
 MAJOR PROJECT

 on

 OPTICAL CHARACTER RECOGNITION

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS

FOR THE AWARD OF DEGREE

Of

MASTER OF ENGINEERING

(Computer Technology and Applications)

Delhi University, Delhi

Submitted by:

PALLAVI
University Roll No 13903

Under the Guidance of:

 Dr. S.K SAXENA

Department of Computer Engineering

[image: image1.emf]Delhi College of Engineering, Delhi

 DEPARTMENT OF COMPUTER ENGINEERING

 DELHI COLLEGE OF ENGINEERING
 BAWANA ROAD, DELHI-110042
 DELHI UNIVERSITY

 Certificate

This is to certify that the major project entitled “OPTICAL CHARACTER RECOGNITION” is the work of Pallavi (Univ. Roll No. 13903), a student of Delhi College of Engineering. This work was completed under my direct supervision and guidance and forms a part of Master of Engineering (Computer Technology & Applications) course and curriculum.
(Dr. S. K. SAXENA)

Project Guide

Department of Computer Engineering

Delhi College of Engineering

(Now Delhi Technological University)

 Acknowledgement

It gives me a great pleasure to express my profound gratitude to my project guide
Dr. S. K. SAXENA, Senior Faculty, Department of Computer Engineering, Delhi College
of Engineering, for this valuable and inspiring guidance throughout the progress of
this project.

At the same time, I would like to extend my heart felt thanks to Dr.(Mrs.) Daya Gupta, Head of the department, Department of Computer Engineering , Delhi College of Engineering, for keeping the spirits high and clearing the visions to work on the project.

Pallavi

Roll No. 13903

(21/CTA/09)
 The Paper
Optical Character Recognition has been published in

VSRD International Journal Of Computer Science &

Information Technology in April 2012 Edition as Research Article.

[image: image30.png]

 Available ONLINE www.vsrdjournals.com [image: image2.emf]
[image: image3.emf]

 VSRD-IJCSIT, Vol. 2 (4), 2012, 305-315
RESEARCH ARTICLE

 Optical Character Recognition

 1Pallavi* and 2S.K.Saxena

ABSTRACT

Optical character recognition, usually abbreviated to OCR, is the mechanical or electronic translation of images of handwritten, typewritten or printed text (usually captured by a scanner) into machine-editable text.” In OCR processing, the scanned-in image or bitmap is analyzed for light and dark areas in order to identify each alphabetic letter or numeric digit. When a character is recognized, it is converted into an UNICODE code. Often abbreviated OCR, optical character recognition refers to the branch of computer science that involves reading text from paper and translating the images into a form that the computer can manipulate (for example, into

ASCII codes). All OCR systems include an optical scanner for reading text, and sophisticated software for analyzing image. OCR is already being used widely in the legal profession, where searches that once required hours or days can now be accomplished in a few seconds.

Keywords : Optical Character Recognition, Artificial Neural Network, Matrix Matching & Feature Extraction.

1Research Scholar, 2Senior Faculty, 1,2Department of Computer Engineering, Delhi Technological University, Delhi, INDIA.*Correspondence : pallavi.affable@gmail.com
 ABSTRACT

The central objective of this project is demonstrating the capabilities of Artificial Neural Network implementations in recognizing extended sets of character. Optical Character Recognition, usually abbreviated to OCR, is the mechanical or electronic translation of images of handwritten, typewritten or printed text into machine. Character Recognition refers to the process of converting printed Text document into translated Unicode Text.
Lines are identified by an algorithm where we identify top & bottom of the line and in each line character boundaries are calculated by an algorithm, using these calculation character are isolated from the image and then we will classify each character by Back Propagation algorithm.
The Back Propagation algorithm work by what is known as supervised training.It first submits an input for a forward pass through a network. The network output is compared to the desired output ,which is specified by “supervisor” and the error for all the neurons in the output layer is calculated. The fundamental idea behind back propagation algorithm is that error is propagated backward to earlier layers so that a gradient descent algorithm can be applied.
In this project I have used Back propagation Neural Network for efficient recognition where the errors is corrected and rectified neuron values were transmitted by feed –forward method in the neural network of multiple layers.

Contents
Certificate………………………………………………………………………..ii
Acknowledgement……………….……………………………………………iii
Paper published in VSRD International Journal………………….v
Abstract……………………………………………………………………………vi
Chapter 1 Introduction………………………………………………………………………………………….1
1.1 Optical Character Recognition………………………………………………………………..1,2,3
1.2 Biological Neural Network…………………………………………………………………...5,6
13 Neural Signal Processing………………………………………………………..6
Chapter 2 MultiLayer Perceptron ……………………………………………...............................7

2.1 MultiLayer Architecture ………………………………………………………………………..7,8
2.2 FeedForward Network …………………………………………………………..................8,9,10
Chapter 3 Literature Survey…………………………………………………………………………………...11
3.1. Document Image Analysis and Recognition……………………………………………..11,12,13
3.2. MultiLayer Perceptron in Pattern Recognition……….……………………………….13,14,15,16
Chapter 4. Project Requirement Definition….…………………………….…
…………………………………17
 4.1. Need……..………………………………………………………………………………………………….17
 4.2. Feasibility Analysis…………………………………...……………………………………………….18
Chapter 5. Requirements Specification……………………………………………………………….19
 5.1. Scope………………….…………………………………..19
 5.2. Overview…………………………….……………………………………………………………………..19
 5.3. Users………………….………………………………………………………………………………………20
 5.4. Functional Requirements………………………………….………………………………………. 20
 5.5. Non-Functional Requirements……………………………..20
 5.6. System Requirements…………………………………………………………………………………21
Chapter 6 Back Propagation Algorithm………………………………………………………………..22
 6.1 Algorithm………………………………………………………………………………………………………22,23
Chapter 7 Activation Function…………………………………………………................................24
 7.1 Mathematical Model……………………………………………………………………………………….24
 7.2 Activation Function………………………………………………………………………………………….25,26,27
Chapter 8 System Design…………………………………………………..
…………………………………………..28
Chapter 9 Detailed Design……………………………………………………………………………………….. 29
 9.1. Symbol Image Detection………………………………………………………………………………….30
 9.1.1. Determining Character lines………………….………………………………………………………….30
 9.1.2. Detecting Individual Symbols…………………...31,32
 9.2. Symbol Image Matrix Mapping…………………………………………………………………………..32,33
 9.3 Training Phase…………………………………………….………………………………………………....34,35,36
 9.4 Testing
……………………………………….……………...
…………………………………………………38,39
Chapter 10 Impementation………………………………..……………………………………………………40,41,42
 10.1. Class and Data Structure Description……………………..……………………………………….43

 10.2. Designing Interface Objects…………………………………………………………………………….42,43
Chapter 11. Testing…………………………………………………….…….
………………………………………44-48
 10.1. Testing Statistics…………………………………………..45
 10.2. Perfomance Observation…………………………………..46,47
 10.2.1. Influence of Parameter Variation…………………………………………………………………..47
10.3. Pictorial Representation overlap Anomalies………….…………………………………………..47
 10.4
. Orthogonal Inseparability……………………………Z…………………………………………………….48
Chapter 11. Conclusion……………………………………………………..49
Chapter 12. Future Enhancements…………………………………………......................................50
Chapter 13. References………………………………………………………………………………………………..51
Chapter 14. Appendix………………………………………………………..

46

 A. UTF-16/UCS-2………………………………………………..
46

 B. ASCII Table of Codes……………………...............................

48

 C. Source Code……………………………………………...…...

50

 List of Figures
Figure

Name

 Page

1 Biological neuron……………………………………………………..6
2.1

MLP Network…………………………………………………………………………7
2.2 A Typical FeedForward Network…………………………………………….9
3.1

A hierarchy of document processing subareas ………………………12
3.2

Feed-for ward back-propagation neural network

For classifying 2x2 image……………………………………………………….14
5.1

General Structure of OCR……………………………………………………….19

6.1

Back-Propagation …………………………………………………………………..22
7.1

Mathematical Model……………………………………………………………….25
7.2 Non linear function….………………………………………………………………………………….27

8.1 System Design……………………………………………………………………….. 28

9.1 Line & Character Boundary Detection……………………………………….32
9.2

Mapping Symbol Images onto a binary Matrix…………………………..33
9.3

Input Image and Desired Output text files for the

Sample Trainer Set…………………………………………………………………….34

Flowchart………………………………………………………………………………….. 37

Flowchart 2…………………………………………………………………………………39
11.1 Matrix analysis to both lower case and upper case

I of the Arial font………………………………………………………………………….47
10.2

Some Orthogonally inseparable symbolic

Combinations in the Latin Alphabet……………………………………………………….48

CHAPTER 1
Introduction
1.1 Optical Character Recognition (OCR)

In computer, there are two basic methods used for OCR : Matrix matching and Feature extraction. Of the two ways to recognize characters, matrix matching is the simpler and more common.
Matrix Matching compares what the OCR scanner sees as a character with a library of character matrices or templates. When an image matches one of these prescribed matrices of dots within a given level of similarity, the computer labels that image as the corresponding character.
Feature Extraction is OCR without strict matching to prescribed templates. Also known as Intelligent Character Recognition (ICR), or Topological Feature Analysis, this method varies by how much "computer intelligence" is applied by the implementer to look for general features such as open areas, closed shapes, diagonal lines, line intersections, etc. This method is much more versatile than matrix matching.
An artificial neural network (ANN), usually called neural network (NN), is a mathematical model or computational model that is inspired by the structure and/or functional aspects of biological neural networks. A neural network consists of an interconnected group of artificial neurons, and it processes information using a connection approach for computation. In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network during the learning phase. Modern neural networks are non-linear statistical data modeling tools. They are usually used to model complex relationships between inputs and outputs or to find patterns in data. The particular area derives its basis from the way neurons interact and function in the natural animal brain, especially humans. The animal brain is known to operate in massively parallel manner in recognition, reasoning, reaction and damage recovery. All these seemingly sophisticated undertakings are now understood to be attributed to aggregations of very simple algorithms of pattern storage and retrieval. Neurons in the brain communicate with one another across special electrochemical links known as synapses. At a time one neuron can be linked to as many as 10,000 others although links as high as hundred thousands are observed to exist. The typical human brain at birth is estimated to house one hundred billion plus neurons. Such a combination would yield a synaptic connection of 1015, which gives the brain its power in complex spatio - graphical computation.

Unlike the animal brain, the traditional computer works in serial mode, which is to mean instructions are executed only one at a time, assuming a uni-processor machine. The illusion of multitasking and real-time interactivity is simulated by the of multitasking and real-time interactivity is simulated by the use of high computation speed and process scheduling. In contrast to the natural brain which communicates internally in electrochemical links, that can achieve a maximum speed in milliseconds range, the microprocessor executes instructions in the lower microseconds range. A modern processor such as the Intel Pentium-4 or AMD Opteron making use of multiple pipes and hyper-threading technologies can perform up to 20 MFloPs (Million Floating Point executions) in a single second.
It is the inspiration of this speed advantage of artificial machines,and parallel capability of the natural brain that motivated the effort to combine the two and enable performing complex Artificial Intelligence tasks believed to be impossible in the past. Although artificial neural networks are currently implemented in the traditional serially operable computer, they still utilize the parallel power of the brain in a simulated manner.
Neural networks have seen an explosion of interest over the last few years, and are being successfully applied across an extraordinary range of problem domains, in areas as diverse as finance, medicine, engineering, geology and physics. Indeed, anywhere that there are problems of prediction, classification or control, neural networks are being introduced. This sweeping success can be attributed to a few key factors:
Power: Neural networks are very sophisticated modeling techniques capable of modeling extremely complex functions. In particular, neural networks are nonlinear. For many years linear modeling has been the commonly used technique in most modeling domains since linear models have well-known optimization strategies. Where the linear approximation was not valid (which was frequently the case) the models suffered accordingly. Neural networks also keep in check the curse of dimensionality problem that bedevils attempts to model nonlinear functions with large numbers of variables.

Ease of use: Neural networks learn by example. The neural network user gathers representative data, and then invokes training algorithms to automatically learn the structure of the data. Although the user does need to have some heuristic knowledge of how to select and prepare data, how to select an appropriate neural network, and how to interpret the results, the level of user knowledge needed to successfully apply neural networks is much lower than would be the case using (for example) some more traditional nonlinear statistical methods.
1.1.1 History of Optical Character Recognition

In the early 1950s, David Shepard was issued U.S. Patent Number 2,663,758 for "Gismo," the first machine to convert printed material into machine language. Shepard then founded Intelligent Machines Research Corporation (IMR), which produced the first OCR systems for commercial operation. Reader's Digest installed the first commercial system in 1955. The United States Postal Service has been using OCR machines to sort mail since 1965.

Today, OCR technology incorporates high-speed scanners and complex computer algorithms to increase speed and data accuracy. Current systems can recognize most fonts with a high degree of accuracy and some are capable of outputting formatted text that closely approximates the printed page.
1.1.2 Types of Recognition Engines

1. Optical Character Recognition (OCR): OCR engines turn images of machine-printed characters into machine-readable characters. Images of machine-printed characters are extracted from a bitmap. Forms can be scanned through an imaging scanner, faxed, or computer generated to produce the bitmap.

2. Intelligent Character Recognition (ICR): ICR reads images of hand-printed characters (not cursive) and converts them into machine-readable characters. Images of hand-printed characters are extracted from a bitmap of the scanned image. ICR recognition of numeric characters is much more accurate than the recognition of letters. ICR is less accurate than OMR and requires some editing and verification.
3. Optical Mark Recognition (OMR): OMR technology detects the existence of a mark, not its shape. OMR forms usually contain small ovals, referred to as 'bubbles,' or check boxes that the respondent fills in. OMR cannot recognize alphabetic or numeric characters. OMR is the fastest and most accurate of the data collection technologies. It is also relatively user-friendly
4. Magnetic Ink Character Recognition (MICR): MICR is a specialized character recognition technology adopted by the U.S. banking industry to facilitate check processing. Almost all U.S. and U.K. checks include MICR characters at the bottom of the paper in a font known as E-13B. Many modern recognition engines can recognize E-13B fonts that are not printed with magnetic ink. However, since background designs can interfere with optical recognition, the banking industry uses magnetic ink on checks to ensure accuracy.

1.2 Biological Neural Network
1. The majority of neurons encode their activations or outputs as a series of brief

electrical pulses (i.e. spikes or action potentials).

