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ABSTRACT 

 

 

           The Internet and World Wide Web have given us a world of endless possibilities- 

like items to consume, movies to watch, music to listen, conversations to participate in 

etc. Amidst all this range of endless options, a consumer faces the task of what to choose 

which might interest him. Recommender system comes to the rescue for such a 

consumer. These systems aim to mediate, support, or automate the everyday process of 

sharing recommendations. 

 

            Recommender systems are making their presence felt in a number of domains, be 

it for ecommerce or education, social networking etc. With huge growth in number of 

consumers and items in recent years ,recommender systems faces some key challenges. 

These are: producing high quality recommendations and performing many 

recommendations per second for millions of consumers and items. New recommender 

system technologies are needed to reduce sparseness in order to get high quality 

recommendations, even for very large-scale problems.  

 

           In this thesis, we focus on collaborative approach based recommender systems to 

solve the issues of sparsity and scalability. We have compared two collaborative filtering 

algorithms which solves the above mentioned issues in one go. The first algorithm uses 

weighted slope one method to reduce sparseness and the other one uses item 

classification technique. Then item clustering is used to alleviate the scalability problem. 

The item classification technique is better among the two as determined using the case 

study from movielens data set obtained from Grouplens website. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

The term “collaborative filtering” was introduced in the context of the first commercial 

recommender system, called Tapestry [1], which was designed to recommend documents drawn 

from newsgroups to a collection of users. It was created to leverage social collaboration in order 

to prevent users from getting inundated by a large volume of streaming documents. Collaborative 

filtering, which analyzes usage data across users to find well matched user-item pairs, has since 

been juxtaposed against the older methodology of content filtering which had its original roots in 

information retrieval. In content filtering, recommendations are not “collaborative” in the sense 

that suggestions made to a user do not explicitly utilize information across the entire user-base. 

Some early successes of collaborative filtering on related domains included the GroupLens[2] 

system. Initial formulations for recommender systems were based on straightforward correlation 

statistics and predictive modeling, not engaging the wider range of practices in statistics and 

machine learning literature. Several efforts have been attempted to combine content-based 

methods with collaborative filtering, and to incorporate additional domain knowledge in the 

architecture of recommender systems. 

Further research was spurred by the public availability of datasets on the web, and the interest 

generated due to direct relevance to e-commerce. Netflix, an online streaming video and DVD 

rental service, released a large-scale dataset containing 100 million ratings given by about half-a-

million users to thousands of movie titles, and announced an open competition for the best 

collaborative filtering algorithm in this domain.  

More formally, the recommendation problem can be formulated as follows: Let C be the set of 

all users and let S be the set of all possible items that can be recommended, such as books, 

movies, or restaurants. The space S of possible items can be very large, ranging in hundreds of 

thousands or even millions of items in some applications, such as recommending books or CDs. 

Similarly, the user space can also be very large—millions in some cases. Let u be a utility 

function that measures the usefulness of items to user c, i.e., u  : C × S           R, where R is a 

totally ordered set (e.g., nonnegative integers or real numbers within a certain range). Then, for 
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each user c I C, we want to choose such item s’ I S that maximizes the user’s utility. In 

recommender systems, the utility of an item is usually represented by a rating, which indicates 

how a particular user liked a particular item. 

The central problem of recommender systems lies in that utility u is usually not defined on the 

whole C × S space, but only on some subset of it. This means u needs to be extrapolated to the 

whole space C × S. In recommender systems, utility is typically represented by ratings and is 

initially defined only on the items previously rated by the users. For example, in a movie 

recommendation application (such as the one at MovieLens.org), users initially rate some subset 

of movies that they have already seen. An example of a user-item rating matrix for a movie 

recommendation application is presented in Table 1, where ratings are specified on the scale of 1 

to 5. The “Ø” symbol for some of the ratings in Table 1 means that the users have not rated the 

corresponding movies. Therefore, the recommendation engine should be able to estimate 

(predict) the ratings of the nonrated movie/user combinations and issue appropriate 

recommendations based on these predictions. 

 

TABLE 1 A Fragment of a Rating Matrix for a Movie Recommender System 

 

Extrapolations from known to unknown ratings are usually done by 

1) specifying heuristics that define the utility function and empirically validating its 

performance.  

2)  estimating the utility function that optimizes certain performance criterion, such as the mean 

square error. 



12 
 

Once the unknown ratings are estimated, actual recommendations of an item to a user are made 

by selecting the highest rating among all the estimated ratings for that user, according to (1). 

Alternatively, we can recommend the N best items to a user or a set of users to an item [3]. 

In this age of information overload, people use a variety of strategies to make choices about what 

to buy, how to spend their leisure time, and even whom to date. Recommender systems automate 

some of these strategies with the goal of providing affordable, personal, and high-quality 

recommendations. A good recommendation engine is worth a lot of money. According to a 

report by industry analyst Forrester, one-third of customers who notice recommendations on an 

e-commerce site wind up buying something based on them. The trouble with recommendation 

engines is that they're really hard to build. Though they look simple but they're actually doing 

something fiendishly complex. They're processing astounding quantities of data and doing so 

with seriously high-level math. That's because they're attempting to second-guess a mysterious, 

perverse and profoundly human form of behavior: the personal response to a work of art. They're 

trying to reverse-engineer the soul. They're also changing the way our culture works. We used to 

learn about new works of art from friends and critics and video-store clerks — from people, in 

other words. Now we learn about them from software. There's a new class of tastemakers, and 

they're not human. 

Currently, Recommender Systems remain an active area of research. Applications have been 

pursued in diverse domains ranging from recommending web pages to music, books, movies and 

other consumer products. 

While studying recommender systems, the author learnt that a good recommendation system 

needs to address many challenges. Major among them are: Data sparsity, Scalability, Shilling 

Attacks, Synonymy etc. Dealing with data sparsity issue and need to improve scalability is the 

major concern for any recommendation system providing accurate recommendations i.e. 

predictions which closely matches with user interest. So the author has focused mainly to resolve 

sparsity and scalability issues. 

 

1.2 Research Objective 
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Data sparsity means that in a user – item rating database, few ratings are available as compared 

to the number of items available for the users. So in such a sparse dataset, accuracy is not high if 

predictions are done using any of the existing item based or user based collaborative filtering 

methods. Scalability is another major issue with the size of the data set being enormously huge. 

It becomes difficult to search the entire rating database and there is poor scalability when more 

and more users and items are added into the database. Also scalability cannot be improved much 

in memory based and item based collaborative filtering methods. Keeping this in mind, we have 

analyzed two collaborative filtering algorithms, which deals with the above two mentioned 

issues simultaneously. The problem statement is: 

“To find out which collaborative filtering algorithm is better suited to deal with sparsity 

and scalability issues – a collaborative filtering algorithm based on weighted slope one 

scheme and item clustering or a collaborative filtering algorithm based on item 

classification and item clustering. We are determining which is better in terms of  

simplicity and  accuracy  among the two methods. ” 

 

1.3 Proposed Work 

In this thesis, we have compared two collaborative filtering algorithms tackling the issues of 

sparsity and scalability. The first algorithm uses weighted slope one scheme technique to reduce 

the sparsity of the data set and the other algorithm uses the item classification technique for the 

same. The weighted slope one scheme is based on popularity differential of items i.e. in a pair 

wise fashion it is determined which item is liked better than other. This information is further 

used to predict rating for a user given their rating for other items. This is the idea behind slope 

one scheme. But since this scheme does not consider number of ratings observed so weighted 

slope one scheme is used which consider this information too. The item classification technique 

classifies items (here movies) into groups based on some attribute. The attribute chosen here is 

genre. The various genres that movies could belong to are Action, Adventure, Animation, 

Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, 

Mystery, Romance, Sci-Fi, Thriller, War, Western. So in all we have divided the collection of all 

movies in 18 groups. Further then in each of the group user based collaborative filtering is used 
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to predict ratings. Since a movie could belong to various genres in that case mean of values 

predicted from each group is used to get final rating for that movie. Then item clustering (K-

means) have been performed on the dense data set obtained from each of the techniques. Using 

the item clustering items are clustered into groups.48 clusters are created. Clustering results in 

similar items grouped together. The item for which rating needs to be predicted is matched with 

the centroid of each of the clusters. Then neighbors in the nearest matching centroids is 

considered as neighbors for the item in question. Once neighbors are identified weighted average 

weighted by similarity is used to determine rating. The dense data set in each of the above cases 

is divided into base file and test file. 5% of the users are considered as the test users. Finally the 

results have been compared for both the algorithms using Mean Absolute Error as the evaluation 

metric. For calculating MAE, predictions were withheld for 5% of the users and then predicted 

rating difference with the withheld rating is used to determine MAE. It turns out that item 

classification technique scores over weighted slope one scheme in terms of accuracy of 

predictions. Also it is easier to implement and computation time is lesser for creating the dense 

data set since predictions are done within groups.  

 

1.4 Organization of Remainder Of Thesis 

In the above chapter, we had discussed the motivation, research objective and finally the 

proposed work. Chapter 2 provides the literature review of various types of recommender 

systems and their evaluation metrics. Chapter 3 has the complete details about the techniques 

employed to compare two algorithms and how the techniques are combined to resolve sparsity 

and scalability challenges. Chapter 4 shows the experimental setup and results of the algorithms 

compared, followed by limitations and finally chapter 5 consists of the contributions and possible 

future work or directions in this area and it finally ends with the references and appendices. 

 

1.5 Summary 

In this chapter we have thrown some insight into the field of recommender system followed by 

the motivation for the author to do this work. Finally author had described the objectives of the 
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thesis and how he accomplishes these objectives in his research using certain sparsity reducing 

techniques and item clustering algorithm. 
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CHAPTER 2 

LITERATURE SURVEY 

2.1 Web 2.0 

The term Web 2.0 is associated with web applications that facilitate participatory information 

sharing, interoperability, user-centered design, and collaboration on the World Wide Web. A 

Web 2.0 site allows users to interact and collaborate with each other in a social media dialogue 

as creators (prosumers) of user-generated content in a virtual community, in contrast to websites 

where users (consumers) are limited to the passive viewing of content that was created for them. 

Examples of Web 2.0 include social networking sites, blogs, wikis, video sharing sites, web 

applications, and folksonomies. 

The term is closely associated with Tim O'Reilly because of the O'Reilly Media Web 2.0 

conference in late 2004. Web 2.0 websites allow users to do more than just retrieve information. 

By increasing what was already possible in "Web 1.0", they provide the user with more user-

interface, software and storage facilities, all through their browser. This has been called 

"Network as platform" computing. Users can provide the data that is on a Web 2.0 site and 

exercise some control over that data. The characteristics of Web 2.0 are: rich user experience, 

user participation, dynamic content, metadata, web standards and scalability. Further 

characteristics, such as openness, freedom and collective intelligence by way of user 

participation, can also be viewed as essential attributes of Web 2.0. 

The client-side/web browser technologies used in Web 2.0 development are Asynchronous 

JavaScript and XML (Ajax), Adobe Flash and the Adobe Flex framework, and JavaScript/Ajax 

frameworks such as Yahoo! UI Library, Dojo Toolkit, MooTools, and jQuery. 

Web 2.0 can be described in 3 parts which are as follows: 

• Rich Internet Application (RIA) - It defines the experience brought from desktop to 

browser whether it is from a graphical point of view or usability point of view. Some 

buzzwords related to RIA are Ajax and Flash. 
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• Service oriented architecture(SOA) - It is a key piece in Web 2.0 which defines how Web 

2.0 applications expose its functionality so that other applications can leverage and 

integrate the functionality providing a set of much richer applications (Examples are: 

Feeds, RSS, Web Services, Mash-ups) 

• Social Web — It defines how Web 2.0 tend to interact much more with the end user and 

making the end-user an integral part. 

An important part of Web 2.0 is the social Web, which is a fundamental shift in the way people 

communicate. The social web consists of a number of online tools and platforms where people 

share their perspectives, opinions, thoughts and experiences. Web 2.0 applications tend to 

interact much more with the end user. As such, the end user is not only a user of the application 

but also a participant 

 

      Figure 1:   Web 2.0 Map 

The Social Web provides huge opportunities for recommender technology and in turn  

recommender technologies can play a part in fuelling the success of the Social Web 

phenomenon. The social web has turned information consumers into active contributors creating 

massive amounts of information. Finding relevant and interesting content at  

the right time and in the right context can be one of the tasks of recommender systems. 
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Recommendation can be for anything like books, music, persons, news, web pages etc. One 

important example of use of recommendation engine is in the field of social shopping. 

Recommendation engines allow shoppers to provide advice to fellow shoppers. Traditional 

online product review companies such as Amazon have helped many consumers to date but 

currently emphasize obtaining and giving advice to strangers. Upcoming social shopping startups 

such as ShopSocially , Blippy , and Swipely  now encourage conversations around purchases 

with a user's friends or acquaintances. Still there are many more unexplored fields which will 

surely benefit by making use of recommendation engines. 

 

2.2 Recommender systems &  Types 

Recommender systems, recommendation systems, recommendation engines, 

recommendation frameworks, recommendation platforms work from a specific type of 

information filtering system technique that attempts to recommend information items (movies, 

TV program, video on demand, music, books, news, images, web pages, scientific literature such 

as research papers etc.) that are likely to be of interest to the user. 

Typically, a recommender system compares a user profile to some reference characteristics, and 

seeks to predict the 'rating' that a user would give to an item they had not yet considered. These 

characteristics may be from the information item (the content-based approach) or the user's 

social environment (the collaborative filtering approach).When building the user's profile a 

distinction is made between explicit and implicit forms of data collection[4]. 

Examples of explicit data collection include the following: 

• Asking a user to rate an item on a sliding scale. 

• Asking a user to rank a collection of items from favorite to least favorite. 

• Presenting two items to a user and asking him/her to choose the best one. 

• Asking a user to create a list of items that he/she likes. 

Examples of implicit data collection include the following: 

• Observing the items that a user views in an online store. 

http://en.wikipedia.org/wiki/Data_collection
http://en.wikipedia.org/wiki/Implicit_data_collection
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• Analyzing item/user viewing times. 

