LIST OF FIGURE

Sr. Number	Title	Page No.
Figure 1.1	Parts of Internal combustion engine	2
Figure 1.2	Position of different type of piston rings on piston	4
Figure 1.3	Most Common shape, b- barrel-shaped face profile,	8
C	c- tapered face profile	
Figure 1.4	Bevelled ring edge configuration (ISO 6621-1)	8
Figure 1.5	Half keystone ring (ISO 6621-1)	9
Figure 1.6	Compression & Oil Control Rings	9
Figure 1.7	Coating deposition technologies	13
Figure 1.8	Coating Porosity Calculations	19
Figure 1.9	Abrasive wear of thermal spray coating	28
Figure 1.10	Fretting wear of thermal spray coating	31
Figure 1.11	Erosion wear of thermal spray coating	32
Figure 2.1	Slurry abrasions wear of thermal spray coating	38
Figure 2.2	Pin on disc wear test of thermal spray coating	40

Figure 3.1	Induction Arc Furnace Used for the Melting of Charge	51
Figure 3.2	Powder as charged (A) Mn Slab (B) Cu Powder (C) Si	52
	Powder (D) Cr Powder	
Figure 3.3	Plasma Arc spraying machine with the sample mounted	56
	on it for the purpose of coating	
Figure 3.4	Schematic of Plasma arc spraying	56
Figure 3.5	Schematic diagram of Plasma Arc coating	57
Figure 3.6	(A) Plasma Spray Coating machine unit (B) Arc during	58
	the operation of coating (C) Coating Powder container	
Figure 3.7	Common nitriding cycle	66
Figure 3.8	Wear and friction monitor machine for pin on disc test	69
Figure 3.9	Hard Chrome coating before wear test	69
Figure 3.10	Hard Chrome coating during wear test	70
Figure 3.11	Hard Chrome coating after wear test	70
Figure 3.12	Scanning electron microscope at DTU, Delhi	72
Figure 3.13	X-Ray diffractometer in DTU, Delhi	75
Figure 3.14	Vickers micro hardness indentations	76
Figure 3.15	Optical microscope	77
Figure 4.1	(A) Top View of Thermal Sprayed Coating (B) Cross-	79-80
:	sectional View of Plasma Spray Coating	
Figure 4.2	Top View of Hard Chrome plating	80
Figure 4.3	(A) shows the variation of the wear rate of the plasma	81
	spray coating at different loads with different counter	

	- 1	
hΛ	\sim	ies.
w	u	150

	(B) Shows the variation of the wear rate of the different	82
	counter bodies at different loads with plasma sprayed	
	plate.	
Figure 4.4	(A) shows the variation of the wear rate of the chrome	85
	plating at different loads with different counter bodies.	
	(B) Shows the variation of the wear rate of the different	85
	counter bodies at different loads with chrome plating.	
Figure 4.5	(A) shows the variation of the wear rate of the gas nitride	88
	plate at different loads with different counter bodies.	
	(B) Shows the variation of the wear rate of the different	89
	counter bodies at different loads with gas nitride plate.	
Figure 4.6	(A) Variation of coefficient of friction of plasma spray	91
	coated plate with En-31 pin at various loading condition	
	with time.	
	(B) Variation of coefficient of friction of plasma spray	92
	coated plate with tungsten carbide pin at various loading	
	condition with time	
Figure 4.7	(A) Variation of coefficient of friction of chrome plated	94
	plate with En-31 pin at various loading and sliding	
	conditions.	
	(B) Variation of coefficient of friction of chrome plated	95
	plate with tungsten carbide pin at various loading and	

	sliding conditions	
	(C) Variation of coefficient of friction of chrome plated	95
	plate with En-31 pin , tungsten carbide and nickel pin at	
	similar loading and sliding conditions	
	(D) Variation of coefficient of friction of chrome plated	96
	plate with En-31 pin , tungsten carbide and nickel pin at	
	similar loading and sliding conditions	
Figure 4.8	(A, B,& C) Variation of coefficient of friction of gas	98-101
	nitrided plate with En-31, Nickel and tungsten carbide pin	
	pin at various loading and sliding conditions.(D, E & F)	
	CoF of gas nitrided plate with different counter bodies at	
	40,50 & 60 N load	
Figure 4.9	(A) Worn surface of plasma spray coating with EN-31 pin	103
	at 50N load	
	(B) Worn surface of plasma spray coating with EN-31 at	103
	60N laod	
	(C) Worn Surface of Plasma Spray Coating with WC at	104
	30N Load	
	(D) Worn Surface of Gas nitriding with Nickel Pin at 50 N	104
	Load	

(E) Worn surface of Hard Chrome Plated disc with HCS

(F) Worn Surface of gas nitriding disc with EN-31 at 40N

at 50 N load

104

104

ı	\sim	$\overline{}$	А	
ı	()	7	(1	

	(G) Worn Surface of gas nitriding disc with En-31 at 50N	105
	load	
Figure 4.10	Worn surface of plasma spray coating with tungsten	107
	carbide pin, at (A) 100 X (B) 500 X (C) 1k X	
Figure 4.11	Worn surfaces chrome plating with En-31 at 500 rpm	109
	speed and (A) 100 X (B) 500 X (C) 1000 X	
Figure 4.12	Worn surfaces chrome plating with tungsten carbide pin	110
	at 500 rpm speed and (A) 25 X (B) 500 X (C) 1000 X	
Figure 4.13	Worn surfaces of gas nitriding with En-31 at 500 rpm	112
	speed and (A) 100 X (B) 100 X (C) 500 X	
Figure 4.14	Worn surfaces of gas nitriding with nickel at 500 rpm	113
	speed and (A) 100 X (B) 1000 X (C) 500 X	
Figure 4.15	Worn surfaces of gas nitriding with tungsten carbide at	114
	500 rpm speed and (A) 1000 X (B) 500 X (C) 1000 X	

