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1. Abstract 

Malaria is responsible for approximately 1 million deaths annually; thus, 

continued efforts to discover new antimalarials are required. The prevalence of resistance 

to known antimalarial drugs has resulted in the expansion of antimalarial drug discovery 

efforts. P. falciparum is the deadliest of the species of Plasmodium that infect humans, 

and it accounts for the majority of malaria infections and virtually all of the malaria-

related mortality worldwide.So here we are trying to build trained Classifiers which 

enable virtual screening of compounds with specific activity towards P.falciparum. 

Due to rapid growth of various databases, business and health industry leaders 

have turned to computer applications that can increase the efficacy of treatment and 

services.  Data Mining or  Knowledge Discovery in Databases is a  process of 

discovering meaningful new correlations, patterns, and trends by digging into large 

amounts of data stored in warehouses The purpose of bioinformatics data mining is to 

discover the relationships and patterns in large databases to provide useful information 

for biomedical analysis and diagnosis. 

Cheminformatics is paving a way for identification and development of novel 

drugs. In recent years, there has been an explosion in the availability of publicly 

accessible chemical information, including chemical structures of small molecules, 

structure-derived properties and associated biological activities in a variety of assays. 

These data sources present us with an opportunity to develop and apply computational 

tools to extract and understand the underlying structure-activity relationships. 1 

Here, the various structure activity classifiers for the Plasmodium falciparum 

bioassay screens were made. The data is downloaded from PubChem Bioassay containing 

the compounds active and inactive for malaria. The molecular descriptors are calculated 

using Dragon software. The data is then preprocessed using the scripting language ‘R’. 

The script “Classification.Rnw” distributes the live malaria data in train data & test 

data (trainClass.Rdata and testClass.Rdata) on which we can further work. The 

script “Classification-method.Rnw” uses different methods and builds up the 

predictive models using the ‘caret’ package. 
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2. Introduction 

The large volumes of data that are now available present an opportunity for the 

development of better predictive models, for the selection of more promising drug 

candidates, and for more comprehensive decisions to be made by researchers in 

chemistry and biology. It is common knowledge that malaria is a serious worldwide 

health problem due to the emergence of parasites that are resistant to well-established 

antimalaria drugs. Although continued attempts to develop a vaccine for malaria are 

ongoing, drugs continue to be the only treatment option. The progress of this approach in 

drug discovery has also introduced challenges associated with the need to develop better 

tools to manage the large volumes of data. 2 

Cheminformatics deals with gathering and systematic use of chemical 

information, and the use of those data to predict the  behaviour of unknown compounds 

in silico.[3] This branch of science basically combines the scientific working fields of 

chemistry with computer science for the purpose of making faster decisions in the area of 

drug lead identification and optimization. Implementing, handling and searching 

chemical databases is a crucial aspect of chemoinformatics.3 

Cheminformatics is paving a way for identification and development of novel 

drugs.There has been an explosion in the availability of publicly accessible chemical 

information, including chemical structures of small molecules, structure-derived 

properties and associated biological activities in a variety of assays. Using Computational 

tools on this large amount of data various structure-activity relationships can be known 

and understood. 1 

A quantitative structure-activity relationship is a mathematical relationship 

between a molecule’s physical properties and its chemical properties .The primary 

purpose of QSAR is to make predictions about how an as-yet-unstudied molecule will 

behave, based on better-known molecules that are structurally similar to it. 4 

The molecular descriptor is the final result of a logical and mathematical 

procedure which transforms chemical information encoded within a symbolic 

representation of a molecule into a useful number or the result of some standardized 

equipment.5 



Molecular descriptors are numerical values that characterize properties of 

molecules. Biological active substances interact, in most cases, with biomolecules, 

triggering specific molecular mechanisms like activation of an enzyme cascade or 

opening of an ion channel, which finally leads to a certain biological response.  

Quantitative structure-activity relationships correlate this response with molecular 

properties of compounds under interest. Because the response depends on the 

concentration of the active substance at the site of action and on the strength of 

interaction with the biological macromolecule, both of these aspects must be modeled 

quantitatively by QSAR. 

In the mean time, a variety of descriptors of molecular properties have been 

developed. Computational approaches to lipophilicity are nearly as diverse as the QSAR 

methods themselves. Electronic properties in terms of point charges or molecular 

electrostatic potentials can be evaluated by quantum-chemical ab initio methods for 

molecules up to 50 atoms. Using semi empirical methods like AM1 or PM3, such 

properties can be calculated even for larger systems. Steric descriptors reach from 

molecular surface and volume to connectivity and topological indices and to Verloop 

parameters.6 

There are number of softwares available for descriptor calculation such as E-

DRAGON, the electronic remote version of the well known software DRAGON, which is 

an application for the calculation of molecular descriptors developed by the Milano 

Chemo-metrics and QSAR research group.7 

DRAGON provides more than 4,000 molecular descriptors that are divided into 

logical blocks. The user can calculate not only the simplest atom type, functional group 

and fragment counts, but also several topological and geometrical descriptors. 

These descriptors  can be used to evaluate molecular structure-activity or structure-

property relationships, as well as for similarity analysis and high throughput screening of 

molecule databases.7 

To judge for all these activities of molecules data mining was the only feasible 

option for discovering knowledge and interpreting them. Data mining is a process of 

extraction of useful patterns and relationships from data sources such as databases or 



web. It uses statistical and pattern matching techniques and borrows from statistics, data 

visualization, machine learning etc. 

Data mining is a step in the KDD (knowledge discovery in databases) process 

consisting of applying computational techniques that, under acceptable computational 

efficiency limitations, produce a particular enumeration of patterns. It is emerging as a 

new active area of research which combines methods and tools from the fields of 

statistics, machine leaning, database management and data visualization .8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data mining is a new discipline lying at the interface of statistics, database 

technology, pattern recognition, machine learning, and other areas. It is concerned with 

the secondary analysis of large databases in order to find previously unsuspected 

relationships which are of interest or value to the database owners. 9 

Hence, we use the branch of artificial intelligence i.e., machine learning which is 

a scientific discipline concerned with the design and development of algorithms that 



allow computers to evolve behavior based on data and generate output which can be 

easily understood.  

Machine learning methods are essentially computer programs that make use of  

sampled  data  or  past  experience  information  provide solutions to a given problem. A 

wide spectrum of algorithms commonly based on the artificial intelligence and 

statistics fields have been proposed by the machine learning community in the last 

decades. 10 

Supervised learning involves generation of a function that maps inputs to desired 

output where the class labels are already known whereas unsupervised learning models a 

set of inputs. 

The two "high-level" primary goals of data mining, are prediction and description. 

The main tasks well suited for data mining, all of which involves mining meaningful new 

patterns from the data, are:  

Classification: Classification is learning a function that maps (classifies) a data 

item into one of several predefined classes.  

Estimation: Given some input data, coming up with a value for some unknown 

continuous variable.  

Prediction:  Same as classification & estimation except that the records are 

classified according to some future behaviour or estimated future value.  

Association rules: Determining which things go together, also called dependency 

modeling.  

Clustering: Segmenting a population into a number of subgroups or clusters.  

Description & visualization: Representing the data using visualization 

techniques 

Classification is the common and simplest task which we are using in this topic 

to generate known structure in order to apply it on new data. The goal of classification is 

to accurately predict the target class for each case in the data. 11 



R is an open source programming language and software environment 

for statistical computing and graphics. It is quite similar to the S language and 

environment which was developed at Bell Laboratories by John Chambers and 

colleagues. The caret package was developed to create a unified interface for modeling 

and prediction.  

R is an integrated suite of software facilities for data manipulation, calculation 

and graphical display. R is very much a vehicle for newly developing methods of 

interactive data analysis. It has developed rapidly and has been extended by a large 

collection of packages.  

The use of complex classification and regression models is becoming more and 

more commonplace in science, finance and a myriad of other domains .The R language(R 

Development Core Team 2008) has a rich set of modeling functions for both 

classification and regression, so many in fact, that it is becoming increasingly more 

difficult to keep trackof the syntactical nuances of each function. The caret package, 

short for classification and regression training, was built to eliminate syntactical 

differences between many of the functions for building and predicting models.12 

The caret package (short for classification and regression training) contains functions to 

stream-line the model training process for complex regression and classification 

problems. 13 

  Ensemble learning is the process by which multiple models, such as classifiers 

or experts, are strategically generated and combined to solve a particular computational 

intelligence problem. Ensemble learning is primarily used to improve the (classification, 

prediction, function approximation, etc.) performance of a model, or reduce the 

likelihood of an unfortunate selection of a poor one 10 

Although the most common approach is to use a single model for class prediction, the 

combination of classifiers with different biases is gaining popularity in the machine 

learning community 

 



. As each classifier defines its own decision surface to discriminate between problem 

classes, the combination could construct a more flexible and accurate decision surface 

and thus increasing the accuracy of the models 
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3. Review of Literature 

3.1 DATA MINING 

It is an analytic process designed to explore data in search of consistent patterns or 

systemic relationships between variables and then to validate the findings by applying the 

detected patterns to new subset of data, here the ultimate goal is prediction. It’s all about 

solving problems by analyzing data already present in databases. The analysis tools can 

include statistical models, algorithms and machine learning methods. These applications 

use a variety of parameters to examine the data. They include association, sequence or 

path analysis, classification, clustering and forecasting. Few reasons for using data 

mining:- 

- Human skills are inadequate. 

- Volume & dimensionality of data. 

- High data growth rate. 

Data mining is a new discipline lying at the interface of statistics, database 

technology, pattern recognition, machine learning, and other areas. It is concerned with 

the secondary analysis of large databases in order to find previously unsuspected 

relationships which are of interest or value to the database owners. Seeking knowledge 

from massive data is one of the most desired attributes of Data Mining.  14 

The development of methods for the analysis of this massive (and constantly 

increasing) amount of information is one of the key challenges in bioinformatics.  This 

analysis step - also known as computational biology - faces the challenge of extracting 

biological knowledge from all the in-house and publicly available data. Furthermore, 

the knowledge should be formulated in a transparent and coherent way if it is to be 

understood and studied by bio- experts. The term “data mining” in bioinformatics 

refers to the set of techniques aimed at discovering useful relationships and patterns 

in biological data that were previously undetected. 15 



As an application compared to other data analysis applications such as structured 

queries or statistical analysis software, data mining represents a difference of kind. In 

order to conduct effective data mining, one needs to first examine what kind of features 

an applied knowledge discovery system is expected to have and what kind of challenges 

one may face at the development of data mining techniques. 

1. Handling of different types of data. 

2. Efficiency and scalability of data mining algorithms. 

3. Usefulness, certainty, and expressiveness of data mining results. 

4. Expression of various kinds of data mining requests and results. 

5. Interactive mining knowledge at multiple abstraction levels. 

6. Mining information from different sources of data. 

7. Protection of privacy and data security. 

The process of data mining consists of three stages: 

(1) Initial exploration-  

This stage usually starts with data preparation which may involve cleaning data, data 

transformations, selecting subsets of records and - in case of data sets with large numbers 

of variables ("fields") - performing some preliminary feature selection operations to 

bring the number of variables to a manageable range (depending on the statistical 

methods which are being considered) 

(2) Model building or pattern identification with validation/verification- 

This stage involves considering various models and choosing the best one based on 

their predictive performance (i.e., explaining the variability in question and producing 

stable results across samples).  

(3) Deployment (i.e., the application of the model to new data in order to generate 

predictions)- 

This final stage involves using the model selected as best in the previous stage and 

applying it to new data in order to generate predictions or estimates of the expected 

outcome. 16 

 



 

Data mining tasks 

Data mining basically involves collecting and managing of data along with 

analysis and prediction. 14

Data mining involves four main classes of tasks that are 

clustering, classification and regression.

3.1.1 Association rule learning

It is a popular and well researched method for discovering interesting relations 

between variables in large databases.

will predict the occurrence of an item based on the occurrences of other.

rules are if/then statements that help uncover relationships between seemingly unrelated 

data in a relational database

  An association rule has two parts, an antecedent (if) and a consequent (then). An 

antecedent is an item found in the data. A consequent is an item that is found in 

combination with the antecedent.

frequent if/then patterns and using the criteria

Data mining basically involves collecting and managing of data along with 

14 

Data mining involves four main classes of tasks that are – association rule learning, 

ing, classification and regression. 

.1 Association rule learning 

is a popular and well researched method for discovering interesting relations 

between variables in large databases. Given set of transactions,the process finds rules that 

the occurrence of an item based on the occurrences of other.

rules are if/then statements that help uncover relationships between seemingly unrelated 

elational database or other information repository. 

An association rule has two parts, an antecedent (if) and a consequent (then). An 

antecedent is an item found in the data. A consequent is an item that is found in 

combination with the antecedent. Association rules are created by analyzing data for 

frequent if/then patterns and using the criteria support and confidence to identify the most 

 

Data mining basically involves collecting and managing of data along with 

association rule learning, 

is a popular and well researched method for discovering interesting relations 

Given set of transactions,the process finds rules that 

the occurrence of an item based on the occurrences of other. Association 

rules are if/then statements that help uncover relationships between seemingly unrelated 

An association rule has two parts, an antecedent (if) and a consequent (then). An 

antecedent is an item found in the data. A consequent is an item that is found in 

iation rules are created by analyzing data for 

to identify the most 



important relationships. Support is an indication of how frequently the items appear in the 

database. Confidence indicates the number of times the if/then statements have been 

found to be true.In data mining, association rules are useful for analyzing and predicting 

customer behavior. They play an important part in shopping basket data analysis, product 

clustering, catalog design and store layout. 17 

3.1.2 Clustering 

It is a process of partitioning a set of data (or objects) in a set of meaningful sub 

classes,called clusters. It helps users to understand natural grouping or structure in a 

dataset. Cluster is actually a collection of data objects that are ‘similar’ to one another 

and thus can be treated collectively as one group. Data clustering has immense number of 

applications in every field of life. One has to cluster a lot of thing on the basis of 

similarity either consciously or unconsciously. So the history of data clustering is old as 

the history of mankind. In order to detect many diseases like tumor etc, the scanned 

pictures or the x-rays are compared with the existing ones and the dissimilarities are 

recognized. Using this technique and some really precise methods for the pattern 

matching, diseases like really fine tumor can also be detected. 18 

3.1.3 Regression 

It is a data mining function that predicts a number. A regression task begins with a 

data set in which the target values are known. In the model build (training) process, a 

regression algorithm estimates the value of the target as a function of the predictors for 

each case in the build data. These relationships between predictors and target are 

summarized in a model, which can then be applied to a different data set in which the 

target values are unknown. 

For example, a regression model could be used to predict the value of a house based 

on location, number of rooms, lot size, and other factors. A regression model that predicts 

house values could be developed based on observed data for many houses over a period 

of time. In addition to the value, the data might track the age of the house, square footage, 



number of rooms, taxes, school district, proximity to shopping centres, and so on. House 

value would be the target, the other attributes would be the predictors, and the data for 

each house would constitute a case. 19 

Classification 

It is a data mining function that assigns items in a collection to target categories or 

classes. In the model build (training) process, a classification algorithm finds 

relationships between the values of the predictors and the values of the target. Different 

classification algorithms use different techniques for finding relationships. These 

relationships are summarized in a model, which can then be applied to a different data set 

in which the class assignments are unknown. 

Different classification algorithms use different techniques for finding 

relationships.The most common algorithms involved are decision tree learning, nearest 

neighbor, Bayesian classification, neural networks and support vector machines. 

Classification models are tested by comparing the predicted values to known target 

values in a set of test data. The historical data for a classification project is typically 

divided into two data sets: one for building the model; the other for testing the model. 

Accuracy refers to the percentage of correct predictions made by the model when 

compared with the actual classifications in the test data. 18 

3.2 Limitations of Data Mining: 

While data mining products can be very powerful tools, they are not self sufficient 

applications. To be successful, data mining requires skilled technical and analytical 

specialists who can structure the analysis and interpret the output that is created. 

Although data mining can help reveal patterns and relationships, it does not tell 

the user the value or significance of those patterns. These types of determinations must be 

made by the user. 20 

 

 



3.3 Cheminformatics : 

The shift in the drug discovery paradigm that has resulted in increased 

dependence on large volumes of information for decision making has created new 

challenges and opportunities in chemoinformatics research. The field of cheminformatics 

is multi-disciplinary and is an amalgam of chemistry, mathematics and computer science.  

Cheminformatics focuses on the development of methods and tools to address problems 

in the management and analysis of chemical information. Such information can be of a 

variety of types including chemical structure (in various formats such as SMILES, SDF, 

CML and so on) and derived aspects of chemical structure (such as number of atoms and 

various descriptors of structure). 1 

With the advent of large public repositories of chemical and biological data, there 

has been an explosion in the type and amount of data that is now available for 

cheminformatics analysis. Thus, we can now access chemical structures of millions of 

compounds, as well as the biological activities of many of these structures in a variety of 

biological assays. Public literature databases now allow one to move from chemical 

structure to specific documents and in some cases vice versa.The various data mining 

techniques are used in Cheminformatics including Classical QSAR, regression analysis, 

clustering, neural networks etc.  

A number of cheminformatics tasks are based on mathematical and statistical 

modeling techniques (such as QSAR). QSAR represents predictive models derived from 

application of statistical tools correlating biological activity of chemicals with descriptors 

representative of molecule structure and properties. QSAR model depends on factors like 

quality of biological data, choice of descriptors and statistical methods. It attempts to find 

consistent relationship between biological activity and molecular properties so that these 

rules can be used to evaluate the activity of new compounds. 21 

Molecular Descriptors play an important role in chemistry, pharmaceutical 

sciences, environmental sciences, health research and quality control being obtained 

when molecules are transformed into a molecular representation allowing some 

mathematical treatment. Many molecular descriptors are derived from different theories 



and approaches with the aim of predicting biological and physic-chemical properties of 

molecules. 22 

The descriptors (independent variables) are correlated to the biological activity 

(dependent variable) by means of statistical methods. Most commonly multivariate linear 

regression (MLR) is used, but also partial least squares (PLS) or neural networks. In 

some QSAR approaches genetic algorithms are employed to identify the relevant 

descriptors: population of models are created and step by step, models with a better 

"fitness score" (i.e. with better predictivity) are produced by "genetic operations" like 

cross-over, point mutations or selection generate. 

E-DRAGON is the electronic remote version of the well 

known software DRAGON, which is an application for the calculation of molecular 

descriptors. To run DRAGON the user needs molecular structure files previously 

obtained by other specific molecular modeling software. The most common molecular 

file formats are accepted. In E-DRAGON the accepted molecular structure files SMILES, 

SDF (MDL) or MOL2 (Sybyl) files. DRAGON requires 3D optimised structures 

with HYDROGENS. 22 

Though cheminformatics has been in existence since the 1960’s, it is only 

recently that large collections of chemical information have highlighted the need for 

infrastructures capable of handling them. QSAR models were developed to predict the 

anti-cancer activities of compounds tested against the 60 NCI cancer cell lines by the 

Developmental Therapeutics Program. The random forest was employed to predict the 

anti-cancer activity of a compound based on MACCS keys as structural descriptors. The 

performance of the models ranged from 75% to 80% correct over the 60 cell lines. [1] 

Random forest models were also employed to predict the ability of compounds to 

inhibit cell proliferation in a variety of human cell lines.These cell lines have been used 

in high-throughput screening (HTS) assays [Xia2008], which tested approximately 1300 

compounds. This data was used to train the individual random forest models, which were 

then used to predict the cytotoxicity of an external set of compounds. 