• Keeping a record of the items that a user purchases online. 

• Obtaining a list of items that a user has listened to or watched on his/her computer. 

• Analyzing the user's social network and discovering similar likes and dislikes [4]. 

The recommender system compares the collected data to similar and not similar data collected 

from others and calculates a list of recommended items for the user. Recommender systems are a 

useful alternative to search algorithms since they help users discover items they might not have 

found by themselves.  

In its most common formulation, the recommendation problem is thus reduced to the problem of 

estimating ratings for the items that have not been seen by a user. Intuitively, this estimation is 

usually based on the ratings given by this user to other items and on some other information that 

will be formally described below. Once we can estimate ratings for the yet unrated items, we can 

recommend to the user the item(s) with the highest estimated rating(s). 

2.2.1 Content Based Filtering / Recommender systems 

The user will be recommended items similar to the ones the user preferred in the past. In content-

based recommendation methods, the utility u(c, s) of item s for user c is estimated based on the 

utilities u(c, si) assigned by user c to items si I S that are “similar” to item s. For example, in a 

movie recommendation application, in order to recommend movies to user c, the content-based 

recommender system tries to understand the commonalities among the movies user c has rated 

highly in the past (specific actors, directors, genres, subject matter, etc.). Then, only the movies 

that have a high degree of similarity to whatever the user’s preferences are would be 

recommended [3]. 

The content-based approach to recommendation has its roots in information retrieval, and 

information filtering research. Because of the significant and early advancements made by the 

information retrieval and filtering communities and because of the importance of several text-

based applications, many current content-based systems focus on recommending items 

containing textual information, such as documents, Web sites (URLs), and Usenet news 

messages. The improvement over the traditional information retrieval approaches comes from 

the use of user profiles that contain information about users’ tastes, preferences, and needs. The 

http://en.wikipedia.org/wiki/Search_algorithm
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profiling information can be elicited from users explicitly, e.g., through questionnaires, or 

implicitly—learned from their transactional behavior over time. 

Content-based filtering systems have the following advantages:  

1. They don’t require data on other users and are away from new user cold-start and sparsity 

problems. 

2. These systems are capable of recommending items to users with unique tastes. 

3. Can provide explanations of recommended items by explicitly listing content features   or 

descriptions that caused an item to be recommended [5]. 

Content-based recommender systems have several limitations: 

1. Limited Content Analysis 

Content-based techniques are limited by the features that are explicitly associated with the 

objects that these systems recommend. Therefore, in order to have a sufficient set of features, 

the content must either be in a form that can be parsed automatically by a computer (e.g., 

text) or the features should be assigned to items manually. While information retrieval 

techniques work well in extracting features from text documents, some other domains like 

multimedia data have an inherent problem with automatic feature extraction. Moreover, it is 

often not practical to assign attributes by hand due to limitations of resources [6]. 

2. Overspecialization 

When the system can only recommend items that score highly against a user’s profile, the 

user is limited to being recommended items that are similar to those already rated. For 

example, a person with no experience with Greek cuisine would never receive a 

recommendation for even the greatest Greek restaurant in town.  

3. New User Problem 

The user has to rate a sufficient number of items before a content-based recommender system 

can really understand the user’s preferences and present the user with reliable 
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recommendations. Therefore, a new user, having very few ratings, would not be able to get 

accurate recommendations. 

2.2.2 Collaborative Filtering Systems 

Collaborative Filtering is the process of filtering or evaluating items using the opinions of other 

people. Unlike content-based recommendation methods, collaborative recommender systems (or 

collaborative filtering systems) try to predict the utility of items for a particular user based on the 

items previously rated by other users. More formally, the utility u(c, s) of item s for user c is 

estimated based on the utilities u (cj, s) assigned to item s by those users cj  I C who are 

“similar” to user c. For example, in a movie recommendation application, in order to recommend 

movies to user c, the collaborative recommender system tries to find the “peers” of user c, i.e., 

other users that have similar tastes in movies (rate the same movies similarly). Then, only the 

movies that are most liked by the “peers” of user c would be recommended. 

There have been many collaborative systems developed in the academia and the industry. The 

Tapestry system relied on each user to identify like-minded users manually. GroupLens[8], 

Video Recommender, and Ringo[6] were the first systems to use collaborative filtering 

algorithms to automate prediction. Other examples of collaborative recommender systems 

include the book recommendation system from Amazon.com, the PHOAKS system that helps 

people find relevant information on the WWW, and the Jester system that recommends jokes. 

a. Core Concepts  

Though there exists variety of CF systems, we introduce the topic through MovieLens. 

MovieLens is a collaborative filtering system for movies. A user of MovieLens rates movies 

using 1 to 5 stars, where 1 is “Awful” and 5 is “Must See”. MovieLens then uses the ratings of 

the community to recommend other movies that user might be interested in (Figure 1), predict 

what that user might rate a movie, or perform other tasks.  
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Figure 2: Movie Lens uses collaborative filtering to predict that this user is likely 

to rate the movie “Holes” 4 out of 5 stars. 

To be more formal, a rating consists of the association of two things – user and item. 

CF systems determine the quality of items. Items can consist of anything for which a human can 

provide a rating, such as art, books, CDs, journal articles, or vacation destinations.  

Ratings in a collaborative filtering system can take on a variety of forms.  

•  Scalar ratings can consist of either numerical ratings, such as the 1-5 stars provided in 

MovieLens or ordinal ratings such as strongly agree, agree, neutral, disagree, strongly 

disagree.  

• Binary ratings model choices between agree/disagree or good/bad.  
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• Unary ratings can indicate that a user has observed or purchased an item, or otherwise rated 

the item positively. The absence of a rating indicates that we have no information relating the 

user to the item (perhaps they purchased the item somewhere else).  

Ratings may be gathered through explicit means, implicit means, or both. 

b. Uses   

This section explores user tasks that CF supports, then the services that CF systems provide.   

User Tasks  

Tasks for which people use collaborative filtering include 

1. Help me find new items I might like.  In a world of information overload, I cannot evaluate 

all things. Present a few for me to choose from. This has been applied most commonly to 

consumer items (music, books, movies), but may also be applied to research papers, web 

pages, or other ratable items.  

2. Advise me on a particular item.  I have a particular item in mind; does the community know 

whether it is good or bad?  

3. Help me find a user (or some users) I might like. Sometimes, knowing who to focus on is as 

important as knowing what to focus on. This might help with forming discussion groups , 

matchmaking, or connecting users so that they can exchange recommendations socially.  

4. Help our group find something new that we might like. CF can help groups of people find 

items that maximize value to group as a whole. For example, a couple that wishes to see a 

movie together or a research group that wishes to read an appropriate paper.  

5. Domain-specific tasks. For example, a research paper recommender might also wish to 

support  

a) Recommend papers that this paper should cite. 

b) Recommend papers that should cite this paper. 

Collaborative Filtering System Functionality  
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There are also broad abstract families of tasks that CF systems support. Here are the broad 

families of common CF system functionality:  

1. Recommend items. Show a list of items to a user, in order of how useful they might be. Often 

this    is described as predicting what the user would rate the item, then ranking the items by 

this predicted rating.  

2. Predict for a given item. Given a particular item, calculate its predicted rating. Note that 

prediction can be more demanding than recommendation. To recommend items, a system only 

needs to be prepared to offer a few alternatives, but not all. To provide predictions for a 

particular item, a system must be prepared to say something about any requested item, even 

rarely rated ones.  

3. Constrained recommendations: Recommend from a set of items. Given a particular set or 

a constraint that gives a set of items, recommend from within that set. For example:  

“Consider the following scenario. Mary's 8-year-old nephew is visiting for the weekend, 

and she would like to take him to the movies. She would like a comedy or family movie 

rated no "higher" than PG-13. She would prefer that the movie contain no sex, violence 

or offensive language, last less than two hours and, if possible, show at a theater in her 

neighborhood. Finally, she would like to select a movie that she herself might enjoy.”   

 

Suitable domains for collaborative filtering  

One might simply take a user application, implement it with a CF system, and hope it will work. 

However, CF is better known to be effective in domains with certain properties. These properties 

are grouped below into data distribution, underlying meaning, and data persistence.  

 Data distribution. These properties are about the numbers and shape of the data: 

1. There are many items. If there are only a few items to choose from, the user can learn about 

them all without need for computer support.  

2. There are many ratings per item. If there are only a few ratings per item, there may not be 

enough information to provide useful predictions or recommendations.  
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3. There are more users rating than items to be recommended. A corollary of the previous 

paragraph is that often you’ll need more users than the number of items that you want to be 

able to capably recommend. More precisely, if there are few ratings per user, you’ll need many 

users. Lots of systems are like this. As another example, with one million users, a CF system 

might be able to make recommendations for a hundred thousand items, but may only be able 

to make confident predictions for ten thousand or fewer, depending on the distribution of 

ratings across items. The ratings distribution is almost always very skewed: a few items get 

most of the ratings, a long tail of items that get few ratings. Items in this long tail will not be 

confidently predictable.  

4. Users rate multiple items. If a user rates only a single item, this provides some information 

for summary statistics, but no information for relating the items to each other.  

Underlying meaning. These properties are of the underlying meaning of the data:  

1. For each user of the community, there are other users with common needs or tastes. CF 

works because people have needs or tastes in common. If a person has tastes so unique that 

they are not shared by anybody else, then CF cannot provide any value.  

2. Items are homogenous. That is to say, by all objective consumption criteria they are similar, 

and they differ only in subjective criteria. Music albums are like this. Most are similarly 

priced, similar to buy, of a similar length. Books or research papers are also like this. Items 

sold at a department store are not like this: some are cheap, some very expensive. For 

example, if you buy a hammer, perhaps you should not be recommended a refrigerator.  

Data persistence. These are properties of how long the data is relevant:  

1. Items persist. Not only does a CF system need a single item to be rated by many people, but 

also requires that people share multiple rated items – that there is overlap in the items they rate. 

All of this means that if items are only important for a short time, these requirements are hard 

to meet. For example, news stories: many appear per day, and many probably are only 

interesting for a few days.  
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2. Taste persists. CF has been most successful in domains where users’ tastes don’t change 

rapidly: e.g., movies, books, and consumer electronics. If tastes change frequently or rapidly, 

then older ratings may be less useful. An example might be clothing, where someone’s taste 

from five years ago may not be relevant.  

c. Collaborative Filtering Algorithms: Theory and Practice 

Collaborative Filtering (CF) systems work by collecting user feedback in the form of ratings for 

items in a given domain and exploiting similarities in rating behavior amongst several users in 

determining how to recommend an item. CF methods can be further sub-divided into 

neighborhood-based and model-based approaches. Neighborhood-based methods are also 

commonly referred to as memory based approaches [10]. 

 Neighborhood-based Collaborative Filtering/Memory Based Approach 

A. User Based Collaborative filtering 

In neighborhood-based techniques, a subset of users is chosen based on their similarity to the 

active user, and a weighted combination of their ratings is used to produce predictions for this 

user. Most of these approaches can be generalized by the algorithm summarized in the following 

steps: 

1. Assign a weight to all users with respect to similarity with the active user. 

2. Select k users that have the highest similarity with the active user – commonly called the 

neighborhood. 

3. Compute a prediction from a weighted combination of the selected neighbors’ ratings. 

In step 1, the weight wa,u is a measure of similarity between the user u and the active user a. The 

most commonly used measure of similarity is the Pearson correlation coefficient between the 

ratings of the two users, defined below: 
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where I is the set of items rated by both users,  ru,i is the rating given to item i by user u, and  ru   

is the mean rating given by user u. 

In step 3, predictions are generally computed as the weighted average of deviations from the 

neighbor’s mean, as in: 

                   

where pa,i is the prediction for the active user a for item i, wa,u is the similarity between users a 

and u, and K is the neighborhood or set of most similar users. 

Similarity based on Pearson correlation measures the extent to which there is a linear dependence 

between two variables. Alternatively, one can treat the ratings of two users as a vector in an m-

dimensional space, and compute similarity based on the cosine of the angle between them, given 

by: 

 

            

When computing cosine similarity, one cannot have negative ratings, and unrated items are 

treated as having a rating of zero. Empirical studies have found that Pearson correlation 

generally performs better [10]. 

Practical challenges of user based algorithms 

The user-based nearest neighbor algorithm captures how word-of-mouth recommendation 

sharing works and it can detect complex patterns given enough users; however it has practical 

challenges. 

Ratings data is often sparse and pairs of users with few co-ratings are prone to skewed relations. 

For example, if users share only three co rated items, it is not uncommon for the ratings to match 
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almost exactly (a similarity score of 1).if such similarities are not adjusted , these skewed 

neighbors can dominate a user’s neighborhood. 

The original user-based algorithm as implemented in GroupLens included all users in a CF 

system in a prediction neighborhood. Later algorithms improved accuracy and efficiency by 

limiting the prediction calculation to a user’s closest k neighbors[11].  

B. Item-based Collaborative Filtering: When applied to millions of users and items, 

conventional neighborhood-based CF algorithms do not scale well, because of the computational 

complexity of the search for similar users. As an alternative, Linden [9] proposed item-to-item 

Collaborative Filtering where rather than matching similar users, they match a user’s rated items 

to similar items. In practice, this approach leads to faster online systems, and often results in 

improved recommendations. 

In this approach similarities between pairs of items i and j are computed offline using Pearson 

correlation, given by: 

 

              

where U is the set of all users who have rated both items i and j,  ru,i is the rating of user u on 

item i, and  ri    is the average rating of the ith item across users. 

Now, the rating for item i for user a can be predicted using a simple weighted average, as in: 

                     

where K is the neighborhood set of the k items rated by a that are most similar to i. 

Practical Challenges in Item-based Algorithms  

Theoretically, the size of the model could be as large as the square of the number of items. In 

practice, this size can be reduced by only storing correlations for item pairs with more than k 
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coratings. The model can be pruned even further by only retaining the top n correlations for each 

item. Such modifications yield item-based algorithms that are relatively efficient in both memory 

usage and CPU performance. Pruning many of the correlations means that it may be more 

difficult to make a prediction for a given target item and user, since the items correlated with the 

user’s ratings may not contain the target item.  

