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ABSTRACT     

 

MapReduce is a framework for processing large data sets, where straightforward computations 

are performed by hundreds of machines on large input data. Data could be stored and retrieved using 

structured queries. Join queries are used frequently. So it’s crucial to find out efficient join processing 

techniques. In this project we have analyzed theoretically and practically various join processing 

algorithms in MapReduce. We have proposed some techniques for the improvement of performance of 

join queries and a join selection strategy is proposed to find out best suitable join processing algorithm 

for a particular application.  

Comparison of various join processing algorithms is done. Join query processing algorithms 

studied in this thesis are Default Hadoop Join, Broadcast Join, Optimized Broadcast Join, Trojan join and 

Multijoin algorithm. These algorithms are compared on the basis of number of MapReduce jobs 

involved, their advantages and disadvantages.  

We have proposed optimization techniques such as Dynamic Hash table creation, Compressed 

Broadcast Join and Hash Broadcast join. Also we have suggested a Join selection strategy which helps to 

select the join processing algorithm based on various parameters. 

Also experiments were conducted to measure the performance of these algorithms. 

Experiments were conducted on Amazon cloud using Elastic MapReduce,EC2 and S3 technologies 

provided by Amazon Web Services. Results of the experiments proved that the proposed optimization 

techniques had improved the performance on join query execution in MapReduce environment.  
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Organization of the Thesis 

 

This thesis is divided into six chapters followed by Conclusion, Future work and References.  

Chapter 1 – provides details about concept of MapReduce, various steps involved in the execution of a 

MapReduce are also described. Then a brief description about Hadoop and Hadoop distributed file 

system is provided. 

Chapter 2- describes various join query processing algorithms already proposed by various authors. 

Algorithms described in this section are Repartition Join, Broadcast Join, Semi join, Trojan Join and 

Replicated join. 

Chapter 3- Comparison of the algorithms described in chapter 2 is provided in this section. Comparison 

is based on number of MapReduce jobs, advantages and issues of the join algorithm. 

Chapter 4- Describes the optimization technique proposed to improve the performance of the join query 

execution.  Techniques described in this section are – Dynamic hash table creation, Zip broadcast join 

and Hash broadcast join. 

Chapter 5 – Provides details about the experimental setup used and the Results of various experiments 

conducted to test the performance of join query processing algorithms are shown in this section. 

Comparison of time required for execution of join query by different algorithms is done is this section. 

Chapter 6 – In this chapter a Join Algorithm selection strategy is described. It is in the form of decision 

tree, which can be used to select proper join algorithm for execution based on the dataset to be joined. 

Publications:  A paper describing various join query processing algorithms and the join selection strategy 

was presented at the conference mentioned below, and another paper is under review – 

1. Anwar Shaikh, Rajni Jindal : Join Query Processing in MapReduce Environment. In Third International 
Conference on Advances in Communication, Network and Computing (CNC), Springer LNICST.  Pages: 
275-281 (2012).  

2. Anwar Shaikh, Rajni Jindal : Improving performance of Join Query Algorithms in MapReduce 
Environment. In Journal of Parallel and Distributed Computing, ELSEVIER.  (Communicated) 
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CHAPTER 1   Introduction to MapReduce  

 

1.1 General Concept 

As data on the web is increasing every day, there is a need of a scalable, efficient and powerful tool to 

analyze this huge amount of data. MapReduce [1] is a large-scale data analysis framework by Google. It 

hides many complex tasks such as parallelism, fault tolerance, data distribution and load balancing from 

the user; thus making it simple to use. User have to write the map and reduce function and the 

remaining things are handled by the underlying infrastructure of MapReduce. So, now writing code for 

distributed applications is very simple. Hadoop [2] is open source implementation of MapReduce.   

Hadoop [2] can be used to store and retrieve data using structured queries. Join queries are the most 

frequently used and important. So finding out efficient techniques for processing of join queries in 

Hadoop is crucial. This project is aimed at study of existing join query processing techniques and 

improving performance in MapReduce environment.  

These large scale databases are used for processing of the archived data and to analyze large volume of 

data. They can generate results in less time by performing job in the distributed manner. 

1.2 MapReduce 

MapReduce performs the task in two phases Map and Reduce. Map function takes input in the form of 

key/value pairs and produces intermediate key/value pairs by applying some transformation. The 

domain of the input data and intermediate data can be different. Reducer performs merging of 

Intermediate values with same keys to form smaller set of values as output [1].    

Map Phase:       map(InputKEY, InputVALUE)  list (IntermediateKEY, intermediateVALUE) 

Reduce Phase:  reduce(IntermediateKEY, list(intermediateVALUE))  list(intermediateVALUE) 

Map and Reduce function are specified by the user, but the execution of these functions in the 

distributed environment is transparent to the user.  
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Example 

Consider the problem of counting the number of occurrences of each word in a large collection of 

documents. The user would write code similar to the following pseudo-code: 

map(String key, String value): 

// key: document name 

// value: document contents 

for each word w in value: 

EmitIntermediate(w, "1"); 

 

reduce(String key, Iterator values): 

// key: a word 

// values: a list of counts 

int result = 0; 

for each v in values: 

result += ParseInt(v); 

Emit(AsString(result)); 

The map function emits each word plus an associated count of occurrences (just `1' in this 

simple example). The reduce function performs summation of all counts emitted for a particular word. 

Eg.  Map (book.txt,” This book is about Data structures. Data structures are basic building blocks….”) 

Output of map phase – 

This-1, book-1, is–1, about–1, Data-1, Structures-1, Data-1, Structures-1 …. 