SVM is widely used in cheminformatics and Quantitative-Structure Activity 

Relationship (QSAR) modeling.It is used for creation of virtually represented molecules 

and assessment of their likely suitability for synthesis and viability for use in the 



body.The study of drug-lieness and report that SVM predictions were more robust than 

those from neural networks. Trained Classifiers enable virtual screening for discovering 

molecules with specific therapeutic target affinities from potentially millions of virtual 

representations. Finding the bioactive conformations of active molecules is key to 

understanding their mechanisms of action and thus for improving specificity and 

selectivity. 1 

Recently different classifiers such as randomforest or support vector machines 

(SVMs) have also been used to predict cytochrome P450 (CYP) mediated metabolism. 

Overall, 2439 compounds were prepared from the Pfizer proprietary compound library. 

These compounds included more than 13 chemical series that were synthesized for 

multiple drug discovery projects. Among these compounds, 487 test compounds were 

randomly selected, and the remaining 1952 compounds were used for training. 23 

The training set was used for model building, and the test set was used for 

validation, with 193 descriptors calculated by MOE 2005.06 (Molecular Operating 

Environment, Chemical Computing Group Inc., Montreal, Canada). MOE descriptors 

include various 2D descriptors such as volume, shape, atom and bonds count, Kier-Hall 

connectivity, adjacency, partial charges, etc. The results using test compounds have 

demonstrated that all classifiers yielded satisfactory results (accuracy > 0.8, 

sensitivity > 0.9, specificity > 0.6, and precision > 0.8). Above all, classification by 

randomforest as well as SVM yielded kappa values of approximately 0.7 in an 

independent validation set, slightly higher than other classification tools. These results 

suggest that nonlinear/ensemble-based classification methods might prove useful in the 

area of in silico ADME modeling. 23 

Random Forest Clustering is used for tumour profiling based on tissue microarray 

data. Random Forest clustering is attractive for tissue microarray and other 

immunohistochemistry data since it handles highly skewed tumor marker expressions 

well and weighs the contribution of each marker according to its relatedness with other 

tumor markers. This is the first tumor class discovery analysis of renal cell carcinoma 

patients based on protein expression profiles. To explore whether the tissue microarray 

data can be used to identify fundamental subtypes of renal cell carcinoma patients, we 



first carried out random forest clustering of all 366 patients. By analyzing the tumor 

markers simultaneously, the procedure automatically detected classes that correspond to 

clear- vs non-clear cell tumors. 24 

SVM is a new learning algorithm for classification being used in SAR(Structure 

Activity Relationship) analysis, a technique used by pharmaceuticals companies in the 

drug discovery process. .Artificial intelligence techniques have been applied to SAR 

analysis since the late 1980s, mainly in response to increased accuracy demands. 

Intelligent classification techniques that have been applied to this problem include neural 

networks, genetic algorithms and decision trees. Each of the training sets was then used 

to train an algorithm to produce a classification rule. This classification rule can then be 

used to predict which of two unseen compounds has the greatest activity. The 

generalization ability of such a rule, that is, the probability that it will correctly rank two 

unseen compounds in terms of activity. Each of the trained classifiers is used to classify 

the corresponding test set. Classifiers typically learn by empirical risk minimization 

(ERM), that is they search for the hypothesis with the lowest error on the training set. On 

a simple but real SAR analysis problem the SVM outperforms several of the most 

frequently used machine learning techniques. 25 

3.4 Machine Learning: an indispensible tool in Bioinformatics  

Machine learning methods are essentially computer programs that  

make use of sampled data or past experience information to  

provide solutions to a given problem. A major focus of machine learning research is to 

automatically learn to recognize complex patterns and make intelligent decisions based 

on data; the difficulty lies in the fact that the set of all possible behaviors given all 

possible inputs is too large to be covered by the set of observed examples (training 

data).  Hence the learner must generalize from the given examples, so as to be able to 

produce a useful output in new cases. 10 

Machine learning is able to deal with the huge volumes of data generated by novel 

high throughput devices, in order to extract hidden relationships that exist and that are not 

noticeable to experts. As new data and novel concept types are generated every day 

inmolecular biology research, it is essential to apply techniques able to fitthis fast-



evolving nature - Machine learning can be adapted efficiently to these changing 

environments. 10 

Machine Learning algorithms have proven to be of practical value for 

approximating nonlinear separable data, especially for classifying biological target data . 

Artificial neural networks (ANN) , support vector machines (SVM) , as well as decision 

trees (DT) have been applied in the past. 

Fang et al.  presented an effective application of SVMs in mining HTS data from 

a type I methionine aminopeptidases (MetAPs) inhibition study. This method was applied 

on a compound library of 43,736 organic small molecules and 50% of the active 

molecules could be recovered by screening just 7% of the test set. According to 

Plewczynski et al. , a SVM was able to achieve classification rates of up to 100% in 

evaluating the activity of compounds with respect to specific targets. Their overall hit 

rate, however, was somewhat lower, 80%. Stahura and Bajorath looked at several 

computational approaches, including SVMs, as a way to complement HTS. 26 

Burton et al. applied DTs in combination with a statistical learning method for 

predicting the CYP1A2 and CYP2D6 inhibition. CYP2D6 datasets provided eleven 

models with an accuracy of over 80%, while CYP1A2 datasets counted five high-

accuracy models for HTS. The application of DTs in drug discovery is discussed by 

Rusinko et al. Their research focuses on a dataset with 1,650 monoamine oxidase 

inhibitors. Recently, Simmons et al. described an ensemble based DT model to virtually 

screen and prioritize compounds for acquisition. Fogel analyzed a combination of 

clustering and ANNs pre-screen compounds for HIV inhibition optimizing specificity and 

potency. 26 

Various machine learning methods have been used to predict diverse inhibitors of  

protein protein interactions. Collection of structurally diverse inhibitors of Protein Protein 

Interactions was compared against the FDA drug database and a subset of the ZINC 

database by machine learning methods which rely on classical QSAR descriptors. 

Descriptors were calculated by the program DRAGON 5 by Todeschini et al. A decision 

tree that contains three descriptors was obtained. The divide and-conquer algorithm (J48) 

was implemented in the software package WEKA 3.4.6 by Witten and Frank  to construct 



decision trees. Activity is expressed in a binary manner: T (true) for PPI inhibitor and F 

(false) for non-PPI inhibitor. 27 

Machine Learning techniques are successfully applied to establish quantitative 

relations between chemical structure and biological activity (QSAR), i.e. classify 

compounds as active or inactive with respect to a specific target biological system. This 

paper presents a comparison of Artificial Neural Networks (ANN), Support Vector 

Machines (SVM), and Decision Trees (DT) in an effort to identify potentiators of 

metabotropic glutamate receptor 5 (mGluR5), compounds that have potential as novel 

treatments against schizophrenia. When training and testing each of the three techniques 

on the same dataset enrichments of 61, 64, and 43 were obtained and an area under the 

curve (AUC) of 0.77, 0.78, and 0.63 was determined for ANNs, SVMs, and DTs, 

respectively. For the top percentile of predicted active compounds, the true positives for 

all three methods were highly similar, while the inactives were diverse offering the 

potential use of jury approaches to improve prediction accuracy. 26 

Machine learning algorithms have been taxonomized in the following way: 

3.4.1 Supervised learning: 

Starting from a database of training data that consists of pairs of input cases and 

desired outputs, its goal is to construct a function(or model) to accurately predict the 

target output of future cases whose output value is unknown .When the target output is a 

continuous-value variable, the task is known as regression. Otherwise, when the output 

(or label) is defined as a finite set of discrete values, the task is known as classification. 10 

3.4.2 Unsupervised learning or clustering 

Starting from a database of training data that consists of input cases, its goal is to 

partition the training samples into subsets (clusters) so that the data in each cluster show a 

high level of proximity. In contrast to supervised learning, the labels for the data are not 

used or are not available in clustering. 10 

3.4.3 Semisupervised learning 

Starting from a database of training data that combines both labeled and unlabeled 

examples, the goal is to construct a model able to accurately predict the target output of 



future cases for which its output value is unknown. Typically, this database contains a 

small amount of labeled data together with a large amount of unlabeled data. 10 

 

3.4.4 Reinforcement learning 

These algorithms are aimed at finding a policy that maps states of the world to 

actions. The actions are chosen among the options that an agent ought to take under those 

states, with the aim of maximizing some notion of long-term reward. Its main difference 

regarding the previous types of machine learning techniques is that input–output pairs are 

not present in a database, and its goal resides in online performance. 10 

3.4.5 Optimization  

This can be defined as the task of searching for an optimal solution in a space of 

multiple possible solutions. As the process of learning from data can be regarded as 

searching for the model that best fits the data, optimization methods can be considered an 

ingredient in modeling. 10 

Supervised machine learning is the search for algorithms that reason from 

externally supplied instances to produce general hypotheses, which then make predictions 

about future instances. In other words, the goal of supervised learning is to build a 

concise model of the distribution of class labels in terms of predictor features. The 

resulting classifier is then used to assign class labels to the testing instances where the 

values of the predictor features are known, but the value of the class label is unknown. 

(Eibe Frank, Ian H. Witten & Mark A. Hall) 

3.4.6 Steps involved in Supervised Learning  

i. Determine the type of training example and before doing anything else one should 

decide what kind of data is to be used as an example. 

ii. Gather a training set:The training set needs to be representative of the real world 

use of the function. Thus a set of input objects is gathered and corresponding 

outputs are also gathered, either from human experts or from measurements. 

iii. Determine the input feature representation of the learned function. The accuracy 

of the learned function depends strongly on how the input object is represented. 



Typically the input vector is transformed into a feature vector which contains a 

no. of features that are descriptive of the object. The no. of features should not be 

too large, because of the curse of dimensionality but should contain enough 

information to accurately predict the output. 

iv. Determine the structure of the learned function and corresponding learning 

algorithm. For example – one may choose the use of support vector machines or 

decision trees. 

v. Complete the design. Run the learning algorithm on the gathered training set. 

Some supervised learning algorithms require the user to determine certain control 

parameters. These parameters may be adjusted by optimizing performance on a 

subset known as validation set of the training set. 

vi. Evaluate the accuracy of the learned function. After parameter adjustment and 

learning, the performance of the resulting function should be measured on a test 

set that is separate from the training set. 

vii. A pair consisting of an object and its associated class is called a labeled example. 

The set of labeled example provided to learning algorithm is called the training 

set. Suppose we provide a training set to a learning algorithm and it outputs a 

classifier then the quality of the classifier can be evaluated by the approach that 

employs a second set of labeled examples called the test set where one can 

measure the percentage of test examples classified or misclassified. 28 

viii. The reason we employ a separate test set is that most learned classifiers will be 

very accurate on the training examples. And a classifier that simply memorized 

the training example would be able to classify them perfectly. 

 



3.5 Predictive Model

It is a model whose primary purpose is for prediction.

To create a good model that predicts well on future samples, you need to know,

• Your predictors and how they relate to each other.

• The mechanism that generated the data 

• The measurement system and its error.   

 

3.5.1 Predictive modeling methods in R

There is range of predictive models available in R. These include:

1. Parametric regression models

neural networks; partial least squares; projection pursuit regression; multivariate 

adaptive regression splines; principal component regression

2. Sparse/penalized models

linear models; partial least squ

3. Kernel methods: support vector machines; relevance vector machines; least 

squares support vector machine; Gaussian processes

4. Trees: CART; C4.5; conditional inference trees; node harvest

5. Ensembles: rando

models, generalized linear models; bagging (trees, multivariate adaptive 

regression splines)

3.5 Predictive Model 

It is a model whose primary purpose is for prediction. 

To create a good model that predicts well on future samples, you need to know,

Your predictors and how they relate to each other. 

The mechanism that generated the data (sampling, technology etc).

The measurement system and its error.    

3.5.1 Predictive modeling methods in R 

There is range of predictive models available in R. These include: 

Parametric regression models: ordinary/generalized/robust regression models; 

ral networks; partial least squares; projection pursuit regression; multivariate 

adaptive regression splines; principal component regression 

Sparse/penalized models: ridge regression; the lasso; the elastic net; generalized 

linear models; partial least squares; nearest shrunken centroids; logistic regression

: support vector machines; relevance vector machines; least 

squares support vector machine; Gaussian processes 

: CART; C4.5; conditional inference trees; node harvest 

: random forest; boosting (trees, linear models, generalized additive 

models, generalized linear models; bagging (trees, multivariate adaptive 

regression splines) 

 

To create a good model that predicts well on future samples, you need to know, 

(sampling, technology etc). 

: ordinary/generalized/robust regression models; 

ral networks; partial least squares; projection pursuit regression; multivariate 

: ridge regression; the lasso; the elastic net; generalized 

ares; nearest shrunken centroids; logistic regression 

: support vector machines; relevance vector machines; least 

m forest; boosting (trees, linear models, generalized additive 

models, generalized linear models; bagging (trees, multivariate adaptive 



6. Prototype methods: k nearest neighbors; learned vector quantization 

7. Discriminant analysis: linear; quadratic; penalized; stabilized; sparse; mixture; 

regularized 

8. Others: Naive Bayes; Bayesian multinomial probit models 12 

The predictive models that were built are Flexible discriminant analysis (MARS 

basis), Multivariate adaptive regression splines (earth), & Partial least squares (PLS) 

 

3.6 Ensemble method 
 

These are the learning algorithms that construct a set of classifiers and then classify new 

data sets by taking a vote of their predictions. The original ensemble method is Bayesian 

averaging but more recent algorithms include error correcting output coding, bagging and 

boosting.One key to successful ensemble methods is to construct individual classifiers 

with error rates below 0.5 whose errors are at least somewhat correlated. 19 

These ensemble methods combine multiple models into one usually more accurate than 

the best of its components. Two recent developments are,  

• Importance sampling: It reveals ensemble methods- bagging, random forests and 

boosting to be special cases of a single algorithm, thereby showing how to 

improve their accuracy and speed. 

• Rule ensembles: These are linear rule models derived from decision tree 

ensembles. They are the most interpretable version of ensembles, which is 

essential to applications such as credit scoring and fault diagnosis. 
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4. Materials & Methods 

4.1  Materials 

For the execution of whole of the process the basic requirements are:

• Programming language 

• Package – CARET

                                               

• Condor: It is the product of the Condor Research Project at the University of 

Wisconsin-Madison (UW

management system for compute

systems, Condor provides a job queuing mechanism, scheduling policy, priority 

scheme, resource monitoring, and resource management. The main objective of 

distributed computing is to provide its users with a transparent, open and scalable 

Materials & Methods  

For the execution of whole of the process the basic requirements are: 

Programming language – R 

CARET (Classification and Regression Training) 

                        Shows the R language screen 

It is the product of the Condor Research Project at the University of 

Madison (UW-Madison). Condor is a specialized workload 

management system for compute-intensive jobs. Like other full

systems, Condor provides a job queuing mechanism, scheduling policy, priority 

scheme, resource monitoring, and resource management. The main objective of 

distributed computing is to provide its users with a transparent, open and scalable 

 

It is the product of the Condor Research Project at the University of 

Madison). Condor is a specialized workload 

intensive jobs. Like other full-featured batch 

systems, Condor provides a job queuing mechanism, scheduling policy, priority 

scheme, resource monitoring, and resource management. The main objective of 

distributed computing is to provide its users with a transparent, open and scalable 



way to connect with its available resources so that it is more fault tolerant and 

more powerful than any of the possible stand alone systems. 

• Dataset –Malaria data set (active and inactive compounds for Plasmodium 

falciparum).Given a list of chemicals from the PubChem BioAssay, the 

molecules in a relevant format (sdf format) were downloaded for the accession Ids 

which have the maximum number of tested compounds.The Following AIDs were 

taken: 504582, 504621, 504832, 504834 & 504690 
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1. Data Collection 

Pubchem bioassay:-  

It consists of deposited bioactivity data and descriptions of bioactivity assays used 

to screen the chemical substances contained in the PubChem Substance database, 

including descriptions of the conditions and the readouts (bioactivity levels) specific to 

the screening procedure. PubChem is a scientific showcase of the Molecular Libraries 

Program (MLP), a US National Institutes of Health (NIH) Roadmap Initiative 

(http://mli.nih.gov/mli/) that aims to enhance chemical biology efforts through high-

throughput screening (HTS) so as to identify small molecule probes effective at 

modulating a given biological process or disease.  

The 3D structures in sdf format for active and inactive compounds for the 

Plasmodium falciparum with the Accession Ids (AIDs) with maximum number of tested 

compounds were downloaded.  

 

2. Data Description 

Descriptors calculation using Dragon: Dragon 6.0 is an application for the calculation 

of molecular descriptors. These descriptors can be used to evaluate molecular structure-

activity or structure-property relationships, as well as for similarity analysis and high-

throughput screening of molecule databases.   

Here, the script condor dragon trainee.pl was used to calculate the dragon descriptors 

from a set of sdf files for both actives and inactives. 

The files obtained after running Dragon with the extension ‘.out’ were taken. The header 

from all the ‘.out’ files except one are removed. And then these files are merged to obtain 

the final data. This is done for both actives and inactives. 

For the final file of actives and inactives obtained, a perl script is written to generate R 

ready input of descriptors. To select a number of inactives of the same size as actives, we 

use a threshold for the random number generator = no of actives/no of inactives. 

Here, this ratio was obtained as 0.035795545.This value was put in the perl script to 

obtain the data for training containing equivalent sets of actives and inactives. 

 



 

3. Data preprocessing 

The data preprocessing task is subdivided as a set of relevant steps that could 

improve the quality & success, when applying machine learning modelization 

techniques. These procedures are considered “engineering” the input data. They 

refine the data to make it more tractable for machine learning schemes. 10 

In this chunk, the data set is preprocessed inorder to discard off the non-zero 

values, highly correlated values, missing values, outliers, unbalanced distribution, and 

zero variance predictors. In case of removal of highly correlated values, the cutoff 

threshold limit is given for finding out correlated values and the values sharing the 

highest correlation are removed. 

The data is first analyzed for 0 and Near Zero values. The values corresponding to 

this criteria is then removed using the function nzv.The correlation of the predictors is 

calculated. Values which had a correlation above 0.75 were removed . 12 

The preprocessing task was carried out using various functions from caret. 

4. Principal Component Analysis 

This phase distilled out the 342 predictors down 3 variables i.e. principal 

component in a manner that attempts to maximize the amount of information preserved 

from the original predictor set. It reduces the dimension of the data set and presents it in 

the plot in such a way which makes task easy to interpret the class of compounds. Figures 

contain plots of the components responsible for percent variability in the original 

predictors (Kuhn, 2012).  

5. Data splitting 

The script Classification.Rnw is initially used as the Sweave template for loading 

in the original dataset which then preprocesses the data, distills out the predictors down to 

principal components by reducing their dimensions and splits the data into training and 

test set. The training set  is used for selecting model parameters, its values and model 

building and test set is used to get an independent assessment of model efficacy by using 

the command “createDatapartition” and according to the already defined variable 

“pctTrain” where the percentage for the split was mentioned. 



6. Building and tuning models : 

The model building phase is done by running the Classification-method. Rnw script as 

the Sweave template to produce a Tex file. This script is used for building and 

describing classification models. A dummy set is defined in order to set values for 

variables used in the program to prevent error on parsing with Sweave and the variables 

“trainClass.RData” and “testClass.RData” is loaded into. In addition the model names are 

altered as well. 