As in the user algorithm, item pairs with few coratings can lead to skewed correlations and care 

must be exercised to not let skewed correlations dominate a prediction. 

Below are several extensions to neighborhood-based CF, which have led to improved 

performance. 

Significance Weighting: It is common for the active user to have highly correlated neighbors 

that are based on very few co-rated (overlapping) items. These neighbors based on a small 

number of overlapping items tend to be bad predictors. One approach to tackle this problem is to 

multiply the similarity weight by a Significance Weighting factor, which devalues the 

correlations based on few corated items [11]. 

Default Voting: An alternative approach to dealing with correlations based on very few co-rated 

items, is to assume a default value for the rating for items that have not been explicitly rated. In 

this way we can now compute correlation using the union of items rated by users being matched 

( Ia  ∩  Iu ), as opposed to the intersection. Such a default voting strategy improves Collaborative 

Filtering . 

Case Amplification: In order to favor users with high similarity to the active user, case 

amplification was introduced which transforms the original weights to 

                                 

where ρ is the amplification factor, and ρ ≥ 1. 

Model Based Approaches 

Model-based algorithms use the collection of ratings to learn a model, which is then used to 

make rating predictions. Some of the commonly used techniques for the model based methods 
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are Artificial Neural Networks, Bayesian Networks, Clustering, Linear Regression, Probablistic 

Models. 

d. Characteristics and Challenges of Collaborative Filtering 

E-commerce recommendation algorithms often operate in a challenging environment, especially 

for large online shopping companies like eBay and Amazon. Usually, a recommender system 

providing fast and accurate recommendations will attract the interest of customers and bring 

benefits to companies. For CF systems, producing high quality predictions or recommendations 

depends on how well they address the challenges, which are characteristics of CF tasks as well. 

Data Sparsity. In practice, many commercial recommender systems are used to evaluate very 

large product sets. The user-item matrix used for collaborative filtering will thus be extremely 

sparse and the performances of the predictions or recommendations of the CF systems are 

challenged. 

The data sparsity challenge appears in several situations, specifically, the cold start [1] problem 

occurs when a new user or item has just entered the system, it is difficult to find similar ones 

because there is not enough information.  New items cannot be recommended until some users 

rate it, and new users are unlikely given good recommendations because of the lack of their 

rating or purchase history. Coverage can be defined as the percentage of items that the algorithm 

could provide recommendations for. The reduced coverage problem occurs when the number of 

users’ ratings may be very small compared with the large number of items in the system, and the 

recommender system may be unable to generate recommendations for them. Neighbor 

transitivity refers to a problem with sparse databases, in which users with similar tastes may not 

be identified as such if they have not both rated any of the same items. This could reduce the 

effectiveness of a recommendation system which relies on comparing users in pairs and therefore 

generating predictions. 

 Scalability. When numbers of existing users and items grow tremendously, traditional CF 

algorithms will suffer serious scalability problems, with computational resources going beyond 

practical or acceptable levels. For example, with tens of millions of customers (M) and millions 

of distinct catalog items (N), a CF algorithm with the complexity of O (n) is already too large. As 

well, many systems need to react immediately to online requirements and make 
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recommendations for all users regardless of their purchases and ratings history, which demands a 

high scalability of a CF system . 

 Synonymy. Synonymy refers to the tendency of a number of the same or very similar items to 

have different names or entries. Most recommender systems are unable to discover this latent 

association and thus treat these products differently. For example, the seemingly different items 

“children movie” and “children film” are actual the same item, but memory-based CF systems 

would find no match between them to compute similarity. Indeed, the degree of variability in 

descriptive term usage is greater than commonly suspected. The prevalence of synonyms 

decreases the recommendation performance of CF systems. 

Shilling Attacks. In cases where anyone can provide recommendations, people may give tons of 

positive recommendations for their own materials and negative recommendations for their 

competitors. It is desirable for CF systems to introduce precautions that discourage this kind of 

phenomenon. 

 Other Challenges. As people may not want their habits or views widely known, CF systems also 

raise concerns about personal privacy. Increased noise (or sabotage) is another challenge, as the 

user population becomes more diverse.  

 

2.2.3 Demographic Filtering Systems 

A general technique people use to build models of other people very quickly is the evocation of 

stereotypes or clusters of characteristics. A stereotype is a collection of frequently occurring 

characteristics of users. Demographic recommender systems  makes use of descriptions of 

people to learn the relationships between a single item and the class or type of people who liked 

it. Demographic based recommender systems use prior knowledge on demographic information 

about the users and their opinions for the recommended items as basis for recommendations. 

Demographic systems are stereotypical, because they depend on the assumption that all users 

belonging to a certain demographic group have similar taste or preference. 

A Demographic recommender system, Grundy [12], was one of the first book recommender 

system developed. Grundy bunds models of its users, with the aid of stereotypes, and then 



33 
 

exploits those models to guide it in its task, suggesting novels that people may find interesting. 

Users enter keywords describing their personality, not their information need in order to create a 

user profile. Grundy then associates terms used in the users’ self-descriptions with pre-defined 

stereotypes. These stereotypes expand into attribute rating pairs describing the users’ information 

needs that are aggregated to form the object ratings when making predictions. 

Demographic techniques attempt to form “people-to-people” correlations like collaborative 

filtering, but uses different data. 

Demographic filtering systems have the following advantages: 

1. The advantage of a demographic approach is that it does not require a history of user ratings of 

the type required by collaborative and content based techniques. 

2. Demographic approach is quick and straightforward method for making assumptions based on 

limited observations. 

Demographic filtering systems have the following disadvantages: 

1. For the demographic filtering to be effective, it is necessary to collect complete demographic 

information about users. In practice, it is difficult to collect such information as it involves 

privacy issues. 

2. Demographic filtering systems suffer from both new-user cold-start problem and new-item 

cold start problem. 

3. The formation of demographic clusters is based on a generalization of the user’s interests. So, 

demographic systems try to recommend the same item to people with similar demographic 

profiles and the recommendations are too general. 

2.2.4 Hybrid Recommender Systems  

Several recommendation systems use a hybrid approach by combining collaborative and content-

based methods, which helps to avoid certain limitations of content-based and collaborative 

systems. 
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Different ways to combine collaborative and content-based methods into a hybrid recommender 

system can be classified as follows: 

1. implementing collaborative and content - based methods separately and combining their 

predictions, 

2. incorporating some content-based characteristics into a collaborative approach, 

3. incorporating some collaborative characteristics into a content-based approach,  

4. constructing a general unifying model that incorporates both content-based and collaborative 

characteristics. 

 

2.3 Evaluation Metrics 

The quality of a recommender system can be decided on the result of evaluation. The type of 

metrics used depends on the type of CF applications. 

2.3.1 Accuracy 

The most prominent evaluation metrics in the research literature measure the accuracy of the 

system's predictions. Accuracy can either be measured as the magnitude of error between the 

predicted rating and the true rating, or the magnitude of error between the predicted ranking and 

the “true” ranking. 

According to Herlocker[13], metrics evaluating recommendation systems can be broadly 

classified into the following broad categories: 

predictive accuracy metrics, such as Mean Absolute Error (MAE) and its variations;  

classification accuracy metrics, such as precision, recall, F1-measure, and ROC sensitivity; 

 rank accuracy metrics, such as Pearson’s product-moment correlation, Kendall’s Tau, Mean 

Average Precision (MAP), half-life utility, and normalized distance-based performance metric 

(NDPM) . 



35 
 

 The commonly-used CF metrics -MAE, NMAE, RMSE.  

 Mean Absolute Error (MAE) and Normalized Mean Absolute Error (NMAE). Instead of 

classification accuracy or classification error, the most widely used metric in CF research 

literature is Mean Absolute Error (MAE), which computes the average of the absolute difference 

between the predictions and true ratings 

    

where n is the total number of ratings over all users, pi,j the predicted rating for user i on item j, 

and ri,j  is the actual rating. The lower the MAE, the better the prediction. 

Different recommender systems may use different numerical rating scales.  

Normalized Mean Absolute Error (NMAE) normalizes MAE to express errors as percentages of 

full scale: 

                               

                                 

where r max  and   r min  are the upper and lower bounds of the ratings. 

Root Mean Squared Error (RMSE).  

Root Mean Squared Error (RMSE) is becoming popular partly because it is 

The Netflix prize metric for movie recommendation performance: 

                              

where n is the total number of ratings over all users, pi,j is the predicted rating for user i on item j, 

and ri,j is the actual rating again. RMSE amplifies the contributions of the absolute errors between 

the predictions and the true values. 
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Although accuracy metrics have greatly helped the field of recommender systems, the 

recommendations that are most accurate are sometimes not the ones that are most useful to users, 

for example, users might prefer to be recommended with items that are unfamiliar with them, 

rather than the old favorites they do not likely want again. We therefore need to explore other 

evaluation metrics. 

 

2.4 State of Art    

Although the roots of recommender systems can be traced back to the extensive work in 

cognitive science, approximation theory, information retrieval, forecasting theories, and also 

have links to management science and to consumer choice modeling in marketing, recommender 

systems emerged as an independent research area in the mid-1990s when researchers started 

focusing on recommendation problems that explicitly rely on the ratings structure. There has 

been much work done both in the industry and academia on developing new approaches to 

recommender systems over the last decade. The interest in this area still remains high because it 

constitutes a problem-rich research area and because of the abundance of practical applications 

that help users to deal with information overload and provides personalized recommendations, 

content, and services to them. 

What constitutes a recommendation problem has already been explained. 

Though each of the types of recommender systems has also been explained, we present the major 

work in each of the types with the help of Table 3. 

Recommendation techniques are grouped into heuristic based and model based. We describe the 

major innovations with respect to each of the type. 

Content based: 

The content-based approach to recommendation has its roots in information retrieval and 

information filtering research. Because of the significant and early advancements made by the 

information retrieval and filtering communities and because of the importance of several text-

based applications, many current content-based systems focus on recommending items 

containing textual information, such as documents, Web sites (URLs), and Usenet news  
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messages. The improvement over the traditional information retrieval approaches comes from 

the use of user profiles that contain information about users’ tastes, preferences, and needs. The 

profiling information can be elicited from users explicitly, e.g., through questionnaires, or 

implicitly—learned from their transactional behavior over time. 

More formally, let Content(s) be an item profile, i.e., a set of attributes characterizing item s. It is 

usually computed by extracting a set of features from items (its content) and is used to determine 

the appropriateness of the item for recommendation purposes. Since, as mentioned earlier, 

content-based systems are designed mostly to recommend text-based items, the content in these 

systems is usually described with keywords. For example, a content-based component of the Fab 

system [8], which recommends Web pages to users, represents Web page content with the 100 

most important words. The “importance” (or  “ informativeness ”) of word  kj in document dj is 

determined with some weighting measure wij  that can be defined in several different ways. 

One of the best-known measures for specifying keyword weights in Information Retrieval is the 

term frequency/inverse document frequency (TF-IDF) measure that is defined as follows: 

Assume that N is the total number of documents that can be recommended to users and that 

keyword kj  appears in ni  of them. Moreover, assume that fi,j  is the number of times keyword ki 

appears in document dj. Then, TFi,j , the term frequency (or normalized frequency) of 

keyword ki  in document dj,  is defined as  

   
where the maximum is computed over the frequencies fz,j of all keywords kz that appear in the 

document dj. However, keywords that appear in many documents are not useful in distinguishing 

between a relevant document and a non relevant one. Therefore, the measure of inverse document 

frequency ( IDFi )  is often used in combination with simple term frequency ( TFi,j  ) The inverse 

document frequency for keyword ki  is usually defined as 

  
Then, the TF-IDF weight for keyword ki  in document dj is defined as 

  Wi,j   =  TFi,j   ×  IDFi 

and the content of document dj  is defined as 

Content(dj)  =  (w1j,…….,wkj). 
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Besides the traditional heuristics that are based mostly on information retrieval methods, other 

techniques for content-based recommendation have also been used, such as Bayesian classifiers  

and various machine learning techniques, including clustering, decision trees, and artificial 

neural networks. These techniques differ from information retrieval-based approaches in that 

they calculate utility predictions based not on a heuristic formula, such as a cosine similarity 

measure, but rather are based on a model learned from the underlying data using statistical 

learning and machine learning techniques. 

 

 

 

 

Collaborative filtering: 

 

There have been many collaborative systems developed in the academia and the industry. It can 

be argued that the Grundy system was the first recommender system which proposed using 

stereotypes as a mechanism for building models of users based on a limited amount of 

information on each individual user. Later on, the Tapestry system relied on each user to identify 

like-minded users manually. GroupLens, Video Recommender, and Ringo were the first systems 

to use collaborative filtering algorithms to automate prediction. Algorithms for collaborative 

recommendations can be grouped into two general classes: memory-based (or heuristic-based) 

and model-based. Memory-based algorithms essentially are heuristics that make rating 

predictions based on the entire collection of previously rated items by the users. Various 

approaches have been used to compute the similarity between users in collaborative 

recommender systems. In most of these approaches, the similarity between two users is based on 

their ratings of items that both users have rated. The two most popular approaches are correlation 

and cosine-based which have been explained earlier. Many performance-improving 

modifications, such as default voting, inverse user frequency, case amplification, and weighted-

majority prediction, have been proposed as extensions to these standard correlation-based and 

cosine-based techniques. For example, the default voting is an extension to the memory-based 

approaches described above. It was observed that, whenever there are relatively few user-

specified ratings, these methods would not work well in computing the similarity between users 
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x and y since the similarity measure is based on the intersection of the itemsets, i.e., sets of items 

rated by both users x and y. It was empirically shown that the rating prediction accuracy could 

improve if we assume some default rating value for the missing ratings .In contrast to memory-

based methods, model-based algorithms  use the collection of ratings to learn a model, which is 

then used to make rating predictions. For example, [15] proposes a probabilistic approach to 

collaborative filtering, where the unknown ratings are calculated as 

 
and it is assumed that rating values are integers between 0 and n and the probability expression is 

the probability that user c will give a particular rating to item s given that user’s ratings of the  

previously  rated items. To estimate this probability, [15] proposes two alternative probabilistic 

models: cluster models and Bayesian networks. In the first model, like-minded users are 

clustered into classes. Given the user’s class membership, the user ratings are assumed to be 

independent, i.e., the model structure is that of a naïve Bayesian model. The number of classes 

and the parameters of the model are learned from the data. The second model represents each 

item in the domain as a node in a Bayesian network, where the states of each node correspond to 

the possible rating values for each item. Both the structure of the network and the conditional 

probabilities are learned from the data. One limitation of this approach is that each user can be 

clustered into a single cluster, whereas some recommendation applications may benefit from the 

ability to cluster users into several categories at once.  

