 5.16) consists of following plans :

 start_move_plan,

 start_kill_move_plan,

 start_obs_move_plan,

 no_move_active_plan_red,

 no_move_active_plan_ blue ,

 default_plan.

All above plans handles the start_move_event depending upon the active

context condition satisfaction. For example if the soldier is in mine,

(kill_zone=1) , then the context field of the start_kill_move_plan (containing

kill_zone==1 ,move==1)as condition) will only be active , while all other plans

will be invalid for this event.

Similarly if the soldier is not in mine, (kill_zone=0 & move=1) , then the

context field of the start_move_plan (containing kill_zone==0 ,move==1 as

condition) will only be active , while all other plans will be invalid for this

event.

Figure 5.16 : Soldier Capability

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 82 | P a g e

Soldier agnet receves the event start_move_event from Section team..Soldier

agent while executing plans (start_move_plan, start_kill_move_plan,

start_obs_move_plan, no_move_active_plan_red, no_move_active_plan_

blue) , sends the start enemy detection event detect_enemy_event to

DETECTOR Agent. The DETECTOR Agents has plan detect_enemy_plan to

handle this event. From this plan the DETECTOR detects nearest enemy to

soldier and sends back the detected result (enemy index, range etc) to soldier

agents by sending the event deliver_enemy_array.The soldier agents has

handler plan deliver_enemy_array_plan for the event deliver_enemy_array

sent by DETECTOR.

Soldier agent also sends the events to DAMAGE_KILL agent to update the

enemy kill status by sending the event damage_event. The DAMAGE_KILL

agent has plan handler for this event as damage_plan. The DAMAGE_KILL

agent updates the enemy kill status through this plan.

6.5.2.7 Section Capabilities

Platoon team requires Section Role to accomplish its mission tasks. Platoon

team sends event startsection to all Section teams through plan

StartPlatoonExePlan.

The description of SectionRole is as follows:

public role SectionRole extends Role
 {
 // declarations of events handled by the role performer
 // declarations of events posted by the role performer
 // declarations of teamdata synthesized from the role
 // performer
 // declarations of teamdata inherited by the role performer
 // declarations of role container methods and members
 // other Java methods and members

 #handles event startsection1 wm;
 #synthesizes teamdata Status section_status;

 }

Event startsection passes to section through SectionRole (see Figure 6.9) is

handles by plan StartPlan of Section team. The StartPlan plan of section is

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 83 | P a g e

responsible for further passing the section order to all its soldiers agents by

sending the event start_move_event. The event start_move_event is

handled by soldier agent by many plans such as start_move_plan,

start_kill_move_plan, start_obs_move_plan,

no_move_active_plan_red,no_move_active_plan_blue and default_plan.

The plan StartPlan also sends event Req_Killed_Soldier_Status to Soldier

aganets to keep track of killed soldiers. Req_Killed_Soldier_Status_Plan plan

of soldier agents handles the event Req_Killed_Soldier_Status.

All soldier agents of section sends the event SoldierUpdatedInfoToSection

to its section at regular intervals. SoldierUpdatedInfoToSectionPlan of

section handles the event SoldierUpdatedInfoToSection posted by soldier

agent. This plan compiles the data / belief about morale, leadership, fatigue,

suppression, casualty value, location of all live soldiers at regular step

intervals defined by simulation.

The plan StartPlan of section team also modifies the section belief Status

section_status compiles from all live soldiers agents.

Finally the StartPlan of each Section team sends event

UpdatePlatoonStatus to its platoon to update the belief of section in platoon

belief / data. The plan UpdatePlatoonStatusPlan of Platoon team handles

this event UpdatePlatoonStatus and modifies the belief

PlatoonLevelStatusInfo.Bel of Platoon Team. The belief

PlatoonLevelStatusInfo.Bel contains the morale, leadership, fatigue,

suppression, casualty value , location of all sections of platoon.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 84 | P a g e

Figure 6.9 : Section Capability

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 85 | P a g e

Chapter 7. Implementation & Experimental

Results

7.1 Environmental Setup

We have used the following configuration while finding the experimental

results

Hardware Configuration

Processor : Intel Core 2 Duo

Processor Speed : 2.20GHz

Main Storage : 4GB RAM

Hard Disk Capacity : 80GB

Monitor : Samsung 17‖5‘ Color

 Software Configuration

Operating System : Windows 7

Front end : Java , JACK Tool

7.2 Implementation

Following functionalities have been implemented using JACK Tool:

 Team Formation At Company Level & Platoon Level

 Belief Propagation From Section To Platoon & From Platoon To
Company

 Arty Fire & Platoon Formation Change (Rod) Event Trigger On Mine
cross Belief Change

 Soldier And Other Agents Capabilities

 Complex Belief Generation From Synthesized Belief

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 86 | P a g e

 Company Level Decision Making Based On Company‘s Belief
(Platoon Casualty Belief) Updation

7.2.1 TEAM FROMATION AT COMPANY LEVEL & PLATOON LEVEL

The Team Framework (Teams and Roles)

A structural relationship between teams is catered for via the role concept. A

role defines the means of interacting between a containing team (a role

tenderer) and a contained team (a role performer or role filler). The role

defines which goals the role tenderer may request the role performer to

achieve, and it also defines the counter-goals that the role performer may

require from the role tenderer.

The team-role structure is defined by statements specifying which roles a

team can perform, and which roles must be performed by sub-teams. These

declarations are specified in the team's type definitions, where the containing

team requires certain roles to be filled, and the contained team must be able

to perform certain roles.

A team can perform roles for a containing team and can also contain sub-

teams which perform roles on its behalf. The sub-teams can in turn contain

sub-teams which can perform roles on their behalf etc.

The following code segments illustrate how these team and role definitions

may look.

public team CompanyTeam extends Team
 {
 // team declarations and definitions
 #performs role CompanyRole;

 #requires role PlatoonRole pla1(1,1);
 #requires role PlatoonRole pla2(1,1);
 #requires role PlatoonRole pla3(1,1);
 #requires role PlatoonRole coy_hqr(1,1);
 ;
}

public role PlatoonRole extends Role
{

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 87 | P a g e

 // declarations of events handled by the role performer

 #handles event InitPlatoonTeamFormation wmp;

 // declarations of events posted by the role performer

 // declarations of teamdata synthesized from the role performer
 #synthesizes teamdata Status pla_status;
}

The team-role declarations determine which team-team structures can be built

at run time.

Role Definition

The role definition does not contain implementation – only a description of the

facilities that the two participants in the role relationship must provide. A role

definition has two parts: first, a downwards interface that declares the events

an entity must handle to take on the role, and second, an upwards interface

that declares the events the team entity requiring the role needs to handle.

A role definition, such as the PlatoonRole definition shown above, results in two

Java classes being generated by the compiler. One is named by the given

RoleType type. The second generated class is a specialised 'container' for

instances of a RoleType called RoleTypeContainer. The latter is referred to as a

role container, as its purpose is to contain RoleType objects. In the case of the

PlatoonRole definition shown above, the compiler would automatically generate

the two Java classes PlatoonRole and PlatoonRoleContainer.

When the declaration is made that a team requires a given role, the result is a

role-defined container to be filled by sub-teams. The #requires role RoleType

reference(min,max) statement adds a field to the team class of name reference

and type RoleTypeContainer. The #requires role declaration allows the

specification of bounds for the container, which results in team formation

constraints.

The arguments min and max in the #requires declaration specify the lower and

upper bounds for the number of performers in order for the team to be

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 88 | P a g e

considered formed. A zero upper bound dictates an unlimited upper bound.

Note that these bounds are not enforced by the infrastructure in order to allow

dynamic attachment/detachment of sub-teams. In practice, a role container

can contain an unspecified number of role objects.

In the team definition illustrated above, the declarations state that a Company

team requires four sub-teams able to perform the PlatoonRole role.

Furthermore, the Company team is declared to be a performer of the

CompanyRole role, which would be a role required by some other team type.

It should be noted that the declarations above define how an actual team

structure may look, but they do not identify the actual team instances, or what

the team types are in the actual team structure.

Team Formation

The overall lifetime of a team has two phases. The first phase is for setting up

an initial role obligation structure. The second phase constitutes the actual

operation of the team.