Here initially a dummy set is defined for defining variables for resample statistics 

such as for the ROC, sensitivity, specificity, kappa statistics, overall accuracy etc (Kuhn, 

2012).The training data is resampled by Boot (632 rule) so as to check whether the 

choices for the parameters’ values are good or bad. It tries to inject variation in the 

system to approximate the model performance on future samples. 12 

 In order to add more models we can even expand or contract the grid size taking 

the grid parameters of those models into account. This is called setting up of grid (Kuhn, 

2012). 

7. Model Fitting 

This is the model fitting step which is done to check the prediction on the held out 

data in the training set which was kept aside during the bootstrap resampling method and 

is saved in the appropriate “modelFit.RData”. Then a parameter tuning result is plotted in 

a graph taking the resample method . 

8. Prediction on the test set 

The model efficacy or the performance estimation is done by testing the model fit 

results on the test set that was initially split. As a result we get ROC graphs and confusion 

matrix for test set and sensitivity, specificity and overall accuracy of the model where we 

can compare the observed values and predicted values of the test set.The results are 

written into a Tex format,which are converted into PDF files using 'pdflatex'. 

 

 



9. Use of Ensemble Method: 

An ensemble is itself a supervised learning algorithm, because it can be trained and then 

used to make predictions. The trained ensemble, therefore, represents a single hypothesis. 

This hypothesis, however, is not necessarily contained within the hypothesis space of the 

models from which it is built. Thus, ensembles can be shown to have more flexibility in 

the functions they can represent. This flexibility can, in theory, enable them to over-

fit the training data more than a single model would, but in practice, some ensemble 

techniques tend to reduce problems related to over-fitting of the training data. 10
 

Extract the probability for multiple methods like  the flexible discriminant analysis, 

partial least squares, multiple adaptive regression splines in which the extract function 

loops through each model, runs the training and test & then extracts out the predictions & 

probabilities etc. Then we took the weighted average among all the single classifiers and 

the AUC for the test set was generated. 

Components for estimating performance of a model 

ROC graph:-It is a graphical plot of the sensitivity or true positive rate verses 

false positive rate or (1-specificity) for a binary classifier system as its discrimination 

threshold is varied. Also known as relative operating characteristic curve because it is a 

comparison of 2 operating characteristics i.e. true positive rate & false positive rate) as 

the criterion changes. ROC analysis provides tools to select possibly optimal models and 

to discard suboptimal ones independently from the cost context or the class distribution. 

Sensitivity & specificity are statistical measures of the performance of a binary 

classification test. Sensitivity measures the proportion of actual positives which are 

correctly identified as such and specificity measures the proportion of negatives which 

are correctly identified. 

 



Confusion matrix:

negatives, false positives, and false negatives as the observed and predicted values in a 

given sample.  

The predictive models that were built are Flexible discriminant analysis (MARS 

basis), Multivariate adaptive regression splines (

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Confusion matrix:-It is a matrix that gives a clear idea of the true positives, true 

ositives, and false negatives as the observed and predicted values in a 

The predictive models that were built are Flexible discriminant analysis (MARS 

basis), Multivariate adaptive regression splines (earth), & Partial least squares (

 

 

It is a matrix that gives a clear idea of the true positives, true 

ositives, and false negatives as the observed and predicted values in a 

The predictive models that were built are Flexible discriminant analysis (MARS 

), & Partial least squares (PLS) 



 

4.1.1 Partial least squares (PLS) 

Partial least squares is a popular method for soft modeling in industrial applications. It is 

a recent technique that generalizes and combines features from principal component 

analysis and multiple regression. It is used for constructing predictive models when the 

factors are many and highly collinear. It is particularly useful when we need to predict a 

set of dependent variables from a (very) large set of independent variables (i.e., 

predictors).It is an extension of the multiple regression model. 29 

In its simplest form, a linear model specifies the relationship between a dependent 

variable Y and a set of predictor variables the X’s, so that; 

Y= b0 + b1 X1 + b2 X2 + ... +bp Xp 

In this equation, b0 is the regression coefficient for the intercept and the b1 values 

are the regression coefficients computed from the data. 30 

Goal of PLS 

The I observations described by K dependent variables are stored in a I ×K 

matrix denoted Y, the values of J predictors collected on these I observations are 

collected in the I × J matrix X.
 19
 

The goal of PLS regression is to predict Y from X and to describe their common 

structure. When Y is a vector and X is full rank, this goal could be accomplished using 

ordinary multiple regression. When the number of predictors is large compared to the 

number of observations, X is likely to be singular and the regression approach is no 

longer feasible (i.e., because of multicollinearity). 

PLS regression is probably the least restricted of the various multivariate extensions 

of the multiple linear regression models. This flexibility allows it to be used in situations 

where the use of traditional multivariate methods is severely limited, such as when there 

are fewer observations than predictor variables. Furthermore, PLS regression can be used 

as an exploratory analysis tool to select suitable predictor variables and to identify 

outliers before classical linear regression. PLS is not usually appropriate for screening out 

factors that have a negligible effect on the response. 29 

 

 



 

4.1.2 Flexible descriminant analysis (FDA) 

Discriminant function analysis is used to determine which variables discriminate 

between two or more naturally occurring groups.  

For example, an educational researcher may want to investigate which variables 

discriminate between high school graduates who decide (1) to go to college, (2) to attend 

a trade or professional school, or (3) to seek no further training or education. For that 

purpose the researcher could collect data on numerous variables prior to students' 

graduation. After graduation, most students will naturally fall into one of the three 

categories. Discriminant Analysis could then be used to determine which variable(s) are 

the best predictors of students' subsequent educational choice. 

Computationally, discriminant function analysis is very similar to analysis of variance 

(ANOVA). Let us consider a simple example. Suppose we measure height in a random 

sample of 50 males and 50 females. Females are, on the average, not as tall as males, and 

this difference will be reflected in the difference in means (for the variable Height). 

Therefore, variable height allows us to discriminate between males and females with a 

better than chance probability: if a person is tall, then he is likely to be a male, if a person 

is short, then she is likely to be a female. 31 

There are two types of discriminant analysis, i.e., PDA and DDA, with different 

histories of development. Predictive discriminant analysis (PDA), or "classification" as it 

is sometimes called, generally includes "a set of predictor variables and one criterion 

variable, the latter being a grouping variable with two or more levels, that is, there are 

two or more groups" (Huberty & Barton, 1989, p. 158). Predictive discriminant 

analysis (PDA)is similar to multiple regression analysis except that PDA is used when 

the criterion variable is categorical and nominally scaled. Descriptive Discriminant 

Analysis( DDA) includes a collection of techniques involving two or more criterion 

variables and a set of one or more grouping variables, each with two or more levels, 

whose effects are assessed through MANOVA(Multivariate Analysis of Variance) 

 



 

                                       Good and Poor Discriminant Analysis 

Stepwise Discriminant Analysis 

Probably the most common application of discriminant function analysis is to 

include many measures in the study, in order to determine the ones that discriminate 

between groups. For example, an educational researcher interested in predicting high 

school graduates' choices for further education would probably include as many measures 

of personality, achievement motivation, academic performance, etc. as possible in order 

to learn which one(s) offer the best prediction. 

Model: Here we want to build a "model" of how we can best predict to which 

group a case belongs. In the following discussion we will use the term "in the model" in 

order to refer to variables that are included in the prediction of group membership, and 

we will refer to variables as being "not in the model" if they are not included. 

Forward stepwise analysis: In stepwise discriminant function analysis, a model 

of discrimination is built step-by-step. Specifically, at each step all variables are reviewed 



and evaluated to determine which one will contribute most to the discrimination between 

groups. That variable will then be included in the model, and the process starts again. 

Backward stepwise analysis: One can also step backwards; in that case all 

variables are included in the model and then, at each step, the variable that contributes 

least to the prediction of group membership is eliminated. Thus, as the result of a 

successful discriminant function analysis, one would only keep the "important" variables 

in the model, that is, those variables that contribute the most to the discrimination 

between groups. 

F to enter, F to remove: The stepwise procedure is "guided" by the 

respective F to enter and F to remove values. The F value for a variable indicates its 

statistical significance in the discrimination between groups, that is, it is a measure of the 

extent to which a variable makes a unique contribution to the prediction of group 

membership. If you are familiar with stepwise multiple regression procedures, then you 

may interpret the F to enter/remove values in the same way as in stepwise regression. 

Capitalizing on chance: A common misinterpretation of the results of stepwise 

discriminant analysis is to take statistical significance levels at face value. By nature, the 

stepwise procedures will capitalize on chance because they "pick and choose" the 

variables to be included in the model so as to yield maximum discrimination. Thus, when 

using the stepwise approach the researcher should be aware that the significance levels do 

not reflect the true alpha error rate, that is, the probability of erroneously 

rejecting H0 (the null hypothesis that there is no discrimination between groups). 32 

4.1.3 Multivariate adaptive regression splines (MARS) 

 It is a non-parametric regression technique and can be seen as an extension of linear 

models that automatically models non-linearities and interactions between variables. The 

earth package is an implementation of Jerome Friedman’s Multivariate Adaptive 

Regression Splines, commonly known as "MARS". The earth source code is licensed 

under the GPL  and runs in an R  environment, or can be used as a stand-alone C 

library. 
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basis functions  33 
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Algorithm 

Implementing MARSplines involves a two step procedure that is applied 

successively until a desired model is found. In the first step, we build the model, i.e. 

increase its complexity by adding basis functions until a preset (user-defined) maximum 

level of complexity has been reached. Then we begin a backward procedure to remove 

the least significant basis functions from the model, i.e. those whose removal will lead to 

the least reduction in the (least-squares) goodness of fit. This algorithm is implemented as 

follows: 

1. Start with the simplest model involving only the constant basis function. 

2. Search the space of basis functions, for each variable and for all possible knots, and 

add those which maximize a certain measure of goodness of fit (minimize prediction 

error). 

3. Step 2 is recursively applied until a model of pre-determined maximum complexity 

is derived. 

4. Finally, in the last stage, a pruning procedure is applied where those basis functions 

are removed that contribute least to the overall (least squares) goodness of fit. 

Applications 

• Multivariate Adaptive Regression Splines have become very popular recently for 

finding predictive models for "difficult" data mining problems, i.e., when the 

predictor variables do not exhibit simple and/or monotone relationships to the 

dependent variable of interest.  

• MARSplines selects predictors (basis functions) for the model in a specific 

manner so it generally works "well" in situations where regression-tree models 

are also appropriate, i.e., where hierarchically organized successive splits on the 

predictor variables yield good (accurate) predictions.  

• In fact, instead of considering this technique as a generalization of multiple 

regression , MARSplines may be considered as a generalization of regression 

trees, where the "hard" binary splits are replaced by "smooth" basis functions. 33 
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5. Results 

Data Set: 

The initial data set consisted of 65367 samples and 799 predictor variables. The 

breakdown of the outcome data classes were: \active" (n=32712) and \inactive" 

(n=32655). 

1. Partial Least Squares (PLS) 

Model Building: 

The parameter tuning values of different models are calculated in such a way that 

makes the interpretation quite easy to visualize from the graph itself. The ROC values of 

training sets are taken in the Y axis and the parameter values of a particular model is 

taken in the X axis.  

There is 1 tuning parameter associated with this model: the number of 

components. To choose an appropriate value of the tuning parameter, the bootstrap 632 

rule (10 reps) was used to generated a profile of performance across the 20 candidate 

values. 

 

GRAPH I: A plot of the estimates of the ROC values calculated using the bootstrap 

632 rule (PLS). 

 



Test Set Results 

                      

 

        ACTIVE 

OBSERVED VALUES 

ACTIVE INACTIVE 

5122 2436 

INACTIVE 3055 5727 

TABLE I: The confusion matrix for the test (PLS) set 

 

Based on the test set of 16340 samples, the overall accuracy was 0.664, the Kappa 

statistic was 0.328, the p-value that accuracy is greater than the no-information rate was < 

2.22e-16, the p-value of concordance from McNemar's test was < 2.22e-16, the 

sensitivity was 0.719, the specificity was 0.626 and the area under the ROC curve was 

0.702.Using the bootstrap 632 rule (10 reps), the training set estimates were area under 

the ROC curve was 0.719, sensitivity was 0.63 and specificity was 0.698. 

         

GRAPH II: ROC Curve for the test set (PLS) 

 

 



2. Flexible descriminant analysis (FDA) 

 

Model Building: 

There are 2 tuning parameters associated with this model: the number of terms 

and product degree. To choose appropriate values of the tuning parameters, the bootstrap 

632 rule (10 reps) was used to generate a profile of performance across the 7 

combinations of the tuning parameters. 

 

GRAPH III: A plot of the estimates of the ROC values calculated using the 

bootstrap 632 rule (FDA) 

 

 

 

 

 

 

 



Test Set Results 

 

 

ACTIVE 

OBSERVED VALUES 

                   ACTIVE                     INACTIVE 

5346 2544 

INACTIVE 2831 5619 

TABLE II: The confusion matrix for the test set (FDA) 

Based on the test set of 16340 samples, the overall accuracy was 0.671, the Kappa 

statistic was 0.342, the p-value that accuracy is greater than the no-information rate was 

<2e-16, the p-value of concordance from McNemar's test was 1e-04, the sensitivity was 

0.726, the specificity was 0.654 and the area under the ROC curve was 0.688. Using the 

bootstrap 632 rule (10 reps), the training set estimates were area under the ROC curve 

was 0.724, sensitivity was 0.651 and specificity was 0.686. 

                

GRAPH IV:  ROC Curve for the test set (FDA) 

 

 



3. Multivariate adaptive regression splines – model name –earth 

Model Building : 

There are 2 tuning parameters associated with this model: the number of terms 

and product degree. To choose appropriate values of the tuning parameters, the bootstrap 

632 rule (10 reps) was used to generated a profile of performance across the 7 

combinations of the tuning parameters. 

 

     GRAPH V: A plot of the estimates of the ROC values calculated using the 

bootstrap 632 rule (earth) 

 

 

 

 

 

 



Test Set Results: 

 

 

ACTIVE 

OBSERVED VALUES 

                   ACTIVE                     INACTIVE 

5359 2552 

INACTIVE 2818 5611 

TABLE III: The confusion matrix for the test set (earth) 

 

Based on the test set of 16340 samples, the overall accuracy was 0.671, the Kappa 

statistic was 0.343, the p-value that accuracy is greater than the no-information rate was 

<2e-16, the p-value of concordance from McNemar's test was 3e-04, the sensitivity was 

0.726, the specificity was 0.655 and the area under the ROC curve was 0.687. Using the 

bootstrap 632 rule (10 reps), the training set estimates were area under the ROC curve 

was 0.724, sensitivity was 0.653 and specificity was 0.684. 

 

                                 GRAPH VI:  ROC for the test set (earth) 



Class probabilities for the test set. Each panel contains separate classes 

 

FIGURE I: Class probabilities for the test set using (Earth) 

a) Class probabilities for the test set using PLS 

 

 

 

 

 

 

 

 

 

FIGURE II: Class probabilities for the test set (FDA) 

 

 

 

 

 



 

FIGURE III: Class probabilities for the test set( PLS) 

 

 

 

 

 

 

 

 

 

 

 



Ensemble Results 

  Table IV: Confusion Matrix (Ensemble)                                       

 

PREDICTION ACTIVE INACTIVE 

ACTIVE 5305 2476 

INACTIVE 2872 5687 

 

Statistics 

Accuracy: 0.6727           

95% CI : (0.6654, 0.6799) 

No Information Rate : 0.5004           

P-Value [Acc > NIR] : < 2.2e-16        

Kappa : 0.3454           

Mcnemar's Test P-Value : 6.615e-08        

Sensitivity : 0.6488           

Specificity : 0.6967           

Pos Pred Value : 0.6818           

Neg Pred Value : 0.6644           

Prevalence : 0.5004           

Detection Rate : 0.3247           

Detection Prevalence : 0.4762 

 'Positive' Class: active     

  

 

 

 

 

 

 

 

 



5.1 Result Analysis: 

 

Model name Overall 

Accuracy 

Area under 

ROC (test) 

Area under 

ROC (train) 

PLS 

 

0.664 0.702 0.719 

FDA 

 

0.671 0.688 0.724 

earth 

 

0.671 0.687 0.724 

 

TABLE IV:  The ROC values and overall accuracy for the mentioned methods 

 

Model name Sensitivity Specificty Kappa Statistic 

PLS 

 

0.719 0.626 0.328 

FDA 

 

0.726 0.654 0.342 

earth 

 

0.726 0.655 0.343 

 

                        TABLE V: Performance score of the Predictive Models 

 

 

 

 

 



A confusion matrix is a specific table layout that allows visualization of the 

performance of an algorithm, typically a supervised learning one. Each column of the 

matrix represents the instances in a predicted class, while each row represents the 

instances in an actual class. In this predictive analysis, a confusion matrix), is a table 

with two rows and two columns that reports the number of false positives, false 

negatives,true positives, and true negatives. 10 

A receiver operating characteristic (ROC), or simply ROC curve, is 

a graphical plot which illustrates the performance of a binary classifier system.  It is 

created by plotting the fraction of true positives out of the positives (TPR = true positive 

rate) vs. the fraction of false positives out of the negatives (FPR = false positive rate), at 

various threshold settings. TPR is also known as sensitivity, and FPR is one minus 

the specificity or true negative rate. ROC analysis provides tools to select possibly 

optimal models and to discard suboptimal ones independently from the class 

distribution. Each point on the ROC curve represents a sensitivity/specificity pair 

corresponding to a particular decision threshold. 19 

The value for the area under the ROC curve can be interpreted as follows: an area 

of 0.664, for example, means that a randomly selected individual from the positive group 

has a test value larger than that for a randomly chosen individual from the negative group 

in 66.4% of the time . When the variable under study cannot distinguish between the two 

groups, i.e. where there is no difference between the two distributions, the area will be 

equal to 0.5 (the ROC curve will coincide with the diagonal). When there is a perfect 

separation of the values of the two groups, i.e. there no overlapping of the distributions, 

the area under the ROC curve equals 1 (the ROC curve will reach the upper left corner of 

the graph). 

McNemar's test is a test of equality of the marginal distributions in a 2 by 2 

classification table and, therefore, a test of symmetry. The P-value is the probability that 

the Area under the ROC curve (like e.g. 0.947) is found when in fact, the true 

(population) Area under the ROC curve is 0.5 (null hypothesis: Area = 0.5). If P is low 

(P<0.05) then it can be concluded that the Area under the ROC curve is significantly 



different from 0.5 and that therefore there is evidence that the test does have an ability to 

distinguish between the two groups. 19 

A test with perfect discrimination (no overlap in the two distributions) has a ROC 

curve that passes through the upper left corner (100% sensitivity, 100% specificity). 

Therefore the closer the ROC curve is to the upper left corner, the higher the overall 

accuracy of the test . 

The Kappa statistic corrects the simple inter-rater agreement for chance 

agreement, and thus provides a better estimate in most cases of the reliability of 

categorical behavioural observation data. The Kappa ratio (k) expresses the corrected 

proportion of agreement between raters as a ratio of the total proportion of agreements 

corrected for chance responses. If the raters are in complete agreement then κ = 1. If there 

is no agreement among the raters other than what would be expected by chance.19 
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6. Discussion 

Humans have suffered from the burden of malarial infections for thousands of 

years, and the disease has greatly influenced human evolution and history. Malaria is a 

serious worldwide health problem due to the emergence of parasites that are resistant to 

well-established antimalaria drugs. 