2. The neuron’s cell body (soma) processes the incoming activations and converts

them into output activations.

3. The neuron’s nucleus contains the genetic material in the form of DNA. This

exists in most types of cells, not just neurons
4. Dendrites are fibres which emanate from the cell body and provide the receptive

zones that receive activation from other neurons.

5. Axons are fibres acting as transmission lines that send activation to other neurons.

6. The junctions that allow signal transmission between the axons and dendrites are

called synapses. The process of transmission is by diffusion of chemicals called
neurotransmitters across the synaptic cleft.
[image: image4.png]‘Axon from another cell

CellBody or Soma
Figure 1: A Biological Neuron

1.3 neural signal processing
The key components of neural signal processing are:

1. Signals from connected neurons are collected by the dendrites.

2. The cells body (soma) sums the incoming signals (spatially and temporally).

3. When sufficient input is received (i.e. a threshold is exceeded), the neuron

generates an action potential or ‘spike’ (i.e. it ‘fires’).

4. That action potential is transmitted along the axon to other neurons, or to structures outside the nervous systems (e.g., muscles).
5. If sufficient input is not received (i.e. the threshold is not exceeded), the inputs

quickly decay and no action potential is generated.

6. Timing is clearly important – input signals must arrive together, strong inputs will

generate more action potentials per unit time
Chapter 2

multilayer perceptron
2.1 Mulilayer Architecture
The MLP Network implemented for the purpose of this project is composed of 3 layers, one input, one hidden and one output. The input layer constitutes of 150 neurons which receive pixel binary data from a 10x15 symbol pixel matrix. The size of this matrix was decided taking into consideration the average height and width of character image that can be mapped without introducing any significant pixel noise.

[image: image5.jpg]Pixel Data
v
Unicode Binary

output

16 neurons
Layer
150neurons Hidden
Layer
250 neurons

 Fig 2.1 MLP NETWORK

The hidden layer constitutes of 250 neurons whose number is decided on the basis of optimal results on a trial and error basis.The output layer is composed of 16 neurons corresponding to the 16-bits of Unicode encoding.To initialize the weights a random function was used to assign an initial random number which lies between two preset integers named weight_bias. The weight bias is selected from trial and error observation to correspond to average weights for quick convergence.The network diagram shown above is a full-connected, three layer, feed-forward, perceptron neural network. “Fully connected” means that the output from each input and hidden neuron is distributed to all of the neurons in the following layer. “Feed forward” means that the values only move from input to hidden to output layers; no values are fed back to earlier layers (a Recurrent Network allows values to be fed backward).
2.2 Feedforward networks

To capture the essence of biological neural systems, an artificial neuron is defined as follows:

· It receives a number of inputs (either from original data, or from the output of other neurons in the neural network). Each input comes via a connection that has a strength (or weight); these weights correspond to synaptic efficacy in a biological neuron. Each neuron also has a single threshold value. The weighted sum of the inputs is formed, and the threshold subtracted, to compose the activation of the neuron.

· The activation signal is passed through an activation function (also known as a transfer function) to produce the output of the neuron.

· If the step activation function is used (i.e., the neuron's output is 0 if the input is less than zero, and 1 if the input is greater than or equal to 0) then the neuron acts just like the biological neuron described earlier (subtracting the threshold from the weighted sum and comparing with zero is equivalent to comparing the weighted sum to the threshold). Actually, the step function is rarely used in artificial neural networks, as will be discussed. Note also that weights can be negative, which implies that the synapse has an inhibitory rather than excitatory effect on the neuron: inhibitory neurons are found in the brain.

· This describes an individual neuron. The next question is: how should neurons be connected together? If a network is to be of any use, there must be inputs (which carry the values of variables of interest in the outside world) and outputs (which form predictions, or control signals). Inputs and outputs correspond to sensory and motor nerves such as those coming from the eyes and leading to the hands. However, there also can be hidden neurons that
play an internal role in the network. The input, hidden and output neurons need to be connected together.

[image: image29.png]

Fig2.2 A Typical Feed-forward Network
A typical feed-forward network has neurons arranged in a distinct layered topology. The input layer is not really neural at all: these units simply serve to introduce the values of the input variables. The hidden and output layer neurons are each connected to all of the units in the preceding layer. Again, it is possible to define networks that are partially-connected to only some units in the preceding layer; however, for most applications fully-connected networks are better. The Multi-Layer Perceptron Neural Network is perhaps the most popular network architecture in use today. The units each perform a biased weighted sum of their inputs and pass this activation level through an activation function to produce their output, and the units are arranged in a layered feed-forward topology. The network thus has a simple interpretation as a form of input-output model, with the weights and thresholds (biases) the free parameters of the model. Such networks can model functions of almost arbitrary complexity, with the number of layers, and the number of units in each layer, determining the function complexity. Important issues in Multilayer Perceptrons (MLP) design include specification of the number of hidden layers and the number of units in each layer.

Most common activation functions are the logistic and hyperbolic tangent sigmoid functions. The project used the hyperbolic tangent function: [image: image6.png]

and

derivative: .[image: image7.png]A1) = S F(x)

Chapter 3
 Literature Survey
3.1 Document Image Analysis and Recognition

Document image analysis and recognition (DIAR) is a research field that has its roots in the first Optical Character Recognition (OCR) systems, applied for reading numeric check codes. Nowadays, the technology related to DIAR is used in a broad range of applications, where some information has to be extracted from structured documents existing in different media.
The objective of DIAR is to recognize the text and graphics components in images of documents, and to extract the intended information as a human would do. Two categories of document image analysis can be deﬁned (see Fig 3.1).
· Textual processing deals with the text components of a document image. Some tasks here are: determining the skew (any tilt at which the document may have been scanned), ﬁnding columns, paragraphs, text lines, and words, and ﬁnally recognizing the text by optical character recognition (OCR).
· Graphics processing deals with the non-textual line and symbol components that make up line diagrams, delimiting straight lines between text sections, company logos etc. Pictures are a third major component of documents, but except for recognizing their location on a page, further analysis of these is usually the task of other image processing and machine vision techniques.
After application of these text and graphics analysis techniques, the several megabytes of initial data are culled to yield a much more concise semantic description of the document.
[image: image8.png]Document Processing|

Textual Processing

Graphical Processing

Optical Character Page Layout | | Line Processing Region and
Recognition Analysis Symbol
Processing
' ' ' |
Text Skew, text lines, Straight lines, Filled regions

text biocks, and
“paragraphs.

comers and curves

Fig 3.1: A hierarchy of document processing subareas listing the types of document components dealt within each subarea.
Consider three speciﬁc examples of the need for document analysis presented here.

Typical documents in today’s ofﬁce are computer-generated, but even so, inevitably many are maintained as printed documents. Some include formatted text and tables as well as handwritten entries. There are different sizes, from a business card to a large engineering drawing. Document analysis systems recognize types of documents, enable the extraction of their functional parts, and translate from one computer generated format to another.

Automated mail-sorting machines to perform sorting and address recognition have been used for several decades, but there is the need to process more mail, more quickly, and more accurately.

In a traditional library, loss of material, misﬁling, limited numbers of each copy, and even degradation of materials are common problems, and may be improved by document analysis techniques. All these examples serve as applications ripe for the potential solutions of document image analysis.

Document analysis systems will become increasingly more evident in the form of every-day document systems. For instance, OCR systems will be more widely used to store, search, and excerpt from paper-based documents. Page-layout analysis techniques will recognize a particular form, or page format and allow its duplication. Diagrams will be entered from pictures or by hand, and logically edited. Pen-based computers will translate handwritten entries into electronic documents. Archives of paper documents in libraries and engineering companies will be electronically converted for more efﬁcient storage and instant delivery to a home or ofﬁce computer. Though it will be increasingly the case that documents are produced and reside on a computer, the fact that there are very many different systems and protocols, and also the fact that paper is a very comfortable medium for us to deal with, ensures that paper documents will be with us to some degree for many decades to come. The difference will be that they will ﬁnally be integrated into our computerized world.

The process of recognizing such handwriting from pixel information falls into a field of artificial intelligence called pattern or image recognition. Lots of work has been done in this field recently, and most techniques for pattern and image classification make use of neural networks. This project implements such a neural network in order to “learn” to recognize general features of printed characters. The trained network can then be fed new inputs, which it then attempts to recognize and categorize properly

3.2 Multilayer Perceptron In Pattern Recognition
A multilayer perceptron (MLP) is a feed-forward artificial neural network model that maps sets of input data onto a set of appropriate output. It is a modification of the standard linear perceptron in that it uses three or more layers of neurons (nodes) with nonlinear activation functions, and is more powerful than the perceptron in that it can distinguish data that is not linearly separable, or separable by a hyperplane.

Typical pattern recognition systems are designed using two passes. The first pass is a feature extractor that finds features within the data which are specific to the task being solved (eg. finding bars of pixels within an image for character recognition). The second pass is the classifier, which is more general purpose and can be trained using a neural network and sample data sets. Clearly, the feature extractor typically requires the most design effort, since it usually must be hand-crafted based on what the application is trying to achieve.
One of the main contributions of neural networks to pattern recognition has been to provide an alternative to this design: properly designed multi-layer networks can learn complex mappings in high-dimensional spaces without requiring complicated hand-crafted feature extractors [5].

Thus, rather than building complex feature detection algorithms, this project focuses on implementing a standard back-propagation neural network, which is fully connected. Figure 2 shows the example layout of such a network as it relates to our task of classifying character images.

[image: image9.png]Input Image

input Layer Hidden Layer Output Layer
(4 neurons) (2 neurons) (3 neurons)

Figure 2 - Feedforward Backpropagation Neural Network
for classifying 2x2 images

Fig 3.2: Feed-forward Back-propagation neural network for classifying 2x2 image.

The idea behind this network is to map input vectors (in our case, pixels) to output vectors (for example ASCII characters). The process by which this mapping occurs is by assigning weights to each of the edges in Figure 3.1. These weights can initially be set to random values, and the neural network will automatically make adjustments to them based on a set of training data. This is the process of the feed-forward back-propagation mechanism. Known inputs are fed into the neurons at the input layer, which are then activated and pass the activation information to the hidden layers, which pass their activations to other optional hidden layers, and then ultimately the output layer. At this point, the resulting output at the output layer is compared to the desired output. The 4 amount of error at each neuron is then propagated backwards through the network, whereby adjustments to the weights are made accordingly.

Now assuming that the network has been fully connected and initialized with random weights, each of the [0,1] pixels are fed into their own input neuron. So for the 2x2 image in Figure 3.1, we have 4 neurons. Thus for an nxn image, we will need nxn neurons.

The network in Figure 3.1 is a 3 layer configuration, with the required input and output layers, as well as a single hidden layer. [6] mentions that choosing the number of hidden layers is a difficult task with no hard rules or guidelines. However, the size of a hidden layer is related to the features or distinguishing characteristics that are to be discerned from the data [6].
The network in Figure 3.1 has 2 neurons in the hidden layer, which was chosen arbitrarily to keep the diagram simple. The number of hidden layers and their sizes can be experimented with in the implementation.
 The output layer is where the output vector can be retrieved. Each neuron in this layer outputs a value between 0 and 1, which is guaranteed by the use of a sigmoid function when calculating each neuron’s output [6]:
[image: image10.png]

where x is the value to be “squashed”.

 In order to train the network, a training set consisting of correct pairs of input and output vectors are chosen. For example, in Figure 3.1 we could have the pairs:

Pair 1: { (1,0,0,0), (0,0,0) }
Pair 2: { (1,0,1,0), (0,0,1) }

Pair 3: { (1,1,1,0), (0,1,0) }

where the first vector consists of the input pixels, and the second vector is a binary representation of the desired ASCII character.

If the full 256 ASCII codes aren’t needed, a conversion table could be easily created. So for the above codes we could have:

(0,0,0) = A

(0,0,1) = B

(0,1,0) = C

Since the output neurons can give a value between 0 and 1, we can achieve these crisp values by simply rounding the values to the nearest integer.

The following observations are made with the result of the project:

1.A small number of neurons in the hidden layer (for eg. 3) is insufficient to extract key features in the hand-drawn digits. In all cases with 3 neurons in the middle, both the training and testing accuracy fared poorly.

2.A large number of neurons in the middle layer help the accuracy, however there is probably some upper limit to this which is dependent on the data being used. Additionally, high neuron counts in the hidden layers increase training time significantly.

3.A low learning parameter causes the network to learn quite slowly, but helps the network converge to a solution quite well. However, too low learning parameters could increase the chances of reaching local minimums rather than global minimums.

4.A high learning parameter seems to seriously affect the accuracy of the test classification, since the weights and objective function end up diverging (ie. no learning occurs)

Accuracy is increased by increasing the number of cycles.

Chapter 4
Project Requirement Definition
4.1 Need
Digital Image Analysis & Recognition is used in a broad range of applications, where some information has to be extracted from structured documents existing in different media.
Typical applications include, among the others:
Printed character recognition

Processing of textual web images,
Information extraction from digital libraries. A lot of efforts have been devoted to the digitization of paper collections in order to archive them as document image collections.

Identifying contents of different printed forms.
Postal address & cheque reading.

In the digital library community a lot of efforts have been devoted to the digitization of paper collections in order to archive them as document image collections. The applications on characters are across-the-board that there is much scope for study. The chic of writing characters is diverse and comes in a variety of form, size and fonts. Identification of language script is challenging problem.
The main issues are:

Recognizing characters with different fonts & sizes.

Identifying the character lines in the input image/scanned document.

The main goal of our project is to extract the characters in a printed text document. We are using Matrix analysis & Artificial Neural Network to achieve our goal.

4.2 Feasibility Analysis
A feasibility study was carried out prior to the starting of the project. These included the following

Technical feasibility – possible as the coding language required was C# and .NET Framework.

Time constraints – discussions with project guides all pointed towards a time frame.
Other factors – We are using C# for implementing the different image processing & mathematical libraries for Windows platform. The opinion of the guide and other senior lecturers were sought.

Chapter 5
Requirements Specification
5.1 Scope

Document analysis systems have become increasingly more evident in the form of everyday document systems. For instance, OCR systems will be more widely used to store, search, and excerpt from paper-based documents. Page-layout analysis techniques will recognize a particular form or page format and allow its duplication. Diagrams will be entered from pictures or by hand, and logically edited.