At run time, teams undergo a team formation phase intended to identify the

particular sub-team instances that take on roles in a team. This first phase is

initiated via a TeamFormationEvent that is posted by the kernel when each team

is constructed. By default, the TeamFormationEvent is handled by a plan that

identifies the role fillers according to an initialisation file in JACOB format. The

following is an example of an initialisation file (scenario.def):

 <Team :name "COY_R"
 :roles (
 <Role :type "platoonteam.PlatoonRole" :name "pla1"
 :fillers (
 <Team :name "PLATOONR1@%portal" >
 <Team :name "PLATOONR2@%portal" >
 <Team :name "PLATOONR3@%portal" >

)
 >
 <Role :type "platoonteam.PlatoonRole" :name "pla2"

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 89 | P a g e

 :fillers (

 <Team :name "PLATOONR1@%portal" >
 <Team :name "PLATOONR2@%portal" >
 <Team :name "PLATOONR3@%portal" >

)
 >
 <Role :type "platoonteam.PlatoonRole" :name "pla3"
 :fillers (

 <Team :name "PLATOONR1@%portal" >
 <Team :name "PLATOONR2@%portal" >
 <Team :name "PLATOONR3@%portal" >

)
 >

 <Role :type "platoonteam.PlatoonRole" :name "coy_hqr"
 :fillers (

 <Team :name "PLATOONR4@%portal" >

)
 >

)
 >

Note : The Role tendering company Team (COY_R) requires four Roles as

PlatoonRole referenced by pla1,pla2 ,pl3 & coy_hqr.

The Role performer platoon team PLATOONR1, PLATOONR2 & PLATOONR3 &

PLATOONR4 are acting as role filler for Roles (PlatoonRole) required by company team

refrenced as pla1,pla2,pla3 & coy_hqr.

The Teams framework is flexible at this point, but it includes the notion of a

fully formed team as a team for which all necessary role performers have

been identified.

The framework will allow a team instance to complete its team formation

phase without necessarily satisfying all the role filling constraints. However,

the team will only be considered formed when its role containment constraints

are all filled. This is a state that a program may query.

At this stage the initial role obligation structure has been constructed. It is

possible to dynamically modify this structure during program execution.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 90 | P a g e

Task Teams

Task teams are dynamically formed sub-groups within a team, created to

perform a team task. When chosen to handle an event, the initial step of a

teamplan is to establish the task team, by selecting which role performers to

use from within the team for the various roles needed within the task/plan.

Task teams are not defined separately, but are contained within the

teamplans defining the team tasks. A teamplan uses #requires and/or #uses

declarations to declare the roles needed for the task team. The teamplan may

also include an establish() reasoning method that defines how the task team is

to be established for the task. This is illustrated in the code segment below:

import aos.extension.parallel.ParallelMonitor;

teamplan StartCoyExeplan extends TeamPlan

{

 #handles event StartCoyExe pfv1;

 #posts event ReadStatus1 rfv1;

 #uses role PlatoonRole pla1 as PLA11;

 #uses role PlatoonRole pla2 as PLA22;

 #uses role PlatoonRole pla3 as PLA33;

#uses role PlatoonRole coy_hqr as COY_HQR;

#reasoning method

 establish()

 {

 // code to establish the task team for the task

 Vector busy = new Vector();

 PLA11 = (PlatoonRole) pickRole(busy,pla1);

 PLA11 != null;

 PLA22 = (PlatoonRole) pickRole(busy, pla2);

 PLA22 != null;

 PLA33 = (PlatoonRole) pickRole(busy, pla3);

 PLA33 != null;

 COY_HQR = (PlatoonRole) pickRole(busy, coy_hqr);

 COY_HQR != null;

 System.out.println("Team established for Company ");

 }

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 91 | P a g e

 Role pickRole(Vector busy,RoleContainer rc)

 {

 for (Enumeration e = rc.tags(); e.hasMoreElements();) {

 Role r = rc.find((String) e.nextElement());

 if (!busy.contains(r.actor)) {

 busy.add(r.actor);

 return r;

 }

 }

 System.out.println(" retrun null");

 return null;

 }

 body()

 { // body of the plan to perform the task

 }

}

The establish step of a teamplan is a proper plan step, and may involve any

amount of reasoning by the team entity, as well as negotiations with the

candidate sub-teams. The outcome is either a complete assignment of sub-

teams to the roles required by the teamplan, or a plan failure allowing the

team to choose an alternative plan for handling the same event. If there is a

fail() reasoning method associated with the plan, it does not get executed if

the establish() method fails.

There is a default establish() method which fills the required roles uniquely at

random, if possible. However, the default establish method only assigns the

#requires roles and not the #uses roles.

Behaviour

The concepts of teams requiring roles and teams performing roles provide a

framework where group behaviours and individual behaviours can be clearly

separated. Group behaviour is specified in terms of the roles that are required

to achieve the desired behaviour. This behaviour is specified independently of

the actual teams performing the roles. However, the team has access to its

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 92 | P a g e

sub-teams through the role container, so it is able to perform reasoning based

on the actual team membership when necessary.

The team is a separate entity and has its own teamplans for the specification

of team behaviour. Within these teamplans, the @teamAchieve statement can

be used to help coordinate the behaviour of the sub-teams.

@teamAchieve

The @teamAchieve statement is used to activate a sub-team by sending an

event to the sub-team. The team that sent the @teamAchieve then waits until

the event has been processed by the sub-team.

In combination with the JACK @parallel statement, a wide range of team

behaviours can be implemented.

Belief Propagation

In addition to communicating via the normal message/event passing in agent-

oriented programming, Teams also provides a capability for the propagation

of team beliefs. This propagation can be both from team to sub-team and from

sub-team to team. In the latter case, the capability is provided within Teams to

combine the propagated sub-team beliefs within the team. The use of Team

beliefs in conjunction with the Team coordination statements enables

sophisticated team behaviours to be implemented.

Similarly , the Platoon acts as Role tenderer , as it also requires four Roles to

be performed by four different teams.

public team PlatoonTeam extends Team

 {

 // team declarations and definitions

 // role performer declaration

 #performs role PlatoonRole;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 93 | P a g e

 // role requirer declaration

 #requires role SectionRole1 sec1(3,3);

 #requires role SectionRole2 sec2(3,3);

 #requires role SectionRole3 sec3(3,3);

 #requires role SectionRole4 plhqr(1,1);

 ;

}

In the team definition illustrated above, the declarations state that a Platoon

team requires one sub-teams able to perform the SectionRole1 role, another

sub-team able to perform the SectionRole2, one sub-teams able to perform

the SectionRole3 role and one sub team to perform SectionRole4 role (HQtr

Role). Furthermore, the Platoon team is declared to be a performer of the

PlatoonRole Role, which would be a role required by Company Team .

Note : The Role tendering platoon Team (PLATOON_1) requires four Roles

as SectionRole1, SectionRole2, SectionRole3, SectionRole4 referenced by

sec1,sec2 ,sec3 & plhqr.

In the scenario..def , the structure of the Platoon Team PLATOON_1 will be as

follows:

<Team :name "PLATOONR1"

 :roles (

 <Role :type "sectionteam.SectionRole1" :name "sec1"

 :fillers (

 <Team :name "SEC_1@%portal" >

 <Team :name "SEC_2@%portal" >

 <Team :name "SEC_3@%portal" >

)

 >

 <Role :type "sectionteam.SectionRole2" :name "sec2"

 :fillers (

 <Team :name "SEC_1@%portal" >

 <Team :name "SEC_2@%portal" >

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 94 | P a g e

 <Team :name "SEC_3@%portal" >

)

 >

 <Role :type "sectionteam.SectionRole3" :name "sec3"

 :fillers (

 <Team :name "SEC_1@%portal" >

 <Team :name "SEC_2@%portal" >

 <Team :name "SEC_3@%portal" >

)

 >

 <Role :type "sectionteam.SectionRole4" :name "plhqr"

 :fillers (

 <Team :name "SEC_10@%portal" >

)

 >

)

 >

Note: The Role performer platoon team SEC_1, SEC_2 & SEC_3 & SEC_10

are acting as role filler for Roles required by platoon team (PLATOON_1)

namely sec1,sec2, sec3 & plhqr.