Moreover, [16]   proposed a collaborative filtering method in a machine learning framework, 

where various machine learning techniques (such as artificial neural networks) coupled with 

feature extraction techniques (such as singular value decomposition—an algebraic technique for 

reducing dimensionality of matrices) can be used. There have been several other model-based 

collaborative recommendation approaches proposed in the literature. Other collaborative filtering 

methods include a Bayesian model, a probabilistic relational model, a linear regression , and a 

maximum entropy model .  

 

Hybrid: 
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Hybrid recommendation approaches were used to avoid limitations of earlier approaches. One 

way to build hybrid recommender systems is to implement separate collaborative and content-

based systems. Two different scenarios could be there. First, we can combine the outputs 

(ratings) obtained from individual recommender systems into one final recommendation using 

either  a linear combination of ratings  or a voting scheme . Alternatively, we can use one of the 

individual recommenders, at any given moment choosing to use the one that is “better” than 

others based on some recommendation “quality” metric. Another most popular approach is to use 

some dimensionality reduction technique on a group of content based profiles. 

Popescul et al. and Schein et al. [17]   proposed a unified probabilistic method for combining 

collaborative and content-based recommendations, which is based on the probabilistic latent 

semantic analysis. 
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Table 2: Classification of recommender systems research 
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2.5 Summary 

This chapter explains Web 2.0, its various components, technologies used, how recommender 

systems are related to it, three basic types of recommender system-content, collaborative and 

hybrid along with their limitations and advantages. The next section of this chapter explains the 

various research techniques that have been adopted down the years in this field. 
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CHAPTER 3 

RESEARCH METHODOLOGY 

The entire research framework is divided into two sections 

1. How to deal with sparseness issue of dataset? 

2. How to improve scalability? 

 

The terms Sparsity and Scalability is being elaborated with reference to a recommender system. 

Sparsity : Commercial recommender systems in general are used to evaluate very large product 

sets. In a user – item rating database, though users are very active, there are a few rating of the 

total number of items available. The user-item matrix is thus extremely sparse. Since a 

collaborative filtering algorithm is mainly based on similarity measures computed over the co-

rated set of items, thus large levels of sparsity can lead to less accuracy and can challenge the 

predictions or recommendations of the CF systems.  

Scalability: A Collaborative filtering algorithm is assumed to be efficient if it is able to filter 

items that are interesting to users. But, they require computations that are very expensive and 

grow non-linearly with the number of users and items in a database. In general, the whole ratings 

database is searched in collaborative filtering and thus it suffers from poor scalability when more 

and more users and items are added into the database. 

This chapter covers techniques adopted for dealing with the above issues. Two techniques 

Weighted Slope One Scheme and Item Classification have been used to determine vacant 

ratings in the given sparse data set. Further to deal with scalability issue K-means Clustering 

have been used. 

We have compared two collaborative filtering algorithm results in the next chapter.In each of the 

algorithm, different techniques have been used to predict vacant ratings mentioned above 

(weighted slope one scheme and item classification). K-means clustering is then used further to 

group items in both cases for producing the final recommendations. 
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3.1 Sparsity reduction (Pre – prediction) 

For reducing the sparseness of data, the techniques adopted are: 

3.1.1 Weighted slope one scheme   

Slope One is a family of algorithms used for collaborative filtering. It was introduced in a 2005 

paper by Daniel Lemire and Anna Maclachlan. These are very simple to implement and their 

accuracy is often on par with more complicated and computationally expensive algorithms .The 

slope one predictors was first introduced for online rating. The basic idea is to answer the 

question how a user would rate a give item, given other users’ ratings[17]. The following 

characteristics are desirable in a recommender system: 

• easy to implement and maintain:  all aggregated data should be easily interpreted by the 

average engineer; 

• updateable on the fly:  the schemes should not rely exclusively on batch processing; 

• not demanding from new users:  as long as one  can guess how a use feels about one item, it 

should immediately be able to offer recommendations; 

• efficient at query time:  speed should not depend on the number of users and  extra storage 

could be used to precompute the queries; 

• reasonably accurate:  the schemes should be competitive with more expensive or complex 

schemes even though simplicity and convenience is primarily desirable. 

The Weighted Slope One algorithm meets all these requirements. Other algorithms such as 

memory-based ones do not allow us to precompute the recommendations and require that the 

user has rated several items before a sensible recommendation can be made. 

Slope One algorithms work on the intuitive principle of a “popularity differential” between 

items for users. In a pair wise fashion, we determine how much better one item is liked than 

another. One way to measure this differential is simply to subtract the average rating of the two 

items. In turn, this difference can be used to predict another user’s rating of one of those items, 

given their rating of the other. 
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The slope one method uses a simpler form of regression f(x) = x + b, hence the name “slope 

one”. The free parameter is simply the average difference between the two items’ ratings. 

Example: 

Consider the following table. 

 

 

 

 

 

Table 3-1:  Sample Rating Database 

In this case, the average difference in ratings between item 2 and 1 is (2 + ( -1 ) ) / 2=0.5. Hence, 

on average, item 1 is rated above item 2 by 0.5. Similarly, the average difference between item 3 

and 1 is 3. Hence, if we predict the rating of Lucy for item 1 using her rating for item 2, we get 2 

+ 0.5 = 2.5. Similarly, if we try to predict her rating for item 1 using her rating of item 3, we get 

5 + 3=8. 

If a user rated several items, the predictions are simply combined using a weighted average 

where a good choice for the weight is the number of users having rated both items. In the above 

example, we would predict the following rating for Lucy on item 1: 

(2 × 2.5 + 1 × 8)/( 2 + 1) =  13/3 = 4.33 

Hence, given n items, to implement Slope One, all that is needed is to compute and store the 

average differences and the number of common ratings for each of the n2 pairs of items[16]. 

 Item 1 Item 2 Item 3 

John 5 3 2 

Mark 3 4 Didn’t rate it 

Lucy Didn't rate it 2 5 
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Notation :  The following notation in used for describing the scheme. The ratings from a given 

user, is called an evaluation,  is represented as an incomplete array u, where ui  is the rating that 

this user gives to item i. The subset of the set of items consisting of all those items which are 

rated in u is S(u). The set of all evaluations in the training set is χ. The number of elements in a 

set S is card (S). The average of ratings in an evaluation u is denoted u. The set  Si( χ ) is the set  

of all evaluations u I χ  such that they contain item i (i  I  S(u)). Given two evaluations u, v, we 

define the scalar product <u,v>  as  ΣiIS(u) ∩ S(v) ui vi. Predictions, P(u), represent a vector where 

each component is the prediction corresponding to one item: predictions depend implicitly on the 

training set  χ [15]. 

Expressing Slope one scheme using above notation 

Formally, given two evaluation arrays vi  and wi  with i =1, . . . ,n, we search for the best predictor 

of the form f (x) =x+b to predict w from v by minimizing Σi (vi + b − wi )2. Deriving with respect 

to b and setting the derivative to zero, we get b = (Σi wi−vi )/n . In other words, the constant b 

must be chosen to be the average difference between the two arrays. 

This result motivates the following scheme. Given a training set c, and any two items j and i with 

ratings uj  and ui  respectively in some user evaluation u (annotated as u ε Sj,i ( χ )), we consider 

the average deviation of item i with respect to item j as: 

 

The symmetric matrix defined by devj,i  can be computed once and updated quickly when new 

data is entered. Given that devj,i + ui  is a prediction for uj  given ui,  a reasonable predictor might 

be the average of all such predictions 

  

where Rj = {i|i  ε  S(u), i ≠ j, card( Sj,i  ( χ )) > 0} is the set of all relevant items. 
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 One of the drawbacks of SLOPE ONE is that the number of ratings observed is not taken into 

consideration. Intuitively, to predict user A’s rating of item L given user A’s rating of items J and 

K, if 2000 users rated the pair of items J and L whereas only 20 users rated the pair of items K 

and L, then user A’s rating of item J is likely to be a far better predictor for item L than user A’s 

rating of item K is. Thus, we define the WEIGHTED SLOPE ONE prediction as the following 

weighted average 

 

Where cj,i  =  card ( Sj,i   (χ)) 

3.1.2 Item Classification 

This approach classifies the items to pre-produce the ratings, where necessary.  

Item Attribute Content 

Items may be categorized or clustered based on the attributes of the items. For Example, in the 

context of movies, every movie can be classified according to the “genre” attribute of each item. 

In our work , we have used movies as the items and the various genre that they could belong are 

Action, Adventure , Animation, Children’s, Comedy, Crime, Documentary, Drama, Fantasy, 

Film-Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western. So in all we 

have divided the collection of all movies in 18 groups. Table 3 shows examples of descriptive 

information of items. 

item      attribute         A1    A2 …..  ……     At 

   Item1         r11    r12 …..   ……      r1t 

   Item2         r21    r22 …..   ……      r2t 

…..   …… …..   …… …..   …… …..   …… …..   …… 
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Table 3-2 : Item-item attribute table 

Where rij denotes the express value of the item to its attribute. The symbol n denotes the total 

number of items, and t denotes the total number of item attributes[14]. 

Once the items have been classified according to the attribute content, then in the sub-matrix 

formed user based collaborative filtering is used to fill the vacant rating. An item can belong to 

one or more genre. In such case the mean of the value from each of the submatrix formed is used 

as the value for that item. 

 

3.2 Improving Scalability (Using Item Clustering) 

Scalibility is improved using K-means clustering.In this first the items are clustered into groups. 

Next the target item for which recommendation needs to be computed is matched with the 

centroid of each of the clusters formed. The nearest similarity clusters are identified and then 

nearest similarity items within these clusters are identified .These neighbors’ are further used to 

predict the value for the target item. Scalibility is better because the entire rating database is not 

searched rather specific clusters are searched to identify similar items. 

 

3.2.1 K-means clustering 

Item clustering techniques identify groups of items that have similar ratings. Once the clusters 

are created , prediction for a target item is made by averaging the opinions of other item in that 

cluster. Item clustering gives good performance because the size of the group that needs to be 

analyzed becomes much smaller.  

The basic idea is to divide the items of a collaborative filtering system using item clustering 

algorithm and use the divide as neighborhoods as figure 1 shows 

   Itemn         rn1    rn2 …..   ……      Rnt 
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Figure 3- 1: Collaborative filtering based on item clustering 

Where Rij is the rating of the user i to the item i, aij the average rating of the user i to the item 

center j , m is the number of all users , n is the number of all items , and c is the number of item 

centers.  

K- means is used as the basic clustering algorithm. K specifies the number of clusters to be 

created. 

K-means ( In General) 

The k-means algorithm assigns each point to the cluster whose center (also called centroid) is 

nearest. The center is the average of all the points in the cluster  

Example: The data set has three dimensions and the cluster has two points: X = (x1,x2,x3) and Y = 

(y1,y2,y3). Then the centroid Z becomes Z = (z1,z2,z3), where  z1 =   (x1 + y1)/2, 

Z2 =   (x2 + y2)/2 and z3 =   (x3 + y3)/2 

The algorithm steps are:  

• Choose the number of clusters, k. 

• Randomly generate k clusters and determine the cluster centers, or directly generate k 

random points as cluster centers. 

• Assign each point to the nearest cluster center, where "nearest" is defined with respect to 

one of the distance measures (Like Euclidean distance , Manhattan distance  , 

Mahalanobis distance  etc) 
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• Recompute the new cluster centers. 

• Repeat the two previous steps until some convergence criterion is met (usually that the 

assignment hasn't changed). 

 

 

 

 

 

            

 

 

 

Figure 3-2 : Flowchart for K-means clustering 

Specific Algorithm: 

  The algorithm first takes K items as the centers of K unique clusters. Each of the remaining 

items is then compared to the closest center. In the following passes, the cluster centers are re-

computed based on cluster centers formed in the previous pass  and the cluster membership is re-

evaluated. 

Input : clustering number k 

Output: item-center matrix 

Begin 

   Select user set U={U1, U2, …, Um}; 

  End 

Number of 
cluster,K 

   Centroid 

Distance objects to to 
centroid 

Grouping based on n 
minimum distances 

No object 

 move group? 

     Start 

   
+ 

+ 
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   Select item set I={I1, I2, …, In}; 

   Choose the top k rating items as the clustering CI={CI1, CI2, …, CIk}; 

   The k clustering center is null as c={c1, c2, …, ck}; 

   do 

         for each item Ii I  I 

               for each cluster center CIj I CI 

                     calculate the sim(Ii, CIj); 

               end for 

               sim(Ii, CIx)=max{sim(Ii, CI1), sim(Ii, CI2), …,sim(Ii, CIk)}; 

               cx=cx U  Ii 

        end for 

        for each cluster ci I c 

              for each user Ij I I 

              CIi=average(ci, Ij); 

              end for 

      end for 

   while (CU and c is not change) 

End 

 

The pearson’s correlation, as following formula, is used to measure the linear correlation 

between two vectors of ratings as the target item t and the remaining item r. 
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Where Rit  is the rating of the target item t by user i, Rir  is the rating of the remaining item r by 

user i, At  is the average rating of the target item t for all the co-rated users, Ar is the average 

rating of the remaining item r for all the co-rated users, and m is the number of all rating users to 

the item t and item r. 

K-means clustering used above groups items with maximum similarity. 