5.2 Overview
The structure of OCR system is divided into the following parts

1. Data capture from the scanned printed document/image.

2. Pixel level analysis to find out character lines & individual characters.

3. Feature level analysis to extract features of characters.

4. Recognition process of identifying the characters which yields the final text document.

[image: image11.png]Document page:

|

Data capture:

!

Pixel-level
processing

I

Feature-level
analysis

e

>,

Text analysis
and recognition

Graphics analysis
and recognition

N

e

Document description

Fig 5.1: General structure of OCR system.

5.3 Users

· Banks, post offices, libraries.

· Other office automation applications which need to extract text from printed document
5.4 Functional Requirements

· The implemented software should identify the character lines in the given image.

· The software should extract the features of characters.

5.5 Non-Functional Requirement

· Reliability: - The developed software utility should perform functionalities as specified.

· Accessibility: - The implemented software should be accessible by,as many users as possible.

· Response Time: - The response time should be in the order of seconds for the implemented software.

· Extensibility: - The software should be made such that it is extendible for all kinds of documents.

· Usability: - The user should access the software with ease.

5.6 System Requirements
5.6.1 Operating Environment

· Operating System: Win XP, Vista

· Software requirements: Dot Net 2.0 or Higher

5.6.2 Design and Implementation Constraints

Although C# is portable, the software does not run properly on platforms other than windows. The software does not check the size limit. As a result there may be a case that hidden object is not fully consumed yet the software shows no error. This can be verified by extracting the hidden object just after hiding it into the carrier file. Although compression is supported but not implicitly, manual intervention is needed. Output image file may be distorted considerably depending on the message.
5.6.3 Hardware Requirements
Apart from the recommended configuration no other specific hardware is required to run the software.

Processor
 :
any 32-bit

Hard Disk
:
Min 20MB free space

RAM Memory
:
Min 256MB

Chapter 6
Back propogation algorithm

In order to train a neural network to perform some task, we must adjust the weights of each unit in such a way that the error between the desired output and the actual output is reduced. This process requires that the neural network compute the error derivative of the weights (EW). In other words, it must calculate how the error changes as each weight is increased or decreased slightly. The back propagation algorithm is the most widely used method for determining the EW.

6.1 algorithm

[image: image12]

Fig 6.1 Mlp formation
1. Calculate errors of output neurons

δα = outα (1 - outα) (Targetα - outα)

δβ = outβ (1 - outβ) (Targetβ - outβ)

2. Change output layer weights

W+Aα = WAα + ηδα outA W+Aβ = WAβ + ηδβ outA

W+Bα = WBα + ηδα outB W+Bβ = WBβ + ηδβ outB

W+Cα = WCα + ηδα outC W+Cβ = WCβ + ηδβ outC

3.Calculate (back-propagate) hidden layer errors

δA = outA (1 – outA) (δαWAα + δβWAβ)

δB = outB (1 – outB) (δαWBα + δβWBβ)

δC = outC (1 – outC) (δαWCα + δβWCβ)

4. Change hidden layer weights

W+λA = WλA + ηδA inλ W+ΩA = W+ΩA + ηδA inΩ

W+λB = WλB + ηδB inλ W+ΩB = W+ΩB + ηδB inΩ

W+λC = WλC + ηδC inλ W+ΩC = W+ΩC + ηδC inΩ

The constant η (called the learning rate, and nominally equal to one) is put in to speed up or slow down the learning if required.
CHAPTER 7
ACTIVATION FUNCTION

7.1 Mathematical model
Once modeling an artificial functional model from the biological neuron, we must take into account three basic components. First off, the synapses of the biological neuron are modeled as weights. Let’s remember that the synapse of the biological neuron is the one which interconnects the neural network and gives the strength of the connection. For an artificial neuron, the weight is a number, and represents the synapse. A negative weight reflects an inhibitory connection, while positive values designate excitatory connections. The following components of the model represent the actual activity of the neuron cell. All inputs are summed altogether and modified by the weights. This activity is referred as a linear combination. Finally, an activation function controls the amplitude of the output. For example, an acceptable range of output is usually between 0 and 1, or it could be -1 and 1.

Mathematically, this process is described in the figure

[image: image13.jpg]Fixed input xo =% 1

w0 = b (i)

Activation
Function

Output
[E——

Summing
Junction

P

il
Input Synaptic Threshold
signals. Weights

fig 7.1 mATHEMATICAL MODEL

from this model the interval activity of the neuron can be shown to be:

[image: image14.jpg]

The output of the neuron, yk, would therefore be the outcome of some activation function on the value of vk.

7.2 Activation functions

 The activation function acts as a squashing function, such that the output of a neuron in a neural network is between certain values (usually 0 and 1, or -1 and 1). In general, there are three types of activation functions, denoted by Φ(.) . First, there is the Threshold Function which takes on a value of 0 if the summed input is less than a certain threshold value (v), and the value 1 if the summed input is greater than or equal to the threshold value.

[image: image15.jpg](v)i\‘l ifv20
Y70 itv<o

Secondly, there is the Piecewise-Linear function. This function again can take on the values of 0 or 1, but can also take on values between that depending on the amplification factor in a certain region .

[image: image16.jpg]

Thirdly, there is the sigmoid function. This function can range between 0 and 1, but it is also sometimes useful to use the -1 to 1 range. An example of the sigmoid function is the hyperbolic tangent function.
[image: image17.jpg]| =)|
@ Sigamoid fonction [Ey——
ou ou
et Net —>
Gam LN

=0 Net=
= undefined, Net < 0.

(©) Sigmum function

(@ Step function

Common non-inear functions used for synaptic inhibition. Soft non-
linearity: (2) Sigmoid and (b) tanh; Hard non-linearity" (c) Signum and

(@ Step.

fig 7.2
Chapter 8
System Design

[image: image18]Fig 8.1 System Design

Chapter 9

Detailed Design

The operations of the network implementation in this project can be summarized by the following steps:

· Training phase

· Analyze image for characters

· Convert symbols to pixel matrices

· Retrieve corresponding desired output character and convert to Unicode

· Lineraize matrix and feed to network

· Compute output

· Compare output with desired output Unicode value and compute error

· Adjust weights accordingly and repeat process until preset number of iterations

· Testing phase

· Analyze image for characters

· Convert symbols to pixel matrices

· Compute output

· Display character representation of the Unicode output

Essential components of the implementation are:

· Formation of the network and weight initialization routine

· Pixel analysis of images for symbol detection

· Loading routines for training input images and corresponding desired output characters in special files named character trainer sets (*.cts)

· Loading and saving routines for trained network (weight values)

· Character to binary Unicode and vice versa conversion routines

· Error, output and weight calculation routines

9.1 Symbol image detection
The process of image analysis to detect character symbols by examining pixels is the core part of input set preparation in both the training and testing phase. Symbolic extents are recognized out of an input image file based on the color value of individual pixels, which for the limits of this project is assumed to be either black RGB(255,0,0,0) or white RGB(255,255,255,255). The input images are assumed to be in bitmap form of any resolution which can be mapped to an internal bitmap object in the Microsoft Visual Studio environment. The procedure also assumes the input image is composed of only characters and any other type of bounding object like a boarder line is not taken into consideration.

The procedure for analyzing images to detect characters is listed in the following algorithms:

9.1.1 Determining character lines
Enumeration of character lines in a character image is essential in delimiting the bounds within which the detection can proceed. Thus detecting the next character in an image does not necessarily involve scanning the whole image all over again.

Algorithm:

1. start at the first x and first y pixel of the image pixel(0,0), Set number of lines to 0

2. scan up to the width of the image on the same y-component of the image

a. if a black pixel is detected register y as top of the first line

b. if not continue to the next pixel

c. if no black pixel found up to the width increment y and reset x to scan the next horizontal line

3. start at the top of the line found and first x-component pixel(0,line_top)

4. scan up to the width of the image on the same y-component of the image

a. if no black pixel is detected register y-1 as bottom of the first line. Increment number of lines

b. if a black pixel is detected increment y and reset x to scan the next horizontal line

5. start below the bottom of the last line found and repeat steps 1-4 to detect subsequent lines

6. If bottom of image (image height) is reached stop.

9.1.2 Detecting Individual symbols
Detection of individual symbols involves scanning character lines for orthogonally separable images composed of black pixels.

Algorithm:

1. start at the first character line top and first x-component

2. scan up to image width on the same y-component

a. if black pixel is detected register y as top of the first line

b. if not continue to the next pixel

3. start at the top of the character found and first x-component, pixel(0,character_top)

4. scan up to the line bottom on the same x-component

a. if black pixel found register x as the left of the symbol

b. if not continue to the next pixel

c. if no black pixels are found increment x and reset y to scan the next vertical line

5. start at the left of the symbol found and top of the current line, pixel(character_left, line_top)

6. scan up to the width of the image on the same x-component

a. if no black characters are found register x-1 as right of the symbol

b. if a black pixel is found increment x and reset y to scan the next vertical line

7. start at the bottom of the current line and left of the symbol, pixel(character_left,line_bottom)

8. scan up to the right of the character on the same y-component

a. if a black pixel is found register y as the bottom of the character

b. if no black pixels are found decrement y and reset x to scan the next vertical line

[image: image19.png]Character top. Line top >
a !
Character bottom— L

Line bottom

Fig 9.1 Line and Character boundary detection
From the procedure followed and the above figure it is obvious that the detected character bound might not be the actual bound for the character in question. This is an issue that arises with the height and bottom alignment irregularity that exists with printed alphabetic symbols. Thus a line top does not necessarily mean top of all characters and a line bottom might not mean bottom of all characters as well.

Hence a confirmation of top and bottom for the character is needed.

An optional confirmation algorithm implemented in the project is:

1. start at the top of the current line and left of the character

2. scan up to the right of the character

a. if a black pixels is detected register y as the confirmed top

b. if not continue to the next pixel

c. if no black pixels are found increment y and reset x to scan the next horizontal line
9.2 Symbol Image Matrix Mapping

The next step is to map the symbol image into a corresponding two dimensional binary matrix. An important issue to consider here will be deciding the size of the matrix. If all the pixels of the symbol are mapped into the matrix, one would definitely be able to acquire all the distinguishing pixel features of the symbol and minimize overlap with other symbols. However this strategy would imply maintaining and processing a very large matrix (up to 1500 elements for a 100x150 pixel image). Hence a reasonable tradeoff is needed in order to minimize processing time which will not significantly affect the separability of the patterns. The project employed a sampling strategy which would map the symbol image into a 10x15 binary matrix with only 150 elements. Since the height and width of individual images vary, an adaptive sampling algorithm was implemented. The algorithm is listed below:

Algorithm:
1. For the width (initially 20 elements wide)

a. Map the first (0,y) and last (width,y) pixel components directly to the first (0,y) and last (20,y) elements of the matrix

b. Map the middle pixel component (width/2,y) to the 10th matrix element

c. subdivide further divisions and map accordingly to the matrix

2. For the height (initially 30 elements high)
a. Map the first x,(0) and last (x,height) pixel components directly to the first (x,0) and last (x,30) elements of the matrix

b. Map the middle pixel component (x,height/2) to the 15th matrix element

c. subdivide further divisions and map accordingly to the matrix

3. Further reduce the matrix to 10x15 by sampling by a factor of 2 on both the width and the height
[image: image20.png]Detected Character

Mati Anpsis
0

Matrix

Mapping

2|

Fig 9.2 Mapping symbol images onto a binary matrix
In order to be able to feed the matrix data to the network (which is of a single dimension) the matrix must first be linearized to a single dimension. This is accomplished with a simple routine with the following algorithm:

1. start with the first matrix element (0,0)

2. increment x keeping y constant up to the matrix width

a. map each element to an element of a linear array (increment array index)

b. if matrix width is reached reset x, increment y

3. repeat up to the matrix height (x,y)=(width, height)

Hence the linear array is our input vector for the MLP Network. In a training phase all such symbols from the trainer set image file are mapped into their own linear array and as a whole constitute an input space. The trainer set would also contain a file of character strings that directly correspond to the input symbol images to serve as the desired output of the training.
A sample mini trainer set is shown below:
[image: image21.png]Y Mini Tahoma - Paint
Fie Edt Vew Inage Colrs Hep

;,,@IABCDE

INCLUDEPICTURE "../../CodeProject%20Unicode%20Optical%20Character%20Recognition_%20Free%20source%20code%20and%20programming%20help_files/image017.png" * MERGEFORMAT [image: image22.png]) Mini Tahoma - Notepad

Flo Edt Format View Hel
ABCDE

Fig 9.3 Input Image and Desired output text files for the sample Mini-Tahoma trainer set
.
9.3 Training Phase

Once the network has been initialized and the training input space prepared the network is ready to be trained. Some issues that need to be addressed upon training the network are:

· How chaotic is the input space? A chaotic input varies randomly and in extreme range without any predictable flow among its members.

· How complex are the patterns for which we train the network? Complex patterns are usually characterized by feature overlap and high data size.

· What should be used for the values of:

· Learning rate

· Sigmoid slope

· Weight bias

· How many Iterations (Epochs) are needed to train the network for a given number of input sets?

· What error threshold value must be used to compare against in order to prematurely stop iterations if the need arises?

Alphabetic optical symbols are one of the most chaotic input sets in pattern recognitions studies. This is due to the unpredictable nature of their pictorial representation seen from the sequence of their order. For instance the Latin alphabetic consecutive character ‘A’ and ‘B’ have little similarity in feature when represented in their pictorial symbolic form. The figure below demonstrates the point of chaotic and non-chaotic sequence with the Latin and some factious character set.
The complexity of the individual pattern data is also another issue in character recognition. Each symbol has a large number of distinct features that need to be accounted for in order to correctly recognize it. Elimination of some features might result in pattern overlap and the minimum amount of data required makes it one of the most complex classes of input space in pattern recognition.

Other than the known issues mentioned, the other numeric parameters of the network are determined in real time. They also vary greatly from one implementation to another according to the number of input symbols fed and the network topology.