7.2.2 BELIEF PROPOGATION FROM SECTION TO PLATOON & FROM

PLATOON TO COMPANY

Synthesizing Belief Connection Definition

A synthesizing team belief connection maps sub-teams' beliefs into

corresponding beliefs at the containing team level. This is achieved by

propagating information from the sub-team beliefsets to the containing

team(s). In order to create a synthesizing team belief connection, appropriate

declarations must be included in the

 role that provides the sub-team/team linkage

 the sub-teams that are the source for the connection

 the team that is the target for the connection.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 95 | P a g e

In addition

 a teamdata definition must be provided for the target team

 the source beliefsets must include #propagate changes statements.

Role Declarations

To associate a synthesizing belief connection with a role, the following

statement form is used:

 #synthesizes teamdata stype sref;

stype and sref identify a source beliefset that will be involved in a synthesizing

belief connection – the target for the connection is not specified. Multiple

declarations are allowed within a role definition.

Recall that a role defines a team/sub-team interface. Within a role type

definition, the #synthesizes teamdata declaration declares that any sub-team that

performs this role must provide a data item named sref of type stype. Likewise,

any team that requires this role should have a target data declaration that

involves this particular data item or it will be unable to receive the propagated

beliefs.

Source Declarations

1. A sub-team becomes a source (SectionTeam) in a synthesizing belief

connection by filling a role (SectionRole) that contains a #synthesizes teamdata

declaration.

public role SectionRole extends Role

 {

 // declarations of events handled by the role performer

 #handles event startsection1 wm;

 // declarations of teamdata synthesized from the role performer

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 96 | P a g e

 #synthesizes teamdata Status section_status;

 }

2. A sub-team becomes a source (SectionTeam) must declare beliefsets

Status as pvt member :

public team SectionTeam extends Team

 {

 // team declarations and definitions

 #performs role SectionRole1;

 #private data Status section_status();

 }

3. The source beliefsets Status of Section Team must include #propagate

changes statements

public beliefset Status extends ClosedWorld

 {

 #value field double morale_value;

 #value field double leadership_value;

 #value field double suppression_value;

 #value field double fatigue_value;

 #value field double casuality_value;

 #value field double minecross_value;

 #value field double x;

 #value field double y;

 // get complete information

 #linear query get(logical double morale_value, logical double leadership_value, logical
double suppression_value, logical double fatigue_value, logical double casuality_value,
logical double minecross_value, logical double x,logical double y);

 #propagates changes;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 97 | P a g e

 }

Thus the sub-team must include an appropriate #performs role declaration

and fill the role in the containing team's Role Obligation Structure. Also a data

item with the type and the reference specified within the role must be defined

either directly within the sub-team definition, or indirectly through the sub-

team's capability structure. The data item can be defined either through a

#private data declaration, a #exports data declaration in a capability, a

#synthesizes teamdata or through a #inherits teamdata declaration. The latter

two cases require that the sub-team is the target for another belief connection.

Target Declarations

The target beliefsets PlatoonStatus of Platoon Team is derived from Status
as follows:

public teamdata PlatoonStatus extends Status {

 Hashtable Status_s = new Hashtable();

 Status status(String team)
 {
 return (Status) Status_s.get(team);
 }

 #connection method(boolean added, String team)
 {
 if (added) {
 if (Status_s.get(team) == null) {
 Status status = new Status();
 status.attach(getHandler());
 Status_s.put(team, status);
 }
 } else {
 Status_s.remove(team);
 }
 }
 #synthesis method
 (String team,
 boolean asserted,
 BeliefState tv,
 Status__Tuple is,
 Status__Tuple was,
 Status__Tuple lost)
 {
 Status status = (Status) Status_s.get(team);
 if (asserted)

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 98 | P a g e

status.add(is.morale_value,is.leadership_value,is.suppression_value,is.fatigue_value,is.casu
ality_value,is.minecross_value,is.x,is.y, tv);
 else

status.remove(is.morale_value,is.leadership_value,is.suppression_value,is.fatigue_value,is.c
asuality_value,is.minecross_value,is.x,is.y, tv);

 double morale = 0;
 double leadership = 0;
 double suppression = 0;
 double fatigue = 0;
 double casuality = 0;
 double minecross_value=0;
 double sum_x = 0;
 double sum_y = 0;
 int n = Status_s.size();

 for (Enumeration e = Status_s.elements();
 e.hasMoreElements();) {
 Status status = (Status) e.nextElement();

 logical double morale1;
 logical double leadership1;
 logical double suppression1;
 logical double fatigue1;
 logical double casuality1;
 logical double minecross_value1;
 logical double x;
 logical double y;

 status.get(morale1, leadership1, suppression1, fatigue1,
casuality1,minecross_value1,x,y);

 morale += morale1.getValue();
 leadership += leadership1.getValue();
 suppression += suppression1.getValue();
 fatigue += fatigue1.getValue();
 casuality += casuality1.getValue();
 minecross_value += minecross_value1.getValue();

 sum_x += x.getValue();
 sum_y += y.getValue();

 }

 morale /=n;
 leadership /=n;
 suppression /=n;
 fatigue /=n;
 casuality /=n;
 minecross_value/=n;

 sum_x /= n ;
 sum_y /= n ;
 add(morale,leadership,suppression,fatigue,casuality,minecross_value,sum_x,sum_y);
 }

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 99 | P a g e

 }

Note : beliefsets PlatoonStatus has methods connection method & synthesis

methods.

 a #connection method which defines the behaviour when teams are

added to or removed from the connection, and

 a #synthesis method which defines the computation to be performed

on receipt of a propagated belief. This method is invoked regardless of

whether the connection is synthesizing or inheriting.

A team becomes a target in a synthesizing belief connection by requiring a

role that contains a #synthesizes teamdata declaration. Thus the team must

include an appropriate #requires role declaration and a #synthesizes

teamdata declaration that binds the data item specified in the role with the role

container that contains the sub-teams that fill the role.

A #synthesizes teamdata declaration has the following form in the team

definition:

 #synthesizes teamdata ttype tref(rcref1.sref1,rcref2.sref2,...);

where

ttype is the type of the target teamdata

tref is the name of the target teamdata reference

rcrefi is the name of the ith role container reference

srefi is the name of the ith source data item reference which is to be

synthesized.

As indicated above, teamdata can be synthesized from beliefs specified in

more than one role. In this case, multiple #requires role statements will be

required in the team and the types of the source beliefs must be the same.

Note that ttype refers to the type of the target teamdata, not the type of the

source data.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 100 | P a g e

Recall that the teamdata type is typically achieved by extending a beliefset

type. Depending on the application, that beliefset type may be the same as

the source data type or it may be different.

public team PlatoonTeam extends Team

 {

 // team declarations and definitions

#performs role PlatoonRole;

#synthesizes teamdata PlatoonStatus
platoon_status(sec1.section_status,sec2.section_status,sec3.section_status,plhqr.section_st
atus);

}

The above declaration results in the creation of a teamdata instance

(platoon_status). The intention is that the data to be contained in this

instance will be provided solely from the data sources for the connection –

hence there is no mechanism to populate the instance at construction time.

This teamdata instance is then accessible to the target team and through the

#uses data declaration, to the target team's capabilities and plans as though it

had been declared as #private data. In particular, a teamdata instance can be

used as a source belief for another belief connection.

The #synthesizes teamdata statement results in code that ensures that when

role fillers are added to or removed from any of the indicated role containers

the corresponding beliefset change propagation path is added or removed.

The actual synthesizing computation is defined separately (via the #synthesis

method of the teamdata definition). Although a connection is defined in terms

of role filling, it is maintained on a sub-team basis. Thus if a connection

involves multiple roles and one sub-team fills more than one of the roles, a

change to that sub-team's beliefset is propagated only once to the teamdata,

and not once for each role container that contains the sub-team.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 101 | P a g e

7.2.3 ARTY FIRE & PALTOON FORMATION CHANGE (ROD) EVENT
TRIGER ON MINECROSS BELIEF CHANGE

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 102 | P a g e

ARTY Fire support from FireBase Team

When any of the assault section of the platoon encounters the minefield , it

immediately update the mines cross belief of the platoon belief

(PlatoonLevelSecMineCrossStatusInfo.bel) , which posts an events

PlatoonMineCrossedEvent to itself & this event is handled by plan

PlatoonLevelSecMineCrossPlan.

