RELATIONSHIP BETWEEN COMPECTIVE EFFORT, HYDRAULIC CONDUCTIVITY AND SHEAR STRENGTH OF COMPECTED SOILS

Major Project - II

Submitted in fulfilment of the requirement For the award of the degree of

> Master of Technology (Geotechnical Engineering)

> > Submitted By:

Abhinava Singh

(University Roll No: 01/GTE/2010)

Under the Guidance of *Prof. A.K. Gupta* (Professor & Head, Deptt. of Civil Engg.)

&

Prof. Kongan Aryan (Assistant Professor)

DEPARTMENT OF CIVIL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering)

2012

Certificate

This is declare that the major project - II entitled "Relationship between Compective Effort, Hydraulic Conductivity and Shear Strength of Compacted soils" is a bonafide record of work done by me for partial fulfilment of award of degree in M. Tech Civil Engineering (Geotechnical Engineering) at Delhi Technological University (Formerly Delhi college of Engineering), Delhi.

This project has been carried out under the supervision of **Prof. A.K. Gupta**, **& Prof. Kongan Aryan**, Department of Civil Engineering, Delhi Technological University (Formerly Delhi College of Engineering), Delhi.

The work embodied in this major project has not been submitted to any other Institute/University for the award of any other Degree or Diploma.

(ABHINAVA SINGH) University Roll No: 01/GTE/2010

(**Prof. A.K. Gupta**) Department of Civil Engineering Delhi Technological University, (Formerly Delhi College of Engineering), Delhi.

(Prof. Kongan Aryan)

Department of Civil Engineering Delhi Technological University, (Formerly Delhi College of Engineering), Delhi.

Acknowledgement

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my supervisors **Prof. A. K. Gupta & Prof. Kongan Aryan**, Department of Civil Engineering, Delhi Technological University (Formerly Delhi College of Engineering), for his invaluable guidance, encouragement and patient reviews. His continuous inspiration only has made me complete this major project. Without his help and guidance, this major project would have been impossible. He remained a pillar of help throughout the project.

I am also grateful to **Prof. A. K. Gupta,** Head of Department of Civil Engineering & Registrar of DTU, for providing the experimental facilities in various labs of the Department.

I would also like to Thanks to my family who taught me this invaluable principle and always have provided an unconditional support.

I express my sincere gratitude to the faculty and non teaching staff of Civil and Environmental engineering department and the library of Delhi Technological University, (Formerly Delhi College of Engineering) for providing the relevant information and help when needed during the course of my project work.

I am also thankful to my classmate and friends for his unconditional support and motivation during this project work.

(ABHINAVA SINGH) Roll No: 01/GTE/2010

TABLE OF CONTENTS

ŝ

S. No.	PARTICULARS	Page No.
	Certificate	ii
	Acknowledgement	iii
	Table of Content	iv
	List of figures	vi
	List of Tables	vi
	List of Symbols	vii
	Abstract	viii
	Chapter 1: Introduction	1
1.1	General Overview	2
1.2	Problem Statement	3
1.3	Objectives of Study	3
1.4	Scope of Study	4
1.5	Significance of Study	4
1.6	Expected Findings	4
	Chapter 2 : Literature Review	5
2.1	Introduction	5
2.2	Landfill	5
2.3	Narela-Bawana landfill site	6
2.4	Clay Liner	7
2.5	Compaction	8
2.5.1	Theory of Compaction	9
2.5.2	Factors Influencing Compaction	11
2.5.3	Dry Density of Soil	13
2.5.4	Optimum Moisture Content	14
2.5.5	Laboratory Compaction Test	15
2.5.5.1	Standard Proctor Test (IS 2720:1974 Part VII)	15
2.5.5.2	Modified Proctor Test (IS 2720:1983 Part VIII)	16
2.6	Shear Strength of Soil	17
2.7	Compaction Effect on Shear Strength	18
2.8	Effect of Changing Water Content on Shear Strength	20
2.9	Unconfined Compression Test (IS 2720:1983 Part VIII)	20
2.10	Hydraulic Conductivity	22
2.10.1	Estimation by empirical approach	25
2.10.1.1	Estimation from grain size	25