For the purpose of this project the parameters use are:

· Learning rate = 150

· Sigmoid Slope = 0.014

· Weight bias = 30 (determined by trial and error)

· Number of Epochs = 300-600 (depending on the complexity of the font types)

· Mean error threshold value = 0.0002 (determined by trial and error)

Algorithm:
The training routine implemented the following basic algorithm

1. Form network according to the specified topology parameters

2. Initialize weights with random values within the specified weight_bias value

3. load trainer set files (both input image and desired output text)

4. analyze input image and map all detected symbols into linear arrays

5. read desired output text from file and convert each character to a binary Unicode value to store separately

6. for each character :

a. calculate the output of the feed forward network

b. compare with the desired output corresponding to the symbol and compute error

c. back propagate error across each link to adjust the weights

7. move to the next character and repeat step 6 until all characters are visited

8. compute the average error of all characters

9. repeat steps 6 and 8 until the specified number of epochs

a. Is error threshold reached? If so abort iteration

b. If not continue iteration

Flowchart:
[image: image23.png]Caleutate network outout

Form Network Compute emor
v i3
Iniinize weights Update weishts Nextinput vector
e Se— ¥ 3

Load triner st les

R S

Anvzeimeze e
7 wo

Detect next chasacter

Symbols
avahis? 3]

vES

wo

Roed desired outout text.
Y

vES

End

9.4 Testing

The testing phase of the implementation is simple and straightforward. Since the program is coded into modular parts the same routines that were used to load, analyze and compute network parameters of input vectors in the training phase can be reused in the testing phase as well. The basic steps in testing input images for characters can be summarized as follows:

Algorithm:
· load image file

· analyze image for character lines

· for each character line detect consecutive character symbols

· analyze and process symbol image to map into an input vector

· feed input vector to network and compute output

· convert the Unicode binary output to the corresponding character and render to a text box

Flowchart:
[image: image24.png]< Start >

-y
Anslyze image lines

S —
Fitstline

-y

v

Compute output

—

Map symbolto vector [

Convert Unicode output to chatacter

Lines available?

NO

et symbol

l« Next tine

Chapter 10
Implementation

Our project uses C# implementation. The project is coded using C# 3.0 and it is compatible with .Net 2.5 and above. Here is a brief overview of the framework.
10.1Class and Data Structure description

10.1.1 Classes

In this project we have a single class Recognizer which performs all the necessary OCR functions. This class includes all the functionality of the project, viz., image processing & operations of neural network.
10.1.2 Data Structures used

 Data Structures used for the project are:

1. number_of_layers: Array of integers. Contains an element for each layer in the neural network.in each element it stores the unmber of neurons at that layer.

2. input_set: 2D array of float. Contains a row for each of the input layer neurons & a column for each character in input set.Each element tells if a perticular i/p is 0 or 1 for a perticular i/p character for that neuron.
3. desired_output_set: 2D array of int. Contains a row for each of the output layer neurons & a column for each character in input set.Each element tells if a perticular o/p of a neuron is 0 or 1 for a perticular i/p character.

4. weight: 3D array of float. Contains the weights for all the inputs to all the neurons at all layers.

5. error: 2D array of float.Stores the error value for all the neurons at hidden & output layer.
6. output_bit: Array of integers. Holds the output bits for all the output neurons.

7. desired_output_bit: Arrat of integers. Holds the dezired output for a perticular character pattern during the training phase.

8. weight_bias: Integer variable. Used as bound for initializing weights of all neurons during network creation.
9. epochs: Integer variable. Contains the ‘epoch’ value for the network.
10.1.3 Identifying Methods

The following are the major methods used in the project:

1. load_character_trainer_set(): The method takes the path of the trainier set file(*.cts) as input. It then loads the corresponding trainer file & also the ‘.bmp’ file for that trainer set.

2. detect_next_character(): Gets the next character in the current line & extracts its features for further analysis. It then forms the ‘input set’ to give as input to the neural network. Detects the chracter scanned & writes it to the output text box.

3. analyze_image(): Gets the scanned character & normalizes it into the pre-defined matrix format. Also forms the proper input array for the neural network.

4. identify_lines(): Identifies the character lines in the input image & stores all the tops & bottoms of each line identified.

5. get_character_bounds(): Gets the right, left, top & bottom bounds of a character in the image. Makes use of the line_top & line_bottom of that perticular line.

6. form_network(): Creates the neural network. Initializes the number of neurons at each of input, output & hidden layers.

7. initialize_weights(): Initializes the weights for all neurons at all layers except the input layer.

8. train_network(): Trains the neural network for a given trainer set. Gets the input set matrix of the character scanned. Gets the corresponding dezired output value of all output neurons. Feeds the input set to the network & finds the output of the network. Then calculates the error value, back-propogates the error & updates the weights of neurons at hidden & output layers.

9. calculate_outputs(): Calculates the output of the neural network.
10. sigmoid(): Calculates the activation value of a neuron.
11. sigmoid_derivative(): Used to back-propogate the error value.
12. calculate_errors(): Calculates the error value for all the neurons at output & hidden layers.

13. calculate_weights(): Updates the weights of inputs to the neurons at hidden & output layers.
10.2 Designing interface objects

The GUI is divided into 3 groups – testing, training, & output.

· The testing group has the following components:

· Button to load the image to be analyzed.

· Image display area to display the input image.

· Button to start the character recognition.

· Text boxes indicating the bound values of the scanned character & its length & width.

· Image display area to display detected character.

· Button to load saved network.

· The training group contains the following components:

· Button to load character training set.

· Button to start analysis of the training set.

· Button to start training of the neural network.

· Button to save the trained neural network.

· Labels showing the following values: Epoch, Error percentage, number of characters in the training set.

· The output group has the following components.

· Text area that shows the output of the recognition.

· Button to save the output.

· Labels to display the recognized symbol & the corresponding Unicode value.

Chapter 11
Testing

The network has been trained and tested for a number of widely used font type in the Latin alphabet. Since the implementation of the software is open and the program code is scalable, the inclusion of more number of fonts from any typed language alphabet is straight forward.

The necessary steps are preparing the sequence of input symbol images in a single image file (*.bmp [bitmap] extension), typing the corresponding characters in a text file (*.cts [character trainer set] extension) and saving the two in the same folder (both must have the same file name except for their extensions). The application will provide a file opener dialog for the user to locate the *.cts text file and will load the corresponding image file by itself.

Although the results listed in the subsequent tables are from a training/testing process of symbol images created with a 72pt. font size the use of any other size is also straight forward by preparing the input/desired output set as explained. The application can be operated with symbol images as small as 20pt font size.

Note: Due to the random valued initialization of weight values results listed represent only typical network performance and exact reproduction might not be obtained with other trials.
11.1 Performance Observation
11.1.1 Influence of parameter variation
i. Increasing the number of iterations has generally a positive proportionality relation to the performance of the network. However in certain cases further increasing the number of epochs has an adverse effect of introducing more number of wrong recognitions. This partially can be attributed to the high value of learning rate parameter as the network approaches its optimal limits and further weight updates result in bypassing the optimal state. With further iterations the network will try to swing back to the desired state and back again continuously, with a good chance of missing the optimal state at the final epoch. This phenomenon is known as over learning.

ii. The size of the input states is also another direct factor influencing the performance. It is natural that the more number of input symbol set the network is required to be trained for the more it is susceptible for error. Usually the complex and large sized input sets require a large topology network with more number of iterations. For the above maximum set number of 90 symbols the optimal topology reached was one hidden layer of 250 neurons.

iii. Learning rate parameter variation also affects the network performance for a given limit of iterations. The less the value of this parameter, the lower the value with which the network updates its weights. This intuitively implies that it will be less likely to face the over learning difficulty discussed above since it will be updating its links slowly and in a more refined manner. But unfortunately this would also imply more number of iterations is required to reach its optimal state. Thus a trade of is needed in order to optimize the overall network performance. The optimal value decided upon for the learning parameter is 150.

11.2 Pictorial representation overlap anomalies
One can easily observe from the results listing that the entry for the ‘Latin Arial’ font type has, in general, the lowest performance among its peers. This has been discovered to arise due to an overlap in the pictorial representation of two of its symbols, namely the upper case letter ‘I’ (‘I’ in Times Roman) and the lower case letter ‘l’ (‘l’ in Times Roman).

[image: image25.png]Detected Character

Matiix Analysis

2|

13

Fig. 11.1 Matrix analysis for both lower case ‘l’ (006Ch) and upper case ‘I’ (0049h) of the Arial font.
This would definitely present a logically non-separable recognition task to the network as the training set will be instructing it to output one state for a symbolic image and at some other time another state for the same image. This will be disturbing not only the output vectors of the two characters but also nearby states as well as can be seen in the number of wrong characters. The best state the network can reach in such a case is to train itself to output one vector for both inputs, necessitating a wrong state to one of the output. Still this optimal state can be reached only with more number of iterations which for this implementation was 800. At such high number of epochs the other sets tend to jump into over learning states as discussed above.

11.3 Orthogonal inseparability

Some symbol sequences are orthogonally inseparable. This is to mean there can not be a vertical line that passes between the two symbols without crossing bitmap areas of either. Such images could not be processed for individual symbols within the limits of the project since it requires complex image processing algorithms. Some cases are presented below:

[image: image26.png]Upper case ‘A’ followed by upper case 'V’

Lower case 'f' followed by some short characters

Upper case 'L' followed by characters with side
extensions

Fig 11.4 Some orthogonally inseparable symbolic combinations in the Latin alphabet
CHAPTER 12

 Conclusion

The project has employed the MLP technique mentioned and good results were obtained for a number of widely used font types. The technical approach followed in processing input images, detecting graphic symbols, analyzing and mapping the symbols and training the network for a set of desired Unicode characters corresponding to the input images are discussed in the subsequent sections.
The project has recognized characters with 85-95% efficiency & 1.1-12% error rate.
Even though the implementation might have some limitations in terms of functionality and robustness, the researcher is confident that it fully serves the purpose of addressing the desired objectives.

CHAPTER 13

Further Enhancements

The application developed can be further enhanced to include following features:

· The project can be extended to handle multiple fonts at a time.

· Recognition of Hand Written Characters can be included.

· The system can be improved in terms of operating speed by optimizing the Neural Network.

· Recognition of other language characters can also be implemented.

· The system can be integrated with scanner software & other office automation software.
· This project may be extended by adding extra features (global features) to MLP networks like number of strokes in the characters. While global features provide information about specific cases concerning the structure of the character, spatial features are intended to provide overall character appearance information.
REFERENCES
1] Bishop, C.M. (1995). “Neural Networks for Pattern Recognition”, Oxford University Press, USA Frank Rosenblatt (1958), “The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain”, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386-408.

[2] J. M., Kaltenmeier A., Mandler E., Andrews L.. (1997). "Reject Management in a

Handwriting Recognition System", Proceedings of the 4th International Conference on

Document Analysis and Recognition, pp: 556–559, ISBN: 0-8186-7898-4, IEEE
Computer Society Washington, DC, USA.

[3] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P. (1998). “Gradient-based learning applied to

document recognition”, Proceedings of the IEEE, vol. 86, pp. 2278--2324, ISSN: 0018-

9219, November 1998

[4] LeCun, Y., L. D. Jackel, L. Bottou, A. Brunot, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U.

A. Muller, E. Sackinger, P. Simard, and V. Vapnik. (1995). "Comparison of learning

algorithms for handwritten digit recognition," International Conference on Artificial

Neural Networks, (F. Fogelman and P. Gallinari, eds.), pp. 53-60, Paris

[5] Le Dung, Makoto Mizukawa. (2006). “Automatic handwritten postcode reading system

using image processing and neural network technology”, Proceedings of SICE System

Integration Division Conference (SI2006), pp. 930-931, Hokkaido, December 2006.

[6] Martin T. Hagan, Howard B. Demuth, Mark Beale. (1996). “Neural Network Design”,

Thomson Learning, ISBN: 981-240-485-6

Minsky, Marvin and Seymour Papert (1969), “Perceptrons: An introduction to Computational

Geometry”, MIT Press.

[7] Patrice Y. Simard, Dave Steinkraus, John C. Platt. (2003). “Best Practices for Convolutional

Neural Networks Applied to Visual Document Analysis”, International Conference

on Document Analysis and Recognition (ICDAR), pp. 958-962, IEEE Computer Society,

Los Alamitos, 2003.

APPENDIX A
A. ASCII Table of codes
1. Character Codes Chart 1 (0-127)

[image: image27.png]CtrlDec Hex Char Code| [Dec Hex Char| |Dec Hex Char| [Dec Hex Char
~e] o |00 noL | 32 [20 61 |40 | @ || ose0 |*
A1 |or soH | |33 |2t | ! 65 41 | A 97|61 | @
~e | 2 |02 stx | |34 |22 | = 6 |42 | B es |62 | b
~c| 3 |03 e | |35 |23 | # 67 43 | C (63 | C
~p | 4 |oa eor | |36 |24 | $ |es |44 | D ||100|6a |d
| s |os eng | 37 |25 | % 6 |45 | E 101 |65 | €
~F | 6 |06 ack | (38 |26 | & 70 |46 | F 102 [es | f
~e | 7 |07 BeL | |39 |27 | * 71 |47 | G 103 |67 |9
| s |os es |[a0 |25 [(||72 |4 |H ||w04|es |h
AL | e o wro | e |29 |) 73 |49 | I | |105|es |1
~ |10 |oa | fa2 [2a | = [|74 e | J |]106 |ea |]
k|11 |os v |fa3 [z [+ | |75 |48 | K | |07 |65 |k
AL |12 |oc FF 44 |2c |0 76 |4c | L | |w08|ec |1
Am |13 | oD R 45 |20 |~ 77 |ao | H 109 [eD | m
AN |14 |0 so a6 |28 | * 7 |4e | N 110 [6E | N
~o |15 |oF st a7 |2r |/ || |4 |0 ||111]eF |0
~p |16 |10 o |f4 |30 | @ |[so |so [P ||t2]70 |P
~Q |17 |11 pct | |49 |31 |1 81 [s1 | Q u3f7 | a
AR |18 |12 oc2 | |50 |32 |2 82 |52 |R ||14|72 |r
~s |19 |13 ocs | [s1 |33 |3 |83 |s3 S ||us|7 |s
AT |20 |14 oca | [s2 |34 | & g4 [sa [T 16 (74 |t
~u 2t |1s nak | [s3 35 |9 |[ss |ss [U ||17]7s |u
Av |22 |16 s | [sa |36 |6 s6 [se [V | |us |76 |V
Aw |23 |17 e | |ss |37 |7 87 |57 | W | |1o]|77 | w
~x |24 |18 can | |s6 |38 |8 ||ss |ss | K | [120|78 | %
Ay |25 | 1o em | [s7 |30 |9 89 [s9 | Y | |12tf7 |y
~z |26 |1a sue | [s8 [3a | @ %0 [sa | Z 12278 | 2
AL |27 |18 esc | |59 |38 | 91 |ss | [123 |78 | {
ENERES e |feo [sc | < [[s2 |sc [\ | |12 |7 |}
SRETREY as |[e1 |30 |= ||z |50 |1 ||12s|70 |}
anlso |1 | & frs | fe2 |3e [> |[ea |se |~ | |1s]7e |
A3t |eF | v Jus |3 |3 |7 os |5 | _ | |w27 |7 |0

* ASCIL code 127 has the code DEL. Under 115-DOS, this code has the same effect as ASCIL 8 (B5).