The PlatoonLevelSecMineCrossStatusInfo.bel belief is as follows:

package platoonteam;
public beliefset PlatoonLevelSecMineCrossStatusInfo extends ClosedWorld
 {
 // field of the PlatoonLevelSecMineCrossStatusInfo Belief

 #value field double sec1_pre_minecross_value;
 #value field double sec1_minecross_value;
 #value field double sec2_pre_minecross_value;
 #value field double sec2_minecross_value;
 #value field double sec3_pre_minecross_value;
 #value field double sec3_minecross_value;

 // get complete information of a named Team
 #linear query get(logical double sec1_pre_minecross_value, logical double
sec1_minecross_value,logical double sec2_pre_minecross_value, logical double
sec2_minecross_value,logical double sec3_pre_minecross_value, logical double
sec3_minecross_value);

// when any of the assault section first encountered minefields

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 103 | P a g e

 #posts event GetPlatoonLevelSecMineCrossEvent PlSecMineCross;
// when any of the assault section first fully crosses minefields
 #posts event GetPlatoonLevelSecMineCrossedEvent PlSecMineCrossed;

 // when whole platoon crossed the minefield
 #posts event PlatoonMineCrossedEvent pmce;

 // first section going into mine field

 public void newfact(Tuple t,BeliefState is,BeliefState was)
 {
 // Note that PlatoonLevelSecMineCrossStatusInfo__Tuple contains two underscores

 PlatoonLevelSecMineCrossStatusInfo__Tuple pt =
(PlatoonLevelSecMineCrossStatusInfo__Tuple) t;

 if (pt.sec1_pre_minecross_value==0 && pt.sec1_minecross_value >0 &&
pt.sec2_pre_minecross_value==0 && pt.sec2_minecross_value ==0 &&
pt.sec3_pre_minecross_value==0 && pt.sec3_minecross_value == 0)
 {
 // code to post the trigger event. This code will
 // be executed whenever a Team playing sec1 crosses enemy mines first time is
 // added in belief set. For example:

 // for arty fire start & platoon changing its formation to Rod
 postEvent(PlSecMineCross.MineCross(pt.sec1_minecross_value,0,1));

 }

 // second section going into mine field
;
// third section going into mine field
;
// first section first coming out from mine field

 if (pt.sec1_pre_minecross_value>0 && pt.sec1_minecross_value ==0 &&
pt.sec2_pre_minecross_value>0 && pt.sec2_minecross_value >0 &&
pt.sec3_pre_minecross_value>0 && pt.sec3_minecross_value > 0)
 {
 // code to post the trigger event.

 postEvent(PlSecMineCrossed.MineCrossed(pt.sec1_minecross_value,0,0));

 }
// second section first coming out from mine field
;
// third section first coming out from mine field
;
}

Note : when the belief contains the condition when first section crosses the

mine field first , it triggers the event GetPlatoonLevelSecMineCrossEvent

handled by PlatoonLevelSecMineCrossPlan.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 104 | P a g e

This plan PlatoonLevelSecMineCrossPlan intern sends an event

ArtyFireEvent to its Firebase Team for arty fire support. Platoon team also

passes target coordinates in event ArtyFireEvent. The event ArtyFireEvent

handled by Plan ArtyFireStartPlan of the Firebase Team.

The ArtyFireEvent is defined as follows:

event ArtyFireEvent extends MessageEvent
{
 public String s1;
 public double Val;
 public double x;
 public double y;

 #posted as
 MsgToArty(String p, double Val1, double x1, double y1)
 {
 s1 = p;
 Val=Val1;
 x=x1;
 y=y1;
 }
}

The Plan ArtyFireStartPlan of the FireBase Team is as follows:

package firebaseteam;
import platoonteam.ArtyFireEvent;

teamplan ArtyFireStartPlan extends TeamPlan {
 #handles event ArtyFireEvent af;
 #uses interface FireBaseTeam fteam;
 #sends event ArtyFireMessageToPlatoon aftp;

static boolean relevant(ArtyFireEvent af){
return(af.Val==1);
}

context()
{
(fteam.mode.equals("red"));
}
 body()
 {

 System.out.println(" Fire Base Team " + fteam.name1+ " receiving arty fire request from
its Platoon "+ af.s1);

 System.out.println(fteam.name1+ " Starting Arty Fire at enemy position " +af.x + " " +
af.y);

 // send message to platoon for acknowledging arty fire

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 105 | P a g e

 @send(af.s1,aftp.ArtyFireMsg(" Fire msg to Platoon Team"));

 fteam.start_firing=1;
 fteam.x=(int)af.x ;
 fteam.y=(int)af.y ;

 while(fteam.start_firing==1)
 {

System.out.println(fteam.name1+ " Firing continuously at enemy position ..");

 @waitFor(elapsed(3.0));
 }
 }
}

Formation Change (Rod) Event Trigger On Mine cross Belief Update /
Change

The belief triggered event GetPlatoonLevelSecMineCrossEvent ,handled by

PlatoonLevelSecMineCrossPlan sends the event

changeTempGolePosToSecEvent to its other sections who have not so far

encountered the minefields.

The plan PlatoonLevelSecMineCrossPlan is follows:

package platoonteam;

teamplan PlatoonLevelSecMineCrossPlan extends TeamPlan {

 #handles event GetPlatoonLevelSecMineCrossEvent pc1;
 #uses interface PlatoonTeam pteam;
 #sends event ArtyFireEvent af;
 #uses data PlatoonLevelStatusInfo plstatusinfo;
 #sends event AssignRole ar;
 #sends event ChangeTempGolePosToSecEvent ctgps;
 #reads data PlatoonLevelSecMineCrossStatusInfo PlSecMineCross;

// logical variables to retrieve plstatusinfo belief fields

 String TeamName;
 logical double morale_value1;
 logical double leadership_value1;
 logical double suppression_value1;
 logical double fatigue_value1;
 logical double casuality_value1;
 logical double minecross_value1;
 logical double x1;
 logical double y1;
 double x;
 double y;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 106 | P a g e

context()
{
(pteam.FirstFire==0);
}
 body()
 {
 System.out.println(" Platoon Team " + pteam.name()+ " gets msg from mine_cross belief
set trigger.." + " mine crossing.. " + pc1.MineCrossValue + " Fire Val " + pc1.Val);

 // platoon team sending fire event (containing target coordinates) to firebase to start fire

@send(pteam.FireBaseTeam,af.MsgToArty(pteam.name1,pc1.Val,pteam.goal_x,pteam.goal_
y));

 // invalidate this plan context to execute in next iteration
 pteam.FirstFire=1;

// Update Platoon's AssultRoleIndex section

pteam.AssultRoleIndex=pc1.crossed_sec_index;

 if(pc1.crossed_sec_index==0)
{

 // first section as assault section

@send(pteam.RolePerformer[0],ar.AssignRole("Assault"));

 // retreive the belief data of the section 1 team

plstatusinfo.get(pteam.RolePerformer[0],morale_value1,leadership_value1,suppression_valu
e1,fatigue_value1,casuality_value1,minecross_value1,x1,y1);

 // get the position of assault section 1

 x=x1.getValue();
 y=y1.getValue();
 @send(pteam.RolePerformer[1],ctgps.ChangeTempGolePosToSec("Change Sec 2
Gole",(int)x,(int)y,4));
 @send(pteam.RolePerformer[2],ctgps.ChangeTempGolePosToSec("Change Sec 3
Gole",(int)x,(int)y,3));

 System.out.println(" Platoon Team " + pteam.name() + " changing goal of two sections ,
sec2 , sec3 to sec1 position ");

// constantly check weather any one of sec2 & sec 3 has encountered mines
// if yes then change their goals to platoon main goal.
while(1==1)
{
 // mine cross belief parameters

 logical double sec1_pre_minecross_value;
 logical double sec1_minecross_value;
 logical double sec2_pre_minecross_value;
 logical double sec2_minecross_value;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 107 | P a g e

 logical double sec3_pre_minecross_value;
 logical double sec3_minecross_value;

 // retrieve old belief

PlSecMineCross.get(sec1_pre_minecross_value,sec1_minecross_value,sec2_pre_minecross
_value,sec2_minecross_value,sec3_pre_minecross_value,sec3_minecross_value);

 if(sec2_minecross_value.getValue()>0 || sec3_minecross_value.getValue()>0)
{
 break;
}

} // while

 // again issue original goal position to sections

 System.out.println(" Platoon Team " + pteam.name() + " two sections , sec2 , sec3 changing
to original goal positions ");
 @send(pteam.RolePerformer[1],ctgps.ChangeTempGolePosToSec("Change Sec 2
Gole",pteam.goal_x,pteam.goal_y,4));
 @send(pteam.RolePerformer[2],ctgps.ChangeTempGolePosToSec("Change Sec 3
Gole",pteam.goal_x,pteam.goal_y,3));

}
;
;
}
}

Platoon Belief plstatusinfo is read to get the positions of the mine

encountering section (acting as assault section), then the other two teams

goals are changed temporarily by sending the event

ChangeTempGolePosToSecEvent to other section teams defined in platoon

team by pteam.RolePerformer[1] and pteam.RolePerformer[2], considering

that the assault section is pteam.RolePerformer[0].