Different methods for building predictive models of the relationships between 

molecular structure and useful properties are becoming increasingly important for drug 

discovery. Tools for designing libraries and extracting information from molecular data 

bases and high-throughput screening experiments robustly and quickly enable leads to be 

discovered more effectively. One of the most effective applications comes from the 

emerging science and industry of knowledge discovery in databases, also known as data 

mining.
1
 

With the need for million compounds chemical libraries, cheminformatics is now 

playing a key role in many aspects of drug discovery and drug development Machine 

Learning techniques are successfully applied to establish quantitative relations between 

chemical structure and biological activity (QSAR), i.e. classify compounds as active or 

inactive with respect to a specific target biological system. 10
 

So we have modelled various structure activity classifiers for P.falciparum using 

the caret (Classification and regression training) package in R. The caret contains 

functions to stream-line the model training process for complex regression and 

classification problems. The package focuses on simplifying model training and tuning 

across a wide variety of modeling techniques. It also includes methods for pre-processing 

training data, calculating variable importance, and model visualizations. The script used 

for building models uses ‘Sweave’ which is a function in the statistical programming 

language R that enables integration of R code into LaTeX documents. In this work we 

have used supervised learning methods as machine learning approaches for predicting 

active accuracy of compounds. 

There are a few data sets included in caret like Multidrug Resistance Reversal 

(MDRR) Agent Data The original response variable is a ratio measuring the ability of a 

compound to reverse a leukemia cell's resistance to adriamycin. However, the problem 



was treated as a classification problem, and compounds with the ratio >4.2 were 

considered active, and those with the ratio <= 2.0 were considered inactive. Compounds 

with the ratio between these two cutoffs were called moderate and removed from the data 

for two class classification, leaving a set of 528 compounds (298 actives and 230 

inactives).When the predictive models were built for this dataset the overall accuracy 

ranged from 0.8 to 0.9 which is quite accurate. 

The malaria dataset used here is a ‘big’ data containing large number of samples 

(more than 60000) and a large number of predictor variables. The accuracy of the for this 

large dataset vary and was reduced due to data overlap which reduces the sensitivity and 

specificity of the classifiers. 

The Classification models were built and trained with molecular descriptors 

calculated by DRAGON. The models that were built are: Flexible discriminant analysis 

(FDA),Multivariate adaptive regression splines (earth) & Partial least squares (PLS) 

Partial Least Squares (PLS) is a versatile tool for the analysis of high-dimensional 

genomic data. For structure-activity correlation, Partial Least Squares (PLS) has many 

advantages over regression, including the ability to robustly handle more descriptor 

variables than compounds, nonorthogonal descriptors and multiple biological results, 

while providing more predictive accuracy and a much lower risk of chance 

correlation. PLS methods are in general characterised by high computational and 

statistical efficiency.They also offer great flexibility and versatility in terms of the 

analysis problems.35 

Discriminant Analysis may be used when we want to assess the adequacy of 

classification, given the group memberships of the objects under study; or we wish 

to assign objects to one of a number of (known) groups of objects. Flexible discriminant 

analysis recasts Linear Discriminant Analysis as a linear regression problem and 

subsitutes linear regression by a non parametric one which implicitely enlarges the basis 

of the vector space. This analysis can allow multiple dependent variables with reduced 

error rates. It allows easier interpretation of Between-group Differences as  each 

discriminant function measures something unique and different. But they assume that the 

relationships between variables are assumed to be linear in all groups.19 



Multivariate adaptive regression splines (MARS) It is a nonparametric method 

that estimates complex nonlinear relationships by a series of spline functions of the 

independent predictors. MARS models are more flexible than linear regression models. It 

can handle both continuous and categorical data. Building MARS models often requires 

little or no data preparation. It is suitable for handling fairly large datasets and large 

number of predictor values and makes quick prediction on data. These models do not 

give as good fits as boosted trees, but can be built much more quickly and are more 

interpretable. 19 

These models showed different overall accuracy.Their respective overall 

accuracies were calculated: Flexible discriminant analysis (MARS basis)-0.671, 

Multivariate adaptive regression splines (earth)-0.671, & Partial least squares 

(PLS)-0.664 

These results were not very accurate so in order to improve the result, we 

have employed ensemble method which combines multiple models to obtain 

better predictive performance than could be obtained from any of the constituent models. 

This was done to obtain better accuracy than the single classifier. Ensemble learning is 

primarily used to improve the (classification, prediction, function approximation, etc.) 

performance of a model, or reduce the likelihood of an unfortunate selection of a poor 

one. 

The probability for all the three methods was extracted and weighted average 

among all the single classifiers and the AUC for the test set was generated. The accuracy 

was slightly improved using this method. The accuracy finally obtained was 

0.6727.These results can be further improved by using more methods with better 

accuracy and different variable. 

Prior to any direct application of machine learning algorithms, it is essential to be 

conscious of the quality of the initial raw data available, the lack of data quality will lead 

to poor quality in the mined results. As a result, the need to ensure a minimum quality of 

the data – which might require among other decisions, to discard a part of the original 

data – is critical, especially in the field. The data pre-processing is the most important 



task in data mining. These generally include missing value imputation, data 

normalization, and discretization.10 

They refine the data to make it more tractable for machine learning methods. Quality of 

result strongly depends on the quality of input data, and therefore the preprocessing step 

is crucial. Therefore choosing the right data mining technique and proper refining of data 

may further lead to improved models with better accuracy. 10 
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7. Conclusion 

Thus we can conclude that Data Mining is an analytic process designed to explore data in 

search of consistent patterns and/or systematic relationships between variables, and then 

to validate the findings by applying the detected patterns to new subsets of data. In this 

case,the dataset used was the active and inactive compounds for Plasmodium 

falciparum. 

Here an attempt was made to build predictive relationships between the structure of a 

chemical and some observed endpoint, such as activity against a biological target. Using 

the structural formula of a compound, chemical descriptors were generated that attempt 

to capture specific characteristics of the chemical, such as its size, complexity, etc. The 

whole procedure involves the usage of R programming along with Caret package. 

Currently, caret works with a large number of existing modeling functions and will 

continue to add new models as they are developed. Structure Activity Classifiers were 

built that use these descriptors to predict the outcome of interest. These models can be 

applied for prediction or classification of new data. Here, these models can further 

classify the new test set compounds as active or inactive. 

Data Mining can be further applied to different fields of Bioinformatics including gene 

finding, protein function domain detection, function motif detection, protein function 

inference, disease diagnosis, disease prognosis, disease treatment optimization, protein 

and gene interaction network reconstruction, data cleansing, and protein sub-cellular 

localization prediction. 
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9. Appendix 

I. Two scripts are used to calculate descriptors for the data named as : 
 

• condor_trainee.pl 

#!/usr/bin/perl -w  
#  
# We assume that all files are in the format Conformers_*sdf as  
# downloaded from Pubchem. You can change this so that they pick all sdf files  
#  
@allmegafiles=`ls -1 Conformers_*sdf`;  
#  
#process these files one at a time  
#  
while (@allmegafiles){  
$megafile=shift(@allmegafiles);  
#split the larger files to contain only 150 molecules at a time....  
# This step uses mayachemtools, and a perlscript that splits SDF files.  
#SplitSDFiles.pl should be on your path!  
chomp($megafile);  
$megafile=~s/\.sdf//;  
system "/nfs/condor/pubchem/mayachemtools/bin/SplitSDFiles.pl -m Cmpds --numcmpds 150 -r $megafile 
-o $megafile.sdf";  
# read these files for descriptor calculations  
#  
@allfiles=`ls -1 *Part*.sdf`;  
print @allfiles;  
## The following loop is a script that was written for  
## processing in lots of 8, now replaced with the condor submit script....  
#  
while(@allfiles){  
for ($i=0; $i <= 7; $i++){  
  $temp=shift(@allfiles);  
# check if no value  
unless($temp eq ''){push(@files,$temp)}  
}  
foreach $file (@files){  
chomp($file);  
$file=~s/\.sdf//;  
print $file, "\n";  
# copy file template  
system "cp template.drs $file.drs";  
system "perl -i -p -e s/filename/$file/ $file.drs";  
open(CMD,">$file.cmd");  
print CMD 'universe = vanilla',"\n";  
#print CMD 'requirements = (Arch=="X86_64" || Arch=="INTEL") && OpSys=="LINUX"',"\n";  
##print CMD 'requirements = Arch=="X86_64" && OpSys=="LINUX"',"\n";  
##print CMD 'requirements = Arch=="INTEL" && OpSys=="LINUX"',"\n";  
#print CMD 'requirements = machine=="dolphin.osdd.jnu.ac.in"',"\n";  
print CMD 'requirements = machine=="lynn.osdd.jnu.ac.in" || machine=="dolphin.osdd.jnu.ac.in"',"\n";  
print CMD "\nexecutable    = /usr/share/dragon6/dragon6shell\n";  
print CMD "output          = $file.stdout\n";  



print CMD "error           = $file.err\n";  
print CMD "log             = $file.log\n";  
print CMD "arguments       = -s $file.drs\n";  
print CMD "queue\n";  
close(CMD);  
system("condor_submit $file.cmd");  
#system "nohup /usr/share/dragon6/dragon6shell -s $file.drs > $file.err &";  
}  
#print "sleeping...\n\n";  
#sleep 80;  
@files=();  
}  
#clean files  
#system "rm *Part*sdf";  
} #while 
 

• template.drs 
 

<?xml version="1.0"?>  
<DRAGON version="6.0.2" script_version="1" generation_date="2010/11/25">  
  <OPTIONS>  
    <SaveLayout value="true"/>  
    <ShowWorksheet value="false"/>  
    <Decimal_Separator value="."/>  
    <Missing_String value="NaN"/>  
    <DefaultMolFormat value="1"/>  
    <HelpBrowser value="/usr/bin/xdg-open"/>  
    <RejectUnusualValence value="false"/>  
    <Add2DHydrogens value="false"/>  
    <LogPathWalk value="true"/>  
    <LogEdge value="true"/>  
    <Weights>  
      <weight name="Mass"/>  
      <weight name="VdWVolume"/>  
      <weight name="Electronegativity"/>  
      <weight name="Polarizability"/>  
      <weight name="Ionization"/>  
      <weight name="I-State"/>  
    </Weights>  
    <SaveOnlyData value="false"/>  
    <SaveLabelsOnSeparateFile value="false"/>  
    <SaveFormatBlock value="%b - %n.txt"/>  
    <SaveFormatSubBlock value="%b-%s - %n - %m.txt"/>  
    <SaveExcludeMisVal value="false"/>  
    <SaveExcludeAllMisVal value="false"/>  
    <SaveExcludeConst value="false"/>  
    <SaveExcludeNearConst value="false"/>  
    <SaveExcludeStdDev value="false"/>  
    <SaveStdDevThreshold value="0.0001"/>  
    <SaveExcludeCorrelated value="false"/>  
    <SaveCorrThreshold value="0.95"/>  
    <SaveExclusionOptionsToVariables value="false"/>  
    <SaveExcludeMisMolecules value="false"/>  
    <SaveExcludeRejectedMolecules value="false"/>  
  </OPTIONS>  
  <DESCRIPTORS>  
    <block id="1" SelectAll="true"/>  
    <block id="2" SelectAll="true"/>  
    <block id="3" SelectAll="true"/>  
    <block id="4" SelectAll="true"/>  



    <block id="5" SelectAll="true"/>  
    <block id="6" SelectAll="true"/>  
    <block id="7" SelectAll="true"/>  
    <block id="8" SelectAll="true"/>  
    <block id="9" SelectAll="true"/>  
    <block id="10" SelectAll="true"/>  
    <block id="11" SelectAll="true"/>  
    <block id="12" SelectAll="true"/>  
    <block id="13" SelectAll="true"/>  
    <block id="14" SelectAll="true"/>  
    <block id="15" SelectAll="true"/>  
    <block id="16" SelectAll="true"/>  
    <block id="17" SelectAll="true"/>  
    <block id="18" SelectAll="true"/>  
    <block id="19" SelectAll="true"/>  
    <block id="20" SelectAll="true"/>  
    <block id="21" SelectAll="true"/>  
    <block id="22" SelectAll="true"/>  
    <block id="23" SelectAll="true"/>  
    <block id="24" SelectAll="true"/>  
    <block id="25" SelectAll="true"/>  
    <block id="26" SelectAll="true"/>  
    <block id="27" SelectAll="true"/>  
    <block id="28" SelectAll="true"/>  
    <block id="29" SelectAll="true"/>  
  </DESCRIPTORS>  
  <MOLFILES>  
    <molInput value="file"/>  
    <molFile value="filename.sdf"/>  
  </MOLFILES>  
  <OUTPUT>  
    <SaveStdOut value="true"/>  
    <SaveProject value="false"/>  
    <SaveFile value="true"/>  
    <SaveType value="singlefile"/>  
    <SaveFilePath value="filename.out"/>  
    <logMode value="none"/>  
  </OUTPUT>  
</DRAGON> 
 

II. Perl script used for merging data and generating output for training  
 
#!usr/bin/perl  
open(ACIN,"<$ARGV[0]");  
open(INACIN,"<$ARGV[1]");  
open(OUT,">>output_for_training.out");  
@data=<ACIN>;  
$header=shift @data;  
@line=split(/\t/, $header);  
shift @line;  
 push(@line,'CLASS');  
 chomp @line;  
 $line2 = join(",", @line);  
 print OUT "$line2\n";  
foreach(@data)  
{  
 @line=split(/\t/, $_);  
 shift @line;  
 push(@line,'active');  
 chomp @line;  
 $line2 = join(",",@line);  
 print OUT "$line2\n";  



}  
open (FHOUT,">>not_in_train.out");  
while($line=<INACIN>){  
 @line=split(/\t/, $line);  
 shift @line;  
 push(@line,'inactive');  
 chomp @line;  
 $line2 = join(",", @line);  
    $rand=rand();  
#change the value below to (No of active)/(No of inactive)  
    if($rand <= 0.2){  
    print OUT "$line2\n";  
    }else{  
    print FHOUT "$line2\n";  
    }  
}  
 

III. Script for Data Preprocessing 
 
library(caret) 
osdd <- read.delim("final11.out", na.strings = "NA") 
## save the compound name in a seperate vector and then 
## remove it from the data set 
compound <- osdd$NAME 
osdd <- osdd[, -1] 
## Do the same thing for the class 
classes <- osdd$class 
osdd$class <- NULL 
isNZV <- nearZeroVar(osdd) 
osdd2 <- osdd[, -isNZV] 
## Determing the percent of missing descriptor values for 
## each column 
pctMissing <- unlist(lapply(osdd2, function(x) mean(is.na(x)))) 
## Get a vector of column names that have at least one missing value 
missingCols <- names(pctMissing)[pctMissing > 0] 
## Remove columns with missing values 
osdd3 <- osdd2[, !(names(osdd2) %in% missingCols)] 
descrCor <- cor(osdd3) 
highCorr <- findCorrelation(descrCor, cutoff = .85, verbose = FALSE) 
osdd4 <- osdd3[, -highCorr] 
set.seed(1) 
inTrain <- createDataPartition(classes, times = 1, p = .75)[[1]] 
trainingDescr <- osdd4[inTrain,] 
testDescr <- osdd4[-inTrain,] 
trainClasses <- classes[inTrain] 
testClasses <-  classes[-inTrain] 
set.seed(2) 
plsFit <- train(trainingDescr, trainClasses, 
                method = "pls", 
                tuneLength = 12, 
                metric = "ROC", 
                trControl = trainControl( 
                  method = "cv", 
                  classProbs = TRUE, 
                  summaryFunction = twoClassSummary)) 
plot(plsFit, metric = "ROC") 
## Predictor unknowns that do not have corresponding class values 
## preds <- extractPrediction(list(pls = plsFit), unkX = osdd4[1:5,]) 
## predict(ldaFit, newdata = testDescr[1:5,]) 
##vpredict(ldaFit, newdata = testDescr[1:5,], type = "prob") 
plsPred <- predict(plsFit, testDescr) 
plsProbs <- predict(plsFit, testDescr, type = "prob")  



testPreds <- plsProbs 
testPreds$obs <- testClasses 
testPreds$pred <- plsPred 
twoClassSummary(testPreds, 
                lev = levels(testPreds$obs)) 
## for modifcation: 
## sensitivity.table 
## Do the resampling manually to make a bunch of ROC curves 
## The resampling indices are in plsFit$control$index 
## Setup a blank plot 
plot(0, 0, type = "n", 
     xlim = c(0, 1), 
     ylim = c(0, 1), 
     ylab = "True Positive Rate", 
     xlab = "False Positive Rate") 
title("ROC Curves for Held-Out Data Sets") 
abline(0, 1, lty = 2, col = "grey") 
 
## work across each resample 
for(i in 1:length(plsFit$control$index)) 
  { 
    inTrain <- plsFit$control$index[[i]] 
    trainData <- trainingDescr[inTrain,] 
    trainClass <- trainClasses[inTrain] 
    holdoutDescr <- trainingDescr[-inTrain,] 
    ## Fit the actual model using the optimal tuning parameters 
    ## found by train() 
    plsFoldFit <- plsda(trainData, trainClass, 
                       ncomp = plsFit$bestTune$.ncomp) 
    holdoutPreds <- data.frame(obs = trainClasses[-inTrain], 
                               prob = predict(plsFoldFit, holdoutDescr, type = "prob")[,1,1])     
    holdoutROC <- roc(holdoutPreds$prob, holdoutPreds$obs) 
    points(1 - holdoutROC[, "specificity"], 
           holdoutROC[, "sensitivity"], 
           type = "l", 
           col = i) 
  } 
 

IV. The Sweave script “Classification.Rnw” and “Classification-method.Rnw” 

kindly provided by Dr. Max Kuhn, Director of Non-clinical Statistics, Pfizer. 

  
• Classification .Rnw  

 
%% Classification Modeling Script  
%% Max Kuhn (max.kuhn@pfizer.com, mxkuhn@gmail.com)  
%% Version: 1.00  
%% Created on: 2010/10/02  
%%  
%% This is an Sweave template for building and describing  
%% classification models. It mixes R and LaTeX code. The document can  
%% be processing using R's Sweave function to produce a tex file.   
%%  
%% The inputs are:  
%% - the initial data set in a data frame called 'rawData'  
%% - a factor column in the data set called 'class'. this should be the  
%%    outcome variable  
%% - all other columns in rawData should be predictor variables  
%% - the type of model should be in a variable called 'modName'.  
%%  
%% The script attempts to make some intelligent choices based on the  
%% model being used. For example, if modName is "pls", the script will  



%% automatically center and scale the predictor data. There are  
%% situations where these choices can (and should be) changed.    
%%  
%% There are other options that may make sense to change. For example,  
%% the user may want to adjust the type of resampling. To find these  
%% parts of the script, search on the string 'OPTION'. These parts of  
%% the code will document the options.  
 