The DEL code can be generated by the CTRL + BKS? key.

2. Character Codes Chart 2 B(128-255)

[image: image28.png]Dec Hex Char| [Dec Hex Char| |Dec Hex Char| |Dec Hex Char
128 e0 |G | [0 [& |[ro2]co [| [224]e0 =
129 |81 | 161 |ar |1 193 |ct L 225 |e1 |B
130 |82 | € 162 (a2 | 6 194 fc2 | T 22 |e2 | [
Pro P S pre sy v [o ey R B e |
132 84 | @ 164 a4 | R 19 |ca | — 25 |ea | &
13385 | @ 165 s | N 197 s |+ 229 |85 | O
134 |86 (@ | |6 |ac [||ws|ce | k| [230 [es M
15 (67 | € | [167[a7 [© ||t fcr [} [[omt|er |7
136 88 [€ ||ws|as | & [[200]cs [& | [|232]es |§
137 89 | & 169 (A9 | - 201 |co | F 233 |89 | B
138 |sa [€ |[i70]|aa [~ | |202]ca [L |[234|ea (R
139 |88 [1 | [171 a8 | % 203|ce | T | |235|ee |8
wofoc |1 |[i72|ac [[[20a[cc | B | |23 |ec |
141 [80 |1 173 a0 | § | |205|co 237 eo | ¢
142 |8 | A 174 |ae | « | |208 [ce i 238 [| €
13 s [A | |75 |ar | » [[207|cr [L | |23 |er [N
144 (20 | E 176 | 80 208 Do | L 240 [Fo | =
s o1 | @ | |177|e1 2090 o1 |7 | |21 |en |2
146 |02 | s ez || |20 |02 |7 ||292|r2 |2
17 ss |6 || fes [[[efos | L | 2| | <
148 |94 |0 180 84 | 4 212 |pa | b 244 |Fa | [
149 o5 [0 | |msfes |4 ||a3]os | | |2as|es |]
150 |96 |G | [182 |86 || | [a14[06 | [[206]s

151 (o7 [0 | |mafe7 |1 [|as|o7 [4 | |27 |e | =
152 |98 | § 184 B8 |7 216 (D8 |+ 248 |F8 | ©
15399 |0 | [sss|es [| |17 [0 [[|aso|re |
154 on |G | [1oe [on | | | |28 |on | ¢ | |250 |m | -
155 (o8 | € 18788 |1 |[|a19|os | | |25 |r |4
156 |oc | £ 188 [BC | 4 220 [oc | m 252 |/ |
157 [ep | ¥ 189 (80 | 4 [|22 |oD 253 |F0 | 2
158 o | 190 [BE |4 222 | pE 254 [FE |0
159 |oF | f 191 [BF | 1 223 |oF | @ 255 | FF

C. Code Listing [MS Visual C#.NET]
Image Line identification

public void identify_lines()

{

 int y = image_start_pixel_y;

 int x = image_start_pixel_x;

 bool no_black_pixel;

 int line_number = 0;

 line_present = true;

 while (line_present)

 {

 x = image_start_pixel_x;

 while (Convert.ToString (input_image.GetPixel (x,y)) ==

 "Color [A=255, R=255, G=255, B=255]")

 {

 x++;

 if (x == input_image_width)

 {

 x = image_start_pixel_x;

 y++;

 }

 if (y >= input_image_height)

 {

 line_present = false;

 break;

 }

 }

 if (line_present)

 {

 line_top[line_number] = y;

 no_black_pixel = false;

while (no_black_pixel == false)

 {

 y++;

 no_black_pixel = true;

 for (x = image_start_pixel_x; x < input_image_width; x++)

 if ((Convert.ToString(input_image.GetPixel (x,y)) ==

 "Color [A=255, R=0, G=0, B=0]"))

 no_black_pixel = false;

 }

 line_bottom[line_number] = y - 1;

 line_number++;

 }

 }

 number_of_lines = line_number;

}

Character Symbol boundary detection

public void get_character_bounds()

{

 int x = image_start_pixel_x;

 int y = image_start_pixel_y;

 bool no_black_pixel = false;

 if (y <= input_image_height && x <= input_image_width)

 {

 while (Convert.ToString(input_image.GetPixel(x, y)) ==

 "Color [A=255, R=255, G=255, B=255]")

 {

 x++;

 if (x == input_image_width)

 {

 x = image_start_pixel_x;

 y++;

 }

if (y >= line_bottom[current_line])

 {

 character_present = false;

 break;

 }

 }

 if (character_present)

 {

 top = y;

 x = image_start_pixel_x;

 y = image_start_pixel_y;

 while (Convert.ToString(input_image.GetPixel(x, y)) ==

 "Color[A=255, R=255, G=255, B=255]")

 {

 y++;

 if (y == line_bottom[current_line])

 {

 y = image_start_pixel_y;

 x++;

 }

 if (x > input_image_width)

 break;

 }

 if (x < input_image_width)

 left = x;

 no_black_pixel = false;

 x = left + 10;

 while (no_black_pixel == false)

 {

 x++;

 no_black_pixel = true;

 for(y=image_start_pixel_y;y<line_bottom[current_line];y++)

 if ((Convert.ToString(input_image.GetPixel(x, y)) ==
 "Color [A=255, R=0, G=0, B=0]"))

 no_black_pixel = false;

 }

 right = x - 1;

 no_black_pixel=true;

 y=line_bottom[current_line]+2;

 while(no_black_pixel==true)

 {

 y--;

 for(x=image_start_pixel_x;x<right;x++)

 if((Convert.ToString (input_image.GetPixel (x,y)) ==

 "Color [A=255, R=0, G=0, B=0]"))

 no_black_pixel = false;

 }

 bottom=y;
 prev_right = right;

 }

 else if (current_line < number_of_lines - 1)

 {
 current_line++;

image_start_pixel_y = line_top[current_line];

image_start_pixel_x = 0;

prev_right = 20;

output_string = output_string + "\n";

character_present = true;

get_character_bounds();

 }

 }

 else

 character_present = false;
}
Network forming
public void form_network()
{

 layers[0] = number_of_input_nodes;

 layers[number_of_layers - 1] = number_of_output_nodes;

 for (int i = 1; i < number_of_layers - 1; i++)

 layers[i] = maximum_layers;

}
Weight initialization

public void initialize_weights()

{

 for (int i = 1; i < number_of_layers; i++)

 for (int j = 0; j < layers[i]; j++)

 for (int k = 0; k < layers[i - 1]; k++)

 weight[i, j, k] = (float)(rnd.Next(-weight_bias,

 weight_bias));

}
Network Training

public void train_network()

{

 int set_number;

 float average_error = 0.0F;

 progressBar.Maximum = epochs;

 for (int epoch = 0; epoch <= epochs; epoch++)

 {

 average_error = 0.0F;

 for (int i = 0; i < number_of_input_sets; i++)

 {

 set_number = rnd.Next(0, number_of_input_sets);

 get_inputs(set_number);

 get_desired_outputs(set_number);

 calculate_outputs();

 calculate_errors();

 calculate_weights();

 average_error = average_error + get_average_error();

 }

 progressBar.PerformStep();

 epoch2_lbl.Text =epoch.ToString ();

 epoch2_lbl.Update ();

 average_error = average_error / number_of_input_sets;

 if (average_error < error_threshold)

 {

 epoch = epochs + 1;

 progressBar.Value = progressBar.Maximum;

 errPercentage2_lbl.Text ="<"+error_threshold.ToString ();

 errPercentage2_lbl.Update ();

 }

 }

}
Output computation

public void calculate_outputs()

{

 float f_net;

 int number_of_weights;

 for (int i = 0; i < number_of_layers; i++)

 for (int j = 0; j < layers[i]; j++)

 {

 f_net = 0.0F;

 if (i == 0)
 number_of_weights = 1;

 else
 number_of_weights = layers[i - 1];

 for (int k = 0; k < number_of_weights; k++)

 if (i == 0)

 f_net = current_input[j];

 else

 f_net = f_net + node_output[i - 1, k] * weight[i, j, k];

 node_output[i, j] = sigmoid(f_net);

 }
}

Error Computation

public void calculate_errors()

{

 float sum = 0.0F;

 for (int i = 0; i < number_of_output_nodes; i++)

 error[number_of_layers - 1, i] =
 (float)((desired_output[i]-node_output[number_of_layers-1, i]) *

 sigmoid_derivative(node_output[number_of_layers - 1, i]));

 for (int i = number_of_layers - 2; i >= 0; i--)

 for (int j = 0; j < layers[i]; j++)

 {
 sum = 0.0F;

 for (int k = 0; k < layers[i + 1]; k++)

 sum = sum + error[i + 1, k] * weight[i + 1, k, j];

 error[i,j]=(float)(sigmoid_derivative(node_output[i,j])*sum);

 }
}

Weight update

public void calculate_weights()

{

 for (int i = 1; i < number_of_layers; i++)

 for (int j = 0; j < layers[i]; j++)

 for (int k = 0; k < layers[i - 1]; k++)

 {

 weight[i,j,k]=(float)(weight[i,j,k]+learning_rate*
 error[i, j] * node_output[i - 1, k]);

 }
}

CODING
using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using System.Data;

using System.Text;

using System.IO;

using System.Threading;

namespace OCR

{

public class Form1 : System.Windows.Forms.Form

{

private System.Windows.Forms.PictureBox inputImg_picBox;

private System.Windows.Forms.PictureBox detectedChar_picBox;

private System.Windows.Forms.TextBox charLocTop_txtBox;

private System.Windows.Forms.TextBox charLocLeft_txtBox;

private System.Windows.Forms.Button loadImg_button;

private System.Windows.Forms.TextBox charLocBottom_txtBox;

 private System.Windows.Forms.TextBox charLocRight_txtBox;

private System.Windows.Forms.Label charLoctop_lbl;

private System.Windows.Forms.Label charLocLeft_lbl;

private System.Windows.Forms.Label charLocRight_lbl;

private System.Windows.Forms.Label charLocBottom_lbl;

private System.Windows.Forms.GroupBox charLocation_grpBox;

 private System.Windows.Forms.Label inputImg_lbl;

private System.Windows.Forms.GroupBox groupBox2;

private System.Windows.Forms.TextBox charDimWidth_txtBox;

private System.Windows.Forms.TextBox charDimHeight_txtBox;

private System.Windows.Forms.Label charDimWidth_lbl;

 private System.Windows.Forms.Label charDimHeight_lbl;

 private System.Windows.Forms.Label detectedChar_lbl;

private System.Windows.Forms.Label matrixAnalysis_lbl;

private System.Windows.Forms.GroupBox training_grpBox;

private System.Windows.Forms.GroupBox output_grpBox;

private System.Windows.Forms.Label hexVal1_lbl;

private System.Windows.Forms.Label hexVal2_lbl;

private System.Windows.Forms.Label opSymbol_lbl;

private System.Windows.Forms.TextBox opSymbol_txtBox;

private System.Windows.Forms.Button loadTrainingSet_button;

private System.Windows.Forms.GroupBox testing_grpBox;

private System.Windows.Forms.Button startTraining_button;

private System.Windows.Forms.ProgressBar progressBar;

private System.Windows.Forms.Label epoch1_lbl;

private System.Windows.Forms.Label symbols1_lbl;

private System.Windows.Forms.Label epoch2_lbl;

private System.Windows.Forms.Label symbols2_lbl;

private System.Windows.Forms.Label progress_lbl;

private System.Windows.Forms.Label currentCharSet2_lbl;

private System.Windows.Forms.Label currentCharSet1_lbl;

private System.Windows.Forms.Label errPercentage2_lbl;

private System.Windows.Forms.Label errPercentage1_lbl;

private System.Windows.Forms.Button about_button;

 private System.Windows.Forms.Button exit_button;

private System.Windows.Forms.Label status1_lbl;

private System.Windows.Forms.Label status2_lbl;

private System.Windows.Forms.Button saveNetwork_button;

private System.Windows.Forms.Button saveOutput_button;

private System.Windows.Forms.Button startRecognition_button;

 private System.Windows.Forms.Button loadNetwork_button;

private System.Windows.Forms.Label symbol1_lbl;

private System.Windows.Forms.Label matrixDimention3_lbl;

private System.Windows.Forms.Label matrixDimention4_lbl;

private System.Windows.Forms.Label matrixDimention1_lbl;

private System.Windows.Forms.Label matrixDimention2_lbl;

private System.Windows.Forms.Label utf16_lbl;

private System.Windows.Forms.RichTextBox opText_richTextBox;

private System.ComponentModel.IContainer components=null;

private System.Windows.Forms.OpenFileDialog;

private System.Windows.Forms.SaveFileDialog;

public

//LAST WORKING VALUES

const int number_of_layers=3;
//3

const int number_of_input_nodes=150;

const int number_of_output_nodes=16;

const int maximum_layers=250;

const int maximum_number_of_sets=100;

/

int number_of_input_sets;

int epochs =300;

const float error_threshold=0.0002F;

 float learning_rate=150F;

 float slope=0.014F;

int weight_bias=30;

int[] layers=new int [number_of_layers];

float[] current_input=new float [number_of_input_nodes];

float[,] input_set=new float [number_of_input_nodes,maximum_number_of_sets];

int[] desired_output=new int [number_of_output_nodes];

int[,] desired_output_set=new int [number_of_output_nodes,maximum_number_of_sets];

float[,] node_output=new float [number_of_layers,maximum_layers];

float[,,] weight=new float [number_of_layers,maximum_layers,maximum_layers];

float[,] error=new float [number_of_layers,maximum_layers];

int[] output_bit=new int [number_of_output_nodes];

int[] desired_output_bit = new int [number_of_output_nodes];

const int rec_width = 5;

const int rec_height = 5;

const int x_org=498;

const int y_org=120;

const int matrix_width=20;

const int matrix_height=30;

int image_start_pixel_x=0;

int image_start_pixel_y=0;

int[] line_top=new int [20];

int[] line_bottom=new int [20];

int current_line=0;

int number_of_lines=0;

bool line_present=true;

bool character_valid=true;

bool character_present=true;

bool trainer_thread_created=false;

string image_file_name;

string image_file_path;

string character_trainer_set_file_name;

string character_trainer_set_file_path;

string network_file_name;

string trainer_string;

string output_string;