 

3.3 Collaborative Filtering combining Sparsity Reduction techniques And 

Item clustering 

We combine the sparsity reduction technique and item clustering for more scalable and accurate 

recommendations. The sparsity reduction technique help to determine vacant ratings in the entire 

data set thus providing dense data set. Item clustering using K-means  is used to further cluster 

similar items .The scalability is improved using item clustering because similar items can be 

found easily by selecting nearest matching cluster centroids with the target item[18]. 

Once the items are clustered , the item centers are obtained. This center is represented as an 

average rating over all items in the cluster. The target item neighbors are chosen in some of the 

item center clustering. Pearson’s correlation is used to compute similarity between target item 

and the item centers. Once the similarity is calculated between the target item and the item 

centers , the items in the most similar centers are chosen as the candidates. 

Once the target item nearest clustering centers are chosen, then similarity is calculated between 

the target item and items in the selected clustering centers. The top K most similar items based 

on cosine measure are selected. Cosine measure looks at the angle between two vectors of ratings 

as the target item t and the remaining item r. The following formula is used: 
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Where Rit  is the rating of the target item t by user i, Rir  is the rating of the remaining item r by 

user i, and m is the number of all rating users to the item t and item r. 

Once the  membership of items is computed, we calculate the weighted average of neighbors’ 

ratings, weighted by their similarity to the target item. The rating of the target user u to the target 

item t is as following: 

 

Where Rui  is the rating of the target user u to the neighbour item i, sim(t, i) is the similarity of 

the target item t and the neighbour it user i for all the co-rated items, and m 

is the number of all rating users to the item t and item r. 

 

3.4 Summary 

This chapter describes the sparsity reduction techniques (weighted slope one scheme and Item 

classification) and scalabilty improving technique (Item Clustering).Sparsity reduction technique 

provides dense data set. Slope One algorithm work on the principle of a “popularity 

differential” between items for users. In general, its determined how much one item is liked 

better over other. This information is used to predict rating for a user, given ratings of other 

users. Item classification technique also provides with dense data set. Items are classified using 

item attribute content .User based collaborative filtering is used to determine unavailable ratings, 

after the items are classified. K-means clustering is used to cluster items to alleviate scalibility 

issue. Item clustering reduces the effort of searching in the entire rating database. Rather selected 

clusters are searched. Once the items are clustered then cosine measure is used to select top K 
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most similar items in the selected clusters. Finally, the weighted average of neighbors’ ratings 

weighted by their similarity to the target item is calculated, which is the final prediction for the 

target item. 
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CHAPTER 4  

IMPLEMENTATION AND ANALYSIS 

4.1  Experimental set-up  

The programming language used for source code is Python 2.7. Python is an easy to learn, 

powerful programming language. It has efficient high-level data structures and a simple but 

effective approach to object-oriented programming making it ideal language for scripting and 

rapid application development. 

The Python interpreter and the extensive standard library are freely available in source or binary 

form for all major platforms from the Python Web site, http://www.python.org/, and may be 

freely distributed. 

 

4.2 Dataset 

Data is collected from Grouplens website [19].We have used Movielens collaborative filtering 

data set to evaluate the performance of the two algorithms. Movielens data sets were collected by 

the Grouplens Research Project at the university of Minnesota and Movielens is a web-based 

research recommender system that debuted in Fall 1997. It is an experimental data source .The 

data consists of 1,00,000 ratings from 943 users who rated for 1682 items(movies). The ratings 

are the five values of an attribute, from 1 to 5, it is the opinion that users have about movies, 

where 1 means the lower rating or preference and 5 represents, the maximum.Each user has 

registered its gender, age, occupation and zip code. The attributes about movies are: title, release 

date, video release date and other 19 dedicated to each possible movie gender or category 

(unknown, action, adventure, animation, children, comedy, crime, documentary, drama, fantasy, 

film-noir, horror,musical, mystery, romance, science-fiction, thriller, war and western). These 

last features get value 1, if the movie belongs to a specific genre and 0 otherwise. This means a 

movie can belong to different film genres. 

4.3  Performance comparison 

http://www.python.org/
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The item classification technique is based on the concept that the items are divided into groups 

based on some attribute. And then user based collaborative filtering is used within each group to 

determine vacant ratings. If an item belongs to more than one group, then we compute prediction 

for that item in each group and then aggregate the results. Traditional collaborative filtering 

approaches compute user similarity on a whole range of items. We believe that similarity 

computed as in traditional collaborative filtering is not very appropriate. The reason being that 

the number of items in various domains such as books or movies etc is very large. Since there are 

a lot of items, so the diversity between items is also very large. Users who have similar 

preference in one category of item may have totally different opinion for other kind of items. In 

our work, we have divided movies according to genre which is a kind of metadata. When we 

divide based on genre, we believe that items belonging to the same group will have some 

common characteristics. Therefore we believe user similarity computed within the group is more 

suitable while determining a prediction and hence gives better accuracy. The dense dataset 

computation was easier once the movies were divided into groups according to genre because 

groups creation reduced the computational efforts. On the other hand, weighted slope one 

algorithm is based on preference differential of items. The advantages of this technique are that it 

is easy to implement and maintain, efficient at query time though at expense of storage and can 

provide reliable recommendations even if the user is new and has given very less ratings. But 

this technique does not provide as much accuracy as item classification technique. We have 

performed item clustering on the dense data sets produced by both the techniques. But since the 

data set produced by item classification technique is more accurate, the item classification 

technique with item clustering is more preferable as compared to weighted  slope one algorithm 

with item clustering. 

 

4.4 Limitation  

The item classification technique suffers from the following problems: 

1. In some domains, there are no available metadata at all. 
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2. If there are various kinds of metadata available for a domain, then it becomes difficult to 

choose. 

3. Since metadata is created by humans, it may suffer from error. 

 

4.5 Case study 

The data set from grouplens website was too huge and for dealing with sparsity, 1486126 

unknown ratings need to be calculated which needed long time for computation. So we decided 

to implement our algorithms on a reduced data set. We consider the data set having only those 

items which are rated by 60 or more users. This reduced the original data set to a size having 309 

users and 536 items. Total known ratings in this data set is 53536.  5% of the users are randomly 

selected to be the test users. From each user in the test set, ratings for 5 items were withheld and 

predictions were computed for those 5 items using both method1(weighted slope one scheme and 

item clustering) and method2 (item classification and item clustering) .For item classification 

technique, we need to consider the genre of movies. On reducing the data set, no movie from 

among the selected ones belonged to genre ‘unknown’. So finally for our dataset, 18 genres were 

considered. The various genre that movies belonged to are Action, Adventure, Animation, 

Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Horror, Musical, 

Mystery, Romance, Sci-Fi, Thriller, War, Western. 

First the dense data set is created using each of the technique described in previous chapter to 

reduce sparseness. Then item clustering is done on both the dense datasets produced. K-means 

clustering is used to group similar items. The number of clusters created is 48. The target item 

for which prediction is to be done is matched with the centroid of each of the clusters formed. 

The neighbors in the nearest matching clusters is used to determine prediction for the target item. 

Metric used to evaluate the accuracy of algorithms is MAE (Mean Absolute Error).It compares 

the deviation of the predicted ratings from the respective actual user ratings. The size of the 

neighborhood has a significant effect on the prediction quality. We varied the number of 

neighbors and compute the MAE. The conclusion as depicted from the Figure 4-1, which 

includes the Mean Absolute Errors for the two algorithms as observed in relation to the different 



60 
 

number of neighbors, is that Item Classification technique is better. The predicted values for each  

of the target item for different users( 5% of total users) , along with their actual rating and 

absolute difference between predicted and actual ratings for each of the collaborative filtering 

algorithms have been shown in Appendix C –  Results. 

  

                             

                        Figure 4-1: Comparing the collaborative filtering algorithms  

 

 

4.6 Summary 

In this chapter we have described the case study on both the collaborative algorithms using the 

techniques discussed in the previous chapter. We have discussed the dataset used for the 

algorithms along with the environment needed for implementation. We have also discussed the 

analysis and result of the algorithms. 

 

 

 

Number of neighbors 
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CHAPTER 5  

CONCLUSION 

 5.1 Contributions  

The term data-mining could be related to a simple analogy, finding the needle in the haystack. 

The Internet, nowadays, is a perennial source of large amount of informative knowledge. Web 

(data) mining could be partly used to solve the problems of information overload directly or 

indirectly. Additionally, another most promising technique for this is Web recommendation. The 

recommender systems have very quickly gone from the research world to popular applications. 

However, many problems remain to be solved. Several methods for recommender systems have 

emerged. However, the architectural issues of cold-start, sparse ratings, and scalability continue 

to dominate the field. 

 

We have proposed and compared two collaborative filtering recommendation algorithms which 

helps us to alleviate the issues of sparsity and scalability as these are the dominant problems 

faced in the implementation of any of the recommender systems. The first algorithm joins 

weighted slope one scheme and  item clustering technology and the other algorithm joins item 

classification technique and item clustering. Item clustering helps to meet the real time 

requirement of recommender system by reducing the search effort needed to find neighbours of 

the target item. We demonstrated software which can be used to make predictions based on the 

two collaborative filtering algorithms. We have shown a case study of these two algorithms on 

Movielens data set. This data set was reduced to ease computation problems. It turned out that 

Item classification scheme is better than weighted slope one scheme as far as accuracy is 

concerned. Computation time required for creating dense data set is also lesser.This collaborative 

filtering algorithm can be deployed in any kind of recommender systems. 

 

The system is easier to implement and it provides us with a way to solve two dominant issues in 

one go. 

 

The main problems with the proposed system: 
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1. It might be the case that there could exist data for which attribute identification is 

troublesome. 

2. The proposed algorithms  does not solve the cold start problem. 

3. The system does not work well where the attributes have synonymous names, for eg 

children movie and children films refer to same thing, but the algorithm does not have 

any provision to shield itself from effects of synonymy. 

4. The system does not provide any explanation for the predicted recommendations which is 

crucial for building user trust. 

 

 

5.2 Future Work 

The model proposed for the collaborative filtering algorithms is executed on a reduced data set 

from movielens. But this work can be easily extended to other datasets like Jester, datasets 

related to e-commerce. It will be very relevant to study its outcome on some Ecommerce related 

dataset because ultimately recommender systems are hugely beneficial for any online business. 

              We have incorporated two sparsity reduction techniques in our algorithms but there 

exists other sparsity reducing techniques too. Other sparsity reducing techniques are case based 

reasoning, content based predictor (like TAN-ELR : tree augmented naïve Bayes optimized by 

extended logistic regression) ,extended BMI (Bayesian Multiple Imputation)  etc. which too are 

good . 

              A work could be carried out to see how well these techniques can fit in our algorithm 

and does they provide reasonably better results. The technique used to overcome scalability issue 

in our work is k-means clustering which is the simplest one. Other clustering techniques that can 

be tried are Fuzzy c-means clustering, clustering using genetic algorithms, hierarchical clustering 

etc. 

            It will also be worthwhile to apply significance weighting to the selected neighbors while 

computing the prediction for the target item and study its results which are expected to improve 



64 
 

the recommendations. The system could be enhanced more if it could provide explanation for the 

predicted value as it helps to build user trust.  

We have used pearson correlation for computing similarity. But there exists better 

similarity measures like fractional function, exponential function which have been proposed 

recently. A study could also be carried out to learn how well they suit our collaborative filtering  

algorithm.  
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APPENDIX A  

PROGRAM CODE 

To reduce original data into small data set (309 users and 536 items) 

import math 
U=[[0]*1683 for i in xrange(943)]       #matrix for storing ratings 
no_users=len(U) 
no_items=len(U[0]) 
print "no. of items=",no_items 
print "no. of users=",no_users   #total no. of users 
f=file("D:/preextnd.txt","r")       #file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
print "length of d=",len(d) 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
    p=int(d[it][2]) 
    U[m-1][n-1]=p 
cc=[0]*no_items 
for i in range(no_items): 
    c=0 
    for j in range(no_users): 
        if(U[j][i]!=0): 
            c=c+1 
            cc[i]=c 
bigcols=[] 
for i in range(no_items): 
    if(cc[i]>=60 ): 
        bigcols.append(i) 
print "bigcols=",bigcols 
l=len(bigcols) 
print"len of bigcols=",l 
f=open('d:/itemconsder60.txt','a') 
for i in range(l): 
    k=bigcols[i] 
    f.write(str(k+1)) 
    f.write('\n') 
f.close() 
 

Dividing data set into two files : base and test file 

import math 
U=[[0]*309 for i in xrange(536)]       #matrix for storing ratings 
ti=len(U) 
tu=len(U[0]) 
print "no. of items=",ti   #total no. of users 
print "no. of users=",tu   #total no. of items 
f=file("D:/slopevalnew.txt","r")#file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
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    n=int(d[it][1]) 
    p=float(d[it][2]) 
    U[n-1][m-1]=p 
remove=[5,100,262,402,515] 
b=0 
s=0 
ni=[[0]*309 for i in xrange(531)] 
held=[[0]*309 for i in xrange(5)] 
 
for i in range(536): 
       if(b<5): 
        k=remove[b] 
    if(k!=i ): 
        for j in range(309): 
            ni[s][j]=U[i][j] 
        s=s+1 
    else: 
        b=b+1 
f=open('d:/slopediv_cluster.txt','a') 
for i in range(531): 
    for j in range(309): 
        f.write(str(i+1)) 
        f.write(' ') 
        f.write(str(j+1)) 
        f.write(' ') 
        f.write(str(ni[i][j])) 
        f.write('\n') 
f.close() 
b=0 
s=0 
for i in range(536): 
    if(b<5): 
        k=remove[b] 
    if(k==i): 
        for j in range(309): 
            held[s][j]=U[i][j] 
        s=s+1 
        b=b+1 
f=open('d:/slopediv_test.txt','a') 
for i in range(5): 
    for j in range(309): 
        f.write(str(i+1)) 
        f.write(' ') 
        f.write(str(j+1)) 
        f.write(' ') 
        f.write(str(held[i][j])) 
        f.write('\n') 
f.close() 
         