\documentclass[12pt]{report}  
\usepackage{amsmath}  
\usepackage[pdftex]{graphicx}  
\usepackage{color}  
\usepackage{ctable}  
\usepackage{xspace}  
\usepackage{fancyvrb}  
\usepackage{fancyhdr}  
\usepackage{lastpage}  
\usepackage{longtable}  
\usepackage{algorithm2e}  
\usepackage[  
         colorlinks=true,  
         linkcolor=blue,  
         citecolor=blue,  
         urlcolor=blue]  
         {hyperref}  
\usepackage{lscape}  
\usepackage{Sweave}  
\SweaveOpts{keep.source = TRUE}  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  
  
% define new colors for use  
\definecolor{darkgreen}{rgb}{0,0.6,0}  
\definecolor{darkred}{rgb}{0.6,0.0,0}  
\definecolor{lightbrown}{rgb}{1,0.9,0.8}  
\definecolor{brown}{rgb}{0.6,0.3,0.3}  
\definecolor{darkblue}{rgb}{0,0,0.8}  
\definecolor{darkmagenta}{rgb}{0.5,0,0.5}  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  
 
\newcommand{\bld}[1]{\mbox{\boldmath $#1$}}  
\newcommand{\shell}[1]{\mbox{$#1$}}  
\renewcommand{\vec}[1]{\mbox{\bf {#1}}}  
 
\newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize}  
\newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize}  
 
\newcommand{\halfs}{\frac{1}{2}}  
\setlength{\oddsidemargin}{-.25 truein}  
\setlength{\evensidemargin}{0truein}  
\setlength{\topmargin}{-0.2truein}  
\setlength{\textwidth}{7 truein}  
\setlength{\textheight}{8.5 truein}  
\setlength{\parindent}{0.20truein}  
\setlength{\parskip}{0.10truein}  
\setcounter{LTchunksize}{50}  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  



\pagestyle{fancy}  
\lhead{}  
%% OPTION Report header name  
\chead{Classification Model Script}  
\rhead{}  
\lfoot{}  
\cfoot{}  
\rfoot{\thepage\ of \pageref{LastPage}}  
\renewcommand{\headrulewidth}{1pt}  
\renewcommand{\footrulewidth}{1pt}  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  
 
%% OPTION Report title and modeler name  
\title{OSDD4 - first run: Preprocessing and SVMRadial}  
\author{Anisha Kathpalia}   
\begin{document}  
\maketitle  
\thispagestyle{empty}    
<<startup, results = hide, echo = FALSE>>=  
library(Hmisc)  
library(caret)  
versionTest <- compareVersion(packageDescription("caret")$Version,  
                              "4.65")  
if(versionTest < 0) stop("caret version 4.65 or later is required")  
library(RColorBrewer)  
listString <- function (x, period = FALSE, verbose = FALSE)  
{  
  if (verbose)   cat("\n      entering listString\n")  
  flush.console()  
  if (!is.character(x))  
    x <- as.character(x)  
  numElements <- length(x)  
  out <- if (length(x) > 0) {  
    switch(min(numElements, 3), x, paste(x, collapse = " and "),  
           {  
             x <- paste(x, c(rep(",", numElements - 2), " and", ""), sep = "")  
             paste(x, collapse = " ")  
           })  
  }  
  else ""  
  if (period)  out <- paste(out, ".", sep = "")  
  if (verbose)  cat("      leaving  listString\n\n")  
  flush.console()  
  out  
}  
resampleStats <- function(x, digits = 3)  
  {  
    bestPerf <- x$bestTune  
    colnames(bestPerf) <- gsub("^\\.", "", colnames(bestPerf))  
    out <- merge(x$results, bestPerf)  
    out <- out[, colnames(out) %in% x$perfNames]  
    names(out) <- gsub("ROC", "area under the ROC curve", names(out), fixed = TRUE)  
    names(out) <- gsub("Sens", "sensitivity", names(out), fixed = TRUE)  
    names(out) <- gsub("Spec", "specificity", names(out), fixed = TRUE)  
    names(out) <- gsub("Accuracy", "overall accuracy", names(out), fixed = TRUE)  
    names(out) <- gsub("Kappa", "Kappa statistics", names(out), fixed = TRUE)  
    out <- format(out, digits = digits)  
    listString(paste(names(out), "was", out))  
  }  
twoClassNoProbs <- function (data, lev = NULL, model = NULL)  
{  



  out <- c(sensitivity(data[, "pred"], data[, "obs"], lev[1]),  
           specificity(data[, "pred"], data[, "obs"], lev[2]),  
           confusionMatrix(data[, "pred"], data[, "obs"])$overall["Kappa"])    
  names(out) <- c("Sens", "Spec", "Kappa")  
  out  
}  
##OPTION: model name: see ?train for more values/models  
modName <- "svmradial"  
#data(mdrr)  
load("/nfs/condor/malaria/final/osddmalaria.RData")  
rawData <- osdd4  
rawData$outcome <- classes  
#rawData[1:20, 2] <- NA  
#rawData[1:120, 30:32] <- NA  
#rawData <- iris  
#names(rawData)[5] <- "outcome"  
@  
\section*{Data Sets}\label{S:data}  
%% OPTION: provide some background on the problem, the experimental  
%% data, how the compounds were selected etc  
<<getDataInfo, echo = FALSE, results = hide>>=  
if(!any(names(rawData) == "outcome")) stop("a variable called outcome should be in the data set")  
if(!is.factor(rawData$outcome)) stop("the outcome should be a factor vector")  
## OPTION: when there are only two classes, the first level of the  
##         factor is used as the "positive" or "event" for calculating  
##         sensitivity and specificity. Adjust the outcome factor accordingly.  
numClasses <- length(levels(rawData$outcome))  
numSamples <- nrow(rawData)  
numPredictors <- ncol(rawData) - 1  
predictorNames <- names(rawData)[names(rawData) != "outcome"]  
isNum <- apply(rawData[,predictorNames, drop = FALSE], 2, is.numeric)  
if(any(!isNum)) stop("all predictors in rawData should be numeric")  
classTextCheck <- all.equal(levels(rawData$outcome), make.names(levels(rawData$outcome)))  
if(!classTextCheck) warning("the class levels are not valid R variable names; this may cause errors")  
## Get the class distribution  
classDist <- table(rawData$outcome)  
classDistString <- paste("``",  
                         names(classDist),  
                         "'' ($n$=",  
                         classDist,  
                         ")",  
                         sep = "")  
classDistString <- listString(classDistString)  
@  
<<missingFilter, echo = FALSE, results = hide>>=  
colRate <- apply(rawData[, predictorNames, drop = FALSE],  
                 2, function(x) mean(is.na(x)))  
##OPTION thresholds can be changed  
colExclude <- colRate > .20  
 
missingText <- ""  
if(any(colExclude))  
  {  
    missingText <- paste(missingText,  
                         ifelse(sum(colExclude) > 1,  
                                " There were ",  
                                " There was "),  
                         sum(colExclude),  
                         ifelse(sum(colExclude) > 1,  
                                " predictors ",  
                                " predictor "),  
                         "with an excessive number of ",  



                         "missing data. ",  
                         ifelse(sum(colExclude) > 1,  
                                " These were excluded. ",  
                                " This was excluded. "))  
    predictorNames <- predictorNames[!colExclude]  
    rawData <- rawData[, names(rawData) %in% c("outcome", predictorNames), drop = FALSE]  
  }  
rowRate <- apply(rawData[, predictorNames, drop = FALSE],  
                 1, function(x) mean(is.na(x)))  
rowExclude <- rowRate > .20  
if(any(rowExclude))  
  {  
    missingText <- paste(missingText,  
                         ifelse(sum(rowExclude) > 1,  
                                " There were ",  
                                " There was "),  
                         sum(colExclude),  
                         ifelse(sum(rowExclude) > 1,  
                                " samples ",  
                                " sample "),  
                         "with an excessive number of ",  
                         "missing data. ",  
                         ifelse(sum(rowExclude) > 1,  
                                " These were excluded. ",  
                                " This was excluded. "),  
                         "After filtering, ",  
                         sum(!rowExclude),  
                         " samples remained.")  
    rawData <- rawData[!rowExclude, ]  
    hasMissing <- apply(rawData[, predictorNames, drop = FALSE],  
                        1, function(x) mean(is.na(x)))  
  } else {  
        hasMissing <- apply(rawData[, predictorNames, drop = FALSE],  
                        1, function(x) any(is.na(x)))  
        missingText <- paste(missingText,  
                             ifelse(missingText == "",  
                                "There ",  
                                "Subsequently, there "),  
                             ifelse(sum(hasMissing) == 1,  
                                    "was ",  
                                    "were "),  
                             ifelse(sum(hasMissing) > 0,  
                                    sum(hasMissing),  
                                    "no"),  
                             ifelse(sum(hasMissing) == 1,  
                                    "sample ",  
                                    "samples "),  
                             "with missing values.")                             
  }  
@  
The initial data set consisted of \Sexpr{numSamples} samples and  
\Sexpr{numPredictors} predictor variables. The breakdown of the  
outcome data classes were: \Sexpr{classDistString}. \Sexpr{missingText}  
<<pca, echo = FALSE, results = hide>>=  
predictors <- rawData[, predictorNames, drop = FALSE]  
## PCA will fail with predictors having less than 2 unique values  
isZeroVar <- apply(predictors, 2,  
                   function(x) length(unique(x)) < 2)  
if(any(isZeroVar)) predictors <- predictors[, !isZeroVar, drop = FALSE]  
## For whatever, only the formula interface to prcomp  
## handles missing values  
pcaForm <- as.formula(  



                      paste("~",  
                            paste(names(predictors), collapse = "+")))  
pca <- prcomp(pcaForm,  
              data = predictors,  
              center = TRUE,  
              scale. = TRUE,  
              na.action = na.omit)  
## OPTION: the number of components plotted/discussed can be set  
numPCAcomp <- 3  
pctVar <- pca$sdev^2/sum(pca$sdev^2)*100  
pcaText <- paste(round(pctVar[1:numPCAcomp], 1),  
                 "\\\\%",  
                 sep = "")  
pcaText <- listString(pcaText)  
@  
To get an initial assessment of the separability of the classes,  
principal component analysis (PCA) was used to distill the  
\Sexpr{numPredictors} predictors down into \Sexpr{numPCAcomp}  
surrogate variables (i.e. the principal components) in a manner that  
attempts to maximize the amount of information preserved from the  
original predictor set. Figure \ref{F:inititalPCA} contains plots of  
the first \Sexpr{numPCAcomp} components, which accounted for  
\Sexpr{pcaText} percent of the variability in the original predictors  
(respectively).   
%% OPTION: remark on how well (or poorly) the data separated  
\setkeys{Gin}{width = 0.8\textwidth}  
\begin{figure}[p]  
  \begin{center}  
<<pcaPlot, echo = FALSE, results = hide, fig = TRUE, width = 8, height = 8>>=  
trellis.par.set(caretTheme(), warn = TRUE)  
if(numPCAcomp == 2)  
  {  
    axisRange <- extendrange(pca$x[, 1:2])  
    print(  
          xyplot(PC1 ~ PC2,  
                 data = as.data.frame(pca$x),  
                 type = c("p", "g"),  
                 groups = rawData$outcome,  
                 auto.key = list(columns = 2),  
                 xlim = axisRange,  
                 ylim = axisRange))  
  } else {  
    axisRange <- extendrange(pca$x[, 1:numPCAcomp])  
    print(  
          splom(~as.data.frame(pca$x)[, 1:numPCAcomp],  
                type = c("p", "g"),  
                groups = rawData$outcome,  
                auto.key = list(columns = 2),  
                as.table = TRUE,  
                prepanel.limits = function(x) axisRange  
                ))         
      }  
@  
    \caption[PCA Plot]{A plot of the first \Sexpr{numPCAcomp}  
      principal components for the original data set.}  
    \label{F:inititalPCA}          
  \end{center}  
\end{figure}   
<<initialDataSplit, results = hide, echo = FALSE>>=  
  ## OPTION: in small samples sizes, you may not want to set aside a  
  ## training set and focus on the resampling results.    
  pctTrain <- .8  



  # pctTrain <- 1  
if(pctTrain < 1)  
  {  
    ## OPTION: seed number can be changed  
    set.seed(1)  
    inTrain <- createDataPartition(rawData$outcome,  
                                   p = pctTrain,  
                                   list = FALSE)  
    trainX <- rawData[ inTrain, predictorNames]  
    testX  <- rawData[-inTrain, predictorNames]  
    trainY <- rawData[ inTrain, "outcome"]  
    testY  <- rawData[-inTrain, "outcome"]  
    splitText <- paste("The original data were split into ",  
                       "a training set ($n$=",  
                       nrow(trainX),  
                       ") and a test set ($n$=",  
                       nrow(testX),  
                       ") in a manner that preserved the ",  
                       "distribution of the classes.",  
                       sep = "")  
    isZeroVar <- apply(trainX, 2,  
                       function(x) length(unique(x)) < 2)  
    if(any(isZeroVar))  
      {  
        trainX <- trainX[, !isZeroVar, drop = FALSE]   
        testX <- testX[, !isZeroVar, drop = FALSE]  
      }      
  } else {  
    trainX <- rawData[, predictorNames]  
    testX  <- NULL  
    trainY <- rawData[, "outcome"]  
    testY  <- NULL  
    splitText <- "The entire data set was used as the training set."  
  } trainDist <- table(trainY)  
nir <- max(trainDist)/length(trainY)*100  
niClass <- names(trainDist)[which.max(trainDist)]  
nirText <- paste("The non--information rate is the accuracy that can be ",  
                 "achieved by predicting all samples using the most ",  
                 "dominant class. For these data, the rate is ",  
                 round(nir, 2), "\\\\% using the ``",  
                 niClass,  
                 "'' class.",  
                 sep = "")  
@  
\Sexpr{splitText}  
\Sexpr{nirText}  
<<nzv, results = hide, echo = FALSE>>=  
## OPTION: other pre-processing steps can be used  
ppSteps <- caret:::suggestions(modName)  
set.seed(2)  
if(ppSteps["nzv"])  
  {  
    nzv <- nearZeroVar(trainX)  
    if(length(nzv) > 0)  
      {  
        nzvVars <- names(trainX)[nzv]  
        trainX <- trainX[, -nzv]  
        nzvText <- paste("There were ",  
                         length(nzv),  
                         " predictors that were removed due to",  
                         " severely unbalanced distributions that",  
                         " could negatively affect the model fit",  



                         ifelse(length(nzv) > 10,  
                                ".",  
                                paste(": ",  
                                      listString(nzvVars),  
                                      ".",  
                                      sep = "")),  
                         sep = "")  
        if(pctTrain < 1) testX <- testX[, -nzv]  
      } else nzvText <- ""  
  } else nzvText <- ""  
@  
<<corrFilter, results = hide, echo = FALSE>>=  
if(ppSteps["corr"])  
  {  
    ## OPTION:  
    corrThresh <- .75  
    highCorr <- findCorrelation(cor(trainX, use = "pairwise.complete.obs"),  
                                corrThresh)  
    if(length(highCorr) > 0)  
      {  
        corrVars <- names(trainX)[highCorr]  
        trainX <- trainX[, -highCorr]  
        corrText <- paste("There were ",  
                         length(highCorr),  
                         " predictors that were removed due to",  
                         " large between--predictor correlations that",  
                         " could negatively affect the model fit",  
                         ifelse(length(highCorr) > 10,  
                                ".",  
                                paste(": ",  
                                      listString(highCorr),  
                                      ".",  
                                      sep = "")),  
                          " Removing these predictors forced",  
                          " all pair--wise correlations to be",  
                          " less than ",  
                          corrThresh,  
                          ".",  
                          sep = "")  
        if(pctTrain < 1) testX <- testX[, -highCorr]  
      } else corrText <- ""  
  }else corrText <- ""  
@  
<<preProc, echo = FALSE, results = hide>>=  
ppMethods <- NULL  
if(ppSteps["center"]) ppMethods <- c(ppMethods, "center")  
if(ppSteps["scale"]) ppMethods <- c(ppMethods, "scale")  
if(any(hasMissing) > 0) ppMethods <- c(ppMethods, "knnImpute")  
##OPTION other methods, such as spatial sign, can be added to this list   
if(length(ppMethods) > 0)  
  {  
    ppInfo <- preProcess(trainX, method = ppMethods)  
    trainX <- predict(ppInfo, trainX)  
    if(pctTrain < 1) testX <- predict(ppInfo, testX)    
    ppText <- paste("The following pre--processing methods were",  
                    " applied to the training",  
                    ifelse(pctTrain < 1, " and test", ""),  
                    " data: ",  
                    listString(ppMethods),  
                    ".",  
                    sep = "")  
    ppText <- gsub("center", "mean centering", ppText)  



    ppText <- gsub("scale", "scaling to unit variance", ppText)  
    ppText <- gsub("knnImpute",  
                   paste(ppInfo$k, "--nearest neighbor imputation", sep = ""),  
                   ppText)  
    ppText <- gsub("spatialSign", "the spatial sign transformation", ppText)  
    ppText <- gsub("pca", "principal component feature extraction", ppText)  
    ppText <- gsub("ica", "independent component feature extraction", ppText)  
    } else {  
      ppInfo <- NULL  
      ppText <- ""  
    }  
 
predictorNames <- names(trainX)  
if(nzvText != "" | corrText != "" | ppText != "")  
  {  
    varText <- paste("After pre--processing, ",  
                     ncol(trainX),  
                     "predictors remained for modeling.")  
  } else varText <- ""  
save(trainX,trainY,file="trainClass.RData")   
save(testX,testY,file="testClass.RData")  
@  
\Sexpr{nzvText} \Sexpr{corrText} \Sexpr{ppText} \Sexpr{varText}  
The pre-processed data : trainX and trainY datasets - are saved as trainClass.RData in the working directory, and can be 
reused without preprocessing for model building. The test data is saved as testClass.RData, to be used as a hold out 
data set for model validation.  
\clearpage  
\section*{Model Building}  
<<setupWorkers, echo = FALSE, results = hide>>=  
numWorkers <- 1  
##OPTION: turn up numWorkers to use MPI  
if(numWorkers > 1)  
  {  
    mpiCalcs <- function(X, FUN, ...)  
      {  
        theDots <- list(...)  
        parLapply(theDots$cl, X, FUN)  
      }  
    library(snow)  
    cl <- makeCluster(numWorkers, "MPI")  
  }  
@  
<<setupResampling, echo = FALSE, results = hide>>=  
##OPTION: the resampling options can be changed. See  
##        ?trainControl for details  
resampName <- "boot632"  
resampNumber <- 10  
numRepeat <- 1  
resampP <- .75  
modelInfo <- modelLookup(modName)  
if(numClasses == 2)  
  {  
    foo <- if(any(modelInfo$probModel)) twoClassSummary else twoClassNoProbs  
  } else foo <- defaultSummary     
set.seed(3)  
ctlObj <- trainControl(method = resampName,  
                       number = resampNumber,  
                       repeats = numRepeat,  
                       p = resampP,  
                       classProbs = any(modelInfo$probModel),  
                       summaryFunction = foo)  
##OPTION select other performance metrics as needed  



optMetric <- if(numClasses == 2 & any(modelInfo$probModel)) "ROC" else "Kappa"  
if(numWorkers > 1)  
  {  
    ctlObj$workers <- numWorkers  
    ctlObj$computeFunction <- mpiCalcs  
    ctlObj$computeArgs <- list(cl = cl)  
  }  
@  
<<setupGrid, results = hide, echo = FALSE>>=  
##OPTION expand or contract these grids as needed (or  
##       add more models  
gridSize <- 3  
if(modName %in% c("svmPoly", "svmRadial", "svmLinear", "lvq", "ctree2", "ctree")) gridSize <- 5  
if(modName %in% c("earth", "fda")) gridSize <- 7  
if(modName %in% c("knn", "rocc", "glmboost", "rf", "nodeHarvest")) gridSize <- 10  
if(modName %in% c("nb")) gridSize <- 2  
if(modName %in% c("pam", "rpart")) gridSize <- 15  
if(modName %in% c("pls")) gridSize <- min(20, ncol(trainX))  
 
if(modName == "gbm")  
  {  
    tGrid <- expand.grid(.interaction.depth = -1 + (1:5)*2 ,  
                         .n.trees = (1:10)*20,  
                         .shrinkage = .1)  
  }  
if(modName == "nnet")  
  {  
    tGrid <- expand.grid(.size = -1 + (1:5)*2 ,  
                         .decay = c(0, .001, .01, .1))  
  }  
@  
<<fitModel, results = hide, echo = FALSE, eval = TRUE>>=  
##OPTION alter as needed  
set.seed(4)  
modelFit <- switch(modName,                   
                   gbm =  
                   {  
                     mix <- sample(seq(along = trainY))   
                     train(  
                           trainX[mix,], trainY[mix], modName,  
                           verbose = FALSE,  
                           bag.fraction = .9,  
                           metric = optMetric,  
                           trControl = ctlObj,  
                           tuneGrid = tGrid)  
                   },                     
                   multinom =  
                   {  
                     train(  
                           trainX, trainY, modName,  
                           trace = FALSE,  
                           metric = optMetric,  
                           maxiter = 1000,  
                           MaxNWts = 5000,  
                           trControl = ctlObj,  
                           tuneLength = gridSize)    
                   },                     
                   nnet =  
                   {  
                     train(  
                           trainX, trainY, modName,  
                           metric = optMetric,  