7.2.4 SOLDIER AND OTHER AGENTS CAPABILITIES

The main agent-based analysis class that was identified was ―SOLDIER‖. The

other analysis classes identified were ―MASTER‖, ―DETECTOR‖, and

―DAMAGER‖. These four classes, stereotyped as ―agents‖, had their own

specific roles and capabilities:

SOLDIER agent: This represents tank entity and has the capability to simple

move towards objective, move across mines and move through enemy wire

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 108 | P a g e

mesh . Once the SOLDIER agent has informed the MASTER agent about its

own creation, it executes its relevant plans applicable in that context. While

moving each SOLDIER agent keeps calling his DETECTOR agent (discussed

next) by sending start detection message. SOLDIER agent while engaging

enemy soldier, sends message to DAMAGER agent, which update the enemy

kill status.

SOLDIER capabilities identified are as follows:

public capability soldier_cap extends Capability {

// for catering all type of move

 #handles external event start_move_event;

 #uses plan start_move_plan;
 #uses plan start_kill_move_plan; // new added
 #uses plan start_wait_plan;
 #uses plan default_plan;
 #uses plan no_move_active_plan_blue;
 #uses plan no_move_active_plan_red;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 109 | P a g e

 #sends event start_move_event;

// send the enemy detection info to section team

 #sends event info_team;

// for enabling move by section team

 #handles external event enable_move;
 #uses plan enable_move_plan;

// for enabling move speed by team cont

 #handles external event adjust_speed;
 #uses plan adjust_speed_plan;

// for detection purpose

// soldier agent receives the event deliver_enemy_array sent by Detector agent. The
deliver_enemy_array event contains nearest enemy detection information.

 #handles external event deliver_enemy_array ;
 #uses plan deliver_enemy_array_plan;

// soldier agent sends event detect_enemy_event (fr blue enemy) ,
detect_enemy_event_for_off (for red enemy)to DETECTOR agent to start detection process

 #sends event detect_enemy_event;
 #sends event detect_enemy_event_for_off;

// soldier agent sends event damage_event to DAMAGER agent for updating enemy kill
information/status
 #sends event damage_event;

// handle section team request for killed soldier info

 #handles external event Req_Killed_Soldier_Status;
 #uses plan Req_Killed_Soldier_Status_Plan ;

 // send the kiled soldier status to its team

 #sends event Get_killed_Status_Info_from_Soldier_Event;

// for soldier changing position according to formation

 #handles external event SoldierChangePosEvent;
 #uses plan SoldierChangePosPlan;

// send soldier info at simulation loop to its section team
 #sends event SoldierUpdatedInfoToSection;

// Giving soldier creation info to MASTER
 #sends event info;

}

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 110 | P a g e

SOLDIER agent definition is as follows:

public agent SOLDIER extends Agent {

 // All capabilities of soldier agents is in soldier_cap
 #has capability tanks soldier_cap;

// variable name for assessing friendly enemy detector & damage assessor

 String detector;
 String damage_assesor;
 String other_damage_assesor;
 String controller;

// Agents location variables

 public int svar1,svar2; // Soldier Start Points
 public int var1,var2;
 public int gvar1,gvar2; // Soldier Goal Points
 public int fvar1,fvar2; // Final Goal Points

 public int pre_var1,pre_var2; // Soldier previous point

// Used for placing Mine Kill zone
 private Vector V_kill_zone = new Vector();

// Used for placing Wire Mess zone
 private Vector W_kill_zone = new Vector();

// Agents attribute such speed,range & move active or not
 public int speed,range;
 public int kill;
 public int max_speed,min_speed;

 private int moveflag;

 // agents enemy parameters used for computing soldier suppression
 public int en_x,en_y,en_range;

 // used for plan context purpose i.e which plan is active move, wait ,move in kill zone, ,etc

 public int move, wait, wait_time, killzone;

 // soldiers parameters to be used for upward synthesize to section level

 Public double morale_value ,leadership_value,,suppression_value,,fatigue_value
,minecross_value;

// constructor method
public SOLDIER(String name, int speed1,int range1,String detector1,String damager, String
master)
 {
 // soldier agent name
 super(name);
 name1=name;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 111 | P a g e

 // detector agent name
 detector=detector1;

 // damager agent name
 damage_assesor=damager;

 // section team name
 controller=master;
 // initialize agents cur, goal, pre position
 svar1=0;
 svar2=0;
 var1=0;
 var2=0;
 gvar1=0;
 gvar2=0;
 fvar1=0;
 fvar2=0;
 pre_var1=0;
 pre_var2=0;

// soldier detection range
 range=range1;
// soldier max speed
 max_speed=speed1;
// solider kill status
 kill=0;
// soldier move flag enable
 moveflag=1; // able to move
;
;
}

}

Other agents identified in this scenario are as follows:

MASTER agent: Keeps track of all joining entities in the simulation battlefield.

It acts as a simulation controller and sends events at fixed interval to all

joining entities present in the simulation. While SOLDIER agents are created,

they also have to inform the MASTER agent.

public capability controllers extends Capability {

// for controlling agents

 #handles external event info;
 #uses plan info_plan;

 #handles external event start_sim;
 #uses plan start_sim_plan;

 #handles external event start_sim_from_team;

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 112 | P a g e

 #uses plan start_sim_from_team_plan;

}

MASTER AGENTS Class:

public agent MASTER extends Agent {

#posts event start_sim ev;
#has capability controllers controllers_cap;

// Master Agents name
 String name1;

// instance of soldier agent container
 agents_container agents_cont;

// Used for placing created agents ames
 Vector agents_name = new Vector();

 public MASTER(String name,agents_container agents_cont)
 {
 super(name);
 name1=name;
 this.agents_cont = agents_cont;

 send_counter=-1;
 }

public String NameAt(int i)
{
return(((String)agents_name.elementAt(i)));

}

public void Set_counter(String s)
{
 agents_name.addElement(s);
 System.out.println(" Master Counter incremented to " + count());
}

public void start_sim()
 {
 System.out.println(" STARTING SIMULATION ");
 postEvent(ev.request(3));
 }

}

DETECTOR agent: Each force has one such agent. It is assigned the task to

detect enemy. It keeps information about the enemy force within 60 meters

range. For example Red‘s DETECTOR will keep information about red enemy

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 113 | P a g e

within 60 meters range and send this information to red /blue SOLDIER

agents.

DAMAGER agent: Each force has one such agent. If the enemy tank gets

killed, this agent updates its enemy database. For example, if any red tank

kills enemy (blue) tanks, it informs this to red‘s / blue‘s DAMAGER agent to

update enemy kill status.

An important design and analysis issue is that of dealing with concurrency.

Multiple agents, each having multiple threads of execution (plans) have to be

modeled. The complexity of designing the multi-threaded, multi-agent system

places high demands on the system architect & programmer. However,

concurrency is one of the most important potential advantages offered by

multi-agent systems and these concepts are very easily handled by the

various Java-based agent toolkits available commercially.