System.IO.StreamReader image_file_stream;

System.IO.StreamReader character_trainer_set_file_stream;

System.IO.StreamWriter network_save_file_stream;

System.IO.StreamReader network_load_file_stream;

Random rnd = new Random();

UnicodeEncoding unicode = new UnicodeEncoding();

Color[,] ann_input_pixel = new Color[20,30];

Color[,] character_image_pixel = new Color[600,800];

int[,] ann_input_value=new int [20,30];

int[] sample_pixel_x=new int [20];

int[] sample_pixel_y=new int [30];

int input_image_height;

int input_image_width;

int top,bottom,left,right;

int prev_right=20;

int character_height;

int character_width;

Bitmap input_image;

private System.Windows.Forms.NumericUpDown maxEpoches_numericUpDown;

 private System.Windows.Forms.Label maxEpoches_lbl;

 private OpenFileDialog loadImg_openFileDialog;

 private OpenFileDialog loadTrainingSet_openFileDialog;

 private SaveFileDialog saveOutput_saveFileDialog;

Bitmap character_image;

public Form1()

{

InitializeComponent();

}

protected override void Dispose(bool disposing)

{

if(disposing)

{

if (components != null)

{

components.Dispose();

}

}

base.Dispose(disposing);

}

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

 System.Configuration.AppSettingsReader configurationAppSettings = new System.Configuration.AppSettingsReader();

 System.ComponentModel.ComponentResourceManager resources = new System.ComponentModel.ComponentResourceManager(typeof(Form1));

 this.inputImg_picBox = new System.Windows.Forms.PictureBox();

 this.charLocTop_txtBox = new System.Windows.Forms.TextBox();

 this.charLocLeft_txtBox = new System.Windows.Forms.TextBox();

 this.loadImg_button = new System.Windows.Forms.Button();

 this.detectedChar_picBox = new System.Windows.Forms.PictureBox();

 this.charLocBottom_txtBox = new System.Windows.Forms.TextBox();

 this.charLocRight_txtBox = new System.Windows.Forms.TextBox();

 this.loadNetwork_openFileDialog = new System.Windows.Forms.OpenFileDialog();

 this.charLoctop_lbl = new System.Windows.Forms.Label();

 this.charLocLeft_lbl = new System.Windows.Forms.Label();

 this.charLocRight_lbl = new System.Windows.Forms.Label();

 this.charLocBottom_lbl = new System.Windows.Forms.Label();

 this.charLocation_grpBox = new System.Windows.Forms.GroupBox();

 this.inputImg_lbl = new System.Windows.Forms.Label();

 this.groupBox2 = new System.Windows.Forms.GroupBox();

 this.charDimHeight_lbl = new System.Windows.Forms.Label();

 this.charDimWidth_lbl = new System.Windows.Forms.Label();

 this.charDimWidth_txtBox = new System.Windows.Forms.TextBox();

 this.charDimHeight_txtBox = new System.Windows.Forms.TextBox();

 this.detectedChar_lbl = new System.Windows.Forms.Label();

 this.matrixAnalysis_lbl = new System.Windows.Forms.Label();

 this.training_grpBox = new System.Windows.Forms.GroupBox();

 this.maxEpoches_lbl = new System.Windows.Forms.Label();

 this.maxEpoches_numericUpDown = new System.Windows.Forms.NumericUpDown();

 this.saveNetwork_button = new System.Windows.Forms.Button();

 this.status2_lbl = new System.Windows.Forms.Label();

 this.status1_lbl = new System.Windows.Forms.Label();

 this.errPercentage2_lbl = new System.Windows.Forms.Label();

 this.errPercentage1_lbl = new System.Windows.Forms.Label();

 this.currentCharSet1_lbl = new System.Windows.Forms.Label();

 this.currentCharSet2_lbl = new System.Windows.Forms.Label();

 this.progress_lbl = new System.Windows.Forms.Label();

 this.symbols2_lbl = new System.Windows.Forms.Label();

 this.epoch2_lbl = new System.Windows.Forms.Label();

 this.symbols1_lbl = new System.Windows.Forms.Label();

 this.epoch1_lbl = new System.Windows.Forms.Label();

 this.progressBar = new System.Windows.Forms.ProgressBar();

 this.startTraining_button = new System.Windows.Forms.Button();

 this.loadTrainingSet_button = new System.Windows.Forms.Button();

 this.output_grpBox = new System.Windows.Forms.GroupBox();

 this.utf16_lbl = new System.Windows.Forms.Label();

 this.opText_richTextBox = new System.Windows.Forms.RichTextBox();

 this.saveOutput_button = new System.Windows.Forms.Button();

 this.opSymbol_txtBox = new System.Windows.Forms.TextBox();

 this.opSymbol_lbl = new System.Windows.Forms.Label();

 this.hexVal2_lbl = new System.Windows.Forms.Label();

 this.hexVal1_lbl = new System.Windows.Forms.Label();

 this.testing_grpBox = new System.Windows.Forms.GroupBox();

 this.matrixDimention2_lbl = new System.Windows.Forms.Label();

 this.matrixDimention1_lbl = new System.Windows.Forms.Label();

 this.matrixDimention4_lbl = new System.Windows.Forms.Label();

 this.matrixDimention3_lbl = new System.Windows.Forms.Label();

 this.symbol1_lbl = new System.Windows.Forms.Label();

 this.startRecognition_button = new System.Windows.Forms.Button();

 this.loadNetwork_button = new System.Windows.Forms.Button();

 this.about_button = new System.Windows.Forms.Button();

 this.exit_button = new System.Windows.Forms.Button();

 this.saveNetwork_saveFileDialog = new System.Windows.Forms.SaveFileDialog();

 this.loadImg_openFileDialog = new System.Windows.Forms.OpenFileDialog();

 this.loadTrainingSet_openFileDialog = new System.Windows.Forms.OpenFileDialog();

 this.saveOutput_saveFileDialog = new System.Windows.Forms.SaveFileDialog();

 ((System.ComponentModel.ISupportInitialize)(this.inputImg_picBox)).BeginInit();

 ((System.ComponentModel.ISupportInitialize)(this.detectedChar_picBox)).BeginInit();

 this.charLocation_grpBox.SuspendLayout();

 this.groupBox2.SuspendLayout();

 this.training_grpBox.SuspendLayout();

 ((System.ComponentModel.ISupportInitialize)(this.maxEpoches_numericUpDown)).BeginInit();

 this.output_grpBox.SuspendLayout();

 this.testing_grpBox.SuspendLayout();

 this.SuspendLayout();

 //

 // inputImg_picBox

 //

 this.inputImg_picBox.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.inputImg_picBox.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.inputImg_picBox.Location = new System.Drawing.Point(16, 120);

 this.inputImg_picBox.Name = "inputImg_picBox";

 this.inputImg_picBox.Size = new System.Drawing.Size(336, 150);

 this.inputImg_picBox.TabIndex = 0;

 this.inputImg_picBox.TabStop = false;

 //

 // charLocTop_txtBox

 //

 this.charLocTop_txtBox.Location = new System.Drawing.Point(8, 40);

 this.charLocTop_txtBox.Name = "charLocTop_txtBox";

 this.charLocTop_txtBox.Size = new System.Drawing.Size(32, 20);

 this.charLocTop_txtBox.TabIndex = 3;

 //

 // charLocLeft_txtBox

 //

 this.charLocLeft_txtBox.Location = new System.Drawing.Point(8, 16);

 this.charLocLeft_txtBox.Name = "charLocLeft_txtBox";

 this.charLocLeft_txtBox.Size = new System.Drawing.Size(32, 20);

 this.charLocLeft_txtBox.TabIndex = 4;

 //

 // loadImg_button

 //

 this.loadImg_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.loadImg_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.loadImg_button.ForeColor = System.Drawing.SystemColors.ControlText;

 this.loadImg_button.Location = new System.Drawing.Point(56, 296);

 this.loadImg_button.Name = "loadImg_button";

 this.loadImg_button.Size = new System.Drawing.Size(99, 24);

 this.loadImg_button.TabIndex = 2;

 this.loadImg_button.Text = "Load Image";

 this.loadImg_button.UseVisualStyleBackColor = false;

 this.loadImg_button.Click += new System.EventHandler(this.loadImg_button_Click);

 //

 // detectedChar_picBox

 //

 this.detectedChar_picBox.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.detectedChar_picBox.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.detectedChar_picBox.Location = new System.Drawing.Point(360, 120);

 this.detectedChar_picBox.Name = "detectedChar_picBox";

 this.detectedChar_picBox.Size = new System.Drawing.Size(100, 150);

 this.detectedChar_picBox.SizeMode = System.Windows.Forms.PictureBoxSizeMode.StretchImage;

 this.detectedChar_picBox.TabIndex = 6;

 this.detectedChar_picBox.TabStop = false;

 //

 // charLocBottom_txtBox

 //

 this.charLocBottom_txtBox.Location = new System.Drawing.Point(96, 40);

 this.charLocBottom_txtBox.Name = "charLocBottom_txtBox";

 this.charLocBottom_txtBox.Size = new System.Drawing.Size(32, 20);

 this.charLocBottom_txtBox.TabIndex = 7;

 //

 // charLocRight_txtBox

 //

 this.charLocRight_txtBox.Location = new System.Drawing.Point(96, 16);

 this.charLocRight_txtBox.Name = "charLocRight_txtBox";

 this.charLocRight_txtBox.Size = new System.Drawing.Size(32, 20);

 this.charLocRight_txtBox.TabIndex = 8;

 //

 // loadNetwork_openFileDialog

 //

 this.loadNetwork_openFileDialog.AddExtension = false;

 this.loadNetwork_openFileDialog.DefaultExt = ((string)(configurationAppSettings.GetValue("openFileDialog1.DefaultExt", typeof(string))));

 //

 // charLoctop_lbl

 //

 this.charLoctop_lbl.Location = new System.Drawing.Point(40, 40);

 this.charLoctop_lbl.Name = "charLoctop_lbl";

 this.charLoctop_lbl.Size = new System.Drawing.Size(24, 16);

 this.charLoctop_lbl.TabIndex = 10;

 this.charLoctop_lbl.Text = "Top";

 //

 // charLocLeft_lbl

 //

 this.charLocLeft_lbl.Location = new System.Drawing.Point(40, 16);

 this.charLocLeft_lbl.Name = "charLocLeft_lbl";

 this.charLocLeft_lbl.Size = new System.Drawing.Size(24, 16);

 this.charLocLeft_lbl.TabIndex = 11;

 this.charLocLeft_lbl.Text = "Left";

 //

 // charLocRight_lbl

 //

 this.charLocRight_lbl.Location = new System.Drawing.Point(128, 16);

 this.charLocRight_lbl.Name = "charLocRight_lbl";

 this.charLocRight_lbl.Size = new System.Drawing.Size(32, 16);

 this.charLocRight_lbl.TabIndex = 12;

 this.charLocRight_lbl.Text = "Right";

 //

 // charLocBottom_lbl

 //

 this.charLocBottom_lbl.Location = new System.Drawing.Point(128, 40);

 this.charLocBottom_lbl.Name = "charLocBottom_lbl";

 this.charLocBottom_lbl.Size = new System.Drawing.Size(40, 16);

 this.charLocBottom_lbl.TabIndex = 13;

 this.charLocBottom_lbl.Text = "Bottom";

 //

 // charLocation_grpBox

 //

 this.charLocation_grpBox.Controls.Add(this.charLocLeft_txtBox);

 this.charLocation_grpBox.Controls.Add(this.charLocLeft_lbl);

 this.charLocation_grpBox.Controls.Add(this.charLocBottom_txtBox);

 this.charLocation_grpBox.Controls.Add(this.charLocBottom_lbl);

 this.charLocation_grpBox.Controls.Add(this.charLocRight_txtBox);

 this.charLocation_grpBox.Controls.Add(this.charLocRight_lbl);

 this.charLocation_grpBox.Controls.Add(this.charLocTop_txtBox);

 this.charLocation_grpBox.Controls.Add(this.charLoctop_lbl);

 this.charLocation_grpBox.Location = new System.Drawing.Point(35, 32);

 this.charLocation_grpBox.Name = "charLocation_grpBox";

 this.charLocation_grpBox.Size = new System.Drawing.Size(176, 64);

 this.charLocation_grpBox.TabIndex = 14;

 this.charLocation_grpBox.TabStop = false;

 this.charLocation_grpBox.Text = "Character Location";

 //

 // inputImg_lbl

 //

 this.inputImg_lbl.Location = new System.Drawing.Point(16, 104);

 this.inputImg_lbl.Name = "inputImg_lbl";

 this.inputImg_lbl.Size = new System.Drawing.Size(336, 16);

 this.inputImg_lbl.TabIndex = 15;

 this.inputImg_lbl.Text = "Input Image:";

 //

 // groupBox2

 //

 this.groupBox2.Controls.Add(this.charDimHeight_lbl);

 this.groupBox2.Controls.Add(this.charDimWidth_lbl);

 this.groupBox2.Controls.Add(this.charDimWidth_txtBox);

 this.groupBox2.Controls.Add(this.charDimHeight_txtBox);

 this.groupBox2.Location = new System.Drawing.Point(231, 32);

 this.groupBox2.Name = "groupBox2";

 this.groupBox2.Size = new System.Drawing.Size(152, 64);

 this.groupBox2.TabIndex = 18;

 this.groupBox2.TabStop = false;

 this.groupBox2.Text = "Character Dimensions";

 //

 // charDimHeight_lbl

 //

 this.charDimHeight_lbl.Location = new System.Drawing.Point(56, 40);

 this.charDimHeight_lbl.Name = "charDimHeight_lbl";

 this.charDimHeight_lbl.Size = new System.Drawing.Size(48, 16);

 this.charDimHeight_lbl.TabIndex = 2;

 this.charDimHeight_lbl.Text = "Height";