Item Classification Technique 

import math 
U=[[0]*536 for i in xrange(309)]       #matrix for storing ratings 
userratedi=[] 
tu=len(U) 
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ti=len(U[0]) 
print "no. of users=",tu   #total no. of users 
print "no. of items=",ti   #total no. of items 
f=file("D:/myreduceddata60.txt","r")       #file containing userid, movieid, 
ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
    p=int(d[it][2]) 
    U[m-1][n-1]=p 
genno=18 
gentab=[[0]*genno for i in xrange(ti)] 
tig=len(U[0]) 
print "no. of items=",tig   #total no. of users 
f=file("D:/final_genre.txt","r") #file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
        mt=int(d[it][0]) 
        nt=int(d[it][1]) 
        pt=int(d[it][2]) 
        qt=int(d[it][3]) 
        rt=int(d[it][4]) 
        st=int(d[it][5]) 
        tt=int(d[it][6]) 
        ut=int(d[it][7]) 
        vt=int(d[it][8]) 
        wt=int(d[it][9]) 
        xt=int(d[it][10]) 
        yt=int(d[it][11]) 
        zt=int(d[it][12]) 
        at=int(d[it][13]) 
        bt=int(d[it][14]) 
        ct=int(d[it][15]) 
        dt=int(d[it][16]) 
        et=int(d[it][17]) 
        ft=int(d[it][18]) 
        if(nt==1): 
            gentab[it][0]=1 
        if(pt==1): 
            gentab[it][1]=1 
        if(qt==1): 
            gentab[it][2]=1 
        if(rt==1): 
            gentab[it][3]=1 
        if(st==1): 
            gentab[it][4]=1 
        if(tt==1): 
            gentab[it][5]=1 
        if(ut==1): 
            gentab[it][6]=1 
        if(vt==1): 
            gentab[it][7]=1 
        if(wt==1): 
            gentab[it][8]=1 
        if(xt==1): 
            gentab[it][9]=1 
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        if(yt==1): 
            gentab[it][10]=1 
        if(zt==1): 
            gentab[it][11]=1 
        if(at==1): 
            gentab[it][12]=1 
        if(bt==1): 
            gentab[it][13]=1 
        if(ct==1): 
            gentab[it][14]=1 
        if(dt==1): 
            gentab[it][15]=1 
        if(et==1): 
            gentab[it][16]=1 
        if(ft==1): 
            gentab[it][17]=1 
gengr=[[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] 
for i in range(ti): 
    for j in range(genno): 
        if(gentab[i][j]==1): 
            gengr[j].append(i) 
groupmat=[[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] 
for i in range(genno): 
    d=len(gengr[i]) 
    if(d>0): 
        groupmat[i]=[[0]*d for j in xrange(309)] 
for i in range(309): 
    for j in range(536): 
        if(U[i][j]!=0): 
            for k in range(genno): 
                if(gengr[k]>0 and j in gengr[k]): 
                    val=gengr[k].index(j) 
                    #print "val=",val 
                    groupmat[k][i][val]=U[i][j] 
mistr={} 
for k in range(genno): 
    c=0 
    for i in range(tu): 
        for j in range(len(gengr[k])): 
            if(groupmat[k][i][j]==0): 
                c=c+1 
    mistr[k]=c 
print "mistr=",mistr 
 
store_mis=[[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] 
for k in range(genno): 
    if(mistr[k]>0): 
        store_mis[k]=[[0]*3 for i in xrange(mistr[k])] 
for k in range(genno): 
    if(mistr[k]>0): 
        s=0 
        for i in range(tu): 
            for j in range(len(gengr[k])): 
                if(groupmat[k][i][j]==0): 
                    store_mis[k][s][0]=i 
                    store_mis[k][s][1]=j 
                    s=s+1 
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def kp(c,d,x,k2):#function to calculate similarity c,x are userids & d item no. 
    itemrated=[] 
    for j in range(len(gengr[k2])): 
        if(d!=j and groupmat[k2][x][j]!=0 and groupmat[k2][c][j]!=0): 
            itemrated.append(j) 
    s=float(len(itemrated)) 
    if(len(itemrated)==0): 
        return(0) 
    if(len(itemrated)!=0): 
            sum1=sum([groupmat[k2][c][j] for j in itemrated]) 
        sum2=sum([groupmat[k2][x][j] for j in itemrated]) 
        avg1=sum1/s 
        avg2=sum2/s 
        member1=[] 
        member2=[] 
        for j in itemrated: 
            k=groupmat[k2][c][j]-avg1 
            member1.append(k) 
        for j in itemrated: 
            k=groupmat[k2][x][j]-avg2 
            member2.append(k) 
        seq=len(member1) 
        psum=sum([member1[it]*member2[it] for it in range(seq)]) 
        if(psum==0.0): 
                return(0) 
        else: 
                sum1sq=sum([pow(member1[it],2) for it in range(seq)]) 
                sum2sq=sum([pow(member2[it],2) for it in range(seq)]) 
               den=math.sqrt(sum1sq*sum2sq) 
               return(psum/den) 
 
def evaluate(kl,ru,ci): 
    userrated=[] 
    for i in range(tu): 
        if(i!=ru and groupmat[kl][i][ci]!=0): 
            userrated.append(i) 
        similarity=[] 
    for j in range(len(userrated)): 
        p=userrated[j] 
            sim=kp(ru,ci,p,kl) 
        similarity.append(sim) 
    avgratings=[] 
    for j in range(len(userrated)): 
        ks=userrated[j] 
        b=0.0 
        sumrat=0 
        for e in range(len(gengr[kl])): 
            if(ci!=e and groupmat[kl][ks][e]!=0): 
                b=b+1 
                sumrat=sumrat+groupmat[kl][ks][e] 
        if(sumrat==0): 
            avrat=0.0 
        else: 
            avrat=sumrat/b 
        avgratings.append(avrat) 
    ratingitemi=[] 
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    for j in range(len(userrated)): 
            sr=userrated[j] 
            kq=groupmat[kl][sr][ci] 
            ratingitemi.append(kq) 
    suma=0 
    suminp=sum([((ratingitemi[j]-avgratings[j])*similarity[j]) for j in 
range(len(userrated))]) 
    dq=sum([abs(similarity[j]) for j in range(len(userrated))]) 
    suma=sum([groupmat[kl][ru][j] for j in range(len(gengr[kl])) if 
groupmat[kl][ru][j]!=0]) 
    tt=0.0 
    for j in range(len(gengr[kl])): 
        if(groupmat[kl][ru][j]!=0): 
            tt=tt+1 
    if(suma==0): 
        avga=0.0 
    else: 
        avga=suma/tt 
    if(dq==0 or suminp==0): 
        pre=avga 
    else: 
        pre=avga+(suminp/dq) 
    return(pre) 
     
    for k in range(genno): 
    if(mistr[k]>0): 
        for it2 in range(mistr[k]): 
            rowu=store_mis[k][it2][0] 
            coli=store_mis[k][it2][1] 
            val=evaluate(k,rowu,coli) 
            store_mis[k][it2][2]=val 
 
for k in range(genno): 
    a=mistr[k] 
    if(a>0): 
        for j in range(a): 
             c=store_mis[k][j][0] 
             d=store_mis[k][j][1] 
             b=store_mis[k][j][2] 
             groupmat[k][c][d]=b 
#print "groupmat with predicted values", groupmat 
 
for i in range(ti): 
    groupno=[] 
    indx2=[] 
    for k in range(genno): 
        if(i in gengr[k]): 
            groupno.append(k) 
            indx2.append(gengr[k].index(i)) 
    l=float(len(groupno)) 
    for m in range(tu): 
        if(U[m][i]==0.0): 
            s=0 
            for p in range(len(groupno)): 
                q=groupno[p] 
                r=indx2[p] 
                s=s+groupmat[q][m][r] 
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            U[m][i]=round(s/l,5) 
 
f=open('d:/itemval.txt','a') 
for i in range(tu): 
    for j in range(ti): 
        f.write(str(i+1)) 
        f.write(' ') 
        f.write(str(j+1)) 
        f.write(' ') 
        f.write(str(U[i][j])) 
        f.write('\n') 
f.close() 

 

Weighted Slope One Scheme 

import math 
U=[[0]*536 for i in xrange(309)]       #matrix for storing ratings 
ti=len(U) 
no_items=len(U[0]) 
print "no. of items=",no_items 
print "no. of users=",ti   #total no. of users 
f=file("D:/datawithheld.txt","r") #file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
    p=int(d[it][2]) 
    U[m-1][n-1]=p 
stor_rows=no_items*(no_items-1)/2#no. of rows which store preference of items 
store=[[0]*4 for i in xrange(stor_rows)] #store matrix created with 4 
columns,two for item no's, one for average deviation and one for no. of common 
users 
k=0   # for filling first column of store  
l=0 
for i in range(no_items-1,0,-1): 
    for j in range(1,i+1,1): 
        store[l][0]=k 
        l=l+1 
    k=k+1 
 
k=1 #for filling second column of store 
l=0 
x=no_items-3 
for i in range(no_items-1,0,-1): 
    for j in range(1,i+1,1): 
        store[l][1]=k 
        l=l+1 
        k=k+1 
    k=k-x-1 
    x=x-1 
def avgdif(x,y): #calculates average difference between items(x-y) 
    c=0 
    sum1=0.0 
    sum2=0.0 
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    for i in range(ti): 
        if(U[i][x]!=0 and U[i][y]!=0): 
            c=c+1 
            sum1=sum1+U[i][x] 
            sum2=sum2+U[i][y] 
    if(c==0):    
        return(0.0) 
    elif((sum1-sum2)==0.0): 
        return(0.0) 
    else: 
        return((sum1-sum2)/c)  
def comusers(k,p): #calculates common no. of users 
    c=0 
    for i in range(ti): 
        if(U[i][k]!=0 and U[i][p]!=0): 
            c=c+1 
    return c 
for i in range(stor_rows):#for calculating avg diff & common no. of users for 
each item combination stored in store 
    k=store[i][0] 
    p=store[i][1] 
    r=avgdif(k,p) 
    g=comusers(k,p) 
    store[i][2]=r 
    store[i][3]=g 
c=0 # for calculating missing values in entire data 
for i in range(ti): 
    for j in range(no_items): 
        if(U[i][j]==0): 
            c=c+1 
rows_missing=c 
missing=[[0]*3 for i in xrange(rows_missing)] 
k=0 
for i in range(ti): 
    for j in range(no_items): 
        if(U[i][j]==0): 
            missing[k][0]=i 
            missing[k][1]=j 
            k=k+1 
commo=[0]*(no_items-1) 
sumrat=[0]*(no_items-1) 
finaldev=[0]*(no_items-1) 
 
def calpredict(uno,ino): 
    k=0 
    for i in range(stor_rows): 
        if(store[i][1]==ino or store[i][0]==ino): 
                if(store[i][1]==ino): 
                    dev=-store[i][2] 
                else: 
                    dev=store[i][2] 
                finaldev[k]=dev 
                k=k+1 
    j=0 
    rat=[0]*(no_items-1) 
    for i in range(no_items): 
        if(ino!=i): 
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            rat[j]=U[uno][i] 
            j=j+1 
    for i in range(no_items-1): 
        sumrat[i]=finaldev[i]+rat[i] 
    j=0 
    for i in range(stor_rows): 
        if((store[i][0]==ino or store[i][1]==ino)): 
            commo[j]=store[i][3] 
            j=j+1 
    den=0 
    num=0.0 
    for i in range(no_items-1): 
        if(rat[i]!=0 and commo[i]!=0): 
            den=den+commo[i] 
            num=num+commo[i]*sumrat[i] 
    if(num==0.0 or den==0): 
        return(0.0) 
    else: 
        return(num/den) 
print "missing rows",rows_missing 
for i in range(rows_missing): 
    u=missing[i][0] 
    it=missing[i][1] 
    val1=calpredict(u,it) 
    print "val1=",val1 
    missing[i][2]=round(val1,5) 
for i in range(rows_missing): 
    x=missing[i][0] 
    y=missing[i][1] 
    z=missing[i][2] 
    U[x][y]=z 
f=open('d:/slopevalnew.txt','a') 
for i in range(ti): 
    for j in range(no_items): 
        f.write(str(i+1)) 
        f.write(' ') 
        f.write(str(j+1)) 
        f.write(' ') 
        f.write(str(U[i][j])) 
        f.write('\n') 
f.close() 
 