                           linout = FALSE,  
                           trace = FALSE,  
                           maxiter = 1000,  
                           MaxNWts = 5000,  
                           trControl = ctlObj,  
                           tuneGrid = tGrid)                        
                   },                     
                   svmRadial =, svmPoly =, svmLinear =  
                   {  
                     train(  
                           trainX, trainY, modName,  
                           metric = optMetric,  
                           scaled = TRUE,  
                           trControl = ctlObj,  
                           tuneLength = gridSize)     
                   },  
                   {  
                     train(trainX, trainY, modName,  
                           trControl = ctlObj,  
                           metric = optMetric,  
                           tuneLength = gridSize)  
                   })  
@  
<<modelDescr, echo = FALSE, results = hide>>=  
summaryText <- ""  
resampleName <- switch(tolower(modelFit$control$method),  
                       boot = paste("the bootstrap (", length(modelFit$control$index), " reps)", sep = ""),  
                       boot632 = paste("the bootstrap 632 rule (", length(modelFit$control$index), " reps)", sep = ""),  
                       cv = paste("cross-validation (", modelFit$control$number, " fold)", sep = ""),  
                       repeatedcv = paste("cross-validation (", modelFit$control$number, " fold, repeated ",  
                         modelFit$control$repeats, " times)", sep = ""),  
                       lgocv = paste("repeated train/test splits (", length(modelFit$control$index), " reps, ",  
                         round(modelFit$control$p, 2), "$\\%$)", sep = ""))  
tuneVars <- latexTranslate(tolower(modelInfo$label))  
tuneVars <- gsub("\\#", "the number of ", tuneVars, fixed = TRUE)  
if(ncol(modelFit$bestTune) == 1 && colnames(modelFit$bestTune) == ".parameter")  
  {  
    summaryText <- paste(summaryText,  
                         "\n\n",  
                         "There are no tuning parameters associated with this model.",  
                         "To characterize the model performance on the training set,",  
                         resampleName,  
                         "was used.",  
                         "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile}",  
                         "show summaries of the resampling results. ")  
  } else {  
    summaryText <- paste("There",  
                         ifelse(nrow(modelInfo) > 1, "are", "is"),  
                         nrow(modelInfo),  
                         ifelse(nrow(modelInfo) > 1, "tuning parameters", "tuning parameter"),  
                         "associated with this model:",  
                         listString(tuneVars, period = TRUE))  
    paramNames <- gsub(".", "", names(modelFit$bestTune), fixed = TRUE)  
    for(i in seq(along = paramNames))  
      {  
        check <- modelInfo$parameter %in% paramNames[i]  
        if(any(check))  
          {  
            paramNames[i] <- modelInfo$label[which(check)]           
          }  
      }  
    paramNames <- gsub("#", "the number of ", paramNames, fixed = TRUE)  



    ## Check to see if there was only one combination fit  
    summaryText <- paste(summaryText,  
                         "To choose",  
                         ifelse(nrow(modelInfo) > 1,  
                                "appropriate values of the tuning parameters,",  
                                "an appropriate value of the tuning parameter,"),  
                         resampleName,  
                         "was used to generated a profile of performance across the",  
                         nrow(modelFit$results),  
                         ifelse(nrow(modelInfo) > 1,  
                                "combinations of the tuning parameters.",  
                                "candidate values."),                           
                         "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile} show",  
                         "summaries of the resampling profile. ",                                                                                         "The 
final model fitted to the entire training set was:",  
                         listString(paste(latexTranslate(tolower(paramNames)), "=", modelFit$bestTune[1,]), period = TRUE))  
  }  
@  
\Sexpr{summaryText}  
<<resampTable, echo = TRUE, results = tex>>  
tableData <- modelFit$results  
if(all(modelInfo$parameter == "parameter"))  
  {  
    tableData <- tableData[,-1, drop = FALSE]  
    colNums <- c(length(modelFit$perfNames), length(modelFit$perfNames))  
    colLabels <- c("Mean", "Standard Deviation")  
    constString <- ""  
  } else {  
    isConst <- apply(tableData[, modelInfo$parameter, drop = FALSE],  
                     2,  
                     function(x) length(unique(x)) == 1)  
 
    numParamInTable <- sum(!isConst)  
    if(any(isConst))  
      {  
        constParam <- modelInfo$parameter[isConst]  
        constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE]  
        tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE]  
        constString <- paste("The tuning",  
                             ifelse(sum(isConst) > 1,  
                                    "parmeters",  
                                    "parameter"),  
                             listString(paste("``", names(constValues), "''", sep = "")),  
                             ifelse(sum(isConst) > 1,  
                                    "were",  
                                    "was"),  
                             "held constant at",  
                             ifelse(sum(isConst) > 1,  
                                    "a value of",  
                                    "values of"),  
                             listString(constValues[1,]))          
      } else constString <- ""  
    cn <- colnames(tableData)  
    for(i in seq(along = cn))  
      {  
        check <- modelInfo$parameter %in% cn[i]  
        if(any(check))  
          {  
            cn[i] <- modelInfo$label[which(check)]           
          }  
      }  
    colnames(tableData) <- cn  



    colNums <- c(numParamInTable,  
                 length(modelFit$perfNames),  
                 length(modelFit$perfNames),  
                length(modelFit$perfNames))  
    colLabels <- c("", "Mean", "Standard Deviation", "Apparant")  
  }  
#  
colnames(tableData) <- gsub("SD$", "", colnames(tableData))  
colnames(tableData) <- latexTranslate(colnames(tableData))  
rownames(tableData) <- latexTranslate(rownames(tableData))  
latex(tableData,  
      rowname = NULL,  
      file = "",  
      cgroup = colLabels,  
      n.cgroup = colNums,  
      where = "h!",  
      digits = 4,  
      longtable = nrow(tableData) > 30,  
      caption = paste(resampleName, "results from the model fit.", constString),  
      label = "T:resamps")  
@  
\setkeys{Gin}{ width = 0.9\textwidth}  
\begin{figure}[b]  
  \begin{center}  
<<profilePlot, echo = FALSE, fig = TRUE, width = 8, height = 6>>=  
  trellis.par.set(caretTheme(), warn = TRUE)  
if(all(modelInfo$parameter == "parameter") | all(isConst) | modName == "nb")  
  {  
    resultsPlot <- resampleHist(modelFit)  
    plotCaption <- paste("Distributions of model performance from the ",  
                         "training set estimated using ",  
                         resampleName)  
  } else {  
    if(modName %in% c("svmPoly", "svmRadial", "svmLinear"))  
      {  
        resultsPlot <- plot(modelFit,  
                            metric = optMetric,                           
                            xTrans = function(x) log10(x))  
        resultsPlot <- update(resultsPlot,  
                              type = c("g", "p", "l"),  
                              ylab = paste(optMetric, " (", resampleName, ")", sep = ""))  
      } else {  
        resultsPlot <- plot(modelFit,                          
                            metric = optMetric)  
        resultsPlot <- update(resultsPlot,  
                              type = c("g", "p", "l"),  
                              ylab = paste(optMetric, " (", resampleName, ")", sep = ""))      
      }   
   plotCaption <- paste("A plot of the estimates of the",  
                        optMetric,  
                        "values calculated using",  
                        resampleName)  
  }  
print(resultsPlot)  
@  
   \caption[Performance Plot]{\Sexpr{plotCaption}.}  
    \label{F:profile}          
  \end{center}  
\end{figure}   
<<stopWorkers, echo = FALSE, results = hide>>=  
if(numWorkers > 1) stopCluster(cl)  
@  



<<testPred, results = tex, echo = FALSE>>=  
  if(pctTrain < 1)  
  {R sum  
    cat("\\clearpage\n\\section*{Test Set Results}\n\n")  
    classPred <- predict(modelFit, testX)  
    cm <- confusionMatrix(classPred, testY)  
    values <- cm$overall[c("Accuracy", "Kappa", "AccuracyPValue", "McnemarPValue")]      
    values <- values[!is.na(values) & !is.nan(values)]  
    values <- c(format(values[1:2], digits = 3),  
                format.pval(values[-(1:2)], digits = 5))  
    nms <- c("the overall accuracy", "the Kappa statistic",  
                       "the $p$--value that accuracy is greater than the no--information rate",  
                       "the $p$--value of concordance from McNemar's test")  
    nms <- nms[seq(along = values)]  
    names(values) <- nms      
    if(any(modelInfo$probModel))  
      {  
        classProbs <- extractProb(list(fit = modelFit),  
                                  testX = testX,  
                                  testY = testY)  
        classProbs <- subset(classProbs, dataType == "Test")   
        if(numClasses == 2)  
          {  
            tmp <- twoClassSummary(classProbs, lev = levels(classProbs$obs))  
            tmp <- c(format(tmp, digits = 3))  
            names(tmp) <- c("the sensitivity", "the specificity",  
                            "the area under the ROC curve")  
            values <- c(values, tmp)              
          }  
        probPlot <- plotClassProbs(classProbs)  
      }  
    testString <- paste("Based on the test set of",  
                        nrow(testX),  
                        "samples,",  
                        listString(paste(names(values), "was", values), period = TRUE),  
                        "The confusion matrix for the test set is shown in Table",  
                        "\\\\ref{T:cm}.")  
    testString <- paste(testString,  
                        " Using ", resampleName,  
                        ", the training set estimates were ",  
                        resampleStats(modelFit),  
                        ".",  
                        sep = "")     
    if(any(modelInfo$probModel)) testString <- paste(testString,  
                                                     "Histograms of the class probabilities",  
                                                     "for the test set samples are shown in",  
                                                     "Figure \\\\ref{F:probs}",  
                                                     ifelse(numClasses == 2,  
                                                            " and the test set ROC curve is in Figure \\\\ref{F:roc}.",  
                                                            "."))         
    latex(cm$table,  
          title = "",  
          file = "",  
          where = "h",  
          cgroup = "Observed Values",  
          n.cgroup = numClasses,  
          caption = "The confusion matrix for the test set",  
          label = "T:cm")      
  } else testString <- ""  
@  
\Sexpr{testString}  
<<classProbsTex, results = tex, echo = FALSE>>=  



  if(any(modelInfo$probModel))  
  {  
    cat(  
        paste("\\begin{figure}[p]\n",  
              "\\begin{center}\n",  
              "\\includegraphics{classProbs}",  
              "\\caption[PCA Plot]{Class probabilities",  
              "for the test set. Each panel contains ",  
            "separate classes}\n",  
              "\\label{F:probs}\n",  
              "\\end{center}\n",  
              "\\end{figure}"))  
  }  
  if(any(modelInfo$probModel) & numClasses == 2)  
  {  
    cat(  
        paste("\\begin{figure}[p]\n",  
              "\\begin{center}\n",  
              "\\includegraphics[clip, width = .8\\textwidth]{roc}",  
              "\\caption[ROC Plot]{ROC Curve",  
              "for the test set.}\n",  
              "\\label{F:roc}\n",  
              "\\end{center}\n",  
              "\\end{figure}"))  
  }  
@  
<<classProbsTex, results = hide, echo = FALSE>>=  
  if(any(modelInfo$probModel))  
  {  
    pdf("classProbs.pdf", height = 7, width = 7)  
    trellis.par.set(caretTheme(), warn = FALSE)  
    print(probPlot)  
    dev.off()  
  }  
 
  if(any(modelInfo$probModel) & numClasses == 2)  
  {  
    rocPoints <- as.data.frame(  
                               roc(classProbs[, levels(trainY)[1]],  
                                   testY,  
                                   positive =  levels(trainY)[1]))  
    pdf("roc.pdf", height = 8, width = 8)  
    plot(1 - rocPoints$specificity, rocPoints$sensitivity,  
         ylab = "Sensitivity", xlab = "1 - Specificity",  
         type = "n",  
         main = paste("AUC:", round(aucRoc(rocPoints), 3)))  
    abline(0, 1, lty = 2, col = "darkgrey")  
    points(1 - rocPoints$specificity, rocPoints$sensitivity,  
         type = "S")      
    dev.off()  
  }  
@  
\section*{Versions}  
<<versions, echo = FALSE, results = tex>>=  
toLatex(sessionInfo())  
@  
\end{document}  
 
 
 
 
 



 
 

• Classification-method.Rnw 

 
%% Classification Modeling Script  
%% Max Kuhn (max.kuhn@pfizer.com, mxkuhn@gmail.com)  
%% Version: 1.00  
%% Created on: 2010/10/02  
%%  
%% This is an Sweave template for building and describing  
%% classification models. It mixes R and LaTeX code. The document can  
  %% be processing using R's Sweave function to produce a tex file.   
%%  
%% The inputs are:  
%% - the initial data set in a data frame called 'rawData'  
%% - a factor column in the data set called 'class'. this should be the  
%%    outcome variable  
%% - all other columns in rawData should be predictor variables  
%% - the type of model should be in a variable called 'modName'.  
%%  
%% The script attempts to make some intelligent choices based on the  
%% model being used. For example, if modName is "pls", the script will  
%% automatically center and scale the predictor data. There are  
%% situations where these choices can (and should be) changed.    
%%  
%% There are other options that may make sense to change. For example,  
%% the user may want to adjust the type of resampling. To find these  
%% parts of the script, search on the string 'OPTION'. These parts of  
%% the code will document the options.  
 
\documentclass[12pt]{report}  
\usepackage{amsmath}  
\usepackage[pdftex]{graphicx}  
\usepackage{color}  
\usepackage{ctable}  
\usepackage{xspace}  
\usepackage{fancyvrb}  
\usepackage{fancyhdr}  
\usepackage{lastpage}  
\usepackage{longtable}  
\usepackage{algorithm2e}  
\usepackage[  
         colorlinks=true,  
         linkcolor=blue,  
         citecolor=blue,  
         urlcolor=blue]  
           {hyperref}  
\usepackage{lscape}  
\usepackage{Sweave}  
\SweaveOpts{keep.source = TRUE}  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  
  
% define new colors for use  
\definecolor{darkgreen}{rgb}{0,0.6,0}  
\definecolor{darkred}{rgb}{0.6,0.0,0}  
\definecolor{lightbrown}{rgb}{1,0.9,0.8}  
\definecolor{brown}{rgb}{0.6,0.3,0.3}  
\definecolor{darkblue}{rgb}{0,0,0.8}  
\definecolor{darkmagenta}{rgb}{0.5,0,0.5}  
 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  
 
\newcommand{\bld}[1]{\mbox{\boldmath $#1$}}  
\newcommand{\shell}[1]{\mbox{$#1$}}  
\renewcommand{\vec}[1]{\mbox{\bf {#1}}}  
\newcommand{\ReallySmallSpacing}{\renewcommand{\baselinestretch}{.6}\Large\normalsize}  
\newcommand{\SmallSpacing}{\renewcommand{\baselinestretch}{1.1}\Large\normalsize}  
\newcommand{\halfs}{\frac{1}{2}}  
\setlength{\oddsidemargin}{-.25 truein}  
\setlength{\evensidemargin}{0truein}  
\setlength{\topmargin}{-0.2truein}  
\setlength{\textwidth}{7 truein}  
\setlength{\textheight}{8.5 truein}  
\setlength{\parindent}{0.20truein}  
\setlength{\parskip}{0.10truein}  
\setcounter{LTchunksize}{50}  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  
\pagestyle{fancy}  
\lhead{}  
%% OPTION Report header name  
\chead{Classification Model Script}  
\rhead{}  
\lfoot{}  
\cfoot{}  
\rfoot{\thepage\ of \pageref{LastPage}}  
\renewcommand{\headrulewidth}{1pt}  
\renewcommand{\footrulewidth}{1pt}  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%  
 
%% OPTION Report title and modeler name  
\title{Classification Model Script - Model building only using PLS}  
\author{Anisha Kathpalia}   
\begin{document}  
\maketitle  
\thispagestyle{empty}  
<<dummy, eval=TRUE, echo=FALSE, results=hide>>=  
# sets values for variables used later in the program to prevent the \Sexpr error on parsing with Sweave  
numSamples=''  
classDistString=''  
missingText=''  
numPredictors=''  
numPCAcomp=''  
pcaText=''  
nzvText=''  
corrText=''  
ppText=''  
varText=''  
splitText="Dummy Text"  
nirText="Dummy Text"  
# pctTrain is a variable that is initialised in Data splitting, and reused later in testPred  
pctTrain=0.8  
@  
<<startup, eval= TRUE, results = hide, echo = FALSE>>=  
library(Hmisc)  
library(caret)  
versionTest <- compareVersion(packageDescription("caret")$Version,  
                              "4.65")  
if(versionTest < 0) stop("caret version 4.65 or later is required")  



library(RColorBrewer)  
listString <- function (x, period = FALSE, verbose = FALSE)  
{  
  if (verbose)   cat("\n      entering listString\n")  
  flush.console()  
  if (!is.character(x))  
    x <- as.character(x)  
  numElements <- length(x)  
  out <- if (length(x) > 0) {  
    switch(min(numElements, 3), x, paste(x, collapse = " and "),  
           {  
             x <- paste(x, c(rep(",", numElements - 2), " and", ""), sep = "")  
             paste(x, collapse = " ")  
           })  
  }  
  else ""  
  if (period)  out <- paste(out, ".", sep = "")  
  if (verbose)  cat("      leaving  listString\n\n")  
  flush.console()  
  out  
}  
resampleStats <- function(x, digits = 3)  
  {  
    bestPerf <- x$bestTune  
    colnames(bestPerf) <- gsub("^\\.", "", colnames(bestPerf))  
    out <- merge(x$results, bestPerf)  
    out <- out[, colnames(out) %in% x$perfNames]  
    names(out) <- gsub("ROC", "area under the ROC curve", names(out), fixed = TRUE)  
    names(out) <- gsub("Sens", "sensitivity", names(out), fixed = TRUE)  
    names(out) <- gsub("Spec", "specificity", names(out), fixed = TRUE)  
    names(out) <- gsub("Accuracy", "overall accuracy", names(out), fixed = TRUE)  
    names(out) <- gsub("Kappa", "Kappa statistics", names(out), fixed = TRUE)      
    out <- format(out, digits = digits)  
    listString(paste(names(out), "was", out))  
  }  
twoClassNoProbs <- function (data, lev = NULL, model = NULL)  
{  
  out <- c(sensitivity(data[, "pred"], data[, "obs"], lev[1]),  
           specificity(data[, "pred"], data[, "obs"], lev[2]),  
           confusionMatrix(data[, "pred"], data[, "obs"])$overall["Kappa"])  
    names(out) <- c("Sens", "Spec", "Kappa")  
  out  
}  
##OPTION: model name: see ?train for more values/models  
modName <- "pls"  
#data(mdrr)  
#rawData <- mdrrDescr  
#rawData$outcome <- mdrrClass  
##Commenting out the default lines above to use our data saved as rawData.Rdata  
#load("rawData.Rdata")  
#rawData[1:20, 2] <- NA  
#rawData[1:120, 30:32] <- NA  
## No longer dealing with raw data - this contains the preprocessed training dataset  
load("/nfs/condor/malaria/final/first-Classification/trainClass.RData")  
load("/nfs/condor/malaria/final/first-Classification/testClass.RData")  
rawData <- trainX  
rawData$outcome <- trainY  
#rawData <- iris  
#names(rawData)[5] <- "outcome"  
@  
%% This is a test line - to find a way to comment text outside the code chunk, which has inserted values from R 
variables. We are using the method: \Sexpr{modName}.  