 //

 // charDimWidth_lbl

 this.charDimWidth_lbl.Location = new System.Drawing.Point(56, 16);

 this.charDimWidth_lbl.Name = "charDimWidth_lbl";

 this.charDimWidth_lbl.Size = new System.Drawing.Size(40, 16);

 this.charDimWidth_lbl.TabIndex = 1;

 this.charDimWidth_lbl.Text = "Width";

 //

 // charDimWidth_txtBox

 //

 this.charDimWidth_txtBox.Location = new System.Drawing.Point(8, 16);

 this.charDimWidth_txtBox.Name = "charDimWidth_txtBox";

 this.charDimWidth_txtBox.Size = new System.Drawing.Size(40, 20);

 this.charDimWidth_txtBox.TabIndex = 0;

 //

 // charDimHeight_txtBox

 //

 this.charDimHeight_txtBox.Location = new System.Drawing.Point(8, 40);

 this.charDimHeight_txtBox.Name = "charDimHeight_txtBox";

 this.charDimHeight_txtBox.Size = new System.Drawing.Size(40, 20);

 this.charDimHeight_txtBox.TabIndex = 19;

 //

 // detectedChar_lbl

 //

 this.detectedChar_lbl.Location = new System.Drawing.Point(358, 104);

 this.detectedChar_lbl.Name = "detectedChar_lbl";

 this.detectedChar_lbl.Size = new System.Drawing.Size(102, 16);

 this.detectedChar_lbl.TabIndex = 23;

 this.detectedChar_lbl.Text = "Detected Character";

 //

 // matrixAnalysis_lbl

 //

 this.matrixAnalysis_lbl.Location = new System.Drawing.Point(504, 104);

 this.matrixAnalysis_lbl.Name = "matrixAnalysis_lbl";

 this.matrixAnalysis_lbl.Size = new System.Drawing.Size(96, 16);

 this.matrixAnalysis_lbl.TabIndex = 25;

 this.matrixAnalysis_lbl.Text = "Matrix Analysis";

 //

 // training_grpBox

 //

 this.training_grpBox.Controls.Add(this.maxEpoches_lbl);

 this.training_grpBox.Controls.Add(this.maxEpoches_numericUpDown);

 this.training_grpBox.Controls.Add(this.saveNetwork_button);

 this.training_grpBox.Controls.Add(this.status2_lbl);

 this.training_grpBox.Controls.Add(this.status1_lbl);

 this.training_grpBox.Controls.Add(this.errPercentage2_lbl);

 this.training_grpBox.Controls.Add(this.errPercentage1_lbl);

 this.training_grpBox.Controls.Add(this.currentCharSet1_lbl);

 this.training_grpBox.Controls.Add(this.currentCharSet2_lbl);

 this.training_grpBox.Controls.Add(this.progress_lbl);

 this.training_grpBox.Controls.Add(this.symbols2_lbl);

 this.training_grpBox.Controls.Add(this.epoch2_lbl);

 this.training_grpBox.Controls.Add(this.symbols1_lbl);

 this.training_grpBox.Controls.Add(this.epoch1_lbl);

 this.training_grpBox.Controls.Add(this.progressBar);

 this.training_grpBox.Controls.Add(this.startTraining_button);

 this.training_grpBox.Controls.Add(this.loadTrainingSet_button);

 this.training_grpBox.Font = new System.Drawing.Font("Microsoft Sans Serif", 16F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.training_grpBox.ForeColor = System.Drawing.Color.Crimson;

 this.training_grpBox.Location = new System.Drawing.Point(8, 353);

 this.training_grpBox.Name = "training_grpBox";

 this.training_grpBox.Size = new System.Drawing.Size(526, 206);

 this.training_grpBox.TabIndex = 26;

 this.training_grpBox.TabStop = false;

 this.training_grpBox.Text = "Training";

 //

 // maxEpoches_lbl

 //

 this.maxEpoches_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.maxEpoches_lbl.ForeColor = System.Drawing.Color.Black;

 this.maxEpoches_lbl.Location = new System.Drawing.Point(364, 72);

 this.maxEpoches_lbl.Name = "maxEpoches_lbl";

 this.maxEpoches_lbl.Size = new System.Drawing.Size(70, 16);

 this.maxEpoches_lbl.TabIndex = 21;

 this.maxEpoches_lbl.Text = "Max Epochs :";

 //

 // maxEpoches_numericUpDown

 //

 this.maxEpoches_numericUpDown.BackColor = System.Drawing.SystemColors.ScrollBar;

 this.maxEpoches_numericUpDown.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.maxEpoches_numericUpDown.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.maxEpoches_numericUpDown.ForeColor = System.Drawing.Color.Blue;

 this.maxEpoches_numericUpDown.Increment = new decimal(new int[] {

 50,

 0,

 0,

 0});

 this.maxEpoches_numericUpDown.Location = new System.Drawing.Point(440, 72);

 this.maxEpoches_numericUpDown.Maximum = new decimal(new int[] {

 4000,

 0,

 0,

 0});

 this.maxEpoches_numericUpDown.Minimum = new decimal(new int[] {

 50,

 0,

 0,

 0});

 this.maxEpoches_numericUpDown.Name = "maxEpoches_numericUpDown";

 this.maxEpoches_numericUpDown.Size = new System.Drawing.Size(64, 20);

 this.maxEpoches_numericUpDown.TabIndex = 20;

 this.maxEpoches_numericUpDown.Value = new decimal(new int[] {

 300,

 0,

 0,

 0});

 //

 // saveNetwork_button

 //

 this.saveNetwork_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.saveNetwork_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.saveNetwork_button.ForeColor = System.Drawing.SystemColors.ControlText;

 this.saveNetwork_button.Location = new System.Drawing.Point(400, 33);

 this.saveNetwork_button.Name = "saveNetwork_button";

 this.saveNetwork_button.Size = new System.Drawing.Size(104, 24);

 this.saveNetwork_button.TabIndex = 7;

 this.saveNetwork_button.Text = "Save Network";

 this.saveNetwork_button.UseVisualStyleBackColor = false;

 this.saveNetwork_button.Click += new System.EventHandler(this.saveNetwork_button_Click);

 //

 // status2_lbl

 //

 this.status2_lbl.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.status2_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.status2_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.status2_lbl.ForeColor = System.Drawing.Color.Crimson;

 this.status2_lbl.Location = new System.Drawing.Point(94, 114);

 this.status2_lbl.Name = "status2_lbl";

 this.status2_lbl.Size = new System.Drawing.Size(184, 16);

 this.status2_lbl.TabIndex = 18;

 this.status2_lbl.Text = "Ready";

 //

 // status1_lbl

 //

 this.status1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.status1_lbl.ForeColor = System.Drawing.Color.Black;

 this.status1_lbl.Location = new System.Drawing.Point(13, 114);

 this.status1_lbl.Name = "status1_lbl";

 this.status1_lbl.Size = new System.Drawing.Size(75, 16);

 this.status1_lbl.TabIndex = 17;

 this.status1_lbl.Text = "Status :";

 //

 // errPercentage2_lbl

 //

 this.errPercentage2_lbl.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.errPercentage2_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.errPercentage2_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 10F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.errPercentage2_lbl.ForeColor = System.Drawing.Color.Blue;

 this.errPercentage2_lbl.Location = new System.Drawing.Point(440, 120);

 this.errPercentage2_lbl.Name = "errPercentage2_lbl";

 this.errPercentage2_lbl.Size = new System.Drawing.Size(64, 16);

 this.errPercentage2_lbl.TabIndex = 16;

 this.errPercentage2_lbl.Text = "N/A";

 //

 // errPercentage1_lbl

 //

 this.errPercentage1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.errPercentage1_lbl.ForeColor = System.Drawing.Color.Black;

 this.errPercentage1_lbl.Location = new System.Drawing.Point(386, 120);

 this.errPercentage1_lbl.Name = "errPercentage1_lbl";

 this.errPercentage1_lbl.Size = new System.Drawing.Size(48, 16);

 this.errPercentage1_lbl.TabIndex = 15;

 this.errPercentage1_lbl.Text = "% Error :";

 //

 // currentCharSet1_lbl

 //

 this.currentCharSet1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.currentCharSet1_lbl.ForeColor = System.Drawing.Color.Black;

 this.currentCharSet1_lbl.Location = new System.Drawing.Point(13, 83);

 this.currentCharSet1_lbl.Name = "currentCharSet1_lbl";

 this.currentCharSet1_lbl.Size = new System.Drawing.Size(75, 16);

 this.currentCharSet1_lbl.TabIndex = 14;

 this.currentCharSet1_lbl.Text = "Current Set :";

 //

 // currentCharSet2_lbl

 //

 this.currentCharSet2_lbl.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.currentCharSet2_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.currentCharSet2_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.currentCharSet2_lbl.ForeColor = System.Drawing.Color.Black;

 this.currentCharSet2_lbl.Location = new System.Drawing.Point(94, 83);

 this.currentCharSet2_lbl.Name = "currentCharSet2_lbl";

 this.currentCharSet2_lbl.Size = new System.Drawing.Size(184, 16);

 this.currentCharSet2_lbl.TabIndex = 13;

 //

 // progress_lbl

 //

 this.progress_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.progress_lbl.ForeColor = System.Drawing.Color.Black;

 this.progress_lbl.Location = new System.Drawing.Point(8, 170);

 this.progress_lbl.Name = "progress_lbl";

 this.progress_lbl.Size = new System.Drawing.Size(48, 16);

 this.progress_lbl.TabIndex = 7;

 this.progress_lbl.Text = "Progress";

 //

 // symbols2_lbl

 //

 this.symbols2_lbl.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.symbols2_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.symbols2_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 10F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.symbols2_lbl.ForeColor = System.Drawing.Color.Blue;

 this.symbols2_lbl.Location = new System.Drawing.Point(440, 96);

 this.symbols2_lbl.Name = "symbols2_lbl";

 this.symbols2_lbl.Size = new System.Drawing.Size(64, 16);

 this.symbols2_lbl.TabIndex = 6;

 this.symbols2_lbl.Text = "0";

 //

 // epoch2_lbl

 //

 this.epoch2_lbl.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.epoch2_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.epoch2_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 10F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.epoch2_lbl.ForeColor = System.Drawing.Color.Blue;

 this.epoch2_lbl.Location = new System.Drawing.Point(440, 142);

 this.epoch2_lbl.Name = "epoch2_lbl";

 this.epoch2_lbl.Size = new System.Drawing.Size(64, 16);

 this.epoch2_lbl.TabIndex = 5;

 this.epoch2_lbl.Text = "0";

 //

 // symbols1_lbl

 //

 this.symbols1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.symbols1_lbl.ForeColor = System.Drawing.Color.Black;

 this.symbols1_lbl.Location = new System.Drawing.Point(379, 96);

 this.symbols1_lbl.Name = "symbols1_lbl";

 this.symbols1_lbl.Size = new System.Drawing.Size(55, 16);

 this.symbols1_lbl.TabIndex = 4;

 this.symbols1_lbl.Text = "Symbols :";

 //

 // epoch1_lbl

 //

 this.epoch1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.epoch1_lbl.ForeColor = System.Drawing.Color.Black;

 this.epoch1_lbl.Location = new System.Drawing.Point(389, 142);

 this.epoch1_lbl.Name = "epoch1_lbl";

 this.epoch1_lbl.Size = new System.Drawing.Size(45, 16);

 this.epoch1_lbl.TabIndex = 3;

 this.epoch1_lbl.Text = "Epoch :";

 //

 // progressBar

 //

 this.progressBar.Location = new System.Drawing.Point(94, 168);

 this.progressBar.Maximum = 1000;

 this.progressBar.Name = "progressBar";

 this.progressBar.Size = new System.Drawing.Size(410, 20);

 this.progressBar.Step = 1;

 this.progressBar.TabIndex = 2;

 //

 // startTraining_button

 //

 this.startTraining_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.startTraining_button.Cursor = System.Windows.Forms.Cursors.Default;

 this.startTraining_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.startTraining_button.ForeColor = System.Drawing.SystemColors.ControlText;

 this.startTraining_button.Location = new System.Drawing.Point(216, 33);

 this.startTraining_button.Name = "startTraining_button";

 this.startTraining_button.Size = new System.Drawing.Size(128, 24);

 this.startTraining_button.TabIndex = 6;

 this.startTraining_button.Text = "Start Training";

 this.startTraining_button.UseVisualStyleBackColor = false;

 this.startTraining_button.Click += new System.EventHandler(this.startTraining_button_Click);

 //

 // loadTrainingSet_button

 //

 this.loadTrainingSet_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.loadTrainingSet_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.loadTrainingSet_button.ForeColor = System.Drawing.SystemColors.ControlText;

 this.loadTrainingSet_button.Location = new System.Drawing.Point(27, 32);

 this.loadTrainingSet_button.Name = "loadTrainingSet_button";

 this.loadTrainingSet_button.Size = new System.Drawing.Size(118, 24);

 this.loadTrainingSet_button.TabIndex = 5;

 this.loadTrainingSet_button.Text = "Load Training Set";

 this.loadTrainingSet_button.UseVisualStyleBackColor = false;

 this.loadTrainingSet_button.Click += new System.EventHandler(this.loadTrainingSet_button_Click);

 //

 // output_grpBox

 //

 this.output_grpBox.Controls.Add(this.utf16_lbl);

 this.output_grpBox.Controls.Add(this.opText_richTextBox);

 this.output_grpBox.Controls.Add(this.saveOutput_button);

 this.output_grpBox.Controls.Add(this.opSymbol_txtBox);

 this.output_grpBox.Controls.Add(this.opSymbol_lbl);

 this.output_grpBox.Controls.Add(this.hexVal2_lbl);

 this.output_grpBox.Controls.Add(this.hexVal1_lbl);

 this.output_grpBox.Font = new System.Drawing.Font("Microsoft Sans Serif", 16F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.output_grpBox.ForeColor = System.Drawing.Color.Crimson;

 this.output_grpBox.Location = new System.Drawing.Point(540, 353);

 this.output_grpBox.Name = "output_grpBox";

 this.output_grpBox.Size = new System.Drawing.Size(270, 206);

 this.output_grpBox.TabIndex = 27;

 this.output_grpBox.TabStop = false;

 this.output_grpBox.Text = "Output";