K-MEANS (for clustering items) 

import math 
U=[[0]*309 for i in xrange(531)]#matrix for storing ratings user-item info 
ni1=len(U) 
nu1=len(U[0]) 
print "no. of items=",ni1#total no. of items 
print "no. of users=",nu1#total no. of users 
f=file("D:/itemdiv_cluster.txt","r")#file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
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    p=float(d[it][2]) 
    U[m-1][n-1]=p 
itemsum=[0]*ni1 # array for storing sum of ratings of each item 
for i in range(ni1): 
    sum=0 
    for j in range(nu1): 
        sum=sum+U[i][j] 
    itemsum[i]=sum 
di={} 
for i,v in enumerate(itemsum): 
    di[v]=i 
diu=di.keys() 
diu.sort() 
diu.reverse() 
k=input("enter the value of k - the no. of clusters to be created") 
toprating=[] 
for i in range(k): 
    h=diu[i] 
    j=di[h] 
    toprating.append(j) 
 
ltoprat=len(toprating)   
temp=[[0]*ni1 for i in xrange(k)]  
centroidm=[[0]*nu1 for i in xrange(k)]# centroidm contains the centroids of the 
clusters - each row is the cenroid of one cluster 
tempc=[[0]*nu1 for i in xrange(k)] 
 
for i in range(k):#to initialize centroid with  ratings of top k rated items 
    a=toprating[i] 
    for j in range(nu1): 
        centroidm[i][j]=U[a][j] 
for i in range(k):  # to initialize centroid with ratings of top k rated items 
    a=toprating[i] 
    for j in range(nu1): 
        #print "j=",j 
        tempc[i][j]=U[a][j] 
def pearson(it1,it2):  # calculating pearson correlation coefficient 
     itemrated=[]   # stores index of commonly rated users 
    for d in range(nu1): 
        if( centroidm[it2][d]!=0 and U[it1][d]!=0): 
            itemrated.append(d) 
    s=float(len(itemrated)) 
    if(len(itemrated)==0):   
        return(0) 
    if(len(itemrated)!=0): # if there are commonly rated items 
        sum1=0 
        for g in range(len(itemrated)): 
            x=itemrated[g] 
            sum1=sum1+U[it1][x] 
        sum2=0 
        for g in range(len(itemrated)): 
            x=itemrated[g] 
            sum2=sum2+centroidm[it2][x] 
        avg1=sum1/s 
        avg2=sum2/s 
        member1=[] 
        member2=[] 
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        for t in itemrated: 
            ks=(U[it1][t]-avg1) 
            member1.append(ks) 
        for t in itemrated: 
            ks=(centroidm[it2][t]-avg2) 
            member2.append(ks) 
        seq=len(member1) 
        sum=0 
        for i in range(seq): 
            sum=sum+member1[i]*member2[i] 
        psum=sum 
        if(psum==0.0): 
              return(0) 
        else: 
            sum1sq=0 
            for b in range(seq): 
                sum1sq=sum1sq+pow(member1[b],2) 
            sum2sq=0 
            for b in range(seq): 
                sum2sq=sum2sq+pow(member2[b],2) 
            den=math.sqrt(sum1sq*sum2sq) 
            return(psum/den) 
 
while(True): 
      simmat=[[0]*ni1 for i in xrange(k)] 
      for i in range(ni1): 
         for j in range(k): 
               pc=pearson(i,j) 
               simmat[j][i]=pc 
     findmax=[0]*k 
     groupm=[[0]*ni1 for i in xrange(k)] 
     for i in range(ni1): 
         for j in range(k): 
             findmax[j]=simmat[j][i] 
         largest=max(findmax) 
          indx=findmax.index(largest) 
          groupm[indx][i]=1 
     for i in range(k): 
         eachrowgroup=[] 
         for j in range(ni1): 
             if(groupm[i][j]==1): 
                 eachrowgroup.append(j) 
         l=(len(eachrowgroup)) 
         if(l>0): 
             lt=float(l) 
             for a in range(nu1): 
                 sum=0 
                 for b in range(l): 
                     x=eachrowgroup[b] 
                     sum=sum+U[x][a] 
                 centroidm[i][a]=round(sum/lt,4) 
      if(temp==groupm and centroidm==tempc): 
              break 
     temp=groupm 
     tempc=centroidm 
print "len of centroid 0 and 1",len(centroidm[0]),"and",len(centroidm[1]) 
c=0 
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for i in range(k): 
    for j in range(ni1): 
        if(groupm[i][j]==1): 
            c=c+1 
print "total items", c 
f=open('d:/slopegrpf.txt','a') 
for i in range(k): 
    for j in range(ni1): 
        f.write(str(i+1)) 
        f.write(' ') 
        f.write(str(j+1)) 
        f.write(' ') 
        f.write(str(groupm[i][j])) 
        f.write('\n') 
f.close() 
f=open('d:/slopecentrf.txt','a') 
for i in range(k): 
    for j in range(nu1): 
        f.write(str(i+1)) 
        f.write(' ') 
        f.write(str(j+1)) 
        f.write(' ') 
        f.write(str(centroidm[i][j])) 
        f.write('\n') 
f.close() 
 

Selecting clusters , finding neighbors and predicting value 

k=48 
import math 
U=[[0]*536 for i in xrange(309)]#matrix for storing user-item info 
nu1=len(U) 
ni1=len(U[0]) 
print "no. of items=",ni1#total no. of items 
print "no. of users=",nu1#total no. of users 
f=file("D:/itemnewop.txt","r")       #file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
    p=float(d[it][2]) 
    U[m-1][n-1]=p 
 
itemclustermat=[[0]*309 for i in xrange(531)]    
nu_cluster1=len(itemclustermat) 
ni_cluster1=len(itemclustermat[0]) 
print "no. of users in div cluster file=",ni_cluster1#total no. of users 
print "no. of items in div cluster file=",nu_cluster1#total no. of items 
f=file("D:/itemdiv_cluster.txt","r")#file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
    p=float(d[it][2]) 
    itemclustermat[m-1][n-1]=p 
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no_itmclstr=531 
groupm=[[0]*no_itmclstr for i in xrange(k)] 
f=file("D:/itemgrpf.txt","r")       #file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
    p=int(d[it][2]) 
    groupm[m-1][n-1]=p 
centroidm=[[0]*nu1 for i in xrange(k)] 
f=file("D:/itemcentrf.txt","r")       #file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    m=int(d[it][0]) 
    n=int(d[it][1]) 
    p=float(d[it][2]) 
    centroidm[m-1][n-1]=p 
 
tgtitm=[] 
f=file("D:/targetitm2.txt","r")       #file containing userid, movieid, ratings 
d=[line.split() for line in f]#reading file line by line 
for it in range(len(d)): 
    p=float(d[it][2]) 
    tgtitm.append(p) 
 
def pearson(it1):  # calculating pearson correlation coefficient 
    itemrated=[]   # stores index of commonly rated users 
    for d in range(nu1): 
        if( centroidm[it1][d]!=0 and tgtitm[d]!=0): 
            itemrated.append(d) 
    s=float(len(itemrated)) 
    if(len(itemrated)==0): 
        return(0) 
   if(len(itemrated)!=0): # if there are commonly rated items 
        sum1=0 
        for g in range(len(itemrated)): 
            x=itemrated[g] 
            sum1=sum1+tgtitm[x] 
        sum2=0 
        for g in range(len(itemrated)): 
            x=itemrated[g] 
            sum2=sum2+centroidm[it1][x] 
        avg1=sum1/s 
        avg2=sum2/s 
        member1=[] 
        member2=[] 
        for t in itemrated: 
            ks=(tgtitm[t]-avg1) 
            member1.append(ks) 
        for t in itemrated: 
            ks=(centroidm[it1][t]-avg2) 
            member2.append(ks) 
        seq=len(member1) 
        sum=0 
        for i in range(seq): 
            sum=sum+member1[i]*member2[i] 
        psum=sum 
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        if(psum==0.0): 
            return(0) 
        else: 
            sum1sq=0 
            for b in range(seq): 
                sum1sq=sum1sq+pow(member1[b],2) 
            sum2sq=0 
            for b in range(seq): 
                sum2sq=sum2sq+pow(member2[b],2) 
            den=math.sqrt(sum1sq*sum2sq) 
            return(psum/den) 
sim=[] 
for i in range(k): 
    p=pearson(i) 
    sim.append(p) 
neigh_grp=[] 
for i in range(k): 
    c=0 
    for j in range(no_itmclstr): 
        if(groupm[i][j]==1): 
            c=c+1 
    neigh_grp.append(c) 
itemno_neigh=[[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]
,[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]] 
for i in range(k): 
    for j in range(no_itmclstr): 
        if(groupm[i][j]==1): 
            itemno_neigh[i].append(j) 
 
def cosinesim(it1):# calculating cosine similarity 
    print "for item no.",it1 
    itemrated=[]   # stores index of commonly rated users 
    for d in range(nu1): 
        if( itemclustermat[it1][d]!=0 and tgtitm[d]!=0): 
            itemrated.append(d) 
    s=float(len(itemrated)) 
    if(len(itemrated)==0): 
        return(0) 
    if(len(itemrated)!=0): # if there are commonly rated items 
        member1=[] 
        member2=[] 
        for t in itemrated: 
            ks=tgtitm[t] 
            member1.append(ks) 
        for t in itemrated: 
            ks=itemclustermat[it1][t] 
            member2.append(ks) 
        seq=len(member1) 
        sum=0 
        for i in range(seq): 
            sum=sum+member1[i]*member2[i] 
        psum=sum 
        if(psum==0.0): 
            return(0) 
        else: 
            sum1sq=0 
            for b in range(seq): 
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                sum1sq=sum1sq+pow(member1[b],2) 
            sum2sq=0 
            for b in range(seq): 
                sum2sq=sum2sq+pow(member2[b],2) 
            den=math.sqrt(sum1sq*sum2sq) 
            return(psum/den) 
 
def completegr(gno,no): 
    neighborlist=[] 
    neighborlist.extend(itemno_neigh[gno]) 
    cossim=[] 
    for j in neighborlist: 
        val=cosinesim(j) 
        cossim.append(val) 
    print "similarity with the neighbors",cossim 
    copycossim=[] 
    copycossim.extend(cossim) 
    copycossim.sort() 
    copycossim.reverse() 
    finalsim1=[] 
    for i in range(no): 
        finalsim1.append(copycossim[i]) 
    finalneighbor1=[] 
    for i in range(no): 
        st=finalsim1[i] 
        indx3=cossim.index(st) 
        finalneighbor1.append(neighborlist[indx3]) 
    uno=input("enter the user number") 
    userno=uno-1 
    den=sum([finalsim1[b] for b in range(no)]) 
    den1=float(den) 
    print "denominator=",den1 
    a1=0 
    sum1=0 
    for j in finalneighbor1: 
        sum1=sum1+itemclustermat[j][userno]*finalsim1[a1] 
        a1=a1+1 
    psum=sum1 
    if(psum==0): 
        return(0) 
    else: 
        return(psum/den1) 
     
number=input("enter the number of neighbors ") 
copysim=[] 
copysim.extend(sim) 
copysim.sort() 
copysim.reverse() 
indexlist=[] 
for j in copysim: 
    indx=sim.index(j) 
    indexlist.append(indx) 
k=copysim[0] 
indx=sim.index(k) 
print "maximum similarity with cluster",indx 
imm_neigh=neigh_grp[indx] 
if(number <= imm_neigh): 
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    print " we can find all neighbors in a single cluster" 
    val5=completegr(indx,number) 
    print "predicted value=",val5 
else: 
    print "we need to look multiple clusters" 
    oldsum=0 
    sum5=0 
    all=[] 
    clusterno=[] 
    neighlist3=[] 
    for j in copysim: 
        indx7=sim.index(j) 
        clusterno.append(indx7) 
        ngh=neigh_grp[indx7] 
        sum5=sum5+ngh 
        if(sum5>number): 
            count=number-oldsum 
            neighlist3.append(count) 
            all.append(0) 
            break 
        if(sum5<number): 
            neighlist3.append(ngh) 
            all.append(1) 
        if(sum5==number): 
            neighlist3.append(ngh) 
            all.append(1) 
            break 
        oldsum=sum5 
    f=1 
    for i in range(len(all)): 
        if(all[i]==0): 
            f=0 
            break 
    if(f==1): 
        print "the neighbors are found in complete group" 
        finalneighbor6=[] 
        for i in range(len(clusterno)): 
            cno=clusterno[i] 
            finalneighbor6.extend(itemno_neigh[cno]) 
        finalsim6=[] 
        for j in finalneighbor6: 
            valu3=cosinesim(j) 
            finalsim6.append(valu3) 
        uno1=input("enter the user number") 
        userno1=uno1-1 
        den3=sum([finalsim6[b] for b in range(number)]) 
        den2=float(den3) 
        a2=0 
        sum2=0 
        for j in finalneighbor6: 
            sum2=sum2+itemclustermat[j][userno1]*finalsim6[a2] 
            a2=a2+1 
        psum1=sum2 
        if(psum1==0): 
            print "predicted value =",0 
        else: 
            print "predicted value=",psum1/den2 
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    else: 
        print "the neighbors are not in complete group" 
        len6=len(clusterno) 
        len6=len6-1 
        v1=neighlist3[len6] 
        cno1=clusterno[len6] 
        inn2=[] 
        inn2.extend(itemno_neigh[cno1]) 
        similar5=[] 
        for j in inn2: 
            v3=cosinesim(j) 
            similar5.append(v3) 
        copysimilar5=[] 
        copysimilar5.extend(similar5) 
        copysimilar5.sort() 
        copysimilar5.reverse() 
        indlist3=[] 
        for j in copysimilar5: 
            val=similar5.index(j) 
            its=inn2[val] 
            indlist3.append(its) 
        sim_5=[] 
        inn_5=[] 
        for i in range(v1): 
            sim_5.append(copysimilar5[i]) 
            indx_5=similar5.index(copysimilar5[i]) 
            inn_5.append(inn2[indx_5]) 
        print "top similar neighbors in the last cluster",sim_5 
        fn1=[] 
        fsim1=[] 
        for i in range(len(clusterno)-1): 
            clno=clusterno[i] 
            fn1.extend(itemno_neigh[clno]) 
        for j in fn1: 
            v2=cosinesim(j) 
            fsim1.append(v2) 
        fn1.extend(inn_5) 
        fsim1.extend(sim_5) 
        le2=len(fsim1) 
        uno3=input("enter the user number") 
        userno3=uno3-1 
        den4=sum([fsim1[b] for b in range(le2)]) 
        den4=float(den4) 
        i=0 
        sum_3=0 
        for j in fn1: 
            sum_3=sum_3+itemclustermat[j][userno3]*fsim1[i] 
            i=i+1 
        psum=sum_3 
        if(psum==0): 
            print "predicted value =",0 
        else: 
            print "predicted value=",psum/den4 
 

 



86 
 

 

 

 

 

 

 

 

APPENDIX B 
 

 

 

 

 

 

 

 

 

 

 

 



87 
 

APPENDIX B 

RESULTS 

Using Item Classification Technique and Item clustering 

No. of neighbors=6 

Pre rat :  predicted rating 

Actual rat : actual rating 

 

Pre rat. 
Actual 
rat. Pre rat. 

Actual 
rat. Pre rat. 

Actual 
rat. Pre rat. 

Actual 
rat. Pre rat. 

Actual 
rat. 