7.2.5 COMPLEX BELIEF GENERATION FROM SYNTHESIZED BELIEF

StartPlatoonExeEvent event is handled by StartPlatoonExePlan of Platoon

team. The plan StartPlatoonExePlan, while executing platoon team plan

further the event UpdateOtherBeliefs event for generating complex belief

based on simple belief about platoon‘s sections stored in

PlatoonLevelStatusInfo.Bel. This event UpdateOtherBeliefs is handles by plan

UpdateOtherBeliefsPlan. This Plan UpdateOtherBeliefsPlan reads the data

PlatoonLevelStatusInfo.Bel. From belief PlatoonLevelStatatesInfo.Bel ,this

plan generates data for four type of complex belief namely:

 PlatoonLevelSecCasStatusInfo.Bel

 PlatoonLevelSecCasStatusInfo.Bel

 PlatoonLevelSecMoraleStatusInfo.Bel

 PlatoonLevelSecSuppressionStatusInfo.Bel.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 114 | P a g e

The plan after generating separate data values for different belief posts four

events

(UpdatePlatoonCasBeliefEvent,UpdatePlatoonMineCrossBeliefEvent,Update

PlatoonMoraleBeliefEvent and UpdatePlatoonSuppressionBeliefEvent).

The UpdatePlatoonCasBeliefEven event is handles by plan

UpdatePlatoonCasBeliefPlan of platoon team and is responsible for updating /

adding the derived belief about platoon‘s three section casualty value in

PlatoonLevelSecCasStatusInfo.Bel.

Similarly the event UpdatePlatoonMineCrossBeliefEvent is handles by the

plan UpdatePlatoonMineCrossBeliefPlan and is repossible for updating the

mine cross status of the three sections of platoons stored in

PlatoonLevelSecMoraleStatusInfo.Bel belief.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 115 | P a g e

7.2.6 COMPANY LEVEL DECISION MAKING BASED ON COMPANY’S
BELIEF (PLATOON CASUALTY BELIEF) UPDATION

The belief CoyLevelPlatoonCasStatusInfo.Bel containing the casualty

information of its platoons. Whenever the casualty value of assault platoon

crosses the given threshold value , an event GetCoysIstPlatoonSupEvent is

generated by CoyLevelPlatoonCasStatusInfo.Bel and is handled by the

Company Plan CoyIstPlaSupPlan.

The beliefset CoyLevelPlatoonCasStatusInfo is as follws :

public beliefset CoyLevelPlatoonCasStatusInfo extends ClosedWorld
 {

 #value field double pla1_cas_value;
 #value field double pla2_cas_value;
 #value field double pla3_cas_value;

 // get complete information of a named Team

 #linear query get(logical double pla1_cas_value, logical double pla2_cas_value,logical
double pla3_cas_value);

#function query int MaxCasPlatoon()
{
logical double a,b,c;

get(a,b,c);

int pla_index=0;

if(b.getValue()>c.getValue())
 pla_index =2;
else
 pla_index=3;

return(pla_index);

}

#function query int MinCasPlatoon()
{
logical double a,b,c;

get(a,b,c);

int pla_index=0;

if(b.getValue()<c.getValue())

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 116 | P a g e

 pla_index =2;
else
 pla_index=3;

return(pla_index);

}

 #posts event GetCoysIstPlatoonSupEvent IstPlaSup;

 public void newfact(Tuple t,BeliefState is,BeliefState was)
 {
 // Note that CoyLevelPlatoonCasStatusInfo__Tuple contains two underscores

 CoyLevelPlatoonCasStatusInfo__Tuple pt = (CoyLevelPlatoonCasStatusInfo__Tuple) t;

 if (pt.pla1_cas_value >= 40)
 {
 // code to post the trigger event. This code will

 // be executed whenever a Team playing pla1 cas incr above 40 mark is
 // added in belief set. For example:

 // postEvent(PlSecCas.Cas(pt.pla1_cas_value,1));

 // first platoon of coy suffered heavy cas (> 40%) ,so requires fire support from other
platoons

 postEvent(IstPlaSup.IstPlaSupEvent(pt.pla1_cas_value,1));

 }
 }

}

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 117 | P a g e

The CoyIstPlaSupPlan reads data CoyLevelStatusInfo.Bel to retrieves the

position of assault platoon so that fire support team can be sent to assault

position for support. This Plan also reads data CoyLevelStatusInfo.Bel for

getting the morale value of support platoons so that high morale platoons can

be selected for fire support to assault teams.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 118 | P a g e

Description of plan CoyIstPlaSupPlan is as follows:

teamplan CoyIstPlaSupPlan extends TeamPlan {

 #handles event GetCoysIstPlatoonSupEvent pc1;

 #uses interface CompanyTeam cteam;

 #sends event PlatoonSuportFireEvent sfe;

 #reads data CoyLevelStatusInfo coystatusinfo;

 body()

 {

 System.out.println(" Coy Team " + cteam.name() + " receiving trigger event for First

platoon casualty > 30% + causality value " + pc1.CasVal);

 logical double a1,b1,c1,d1,e1,f1,g1,h1;

 double g11,h11;

 coystatusinfo.get(cteam.RolePerformer[0],a1,b1,c1,d1,e1,f1,g1,h1);

 g11=g1.getValue();

 h11=h1.getValue();

 // select high morale Platoon

 int pla_index=2; // select 2 nad paltoon as default

 // get 2 nd Role Platoon's Morale Information

 logical double a2,b2,c2,d2,e2,f2,g2,h2;

 coystatusinfo.get(cteam.RolePerformer[1],a2,b2,c2,d2,e2,f2,g2,h2);

 // get 3 rd Role Platoon's Morale Information

 logical double a3,b3,c3,d3,e3,f3,g3,h3;

 coystatusinfo.get(cteam.RolePerformer[2],a3,b3,c3,d3,e3,f3,g3,h3);

 if (a2.getValue() > a3.getValue())

 {pla_index=1; System.out.println(" Morale of Platoon 2 is High " + a2.getValue() + " 3 rd

"+ a3.getValue());}

 else{pla_index =2; System.out.println(" Morale of Platoon 3 is High " + a3.getValue() + "2

nd " + a2.getValue());}

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 119 | P a g e

System.out.println(" Coy Team selected high morale Platoon team " +

cteam.RolePerformer[pla_index] + " for support Role to Assault platoon " +

cteam.RolePerformer[0]);

@send(cteam.RolePerformer[pla_index],sfe.MsgToSupportFire("FireSupportMsgToPlatoon",(

int)g11,(int)h11));

 }

}

The plan then sends event PlatoonSuportFireEvent to the support platoon for

providing fire support. The Platoon has plan handler

ExeCoyFireSuportReq.plan for this event PlatoonSuportFireEvent sent by

company team. The plan ExeCoyFireSuportReq of platoon in turn sends the

event InitiateSectionGoalPositionEvent1 to all section teams for changing

their goal given by support platoon team. The event

InitiateSectionGoalPositionEvent is handled by plan

InitiateSectionGoalPositionPlan of Section Team.

The description of plan ExeCoyFireSuportReq is as follows:

teamplan ExeCoyFireSuportReq extends TeamPlan {

 #handles event PlatoonSuportFireEvent sfe;

 #uses interface PlatoonTeam pteam;

// send platoon goal to all sections

 #sends event InitiateSectionGoalPositionEvent isgpe;

 context() {

(pteam.fire_support_once==1);

}

 body()

 {

 System.out.println(" Platoon team " + pteam.name1+ " receiving company request for

providing fire support ta position x "+ sfe.x + " position y "+ sfe.y);

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 120 | P a g e

 pteam.goal_x= sfe.x;

 pteam.goal_y= sfe.y;

 // giving fire support

 pteam.fire_supporting=1;

 pteam.fire_support_once=0; // so that it can not trigger fire sup repeteadily

 System.out.println(" PLATOON TEAM " + pteam.name1 + " giving support Role to pla 1 ");

 // initiate Platoon 's secion's soldier initial position and Goal position to all sections of red

section only

 for(int i=0;i<4;i++)

 {

 System.out.println("Platoon Team New Goal Passing to section no. " + i);

 @send(pteam.RolePerformer[i],isgpe.MsgToInitateSecGoal(pteam.goal_x,pteam.goal_y));

 }

 }

}

Note : Plan ExeCoyFireSuportReq of Platoon team sends event

InitiateSectionGoalPositionEvent to all sections to change their goal

position to new goal position (assault platoon current position)

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 121 | P a g e

7.3 Experimental Results

(Red Platoon attacking a blue Section)

Figure 7.1 Red platoon is moving towards objective in one up formation

Figure 7.2 Assault section on encounters minefield request platoon

commander for arty fire

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 122 | P a g e

Figure 7.3 Platoon commander gives order to section to adjust in rod

formation as soon as Assault section encounters minefield.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 123 | P a g e

Figure 7.4 Assault section request to Platoon commander for fire support

Assault section suffers blue forces ambush fire, It request platoon commander for

fire support from other sections. Section with high morale moves towards the

enemy for engagement.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 124 | P a g e

Figure 7.5 Assault section crosses mine field completely & request platoon

commander to lift Arty fire and fire support.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 125 | P a g e

Figure 7.6 Fire support section on receiving platoon order stop enemy

engagement & moves towards actual platoon objective.