\section*{Data Sets}\label{S:data}  
%% OPTION: provide some background on the problem, the experimental  
%% data, how the compounds were selected etc  
<<getDataInfo, echo = FALSE, results = hide>>=  
if(!any(names(rawData) == "outcome")) stop("a variable called outcome should be in the data set")  
if(!is.factor(rawData$outcome)) stop("the outcome should be a factor vector")  
## OPTION: when there are only two classes, the first level of the  
##         factor is used as the "positive" or "event" for calculating  
##         sensitivity and specificity. Adjust the outcome factor accordingly.  
numClasses <- length(levels(rawData$outcome))  
numSamples <- nrow(rawData)  
numPredictors <- ncol(rawData) - 1  
predictorNames <- names(rawData)[names(rawData) != "outcome"]  
isNum <- apply(rawData[,predictorNames, drop = FALSE], 2, is.numeric)  
if(any(!isNum)) stop("all predictors in rawData should be numeric")  
classTextCheck <- all.equal(levels(rawData$outcome), make.names(levels(rawData$outcome)))  
if(!classTextCheck) warning("the class levels are not valid R variable names; this may cause errors")  
## Get the class distribution  
classDist <- table(rawData$outcome)  
classDistString <- paste("``",  
                         names(classDist),  
                         "'' ($n$=",  
                         classDist,  
                         ")",  
                         sep = "")  
classDistString <- listString(classDistString)  
@  
<<missingFilter, eval=FALSE, echo = FALSE, results = hide>>=  
colRate <- apply(rawData[, predictorNames, drop = FALSE],  
                 2, function(x) mean(is.na(x)))  
##OPTION thresholds can be changed  
colExclude <- colRate > .20  
missingText <- ""  
if(any(colExclude))  
  {  
    missingText <- paste(missingText,  
                         ifelse(sum(colExclude) > 1,  
                                " There were ",  
                                " There was "),  
                         sum(colExclude),  
                         ifelse(sum(colExclude) > 1,  
                                " predictors ",  
                                " predictor "),  
                         "with an excessive number of ",  
                         "missing data. ",  
                         ifelse(sum(colExclude) > 1,  
                                " These were excluded. ",  
                                " This was excluded. "))  
    predictorNames <- predictorNames[!colExclude]  
    rawData <- rawData[, names(rawData) %in% c("outcome", predictorNames), drop = FALSE]  
  }  
rowRate <- apply(rawData[, predictorNames, drop = FALSE],  
                 1, function(x) mean(is.na(x)))  
rowExclude <- rowRate > .20  
if(any(rowExclude)) {  
    missingText <- paste(missingText,  
                         ifelse(sum(rowExclude) > 1,  
                                " There were ",  
                                " There was "),  
                         sum(colExclude),  
                         ifelse(sum(rowExclude) > 1,  
                                " samples ",  



                                " sample "),  
                         "with an excessive number of ",  
                         "missing data. ",  
                         ifelse(sum(rowExclude) > 1,  
                                " These were excluded. ",  
                                " This was excluded. "),  
                         "After filtering, ",  
                         sum(!rowExclude),  
                         " samples remained.")  
    rawData <- rawData[!rowExclude, ]  
    hasMissing <- apply(rawData[, predictorNames, drop = FALSE],  
                        1, function(x) mean(is.na(x)))  
  } else {  
        hasMissing <- apply(rawData[, predictorNames, drop = FALSE],  
                        1, function(x) any(is.na(x)))  
        missingText <- paste(missingText,  
                             ifelse(missingText == "",  
                                "There ",  
                                "Subsequently, there "),  
                             ifelse(sum(hasMissing) == 1,  
                                    "was ",  
                                    "were "),  
                             ifelse(sum(hasMissing) > 0,  
                                    sum(hasMissing),  
                                    "no"),  
                             ifelse(sum(hasMissing) == 1,  
                                    "sample ",  
                                    "samples "),  
                             "with missing values.")                             
  }  
@  
The initial data set consisted of \Sexpr{numSamples} samples and  
\Sexpr{numPredictors} predictor variables. The breakdown of the  
outcome data classes were: \Sexpr{classDistString}.  
 
%% \Sexpr{missingText}  
 
<<pca, eval=FALSE, echo = FALSE, results = hide>>=  
predictors <- rawData[, predictorNames, drop = FALSE]  
## PCA will fail with predictors having less than 2 unique values  
isZeroVar <- apply(predictors, 2,  
                   function(x) length(unique(x)) < 2)  
if(any(isZeroVar)) predictors <- predictors[, !isZeroVar, drop = FALSE]  
## For whatever, only the formula interface to prcomp  
## handles missing values  
pcaForm <- as.formula(  
                      paste("~",  
                            paste(names(predictors), collapse = "+")))  
pca <- prcomp(pcaForm,  
              data = predictors,  
              center = TRUE,  
              scale. = TRUE,  
              na.action = na.omit)  
## OPTION: the number of components plotted/discussed can be set  
numPCAcomp <- 3  
pctVar <- pca$sdev^2/sum(pca$sdev^2)*100  
pcaText <- paste(round(pctVar[1:numPCAcomp], 1),  
                 "\\\\%",  
                 sep = "")  
pcaText <- listString(pcaText)  
@  
%% To get an initial assessment of the separability of the classes,  



%% principal component analysis (PCA) was used to distill the  
%% \Sexpr{numPredictors} predictors down into \Sexpr{numPCAcomp}  
%% surrogate variables (i.e. the principal components) in a manner that  
%% attempts to maximize the amount of information preserved from the  
%% original predictor set. Figure \ref{F:inititalPCA} contains plots of  
%% the first \Sexpr{numPCAcomp} components, which accounted for  
%% \Sexpr{pcaText} percent of the variability in the original predictors  
%% (respectively).   
%% OPTION: remark on how well (or poorly) the data separated  
%% \setkeys{Gin}{width = 0.8\textwidth}  
%% \begin{figure}[p]  
%%  \begin{center}  
<<pcaPlot, eval = FALSE, echo = FALSE, results = hide, fig = TRUE, width = 8, height = 8>>=  
trellis.par.set(caretTheme(), warn = TRUE)  
if(numPCAcomp == 2)  
  {  
    axisRange <- extendrange(pca$x[, 1:2])  
    print(  
          xyplot(PC1 ~ PC2,  
                 data = as.data.frame(pca$x),  
                 type = c("p", "g"),  
                 groups = rawData$outcome,  
                 auto.key = list(columns = 2),  
                 xlim = axisRange,  
                 ylim = axisRange))  
  } else {  
    axisRange <- extendrange(pca$x[, 1:numPCAcomp])  
    print(  
          splom(~as.data.frame(pca$x)[, 1:numPCAcomp],  
                type = c("p", "g"),  
                groups = rawData$outcome,  
                auto.key = list(columns = 2),  
                as.table = TRUE,  
                prepanel.limits = function(x) axisRange  
                ))           
      }  
@   
%%    \caption[PCA Plot]{A plot of the first \Sexpr{numPCAcomp}  
%%      principal components for the original data set.}  
%%    \label{F:inititalPCA}          
%%  \end{center}  
%% \end{figure}   
<<initialDataSplit, eval = FALSE,  results = hide, echo = FALSE>>=  
  ## OPTION: in small samples sizes, you may not want to set aside a  
  ## training set and focus on the resampling results.    
  pctTrain <- 1  
if(pctTrain < 1)  
  {  
    ## OPTION: seed number can be changed  
    set.seed(1)  
    inTrain <- createDataPartition(rawData$outcome,  
                                   p = pctTrain,  
                                   list = FALSE)  
    trainX <- rawData[ inTrain, predictorNames]  
    testX  <- rawData[-inTrain, predictorNames]  
    trainY <- rawData[ inTrain, "outcome"]  
    testY  <- rawData[-inTrain, "outcome"]  
    splitText <- paste("The original data were split into ",  
                       "a training set ($n$=",  
                       nrow(trainX),  
                       ") and a test set ($n$=",  
                       nrow(testX),  



                       ") in a manner that preserved the ",  
                       "distribution of the classes.",  
                       sep = "")  
    isZeroVar <- apply(trainX, 2,  
                       function(x) length(unique(x)) < 2)  
    if(any(isZeroVar))  
      {  
        trainX <- trainX[, !isZeroVar, drop = FALSE]   
        testX <- testX[, !isZeroVar, drop = FALSE]  
      }      
  } else {  
    trainX <- rawData[, predictorNames]  
    testX  <- NULL  
    trainY <- rawData[, "outcome"]  
    testY  <- NULL  
    splitText <- "The entire data set was used as the training set."  
  }  
trainDist <- table(trainY)  
nir <- max(trainDist)/length(trainY)*100  
niClass <- names(trainDist)[which.max(trainDist)]  
nirText <- paste("The non--information rate is the accuracy that can be ",  
                 "achieved by predicting all samples using the most ",  
                 "dominant class. For these data, the rate is ",  
                 round(nir, 2), "\\\\% using the ``",  
                 niClass,  
                 "'' class.",  
                 sep = "")  
@  
%% \Sexpr{splitText}  
%% \Sexpr{nirText}  
<<nzv, eval=FALSE, results = hide, echo = FALSE>>=  
## OPTION: other pre-processing steps can be used  
ppSteps <- caret:::suggestions(modName)  
set.seed(2)  
if(ppSteps["nzv"])  
  {  
    nzv <- nearZeroVar(trainX)  
    if(length(nzv) > 0)  
      {  
        nzvVars <- names(trainX)[nzv]  
        trainX <- trainX[, -nzv]  
        nzvText <- paste("There were ",  
                         length(nzv),  
                         " predictors that were removed due to",  
                         " severely unbalanced distributions that",  
                         " could negatively affect the model fit",  
                         ifelse(length(nzv) > 10,  
                                ".",  
                                paste(": ",  
                                      listString(nzvVars),  
                                      ".",  
                                      sep = "")),  
                         sep = "")  
        if(pctTrain < 1) testX <- testX[, -nzv]  
      } else nzvText <- ""  
  } else nzvText <- ""  
@  
<<corrFilter, eval = FALSE, results = hide, echo = FALSE>>=  
if(ppSteps["corr"])  
  {  
    ## OPTION:  
    corrThresh <- .75  



    highCorr <- findCorrelation(cor(trainX, use = "pairwise.complete.obs"),  
                                corrThresh)  
    if(length(highCorr) > 0)  
      {  
        corrVars <- names(trainX)[highCorr]  
        trainX <- trainX[, -highCorr]  
        corrText <- paste("There were ",  
                         length(highCorr),  
                         " predictors that were removed due to",  
                         " large between--predictor correlations that",  
                         " could negatively affect the model fit",  
                         ifelse(length(highCorr) > 10,  
                                ".",  
                                paste(": ",  
                                      listString(highCorr),  
                                      ".",  
                                      sep = "")),  
                          " Removing these predictors forced",  
                          " all pair--wise correlations to be",  
                          " less than ",  
                          corrThresh,  
                          ".",  
                          sep = "")  
        if(pctTrain < 1) testX <- testX[, -highCorr]  
      } else corrText <- ""  
  }else corrText <- ""  
@  
<<preProc, eval = FALSE, echo = FALSE, results = hide>>=  
ppMethods <- NULL  
if(ppSteps["center"]) ppMethods <- c(ppMethods, "center")  
if(ppSteps["scale"]) ppMethods <- c(ppMethods, "scale")  
if(any(hasMissing) > 0) ppMethods <- c(ppMethods, "knnImpute")  
##OPTION other methods, such as spatial sign, can be added to this list  
if(length(ppMethods) > 0)  
  {  
    ppInfo <- preProcess(trainX, method = ppMethods)  
    trainX <- predict(ppInfo, trainX)  
    if(pctTrain < 1) testX <- predict(ppInfo, testX)    
    ppText <- paste("The following pre--processing methods were",  
                    " applied to the training",  
                    ifelse(pctTrain < 1, " and test", ""),  
                    " data: ",  
                    listString(ppMethods),  
                    ".",  
                    sep = "")  
    ppText <- gsub("center", "mean centering", ppText)  
    ppText <- gsub("scale", "scaling to unit variance", ppText)  
    ppText <- gsub("knnImpute",  
                   paste(ppInfo$k, "--nearest neighbor imputation", sep = ""),  
                   ppText)  
    ppText <- gsub("spatialSign", "the spatial sign transformation", ppText)  
    ppText <- gsub("pca", "principal component feature extraction", ppText)  
    ppText <- gsub("ica", "independent component feature extraction", ppText)  
    } else {  
      ppInfo <- NULL  
      ppText <- ""  
    }  
predictorNames <- names(trainX)  
if(nzvText != "" | corrText != "" | ppText != "")  
  {  
    varText <- paste("After pre--processing, ",  
                     ncol(trainX),  



                     "predictors remained for modeling.")  
  } else varText <- ""  
   
@  
%% \Sexpr{nzvText} \Sexpr{corrText} \Sexpr{ppText} \Sexpr{varText}  
\clearpage  
\section*{Model Building}  
<<setupWorkers, echo = FALSE, results = tex>>=  
numWorkers <- 1  
##OPTION: turn up numWorkers to use MPI  
if(numWorkers > 1)  
  {  
    mpiCalcs <- function(X, FUN, ...)  
      {  
        theDots <- list(...)  
        parLapply(theDots$cl, X, FUN)  
      }  
    library(snow)  
    cl <- makeCluster(numWorkers, "MPI")  
  }  
@  
<<setupResampling, echo = FALSE, results = hide>>=  
##OPTION: the resampling options can be changed. See  
##        ?trainControl for details  
resampName <- "boot632"  
resampNumber <- 10  
numRepeat <- 1  
resampP <- .75  
modelInfo <- modelLookup(modName)  
 
if(numClasses == 2)  
  {  
    foo <- if(any(modelInfo$probModel)) twoClassSummary else twoClassNoProbs  
  } else foo <- defaultSummary     
set.seed(3)  
ctlObj <- trainControl(method = resampName,  
                       number = resampNumber,  
                       repeats = numRepeat,  
                       p = resampP,  
                       classProbs = any(modelInfo$probModel),  
                       summaryFunction = foo)  
##OPTION select other performance metrics as needed  
optMetric <- if(numClasses == 2 & any(modelInfo$probModel)) "ROC" else "Kappa"  
 
if(numWorkers > 1)  
  {  
    ctlObj$workers <- numWorkers  
    ctlObj$computeFunction <- mpiCalcs  
    ctlObj$computeArgs <- list(cl = cl)  
  }  
@  
<<setupGrid, results = hide, echo = FALSE>>=  
##OPTION expand or contract these grids as needed (or  
##       add more models  
gridSize <- 3  
if(modName %in% c("svmPoly", "svmRadial", "svmLinear", "lvq", "ctree2", "ctree")) gridSize <- 5  
if(modName %in% c("earth", "fda")) gridSize <- 7  
if(modName %in% c("knn", "rocc", "glmboost", "rf", "nodeHarvest")) gridSize <- 10  
if(modName %in% c("nb")) gridSize <- 2  
if(modName %in% c("pam", "rpart")) gridSize <- 15  
if(modName %in% c("pls")) gridSize <- min(20, ncol(trainX))  
if(modName == "gbm")  



  {  
    tGrid <- expand.grid(.interaction.depth = -1 + (1:5)*2 ,  
                         .n.trees = (1:10)*20,  
                         .shrinkage = .1)  
  }  
if(modName == "nnet")  
  {  
    tGrid <- expand.grid(.size = -1 + (1:5)*2 ,  
                         .decay = c(0, .001, .01, .1))  
  }  
@  
<<fitModel, results = hide, echo = FALSE, eval = TRUE>>=  
##OPTION alter as needed  
set.seed(4)  
modelFit <- switch(modName,                   
                   gbm =  
                   {  
                     mix <- sample(seq(along = trainY))   
                     train(  
                           trainX[mix,], trainY[mix], modName,  
                           verbose = FALSE,  
                           bag.fraction = .9,  
                           metric = optMetric,  
                           trControl = ctlObj,  
                           tuneGrid = tGrid)  
                   },                     
                   multinom =  
                   {  
                     train(  
                           trainX, trainY, modName,  
                           trace = FALSE,  
                           metric = optMetric,  
                           maxiter = 1000,  
                           MaxNWts = 5000,  
                           trControl = ctlObj,  
                           tuneLength = gridSize)    
                   },                     
                   nnet =  
                   {  
                     train(  
                           trainX, trainY, modName,  
                           metric = optMetric,  
                           linout = FALSE,  
                           trace = FALSE,  
                           maxiter = 1000,  
                           MaxNWts = 5000,  
                           trControl = ctlObj,  
                           tuneGrid = tGrid)                        
                   },                      
                   svmRadial =, svmPoly =, svmLinear =  
                   {  
                     train(  
                           trainX, trainY, modName,  
                           metric = optMetric,  
                           scaled = TRUE,  
                           trControl = ctlObj,  
                           tuneLength = gridSize)     
                   },  
                   {  
                     train(trainX, trainY, modName,  
                           trControl = ctlObj,  
                           metric = optMetric,  



                           tuneLength = gridSize)  
                   })  
@  
<<modelDescr, echo = FALSE, results = hide>>=  
summaryText <- ""  
resampleName <- switch(tolower(modelFit$control$method),  
                       boot = paste("the bootstrap (", length(modelFit$control$index), " reps)", sep = ""),  
                       boot632 = paste("the bootstrap 632 rule (", length(modelFit$control$index), " reps)", sep = ""),  
                       cv = paste("cross-validation (", modelFit$control$number, " fold)", sep = ""),  
                       repeatedcv = paste("cross-validation (", modelFit$control$number, " fold, repeated ",  
                         modelFit$control$repeats, " times)", sep = ""),  
                       lgocv = paste("repeated train/test splits (", length(modelFit$control$index), " reps, ",  
                         round(modelFit$control$p, 2), "$\\%$)", sep = ""))  
tuneVars <- latexTranslate(tolower(modelInfo$label))  
tuneVars <- gsub("\\#", "the number of ", tuneVars, fixed = TRUE)  
if(ncol(modelFit$bestTune) == 1 && colnames(modelFit$bestTune) == ".parameter")  
  {  
    summaryText <- paste(summaryText,  
                         "\n\n",  
                         "There are no tuning parameters associated with this model.",  
                         "To characterize the model performance on the training set,",  
                         resampleName,  
                         "was used.",  
                         "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile}",  
                         "show summaries of the resampling results. ")  
 