4.447092 4 4.054278 4 3.885695 5 2.878094 4 3.579958 4 
4.679484 4 4.841588 5 4.157742 5 3.455908 2 3.669238 4 

3.5004 3 2.62092 3 3.628885 5 2.692162 2 2.844484 3 
3.898149 5 2.84753 2 3.676934 5 3.022588 3 3.502278 3 
4.420494 4 3.925422 5 4.268989 5 3.41981 4 2.901473 3 
3.877591 4 3.510301 5 4.311304 5 3.2769 3 3.379595 4 

3.24533 4 3.819959 4 3.543191 5 2.832477 4 3.19495 4 
3.160002 4 2.959836 2 4.152219 3 3.672887 3 3.71173 4 
3.822456 2 3.416087 3 3.996633 5 2.806284 3 3.071239 4 
4.267351 4 4.123496 5 4.333419 5 3.39399 3 3.702737 4 
3.644186 2 4.050412 4 4.335038 5 3.548201 3 3.762214 5 
3.499133 3 3.139822 3 2.551045 4 2.662468 2 2.382305 3 
4.337399 5 3.722277 5 4.521594 5 3.828206 4 3.693621 4 
3.650867 5 3.949098 3 3.464083 5 3.173247 2 3.141476 4 
3.815945 4 3.653458 3 3.864616 4 2.807937 3 3.065456 3 

 

 

MAE=.696975 

 

 

 

 



88 
 

No. of neighbors=8 

 

Pre rat 
Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat 

4.335198 4 3.915892 4 3.937885 5 3.013178 4 3.472693 4 
4.474884 4 4.683764 5 4.165482 5 3.464099 2 3.702637 4 
3.363273 3 2.71557 3 3.60163 5 2.634489 2 2.823474 3 
3.673369 5 2.760751 2 3.534525 5 2.767762 3 3.5478 3 
4.143456 4 3.944042 5 4.077795 5 3.303652 4 3.021936 3 
3.701992 4 3.322164 5 4.198992 5 3.241337 3 3.343934 4 
3.234777 4 3.864912 4 3.599708 5 2.825921 4 3.138759 4 
3.245184 4 2.969864 2 4.034434 3 3.501997 3 3.74149 4 
3.695854 2 3.356011 3 3.836742 5 2.801672 3 3.063932 4 
4.191454 4 4.092661 5 4.124648 5 3.416913 3 3.776999 4 
3.581285 2 3.90164 4 4.364358 5 3.661061 3 3.727711 5 
3.374215 3 3.033011 3 2.663376 4 2.635604 2 2.339217 3 
4.503228 5 3.541937 5 4.502431 5 3.763466 4 3.736615 4 

3.67426 5 3.879515 3 3.507617 5 2.965109 2 3.142633 4 
3.542094 4 3.518941 3 3.728908 4 2.896521 3 3.1145 3 

 

MAE=.695108 
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No. of neighbors=10 

 

Pre rat 
Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat 

4.068257 4 3.832839 4 4.036499 5 3.309323 4 3.526053 4 
4.335976 4 4.547219 5 4.258473 5 3.354504 2 3.574577 4 
3.277685 3 2.794074 3 3.567731 5 2.709719 2 2.711576 3 

3.62906 5 2.692894 2 3.509647 5 2.836201 3 3.438301 3 
4.114787 4 3.931921 5 4.069137 5 3.456003 4 3.11529 3 
3.596341 4 3.235183 5 4.103136 5 3.209319 3 3.31885 4 
3.320178 4 3.79204 4 3.750854 5 2.891433 4 3.243205 4 
3.296132 4 3.015283 2 3.993116 3 3.431215 3 3.693245 4 
3.756658 2 3.335049 3 3.835857 5 2.841183 3 3.089495 4 
4.038703 4 4.074156 5 4.112019 5 3.533075 3 3.921495 4 
3.620959 2 3.950831 4 4.340137 5 3.645465 3 3.770655 5 
3.376464 3 2.929585 3 2.830657 4 2.807627 2 2.422582 3 
4.502577 5 3.533565 5 4.380533 5 3.801346 4 3.780689 4 
3.539473 5 3.89556 3 3.523667 5 3.074989 2 3.15701 4 
3.452334 4 3.416299 3 3.74197 4 2.963148 3 3.123261 3 

 

 

MAE=.680727 
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No. of neighbors=12 

 

 

Pre rat 
Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat 

3.973061 4 3.844572 4 4.102947 5 3.423854 4 3.658781 4 
4.229482 4 4.553281 5 4.216528 5 3.405385 2 3.624056 4 
3.194402 3 2.888357 3 3.564934 5 2.69253 2 2.76184 3 
3.570785 5 2.811287 2 3.543239 5 2.855966 3 3.448555 3 
4.114227 4 3.94325 5 4.051654 5 3.564941 4 3.234183 3 
3.547382 4 3.229883 5 4.050414 5 3.231358 3 3.291039 4 
3.313371 4 3.906603 4 3.755681 5 2.95754 4 3.285941 4 
3.306233 4 3.137846 2 3.95812 3 3.410185 3 3.744281 4 
3.630354 2 3.37739 3 3.827469 5 2.935601 3 3.100524 4 
4.020474 4 4.113163 5 4.176648 5 3.625398 3 3.917751 4 
3.649501 2 4.019995 4 4.292911 5 3.675735 3 3.625092 5 
3.283913 3 2.898365 3 2.858867 4 2.797099 2 2.475824 3 
4.499788 5 3.6944 5 4.329475 5 3.917308 4 3.786525 4 
3.467657 5 3.922913 3 3.556291 5 3.076519 2 3.155166 4 
3.488071 4 3.405549 3 3.740341 4 3.010493 3 3.151067 3 

 

MAE=.66835 
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No. of neighbors=14 

 

Pre rat 
Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat Pre rat 

Actual 
Rat 

3.833869 4 3.830227 4 4.081776 5 3.576742 4 3.684282 4 
4.14413 4 4.489477 5 4.263272 5 3.380211 2 3.611204 4 

3.139001 3 2.885785 3 3.490232 5 2.749167 2 2.800681 3 
3.489014 5 2.670655 2 3.425559 5 2.939549 3 3.486877 3 
4.097922 4 3.951341 5 4.016079 5 3.634609 4 3.05812 3 
3.473109 4 3.168981 5 4.01556 5 3.170005 3 3.249522 4 
3.195774 4 3.848611 4 3.790539 5 3.105641 4 3.339558 4 
3.190707 4 3.118193 2 3.925154 3 3.38865 3 3.758811 4 
3.548625 2 3.394846 3 3.835338 5 3.039032 3 3.142645 4 
3.985325 4 4.087825 5 4.294121 5 3.676064 3 3.917036 4 
3.651974 2 4.018196 4 4.254207 5 3.650771 3 3.653988 5 
3.199558 3 2.859738 3 2.80763 4 2.92069 2 2.479276 3 

4.41917 5 3.737968 5 4.286348 5 3.930492 4 3.828606 4 
3.472421 5 3.915036 3 3.541292 5 3.148366 2 3.157012 4 
3.489922 4 3.336201 3 3.711835 4 3.060311 3 3.157701 3 

 

MAE=.666836 
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Using Weighted Slope one scheme and Item clustering 

 

No. of neighbors=6 

Pre rat :  predicted rating 

Actual rat : actual rating 

 

Pre Rat 
Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat 

3.771887 4 4.252483 4 3.703456 5 3.478749 4 3.527947 4 
3.978097 4 4.538225 5 4.109109 5 3.70761 2 3.519338 4 
3.131967 3 3.714024 3 3.540758 5 2.948917 2 2.817101 3 
3.552932 5 4.024951 2 3.854411 5 4.149563 3 3.611031 3 
4.301203 4 4.406705 5 4.423963 5 3.79972 4 3.649225 3 

3.72715 4 4.436714 5 4.071103 5 3.666714 3 3.833281 4 
3.625225 4 4.038809 4 3.552864 5 3.399332 4 3.308322 4 
3.744442 4 3.913577 2 4.06821 3 3.556006 3 3.506115 4 
3.594493 2 3.815497 3 3.958245 5 3.492522 3 3.574611 4 
4.017775 4 3.698761 5 3.998824 5 4.111313 3 4.058118 4 
3.857931 2 4.295343 4 4.271942 5 3.527524 3 3.630347 5 
3.088844 3 3.147182 3 2.571817 4 2.99972 2 3.166497 3 
4.693009 5 4.488164 5 4.584289 5 4.241981 4 4.075443 4 
3.728595 5 3.936152 3 3.524587 5 3.51772 2 3.379486 4 
3.305931 4 3.716047 3 3.816923 4 3.133352 3 3.074971 3 

 

MAE=.708669 
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No. of neighbors=8 

 

Pre Rat 
Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat 

3.703601 4 4.315012 4 3.883844 5 3.484033 4 3.484254 4 
3.898916 4 4.357725 5 4.072442 5 3.574562 2 3.574309 4 
3.054048 3 3.785422 3 3.436204 5 2.983346 2 2.982975 3 
3.516946 5 4.093289 2 3.815426 5 3.958757 3 3.957674 3 
4.051593 4 4.478963 5 4.322711 5 3.737091 4 3.736767 3 
3.572335 4 4.327682 5 4.13028 5 3.749839 3 3.750212 4 
3.625217 4 4.102694 4 3.591047 5 3.299691 4 3.299667 4 
3.579386 4 3.966879 2 4.05112 3 3.546639 3 3.546633 4 

3.57056 2 4.111225 3 3.882704 5 3.49437 3 3.494758 4 
3.888625 4 4.023633 5 3.999119 5 4.030432 3 4.030395 4 
3.808686 2 4.358288 4 4.187844 5 3.571487 3 3.571784 5 
3.130459 3 3.172939 3 2.679094 4 2.99979 2 3.000269 3 
4.612352 5 4.4522 5 4.485946 5 4.181602 4 4.181291 4 

3.44015 5 3.998062 3 3.544169 5 3.341649 2 3.341661 4 
3.35476 4 3.922198 3 3.745715 4 3.100078 3 3.10001 3 

 

MAE=.706247 
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No. of neighbors=10 

 

Pre Rat 
Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat 

3.462974 4 4.309424 4 3.864234 5 3.08843 4 3.387702 4 
3.951708 4 4.406828 5 4.038894 5 3.564659 2 3.542112 4 

2.97874 3 3.728151 3 3.348629 5 2.986666 2 2.968527 3 
3.3576 5 4.090273 2 3.76067 5 3.767609 3 4.165496 3 

4.041289 4 4.47952 5 4.239033 5 3.689776 4 3.689528 3 
3.503554 4 4.274373 5 4.012161 5 3.600343 3 3.800016 4 
3.549137 4 4.099319 4 3.63059 5 3.14021 4 3.339578 4 

3.26346 4 3.958932 2 3.986226 3 3.457941 3 3.73675 4 
3.497672 2 4.076934 3 3.816362 5 3.395807 3 3.528224 4 
3.953955 4 4.018914 5 4.099377 5 4.024365 3 4.024335 4 
3.752655 2 4.356348 4 4.116875 5 3.557189 3 3.62437 5 
3.005521 3 3.255305 3 2.743378 4 2.900101 2 2.900492 3 

4.44096 5 4.361906 5 4.402109 5 4.045757 4 4.244867 4 
3.551961 5 4.079673 3 3.534676 5 3.388505 2 3.320226 4 
3.284408 4 3.921857 3 3.681965 4 2.980394 3 3.132776 3 

 

MAE=.694125 
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No. of neighbors=12 

 

Pre Rat 
Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat 

3.386099 4 4.269697 4 3.978585 5 3.073751 4 3.074385 4 
3.8471 4 4.505508 5 4.115757 5 3.539456 2 3.539254 4 

2.897836 3 3.523762 3 3.457143 5 2.974024 2 2.973749 3 
3.298222 5 4.050712 2 3.71593 5 3.972184 3 3.972085 3 
4.034433 4 4.495763 5 4.144002 5 3.658249 4 3.658019 3 
3.391939 4 4.200146 5 4.0018 5 3.666686 3 3.667255 4 
3.349545 4 4.081877 4 3.775474 5 3.19991 4 3.200195 4 
3.302738 4 3.799551 2 3.98852 3 3.630946 3 3.631369 4 
3.415033 2 3.981029 3 3.7574 5 3.440096 3 3.440566 4 
3.860164 4 4.098873 5 4.191076 5 4.02032 3 4.020296 4 
3.709887 2 4.316882 4 4.263998 5 3.603393 3 3.603674 5 
2.886108 3 3.233976 3 2.786129 4 2.83366 2 2.833973 3 
4.294451 5 4.354037 5 4.41837 5 4.121185 4 4.121316 4 
3.460308 5 4.026938 3 3.601359 5 3.362883 2 3.362798 4 
3.237181 4 3.884391 3 3.651697 4 3.027531 3 3.027711 3 

 

MAE=.683655 
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No. of neighbors=14 

 

Pre Rat 
Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat Pre Rat 

Actual 
Rat 

3.381724 4 4.253851 4 4.124275 5 2.992111 4 3.063806 4 
3.742707 4 4.576091 5 4.08076 5 3.502482 2 3.592864 4 
2.770979 3 3.412386 3 3.456174 5 2.83542 2 2.977485 3 
3.154806 5 3.834707 2 3.720253 5 3.833842 3 3.976058 3 
3.887236 4 4.461993 5 4.136496 5 3.635746 4 3.848878 3 
3.232845 4 4.137024 5 3.957077 5 3.571816 3 3.643469 4 
3.276224 4 4.041372 4 3.8075 5 3.242619 4 3.313944 4 
3.116627 4 3.676236 2 3.906634 3 3.612307 3 3.541575 4 
3.395017 2 3.912696 3 3.75151 5 3.415822 3 3.52013 4 
3.593492 4 4.156459 5 4.23517 5 3.946284 3 4.088522 4 
3.625389 2 4.279311 4 4.31395 5 3.588685 3 3.67101 5 
2.785303 3 3.223541 3 2.745347 4 2.703509 2 2.786476 3 
4.156938 5 4.267427 5 4.385289 5 4.175096 4 4.246284 4 
3.355834 5 4.020391 3 3.602965 5 3.240111 2 3.453422 4 
3.061283 4 3.968646 3 3.701378 4 2.997723 3 3.040992 3 

 

 

MAE=.678434 
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