 //

 // utf16_lbl

 //

 this.utf16_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.utf16_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.utf16_lbl.ForeColor = System.Drawing.Color.Black;

 this.utf16_lbl.Location = new System.Drawing.Point(80, 6);

 this.utf16_lbl.Name = "utf16_lbl";

 this.utf16_lbl.Size = new System.Drawing.Size(64, 16);

 this.utf16_lbl.TabIndex = 39;

 this.utf16_lbl.Text = " UTF-16";

 //

 // opText_richTextBox

 //

 this.opText_richTextBox.BackColor = System.Drawing.Color.White;

 this.opText_richTextBox.Font = new System.Drawing.Font("Microsoft Sans Serif", 10F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.opText_richTextBox.Location = new System.Drawing.Point(8, 72);

 this.opText_richTextBox.Name = "opText_richTextBox";

 this.opText_richTextBox.ReadOnly = true;

 this.opText_richTextBox.Size = new System.Drawing.Size(256, 88);

 this.opText_richTextBox.TabIndex = 38;

 this.opText_richTextBox.Text = "";

 //

 // saveOutput_button

 //

 this.saveOutput_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.saveOutput_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.saveOutput_button.ForeColor = System.Drawing.SystemColors.ControlText;

 this.saveOutput_button.Location = new System.Drawing.Point(144, 164);

 this.saveOutput_button.Name = "saveOutput_button";

 this.saveOutput_button.Size = new System.Drawing.Size(120, 24);

 this.saveOutput_button.TabIndex = 4;

 this.saveOutput_button.Text = "Save Output";

 this.saveOutput_button.UseVisualStyleBackColor = false;

 this.saveOutput_button.Click += new System.EventHandler(this.saveOutput_button_Click);

 //

 // opSymbol_txtBox

 //

 this.opSymbol_txtBox.BackColor = System.Drawing.SystemColors.ActiveBorder;

 this.opSymbol_txtBox.Font = new System.Drawing.Font("Microsoft Sans Serif", 20F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.opSymbol_txtBox.Location = new System.Drawing.Point(226, 27);

 this.opSymbol_txtBox.Name = "opSymbol_txtBox";

 this.opSymbol_txtBox.ReadOnly = true;

 this.opSymbol_txtBox.Size = new System.Drawing.Size(40, 38);

 this.opSymbol_txtBox.TabIndex = 3;

 //

 // opSymbol_lbl

 //

 this.opSymbol_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 10F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.opSymbol_lbl.ForeColor = System.Drawing.Color.Black;

 this.opSymbol_lbl.Location = new System.Drawing.Point(168, 32);

 this.opSymbol_lbl.Name = "opSymbol_lbl";

 this.opSymbol_lbl.Size = new System.Drawing.Size(64, 16);

 this.opSymbol_lbl.TabIndex = 2;

 this.opSymbol_lbl.Text = "Symbol :";

 //

 // hexVal2_lbl

 //

 this.hexVal2_lbl.BackColor = System.Drawing.SystemColors.ActiveCaptionText;

 this.hexVal2_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.hexVal2_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 10F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.hexVal2_lbl.ForeColor = System.Drawing.Color.Black;

 this.hexVal2_lbl.Location = new System.Drawing.Point(80, 32);

 this.hexVal2_lbl.Name = "hexVal2_lbl";

 this.hexVal2_lbl.Size = new System.Drawing.Size(64, 16);

 this.hexVal2_lbl.TabIndex = 1;

 //

 // hexVal1_lbl

 //

 this.hexVal1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 10F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.hexVal1_lbl.ForeColor = System.Drawing.Color.Black;

 this.hexVal1_lbl.Location = new System.Drawing.Point(28, 32);

 this.hexVal1_lbl.Name = "hexVal1_lbl";

 this.hexVal1_lbl.Size = new System.Drawing.Size(56, 16);

 this.hexVal1_lbl.TabIndex = 0;

 this.hexVal1_lbl.Text = "Hex :";

 //

 // testing_grpBox

 //

 this.testing_grpBox.Controls.Add(this.matrixDimention2_lbl);

 this.testing_grpBox.Controls.Add(this.matrixDimention1_lbl);

 this.testing_grpBox.Controls.Add(this.matrixDimention4_lbl);

 this.testing_grpBox.Controls.Add(this.matrixDimention3_lbl);

 this.testing_grpBox.Controls.Add(this.symbol1_lbl);

 this.testing_grpBox.Controls.Add(this.startRecognition_button);

 this.testing_grpBox.Controls.Add(this.loadNetwork_button);

 this.testing_grpBox.Controls.Add(this.loadImg_button);

 this.testing_grpBox.Font = new System.Drawing.Font("Microsoft Sans Serif", 16F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.testing_grpBox.ForeColor = System.Drawing.Color.Crimson;

 this.testing_grpBox.Location = new System.Drawing.Point(8, 0);

 this.testing_grpBox.Name = "testing_grpBox";

 this.testing_grpBox.Size = new System.Drawing.Size(645, 341);

 this.testing_grpBox.TabIndex = 28;

 this.testing_grpBox.TabStop = false;

 this.testing_grpBox.Text = "Testing";

 this.testing_grpBox.Paint += new System.Windows.Forms.PaintEventHandler(this.groupBox6_Paint);

 //

 // matrixDimention2_lbl

 //

 this.matrixDimention2_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.matrixDimention2_lbl.ForeColor = System.Drawing.Color.Black;

 this.matrixDimention2_lbl.Location = new System.Drawing.Point(482, 260);

 this.matrixDimention2_lbl.Name = "matrixDimention2_lbl";

 this.matrixDimention2_lbl.Size = new System.Drawing.Size(16, 16);

 this.matrixDimention2_lbl.TabIndex = 25;

 this.matrixDimention2_lbl.Text = "29";

 //

 // matrixDimention1_lbl

 //

 this.matrixDimention1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.matrixDimention1_lbl.ForeColor = System.Drawing.Color.Black;

 this.matrixDimention1_lbl.Location = new System.Drawing.Point(488, 118);

 this.matrixDimention1_lbl.Name = "matrixDimention1_lbl";

 this.matrixDimention1_lbl.Size = new System.Drawing.Size(8, 16);

 this.matrixDimention1_lbl.TabIndex = 24;

 this.matrixDimention1_lbl.Text = "0";

 //

 // matrixDimention4_lbl

 //

 this.matrixDimention4_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.matrixDimention4_lbl.ForeColor = System.Drawing.Color.Black;

 this.matrixDimention4_lbl.Location = new System.Drawing.Point(586, 271);

 this.matrixDimention4_lbl.Name = "matrixDimention4_lbl";

 this.matrixDimention4_lbl.Size = new System.Drawing.Size(16, 16);

 this.matrixDimention4_lbl.TabIndex = 23;

 this.matrixDimention4_lbl.Text = "19";

 //

 // matrixDimention3_lbl

 //

 this.matrixDimention3_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.matrixDimention3_lbl.ForeColor = System.Drawing.Color.Black;

 this.matrixDimention3_lbl.Location = new System.Drawing.Point(496, 271);

 this.matrixDimention3_lbl.Name = "matrixDimention3_lbl";

 this.matrixDimention3_lbl.Size = new System.Drawing.Size(16, 16);

 this.matrixDimention3_lbl.TabIndex = 22;

 this.matrixDimention3_lbl.Text = "0";

 //

 // symbol1_lbl

 //

 this.symbol1_lbl.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle;

 this.symbol1_lbl.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.symbol1_lbl.ForeColor = System.Drawing.Color.Blue;

 this.symbol1_lbl.Location = new System.Drawing.Point(104, 6);

 this.symbol1_lbl.Name = "symbol1_lbl";

 this.symbol1_lbl.Size = new System.Drawing.Size(240, 16);

 this.symbol1_lbl.TabIndex = 21;

 //

 // startRecognition_button

 //

 this.startRecognition_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.startRecognition_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.startRecognition_button.ForeColor = System.Drawing.SystemColors.ControlText;

 this.startRecognition_button.Location = new System.Drawing.Point(201, 296);

 this.startRecognition_button.Name = "startRecognition_button";

 this.startRecognition_button.Size = new System.Drawing.Size(118, 24);

 this.startRecognition_button.TabIndex = 3;

 this.startRecognition_button.Text = "Start Recognition";

 this.startRecognition_button.UseVisualStyleBackColor = false;

 this.startRecognition_button.Click += new System.EventHandler(this.startRecognition_button_Click);

 //

 // loadNetwork_button

 //

 this.loadNetwork_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.loadNetwork_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.loadNetwork_button.ForeColor = System.Drawing.SystemColors.ControlText;

 this.loadNetwork_button.Location = new System.Drawing.Point(496, 38);

 this.loadNetwork_button.Name = "loadNetwork_button";

 this.loadNetwork_button.Size = new System.Drawing.Size(104, 26);

 this.loadNetwork_button.TabIndex = 1;

 this.loadNetwork_button.Text = "Load Network";

 this.loadNetwork_button.UseVisualStyleBackColor = false;

 this.loadNetwork_button.Click += new System.EventHandler(this.loadNetwork_button_Click);

 //

 // about_button

 //

 this.about_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.about_button.Location = new System.Drawing.Point(716, 32);

 this.about_button.Name = "about_button";

 this.about_button.Size = new System.Drawing.Size(88, 32);

 this.about_button.TabIndex = 9;

 this.about_button.Text = "About";

 this.about_button.UseVisualStyleBackColor = false;

 this.about_button.Click += new System.EventHandler(this.button5_Click);

 //

 // exit_button

 //

 this.exit_button.BackColor = System.Drawing.SystemColors.ButtonFace;

 this.exit_button.Font = new System.Drawing.Font("Microsoft Sans Serif", 8.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0)));

 this.exit_button.Location = new System.Drawing.Point(716, 88);

 this.exit_button.Name = "exit_button";

 this.exit_button.Size = new System.Drawing.Size(88, 32);

 this.exit_button.TabIndex = 8;

 this.exit_button.Text = "Exit";

 this.exit_button.UseVisualStyleBackColor = false;

 this.exit_button.Click += new System.EventHandler(this.button6_Click);

 //

 // saveNetwork_saveFileDialog

 //

 this.saveNetwork_saveFileDialog.DefaultExt = "ann";

 //

 // loadImg_openFileDialog

 //

 this.loadImg_openFileDialog.FileName = "openFileDialog2";

 //

 // loadTrainingSet_openFileDialog

 //

 this.loadTrainingSet_openFileDialog.FileName = "openFileDialog3";

 //

 // Form1

 //

 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 13F);

 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;

 this.BackColor = System.Drawing.Color.NavajoWhite;

 this.ClientSize = new System.Drawing.Size(822, 578);

 this.Controls.Add(this.exit_button);

 this.Controls.Add(this.about_button);

 this.Controls.Add(this.output_grpBox);

 this.Controls.Add(this.training_grpBox);

 this.Controls.Add(this.matrixAnalysis_lbl);

 this.Controls.Add(this.detectedChar_lbl);

 this.Controls.Add(this.groupBox2);

 this.Controls.Add(this.inputImg_lbl);

 this.Controls.Add(this.charLocation_grpBox);

 this.Controls.Add(this.detectedChar_picBox);

 this.Controls.Add(this.inputImg_picBox);

 this.Controls.Add(this.testing_grpBox);

 this.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedSingle;

 this.Icon = ((System.Drawing.Icon)(resources.GetObject("$this.Icon")));

 this.MaximizeBox = false;

 this.Name = "Form1";

 this.Text = "OCR";

 this.Paint += new System.Windows.Forms.PaintEventHandler(this.Form1_Paint);

 ((System.ComponentModel.ISupportInitialize)(this.inputImg_picBox)).EndInit();

 ((System.ComponentModel.ISupportInitialize)(this.detectedChar_picBox)).EndInit();

 this.charLocation_grpBox.ResumeLayout(false);

 this.charLocation_grpBox.PerformLayout();

 this.groupBox2.ResumeLayout(false);

 this.groupBox2.PerformLayout();

 this.training_grpBox.ResumeLayout(false);

 ((System.ComponentModel.ISupportInitialize)(this.maxEpoches_numericUpDown)).EndInit();

 this.output_grpBox.ResumeLayout(false);

 this.output_grpBox.PerformLayout();

 this.testing_grpBox.ResumeLayout(false);

 this.ResumeLayout(false);

}

#endregion

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main()

{

Application.Run(new Form1());

}

 private void loadImg_button_Click(object sender, EventArgs e)

 {

 load_image();

 }

 private void nextChar_button_Click(object sender, EventArgs e)

 {

 detect_next_character();

 }

 private void startRecognition_button_Click(object sender, EventArgs e)

 {

 output_string = "";

 current_line = 0;

 this.loadImg_button.Enabled = false;

 this.loadNetwork_button.Enabled = false;

 this.loadTrainingSet_button.Enabled = false;

 this.startTraining_button.Enabled = false;

 this.startRecognition_button.Enabled = false;

 this.saveNetwork_button.Enabled = false;

 this.saveOutput_button.Enabled = false;

 this.maxEpoches_numericUpDown.Enabled = false;

 while (character_present)

 detect_next_character();

 this.loadImg_button.Enabled = true;

 this.loadNetwork_button.Enabled = true;

 this.loadTrainingSet_button.Enabled = true;

 this.startTraining_button.Enabled = true;

 this.startRecognition_button.Enabled = true;

 this.saveNetwork_button.Enabled = true;

 this.saveOutput_button.Enabled = true;

 this.maxEpoches_numericUpDown.Enabled = true;

 }

 private void loadTrainingSet_button_Click(object sender, EventArgs e)

 {

 load_character_trainer_set();

 }

 private void saveNetwork_button_Click(object sender, EventArgs e)

 {

 save_network();

 }

 private void loadNetwork_button_Click(object sender, EventArgs e)

 {

 load_network();

 }

 private void saveOutput_button_Click(object sender, EventArgs e)

 {

 save_output();

 }

OUTPUT

HIDDEN LAYER

INPUTS

 β

 α

 C

 B

 A

 λ

 Ω

Back Propagate Error

Initialize Weights

Calculate Error

Update Local Weights

Network Training

Character Recognition

Feature Extraction

Fitting Character into Feature Matrix

Character boundary detection

Line Detection

Artificial Neural Network

Image Processing

Main

PAGE
56