  } else {  
    summaryText <- paste("There",  
                         ifelse(nrow(modelInfo) > 1, "are", "is"),  
                         nrow(modelInfo),  
                         ifelse(nrow(modelInfo) > 1, "tuning parameters", "tuning parameter"),  
                         "associated with this model:",  
                         listString(tuneVars, period = TRUE))  
    paramNames <- gsub(".", "", names(modelFit$bestTune), fixed = TRUE)  
    for(i in seq(along = paramNames))  
      {  
        check <- modelInfo$parameter %in% paramNames[i]  
        if(any(check))  
          {  
            paramNames[i] <- modelInfo$label[which(check)]           
          }  
      }  
    paramNames <- gsub("#", "the number of ", paramNames, fixed = TRUE)  
    ## Check to see if there was only one combination fit  
    summaryText <- paste(summaryText,  
                         "To choose",  
                         ifelse(nrow(modelInfo) > 1,  
                                "appropriate values of the tuning parameters,",  
                                "an appropriate value of the tuning parameter,"),  
                         resampleName,  
                         "was used to generated a profile of performance across the",  
                         nrow(modelFit$results),  
                         ifelse(nrow(modelInfo) > 1,  
                                "combinations of the tuning parameters.",  
                                "candidate values."),                           
                         "Table \\\\ref{T:resamps} and Figure \\\\ref{F:profile} show",  
                         "summaries of the resampling profile. ",                                                                                         "The 
final model fitted to the entire training set was:",  
                         listString(paste(latexTranslate(tolower(paramNames)), "=", modelFit$bestTune[1,]), period = TRUE))  
 
  }  
@  



\Sexpr{summaryText}  
<<resampTable, echo = FALSE, results = tex>>=  
tableData <- modelFit$results  
if(all(modelInfo$parameter == "parameter"))  
  {  
    tableData <- tableData[,-1, drop = FALSE]  
    colNums <- c(length(modelFit$perfNames), length(modelFit$perfNames))  
    colLabels <- c("Mean", "Standard Deviation")  
    constString <- ""  
  } else {  
    isConst <- apply(tableData[, modelInfo$parameter, drop = FALSE],  
                     2,  
                     function(x) length(unique(x)) == 1)  
    numParamInTable <- sum(!isConst)  
    if(any(isConst))  
      {  
        constParam <- modelInfo$parameter[isConst]  
        constValues <- format(tableData[, constParam, drop = FALSE], digits = 4)[1,,drop = FALSE]  
        tableData <- tableData[, !(names(tableData) %in% constParam), drop = FALSE]  
        constString <- paste("The tuning",  
                             ifelse(sum(isConst) > 1,  
                                    "parmeters",  
                                    "parameter"),  
                             listString(paste("``", names(constValues), "''", sep = "")),  
                             ifelse(sum(isConst) > 1,  
                                    "were",  
                                    "was"),  
                             "held constant at",  
                             ifelse(sum(isConst) > 1,  
                                    "a value of",  
                                    "values of"),  
                             listString(constValues[1,]))  
         
      } else constString <- ""  
    cn <- colnames(tableData)  
    for(i in seq(along = cn))  
      {  
        check <- modelInfo$parameter %in% cn[i]  
        if(any(check))  
          {  
            cn[i] <- modelInfo$label[which(check)]           
          }  
      }  
    colnames(tableData) <- cn  
    colNums <- c(numParamInTable,  
                 length(modelFit$perfNames),  
                 length(modelFit$perfNames),  
                 length(modelFit$perfNames))  
    colLabels <- c("", "Mean", "Standard Deviation", "Apparant")  
  }  
colnames(tableData) <- gsub("SD$", "", colnames(tableData))  
colnames(tableData) <- gsub("Apparent$", "", colnames(tableData))  
colnames(tableData) <- latexTranslate(colnames(tableData))  
rownames(tableData) <- latexTranslate(rownames(tableData))  
latex(tableData,  
      rowname = NULL,  
      file = "",  
      cgroup = colLabels,  
      n.cgroup = colNums,  
      where = "h!",  
      digits = 4,  
      longtable = nrow(tableData) > 30,  



      caption = paste(resampleName, "results from the model fit.", constString),  
      label = "T:resamps")  
@  
\setkeys{Gin}{ width = 0.9\textwidth}  
\begin{figure}[b]  
  \begin{center}  
<<profilePlot, echo = FALSE, fig = TRUE, width = 8, height = 6>>=  
  trellis.par.set(caretTheme(), warn = TRUE)  
if(all(modelInfo$parameter == "parameter") | all(isConst) | modName == "nb")  
  {  
    resultsPlot <- resampleHist(modelFit)  
    plotCaption <- paste("Distributions of model performance from the ",  
                         "training set estimated using ",  
                         resampleName)  
  } else {  
    if(modName %in% c("svmPoly", "svmRadial", "svmLinear"))  
      {  
        resultsPlot <- plot(modelFit,  
                            metric = optMetric,                           
                            xTrans = function(x) log10(x))  
        resultsPlot <- update(resultsPlot,  
                              type = c("g", "p", "l"),  
                              ylab = paste(optMetric, " (", resampleName, ")", sep = ""))  
 
      } else {  
        resultsPlot <- plot(modelFit,                          
                            metric = optMetric)  
        resultsPlot <- update(resultsPlot,  
                              type = c("g", "p", "l"),  
                              ylab = paste(optMetric, " (", resampleName, ")", sep = ""))      
      }   
   plotCaption <- paste("A plot of the estimates of the",  
                        optMetric,  
                        "values calculated using",  
                        resampleName)  
  }  
print(resultsPlot)  
@  
   \caption[Performance Plot]{\Sexpr{plotCaption}.}  
    \label{F:profile}          
  \end{center}  
\end{figure}   
<<stopWorkers, echo = FALSE, results = hide>>=  
if(numWorkers > 1) stopCluster(cl)  
@  
<<testPred, results = tex, echo = FALSE>>=  
  if(pctTrain < 1)  
  {  
    cat("\\clearpage\n\\section*{Test Set Results}\n\n")  
    classPred <- predict(modelFit, testX)  
    cm <- confusionMatrix(classPred, testY)  
    values <- cm$overall[c("Accuracy", "Kappa", "AccuracyPValue", "McnemarPValue")]      
    values <- values[!is.na(values) & !is.nan(values)]  
    values <- c(format(values[1:2], digits = 3),  
                format.pval(values[-(1:2)], digits = 5))  
    nms <- c("the overall accuracy", "the Kappa statistic",  
                       "the $p$--value that accuracy is greater than the no--information rate",  
                       "the $p$--value of concordance from McNemar's test")  
    nms <- nms[seq(along = values)]  
    names(values) <- nms     
    if(any(modelInfo$probModel))  
      {  



        classProbs <- extractProb(list(fit = modelFit),  
                                  testX = testX,  
                                  testY = testY)  
        classProbs <- subset(classProbs, dataType == "Test")   
        if(numClasses == 2)  
          {  
            tmp <- twoClassSummary(classProbs, lev = levels(classProbs$obs))  
            tmp <- c(format(tmp, digits = 3))  
            names(tmp) <- c("the sensitivity", "the specificity",  
                            "the area under the ROC curve")  
            values <- c(values, tmp)              
          }  
        probPlot <- plotClassProbs(classProbs)  
      }  
    testString <- paste("Based on the test set of",  
                        nrow(testX),  
                        "samples,",  
                        listString(paste(names(values), "was", values), period = TRUE),  
                        "The confusion matrix for the test set is shown in Table",  
                        "\\\\ref{T:cm}.")  
    testString <- paste(testString,  
                        " Using ", resampleName,  
                        ", the training set estimates were ",  
                        resampleStats(modelFit),  
                        ".",  
                        sep = "")      
    if(any(modelInfo$probModel)) testString <- paste(testString,  
                                                     "Histograms of the class probabilities",  
                                                     "for the test set samples are shown in",  
                                                     "Figure \\\\ref{F:probs}",  
                                                     ifelse(numClasses == 2,  
                                                            " and the test set ROC curve is in Figure \\\\ref{F:roc}.",  
                                                            "."))        
        latex(cm$table,  
          title = "",  
          file = "",  
          where = "h",  
          cgroup = "Observed Values",  
          n.cgroup = numClasses,  
          caption = "The confusion matrix for the test set",  
          label = "T:cm")      
  } else testString <- ""  
@  
\Sexpr{testString}  
<<classProbsTex, results = tex, echo = FALSE>>=  
  if(any(modelInfo$probModel))  
  {  
    cat(  
        paste("\\begin{figure}[p]\n",  
              "\\begin{center}\n",  
              "\\includegraphics{classProbs}",  
              "\\caption[PCA Plot]{Class probabilities",  
              "for the test set. Each panel contains ",  
            "separate classes}\n",  
              "\\label{F:probs}\n",  
              "\\end{center}\n",  
              "\\end{figure}"))  
  }  
  if(any(modelInfo$probModel) & numClasses == 2)  
  {  
    cat(  
        paste("\\begin{figure}[p]\n",  



              "\\begin{center}\n",  
              "\\includegraphics[clip, width = .8\\textwidth]{roc}",  
              "\\caption[ROC Plot]{ROC Curve",  
              "for the test set.}\n",  
              "\\label{F:roc}\n",  
              "\\end{center}\n",  
              "\\end{figure}"))  
  }  
@  
<<classProbsTex, results = hide, echo = FALSE>>=  
  if(any(modelInfo$probModel))  
  {  
    pdf("classProbs.pdf", height = 7, width = 7)  
    trellis.par.set(caretTheme(), warn = FALSE)  
    print(probPlot)  
    dev.off()  
  }  
  if(any(modelInfo$probModel) & numClasses == 2)  
  { resPonse<-testY  
    preDictor<-classProbs[, levels(trainY)[1]]  
    pdf("roc.pdf", height = 8, width = 8)  
# from pROC example at http://web.expasy.org/pROC/screenshots.htm    
    plot.roc(resPonse, preDictor, # data  
         percent=TRUE, # show all values in percent  
         partial.auc=c(100, 90), partial.auc.correct=TRUE, # define a partial AUC (pAUC)  
         print.auc=TRUE, #display pAUC value on the plot with following options:  
         print.auc.pattern="Corrected pAUC (100-90%% SP):\n%.1f%%", print.auc.col="#1c61b6",  
         auc.polygon=TRUE, auc.polygon.col="#1c61b6", # show pAUC as a polygon  
         max.auc.polygon=TRUE,     max.auc.polygon.col="#1c61b622", # also show the 100% polygon  
         main="Partial AUC (pAUC)")  
    plot.roc(resPonse, preDictor,  
         percent=TRUE, add=TRUE, type="n", # add to plot, but don't re-add the ROC itself (useless)  
         partial.auc=c(100, 90), partial.auc.correct=TRUE,  
         partial.auc.focus="se", # focus pAUC on the sensitivity  
         print.auc=TRUE, print.auc.pattern="Corrected pAUC (100-90%% SE):\n%.1f%%", print.auc.col="#008600",  
         print.auc.y=40, # do not print auc over the previous one  
         auc.polygon=TRUE, auc.polygon.col="#008600",  
         max.auc.polygon=TRUE, max.auc.polygon.col="#00860022")  
    dev.off()  
  }  
# commenting old roc commands  
#  {  
#    rocPoints <- as.data.frame(  
#                               roc(classProbs[, levels(trainY)[1]],  
#                                   testY,  
#                                   positive =  levels(trainY)[1]))  
#    pdf("roc.pdf", height = 8, width = 8)  
#    plot(1 - rocPoints$specificity, rocPoints$sensitivity,  
#         ylab = "Sensitivity", xlab = "1 - Specificity",  
#         type = "n",  
#         main = paste("AUC:", round(aucRoc(rocPoints), 3)))  
#    abline(0, 1, lty = 2, col = "darkgrey")  
#    points(1 - rocPoints$specificity, rocPoints$sensitivity,  
#         type = "S")  
#     
#    dev.off()  
#  }  
@  
\section*{Versions}  
<<versions, echo = FALSE, results = tex>>=  
toLatex(sessionInfo())  
@  



<<save-data, echo = FALSE, results = hide>>=  
## change this to the name of modName....  
plsFit<-modelFit  
save(plsFit,file="plsFit.RData")  
@  
The model was built using Partial Least Squares and is saved as plsFit.RData for reuse. This contains the variable 
plsFit.  
\end{document}  
 

V. Code for ensemble method 
 

listString <- function (x, period = FALSE, verbose = FALSE) 
{ 
  if (verbose)   cat("\n      entering listString\n") 
  flush.console() 
  if (!is.character(x)) 
    x <- as.character(x) 
  numElements <- length(x) 
  out <- if (length(x) > 0) { 
    switch(min(numElements, 3), x, paste(x, collapse = " and "), 
           { 
             x <- paste(x, c(rep(",", numElements - 2), " and", ""), sep = "") 
             paste(x, collapse = " ") 
           }) 
  } 
  else "" 
  if (period)  out <- paste(out, ".", sep = "") 
  if (verbose)  cat("      leaving  listString\n\n") 
  flush.console() 
  out 
} 
 
resampleStats <- function(x, digits = 3) 
  { 
    bestPerf <- x$bestTune 
    colnames(bestPerf) <- gsub("^\\.", "", colnames(bestPerf)) 
    out <- merge(x$results, bestPerf) 
    out <- out[ colnames(out) %in% x$perfNames] 
    out <- format(out, digits = digits) 
    out 
  } 
extractEnsProb1<- 
function (models, testX = NULL, testY = NULL, unkX = NULL, unkOnly = !is.null(unkX) &  
    is.null(testX), verbose = FALSE)  
{ 
    objectNames <- names(models) 
    if (is.null(objectNames))  
        objectNames <- paste("Object", 1:length(models), sep = "") 
    if (any(unlist(lapply(models, function(x) !caret:::modelLookup(x$method)$probModel))))  
        stop("only classification models that produce probabilities are allowed") 
    obsLevels <- caret:::getClassLevels(models[[1]]) 
    trainX <- models[[1]]$trainingData[, !(names(models[[1]]$trainingData) %in%  
        ".outcome")] 
    trainY <- models[[1]]$trainingData$.outcome 
    if (verbose) { 
        cat("Number of training samples:", length(trainY), "\n") 
        cat("Number of test samples:    ", length(testY), "\n\n") 
    } 
    ensProb <- NULL 
predProb <- NULL 
predClass <- NULL 
obs <- NULL 



modelName <- NULL 
dataType <- NULL 
objName <- NULL 
    if (!is.null(testX)) { 
        if (!is.data.frame(testX))  
            testX <- as.data.frame(testX) 
        hasNa <- apply(testX, 1, function(data) any(is.na(data))) 
        if (verbose)  
            cat("There were ", sum(hasNa), "rows with missing values\n\n") 
        flush.console() 
    } 
    for (i in seq(along = models)) { 
        modelFit <- models[[i]]$finalModel 
        method <- models[[i]]$method 
        modelstats<-resampleStats(models[[i]]) 
        scalingFactor<- as.numeric(modelstats$ROC) 
        methodActive<-NULL 
        if (verbose)  
            cat("starting ", models[[i]]$method, "\n") 
        flush.console() 
        if (!unkOnly) { 
            if (!is.null(testX) & !is.null(testY)) { 
                if (!is.data.frame(testX))  
                  testX <- as.data.frame(testX) 
                tempX <- testX 
                tempY <- testY 
                tempX$.outcome <- NULL 
                if (is.null(models[[i]]$preProcess)) { 
                  tempTestPred <- caret:::predictionFunction(method,  
                    modelFit, tempX) 
                  tempTestProb <- caret:::probFunction(method, modelFit,  
                    tempX) 
                } 
                else { 
                  ppTest <- predict(models[[i]]$preProcess, tempX) 
                  tempTestPred <- caret:::predictionFunction(method,  
                    modelFit, ppTest) 
                  tempTestProb <- caret:::probFunction(method, modelFit,  
                    ppTest) 
                } 
                if (verbose)  
                  cat(models[[i]]$method, ":", length(tempTestPred),  
                    "test predictions were added\n") 
                predProb <- if (is.null(predProb))  
                  tempTestProb 
                else rbind(predProb, tempTestProb) 
                predClass <- c(predClass, as.character(tempTestPred)) 
                obs <- c(obs, as.character(testY)) 
                modelName <- c(modelName, rep(models[[i]]$method,  
                  length(tempTestPred))) 
                objName <- c(objName, rep(objectNames[[i]], length(tempTestPred))) 
                dataType <- c(dataType, rep("Test", length(tempTestPred))) 
                methodActive <- as.numeric(c(methodActive,tempTestProb$active)) 
            } 
        } 
        if (!is.null(unkX)) { 
            if (!is.data.frame(unkX))  
                unkX <- as.data.frame(unkX) 
            tempX <- unkX 
            tempX$.outcome <- NULL 
            if (is.null(models[[i]]$preProcess)) { 
                tempUnkPred <- caret:::predictionFunction(method, modelFit,  



                  tempX) 
                tempUnkProb <- caret:::probFunction(method, modelFit,  
                  tempX) 
            } 
            else { 
                ppUnk <- predict(models[[i]]$preProcess, tempX) 
                tempUnkPred <- caret:::predictionFunction(method, modelFit,  
                  ppUnk) 
                tempUnkProb <- caret:::probFunction(method, modelFit,  
                  ppUnk) 
           } 
            if (verbose)  
                cat(models[[i]]$method, ":", length(tempUnkPred),  
                  "unknown predictions were added\n") 
            predProb <- if (is.null(predProb))  
                tempUnkProb 
            else rbind(predProb, tempUnkProb) 
           predClass <- c(predClass, as.character(tempUnkPred)) 
            obs <- c(obs, rep(NA, length(tempUnkPred))) 
            modelName <- c(modelName, rep(models[[i]]$method,  
                length(tempUnkPred))) 
            objName <- c(objName, rep(objectNames[[i]], length(tempUnkPred))) 
            dataType <- c(dataType, rep("Unknown", length(tempUnkPred))) 
            methodActive <- as.numeric(c(methodActive,tempUnkProb$active)) 
        } 
        if (verbose){  
            cat("String methodActive is of length :", length(methodActive),"and Prob length is ", 
length(tempTestProb$active),"\n")} 
            if (is.null(ensProb)){  
                ensProb<-data.frame(predProb) 
                ensProb$dataType<-dataType 
                predClass <- factor(predClass, levels = obsLevels) 
                obs <- factor(obs, levels = obsLevels) 
                ensProb$obs<-obs 
                ensProb$pred<-predClass 
                ensProb[method]<-methodActive*scalingFactor 
                sumProb<-ensProb[method] 
                sumscalingFactor<-scalingFactor 
            }else{  
                ensProb[method]<-methodActive*scalingFactor 
                sumProb<-(sumProb+(methodActive*scalingFactor)) 
                sumscalingFactor<-sumscalingFactor+scalingFactor                
            } 
    } 
        if (verbose)  
            cat("Reached the end of model loop \n") 
#    ensProb$active<-NULL 
#ensProb$inactive<-NULL 
#ensProb$pred<-NULL 
    ensProb$active<-as.vector(sumProb/sumscalingFactor) 
    ensProb$inactive<-as.vector(1-ensProb$active) 
    pred<-ifelse(ensProb$active > 0.5,"active","inactive") 
    ensProb$pred<-factor(pred,levels=obsLevels) 
ensProb 
} 
 
 

 
 
 
 

 