Figure 7.7 Red Platoon completely crosses the mine fields and adjust itself in

lean on position covering blue enemy from front.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 126 | P a g e

7.4 Summary

Agent Unified modeling language (AUML) , is an extensions to the

UML and is used for the design of agents and teams . The AUML

based detailed design is done using JACK design tool. The detailed

designing of agents, team, capability, events, plan, belief, team data is

then implemented using JACK language. The agent based modeling

approach has been found suitable for representation of military C&C

Hierarchy & tactical team behavior.

This Study has successfully shown the team formation according to

required Roles, team task delegation from company to platoon and

from platoon to section teams. From section teams the mission orders

are passed to actual soldier agents, who actually interact with

battlefield environment. All the required events & behavior invocation of

all command agents teams has been validated from the log files

generated from simulation. All normal & Critical BDI events are also

generated & has been validated from log files.

This Study has shown that the team belief can be propagated upward

the organizational hierarchy allowing the upper level teams (Command

agents) to generate their complex belief derived from lower level sub

teams leading to dynamic response to unforeseen battlefield situation.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 127 | P a g e

Chapter 8. Conclusion & Future Scope

8.1 Conclusion

The intelligent agent is a valuable software concept which has the potential to

be more widely used in defence command decision modeling as it overcomes

a number of the limitations of present approaches to modeling human

reasoning and team behaviour. Practical experience has shown that multi-

agent architectures are suited to implementing simulation and decision

support systems.

A number of agent based defence applications have demonstrated that BDI

agents provide the most appropriate underpinning architecture for

representing human decision making, including a formalism for expressing

team structures and behaviors necessary to model C3.

From the results of the work done in thesis (red platoon attacking a blue

section & red company attacking a blue platoon) , we can highlight some

salient features of the agent based modeling approach:

Having an ―agent-oriented mind-set‖ while modeling tactical scenarios

will enable us to map the key abstractions and entities involved into

teams of agents, which is separate from simulation-specific code,

hence encouraging separation of concerns and re-use.

The work breakdown in the military hierarchy is mapped directly into

roles of team members. Hence, this allows for hierarchical

decomposition of tasks.

This approach allows the team-tactics of military operations to be

captured and simulated with minimal effort. It encourages clear and

concise description of coordinated activities

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 128 | P a g e

It allows the abstraction of what needs to be done from how it is done,

i.e. the responsibilities of the team can be written down without

consideration of how the roles would be fulfilled and implemented by

the team members.

This Study has successfully shown that the team belief can be

propagated upward the organizational hierarchy allowing the upper

level teams (command Agents) to generate their complex belief derived

from lower level sub teams leading to dynamic response to unforeseen

battlefield situation. These computer generated forces (command

agents) based on synthesized belief of lower level units takes effective

decision under any unforeseen situation. The propagated belief of

lower units helps the command agents to take account of current

situation of friendly as well as rival units in battlefield.

JACK is a mature, cross-platform environment for building, running and

integrating commercial-grade multi-agent systems. BDI is an intuitive

and powerful abstraction that allows developers to manage the

complexity of the problem. JACK provide support for team oriented

programming. The current version supports the BDI model and

SimpleTeam, an extension to support team-based reasoning.

8.2 Future Scope

In our scenario, we have made Company level as Commanding agent .This

can be extendible to brigade level as CA with minimal effort provided the

brigade level knowledge of decision making is available and can be stored in

brigade belief.

The commanding agent can play vital role in network centric warfare (NCW)

operation , where information is decentralized and available to the federate

forces (Commanding agents) based on their capability.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 129 | P a g e

The success of these applications has stimulated current research into

dynamic team formation, detachment ,recognition of enemy intentions and

learning.

It is important to capture the realistic aspects of human teams for Human-

Behavior Representation(HBR) studies, such as the effects of workload on

communication or coordination, or reaction to time-pressures and stress.

While intelligent agents have a great potential for modeling teamwork in HBR

simulations, much work remains to be done to accurately represent cognitive

aspects of human team members, like making effective decisions, heuristics

for dealing with uncertainty and workload limitations, and the effects of these

cognitive aspects on team interactions in real, human teams.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 130 | P a g e

REFERNCES

 [1] Cioppa, T. M. 2003. Advanced experiment designs for military simulations.

Technical Document TRAC-MTR- 03-11, U.S. Army TRADOC Analysis Center,

Naval Postgraduate School, Monterey, California.

[2] Ilachinski, Irreducible Semi-Autonomous Adaptive Combat (ISAAC): An

Artificial-Life Approach to Land Warfare, Center for Naval Analyses Research

Memorandum CRM 97-61, June1997.

[3] Andrew Lucas, The Potential For Intelligent Software Agents In Defence

Simulation, ,Agent Oriented Software Pty. Ltd.,Melbourne, Australia,Cal@Agent-

Software.Com.Au

[4] Thomas M. Cioppa, Military Applications Of Agent-Based Simulations,

Training and Doctrine,Command Analysis Center,Postgraduate School,Monterey, CA

93943, U.S.A. , Thomas W. Lucas, Susan M. Sanchez,Operations Research

Department,Naval Postgraduate School,Monterey, CA 93943, U.S.A.

[5] Aparna Malhotra,Agent-Based Modeling in Defence

Institute for Systems Studies & Analyses, Metcalfe House, Delhi-110 054

[6] Ferber, J. 1999. Multi-Agent Systems: An Introduction to

Distributed Artificial Intelligence. Boston, Massachusetts:

Addison-Wesley.

[7] Sumant Mukahjee,Agent based implementation of automated command and

control process, ISSA,DRDO,Delhi, International Conference on Cognitive Sciences

(ICCS),2004, Organized by NIIT at IIT, Delhi.

[8] Mapping Cognitive work analyses (CWA) to an intelligent Agents Software

Architechture:Command Agants , F. Lui,Marcus Watson,Proceedings of the defense

Human Factors special Interest Group (DHFSIG) 2002,DSTO Melbourne.Australia,

21-2 November.

[9] Dr. Ralph Rönnquist,Dr. Andrew Lucas,Mr. Nick Howden,The Simulation Agent

Infrastructure (SAI) – Incorporating Intelligent Agents into the CAEN Close Action

Simulator,Agent Oriented Software,221 Bouverie Street,CARLTON VIC

3053,AUSTRALIA

[10] Xiaocong Fan, John Yen,School of Information Sciences and Technology

Modeling and Simulating Human Teamwork Behaviors Using Intelligent Agents,

The Pennsylvania State University ,University Park, PA16802

Email: fzfan, jyeng@ist.psu.edu

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 131 | P a g e

[11] Richard Crowder1, Helen Hughes2,Yee W Sim1 and Mark Robinson2.

An Agent Based Approach To Modeling Design Teams, 1 School of Electronics and

Computer Science, University of Southampton, Southampton UK. 2 Leeds University

Business School, Leeds, UK., International Conference On Engineering Design,

Iced'09,24 - 27 August 2009, Stanford University, Stanford, CA, USA

[12] Aparna Malhotra, Sanjay Bisht, S.B. Taneja. Using

Intelligent Agents to Simulate Battle Tank Tactics,

International Conference on Cognitive Sciences (ICCS),

2004, Organized by NIIT at IIT, Delhi.

[13] Aparna Malhotra, S.B. Taneja, Sanjay Bisht. Simplifying

the Tactical Modelling of Armour scenarios using Teams

of Agents, 3rd International Conference on Quality,

Reliability and Infocom Technology (ICRQIT‟06), 2 -

4 Dec, 2006, New Delhi.

[14] Sanjay Bisht, Aparna Malhotra, S.B. Taneja. Modelling

and Simulation of Tactical Team-behaviour, published

in Defence Science Journal, Nov, 2007.