2.10.1.2	Pedotransfer function	25
2.11	Determination by experimental approach	26
2.12	Laboratory methods	26
2.12.1	Constant Head Permeability Test	26
2.12.2	Falling Head Permeability	26
2.12.2.1	Falling head test with consolidometer	27
2.12.2.2	Purpose	27
2.12.2.3	Equipment	27
2.12.2.4	Saturation of Sample	28
2.12.2.5	Test Procedure	29
2.13	Saturated hydraulic conductivity (<i>K</i>) values found in nature	30
	Chapter 3 : Experimental Methodology	31
3.1	Introduction	31
3.2	Literature Review	31
3.3	Soil Collection and Preparation	31
3.4	Preliminary Soil Testing	32
3.4.1	Laboratory Compaction test	32
3.4.2	Particle Size Distribution	32
3.4.3	Hydrometer Test	33
3.4.4	Atterberg Limit	33
3.4.4.1	Liquid Limit: IS: 2720 -Part V	34
3.4.4.2	Plastic Limit Test: IS: 2720 -Part V	34
3.4.5	Pycnometer Test: IS: 2386	35
3.5	Unconfined Compression Test (UCT): IS: 2720 -Part X	35
3.6	Analysis of Results	36
3.7	Constant Head Permeability Test	37
3.8	Falling Head Permeability	37
	Chapter 4 : Analysis of Results	38
4.1	Introduction	38
4.2	Basic Engineering and Properties of soil	38
4.3	Atterbergs Limits	40
4.4	Compaction Test (Standard Proctor Test)	43
4.5	Unconfined Compression Strength Test	46
4.6	Permeability Test	49
	Chapter 5 : Comparison of Results	50
	Chapter 6 : Conclusion	53
	References	55
	Appendix	59

LIST OF FIGURES

Fig. No.	PARTICULARS	Page No.
2.1	A Cross-section of a best practice land fill cell	6
2.2	Landfill site at Narela-Bawana in northwest Delhi.	7
2.3	Typical Compaction Curve (Lambe, 1960)	10
2.4	Air permeability curve of compacted soil (Olson, 1963)	11
2.5	Standard Proctor test and the Modified Proctor test	13
2.6	Relationship between water content and dry density	14
2.7	Mould and rammer for Standard and Modified Compaction test	16
2.8	Effects of compaction on soil structure (Lambe, 1960)	19
2.9	Consolidometer	28
3.1	A Casagrande Liquid Limit Apparatus	34
4.3	Atterbergs Limits	40
4.3.1	Bawana Putt Clay	40
4.3.2	Bawana Putt Clay + 04% Fly Ash	40
4.3.3	Bawana Putt Clay + 08% Fly Ash	41
4.3.4	Bawana Putt Clay + 012% Fly Ash	41
4.3.5	Bawana Putt Clay + 16% Fly Ash	42
4.3.6	Bawana Putt Clay + 20% Fly Ash	42
4.4	Compaction Test (Standard Proctor Test)	43
4.4.1	Bawana Putt Clay	43
4.4.2	Bawana Putt Clay + 04% Fly Ash	43
4.4.3	Bawana Putt Clay + 08% Fly Ash	44
4.4.4	Bawana Putt Clay + 12% Fly Ash	44
4.4.5	Bawana Putt Clay + 16% Fly Ash	45
4.4.6	Bawana Putt Clay + 20% Fly Ash	45
4.5	Unconfined Compression Strength Test	46
4.5.1	Bawana Putt Clay	46
4.5.2	Bawana Putt Clay + 04% Fly Ash	46
4.5.3	Bawana Putt Clay + 08% Fly Ash	47
4.5.4	Bawana Putt Clay + 12% Fly Ash	47
4.5.5	Bawana Putt Clay + 16% Fly Ash	48
4.5.6	Bawana Putt Clay + 20% Fly Ash	48
4.6	Permeability Test	49
4.6.1	Permeability test at wet side of OMC	49

5.1	Comparison of Results of Liquid Limit	50
5.2	Comparison of Results of Plastic Limit	50
5.3	Comparison of Results of Maximum Dry Density	51
5.4	Comparison of Results of Optimum Moister Content	51
5.5	Comparison of Results of Unconfined Compression Strength	52
5.6	Comparison of Results of Hydraulic Conductivity Test	52
	Table 2.1: saturated hydraulic conductivity (<i>K</i>) values found in nature	31
	Table 4.2: Basic properties and classification of Bawana Putt clay	40

- A = Area of Specimen
- $A_0 =$ Area of cross section
- $A^ = Corrected area$
- c = Cohesion of soil
- C= Hazen's empirical coefficient
- C_w= Undrained shear strength of compacted soil in the SPT
- $C_{opt} = Undrained$ shear strength at w_{opt}
- D_{10} = Diamreter of the 10 percentile grain size of material
- E = Work done
- h = Hydraulic head,
- H = Rammer Height
- K=Hydraulic conductivity
- L = Length of soil
- L_0 = Initial length of soil
- LL = Liquid limit
- $N_B =$ Number of blows per layer
- N_L = Number of layers
- P = Axial force
- PI = Plasticity index
- PL = Plastic limit
- $q_u =$ Unconfined compressive strength
- Q = Volume of Water
- s_u = Undrained shear strength
- u = Pore water pressure
- Vm = Volume of mould
- V = Volume of compacted soil
- w = Moisture content
- W = Weight of soil

- W_m = Weight of empty mould
- $W_r = Rammer Weight$
- z = Vertical distance
- τ = Shear strength
- σ = Normal stress on the plane of shearing
- Φ = Friction angle
- σ ` = Total water pressure
- ϵ = Strain of soil
- ρ_d = Dry density of soil
- ρ = Bulk density of soil