[15] Devasheesh Banerjee, Sanjay Bisht ,“ An Agent based team oriented tactical

simulation” , 3rd International Conference on Quality,Reliability and Infocom

Technology (ICRQIT‟06), 2 -4 Dec, 2006, New Delhi.

[16] Tweedale, J., Sioutis, C., Phillips-Wren, G., Ichalkaranje, N., Urlings, P., Jain,

L.: Future directions: Building a decision making framework using agent teams. In:

Phillips-Wren, G., Ichalkaranje, N., Jain, L. (eds.) Intelligent Decision Making: An

AI-Based Approach, pp. 387–408. Springer, Berlin (2008)

[17] JACK
TM

Intelligent Agents Evaluation Version, downloaded from site,

[18] JACK Intelligent Agents® Agent Manual,, Copyright © 1999-2011, Agent

Oriented Software Pty. Ltd.

[19] JACK® Intelligent Agents Teams Manual ,Copyright © 2002-2011, Agent

Oriented Software Pty Ltd, Release 5.3,21 November 2011.

[20] Salas, E., Dickinson, T.L., Tannenbaum, S.I., and Converse, S.A. (1992).

Toward and Understanding of Team Performance and Training. in: Teams, Their

Training and Performance. R.W. Swezey and E. Salas (eds.). Ablex: Norwood, NJ.

pp. 3-29.

[21] Gorman, P. (1980). The Command Post is Not a Place.

http://www.ida.org/DIVISIONS/sctr/cpof/

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 132 | P a g e

[22] Drillings, M. and Serfaty, D. (1997). Naturalistic Decision Making in Command

and Control in: Naturalistic Decision Making. C.E. Zsambok and G. Klein (eds.).

Erlbaum: Mahwah, NJ. pp. 71-80.

[23] Klein, G. (1999). Sources of Power: How People Make Decisions. MIT Press.

[24] Tambe, M. (1997). Towards Flexible Teamwork. Journal of Artificial

Intelligence Research, 7:83-124.

[25] Grosz, B. and Kraus, S. (1996). Collaborative Plans for Complex Group Action.

Artificial Intelligence, 86:269-357.

[26] Rao, A.S. and Georgeff, M.P. (1995). BDI Agents: From Theory to Practice.

Proceedings of the First International Conference on Multi-Agent Systems, 312-319.

[27] Kitano, H., Kuniyoshi, Y., Noda, I., Asada, M., Matsubara, H. and Osawa, E.

(1997). RoboCup: A Challenge Problem for AI. AI Magazine, 18(1):73-85.

[28] Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P., and Koss, F.V.

(1999). Automated Intelligent Pilots for Combat Flight Simulation. AI Magazine,

20(1):27-41.

[29] Paolucci, M., Kalp, D., Pannu, A., Shehory, O., and Sycara, K. (1999). A

Planning Component for RETSINA Agents. Proceedings of the Sixth International

Workshop on Agent Theories, Architectures, and Languages, 147-161.

[30] Tidhar, G., Heinze, C., and Selvestrel, M.C. (1998). Flying Together: Modeling

Air Mission

[31] Georgeff, M.P.; Lansky, A.L. (1986) ―Procedural knowledge‖,
Proceedings of the IEEE special issue on knowledge representation, 74:1383-
-1398.

[32]. M. E. Bratman, Intentions, Plans, and Practical Reason, Harvard University

Press, Cambridge,MA, 1987.

[33]. M. P. Georgeff, A. L. Lansky, Procedural knowledge, Proceedings of the IEEE

Special Issue on Knowledge Representation 74 (1986) 1383–1398.

[34]. M. J. Huber, JAM: a BDI-theoretic mobile agent architecture, in: Proceedings of

the Third International Conference on Autonomous Agents (Agents‟99), Seattle,

USA, 1999, pp.236–243.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 133 | P a g e

[35] M. d‟Inverno, D. Kinny, M. Luck, M. Wooldridge, A formal specification of

dMARS,in: M. P. Singh, A. S. Rao, M. Wooldridge (Eds.), Intelligent Agents IV:

Proceedings of the Fourth InternationalWorkshop on Agent Theories, Architectures,

and Languages, Springer-Verlag LNAI 1365, 1998, pp. 155–176.

[36] L. Braubach, A. Pokahr, W. Lamersdorf, Jadex: A short overview, in:

Proceedings of Net.ObjectDays: AgentExpo, 2004, pp. 195–207.

[37] Bratman, M.E., Isreal, D.J., Pollack, M.E.: Plans and resource-bounded practical

reasoning.Computational Intelligence 4 (1988)

[38] G. Weiss, (ed.), Multiagent System: A modern approach to Distributed AI, MIT

Press, 1999.

[39] M. Wooldridge, P. Ciancarini, and G. Weiss (eds.), Proceedings of the 2nd

International Workshop on Agent-Oriented Software Engineering (AOSE-2001),

Montreal, CA, May 2001.

[40] M. Wooldridge and N. R. Jeanings, „„Intelligent agents: Theory and practice,‟‟

Knowl. Eng. Rev., vol.10, no. 2, 1995.

[41]. A. Newell, „„The knowledge level,‟‟ Artif. Intell., vol. 18, pp. 87–127, 1982.

[42] A. S. Rao and M. P. Georgeff, „„Modelling rational agents within a BDI-

architecture,‟‟ in Proceedings of Knowledge Representation and Reasoning (KRR-91)

Conference, San Mateo CA, 1991.

[43] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J., & Perini, A.

“Tropos: An agent-oriented software development methodology” Autonomous Agents

and Multi-Agent Systems , (2004)., 8(3), 203-236

[44] The Tropos Metamodel and its Use ,Angelo Susi and Anna Perini and John

Mylopoulos ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy , Paolo Giorgini

Department of Information and Communication Technology,University of Trento, via

Sommarive 14, I-38050 Trento-Povo, Italy

[45] Agent-Oriented Methodologies: An Introduction, Paolo Giorgini University of

Trento, Italy Brian Henderson-Sellers University of Technology, Sydney, Australia,

Copyright © 2005, Idea Group Inc.

[46] H. Nwana, „„Software agents: An overview,‟‟ Knowl. Eng. Rev. J., vol. 11, no. 3,

1996.

[47] L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos, Non-Functional

Requirements in Software,Engineering, Kluwer Publishing, 2000.

[48] Bernhard Bauer, Jrg P. Mller, and James Odell. Agent UML: A formalism for

specifying multiagent interaction. In Paolo Ciancarini and Michael Wooldridge,

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 134 | P a g e

editors, Agent-Oriented Software Engineering, pages 91–103, Berlin, 2001. Springer-

Verlag.

[49] James Odell, H. Van Dyke Parunak, and Bernhard Bauer. Extending UML for

Agents.In Proceedings of AOIS Workshop at AAAI, 2000.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 135 | P a g e

APPENDIX A: SCREEN SHOTS

(Red Company attacking a blue Platoon)

Red Company consisting of four platoon (Two Up formation) is moving towards

their respective objective.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 136 | P a g e

Assault sections of all platoons on encountering minefield request platoon

commander for arty fire. Platoon commander gives order to sections to adjust in

rod formation as soon as Assault section encounters minefield.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 137 | P a g e

Assault Platoon suffers blue forces ambush fire, It request company commander

for fire support from other platoons.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 138 | P a g e

Support Platoons with high morale moves towards the enemy position of assault

Platoon for engagement.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 139 | P a g e

Assault Platoons is in the process of crossing mine field completely. It request

platoon commander to lift Arty fire and fire support.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 140 | P a g e

Assault section crosses mine field completely. Platoon commander lifts Arty fire

support. Fire support section on receiving platoon order stops enemy engagement

& moves towards actual platoon objective.

Modeling Command & Control and Belief based Decision Making of a Company Commander Using Agent Technology

Department of Computer Engineering , Delhi Technological University 141 | P a g e

APPENDIX B : ACRONYMS

DoD : Department of Defense

CAEN : Close Action Environment

ISAAC : Irreducible Semi-Autonomous Adaptive Combat

SAI : Simulation Agent Infrastructure

ABS : Agent Based Simulation

CGF : Computer generated Forces

C&C: Command & Control

C3: Command, Control & Communication