Eg.  Reduce(“Data”, {1,1}) , Reduce(“Structures”, {1,1})  

Output:  Data -2, Structures -2, This -10….. 

In this way the final output gives number of occurrences of word in all given files. 

 

Various steps involved in a MapReduce job are described below- 

1. Split input file into N small parts. 

2. Start many threads of programs on different nodes. 

3. Master node picks idle workers/data nodes to work as mappers and other nodes  as reducers. 

4. Mapper process – reads the file and gives it to map function and write result in local buffer. 

5. Buffer contents are written to local disk partitions based on partition criteria and its information 

is sent to Master. 
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6. Master gives information of this data to reducer, then reducer performs RPC to get data from 

mapper’s local disk.   

7. The data is then sorted to group data with similar key. 

8. Reducer iterates over the input data and executes reduce function.  

9. Result is written to HDFS. 

Figure 1, depicts the entire MapReduce process and the flow of data between various phases. 

 

Figure 1. MapReduce framework. 

 

1.3  Hadoop 

Hadoop is an open source implementation of MapReduce framework by Apache. It was released in 2009 

and was able to sort petabytes of data [2]. Need to process Multi Petabyte Datasets, Hadoop is used 

mainly when  

- Data may not have strict schema 

- Expensive to build reliability in each application. 

- Nodes fail every day (Failure is expected, rather than exceptional) 

- The number of nodes in a cluster is not constant. 

- Need common infrastructure 
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- Efficient, reliable, Open Source. 

Hadoop is used by - Amazon, Facebook, Google, IBM, Joost, Yahoo! And many other firms for processing 

large scale data.  

Hadoop is used for  

1. Search  by Yahoo, Amazon, Zvents. 

2. Log processing  by Facebook, Yahoo, Joost. 

3. Recommendation Systems  by Facebook. 

4. Data Warehousing by Facebook, AOL. 

5. Video and Image Analysis  by New York Times. 

 

1.4 Hadoop Distributed File System (HDFS) 

MapReduce framework is built on top of a distributed file system. Hadoop uses reliable file sys-tem 

called as Hadoop Distributed File System (HDFS). HDFS can handle petabytes of data [10]. Data 

availability is increased by replicating data over multiple nodes. There are some exciting features 

provided by HDFS like Distributed Cache which would be explored in further sections. 

Some characteristics of HDFS are – 

1. It is a Very Large Distributed File System – it can handle 10,000 nodes with  100 million files, 

data size of about  10 to 100 Peta Bytes. 

2. Replication of files over multiple nodes is done to handle failures such as hardware failure and 

allows recovery from it. 

3. Map and Reduce computation are performed on the nodes where the input data is already 

stored. 

4. The access model followed is Write-once and read-many. 

5. Client accesses data directly from Data Node, Client can find location of blocks. 
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Name nodes – maps a file to a file-id and list of data nodes. It keeps metadata about entire clusters data 

 nodes. Name node is supported with secondary name node which acts as a backup to the 

 primary name node.  

Data nodes – Maps a block id to a physical location on a disk. Data nodes hold the actual data blocks. 

 These data nodes also perform the actual MapReduce job. 

 

Figure 2. Hadoop Distributed File System Architecture. 

 

Figure 2, depicts the architecture of HDFS. Observe that there is single Name node responsible to hold 

the Metadata about various blocks/files stored on other data nodes. Each data node may contain data 

blocks of different files. A single block is replicated on more than one data nodes. By default the 

replication factor is three. Generally one copy of the data is kept at the different rack so that if a rack 

fails to provide data, it can be fetched from another rack. 

 

A worker node fetches the required data from the nearest data node. Hadoop tries to assign input block 

to a task tracker (slave nodes) which holds that input block – to reduce the cost of communication. 

 



Page | 8  

 

CHAPTER  2 Join Query Processing Algorithms in MapReduce 

 

Join algorithms used by Conventional DBMS and MapReduce are different, because join execution in 

MapReduce uses Map and Reduce functions to get results. This section describes various join processing 

algorithms for MapReduce environment. 

2.1 Repartition Join 

Repartition Join [5] is Default Join mechanism in the Hadoop [3]. It is implemented as a single 

MapReduce job. In Map Phase, each mapper processes a single split (block) of relation involved in the 

join and outputs Join key (k1), tuple (t1), relation name (R) – {k1, t1, R}. The relation name is used as a 

tag to identify the relation which a particular tuple belongs. 

Output of Map phase is sorted and partitioned based on the join key. Each reducer gets records with 

same join keys. Reducer process removes the Tag attached to the tuple and separates them to form two 

different relations. Then cross join is per-formed between these two relations to produce final output.  

 

Figure 3. Repartition Join. 

Figure 3 depicts natural join between relations Passenger (Id, Name, Train Number) and Train (Train 

Number, Train Name). In the Map phase both relations are tagged with the Relation name Passenger 

and Train respectively. Then all tuples are sorted based on the join key-Train Number. After sorting 
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records with same key are distributed to reach reducer. Tuples from Train Number 1024 are sent to 

reducer 1 and tuples from Train Number 2300 are sent to reducer 2. 

Each Reducer then removes the tag and performs the cross join between tuples from different relations. 

And the final result is written to the HDFS. 

Algorithm : Repartition Join 
Input: Relation R1(P,Q)  & Relation R2(Q,R). 
Output:  Natural Join between R1 and R2. 
 
Map(Key nameOfRelation, Value tuple)   // key = name of relation, value= single tuple. 
{ 
 Tag = nameOfRelation; 
 Join_Attribute = tuple.Q;    // Q is the join attribute  
 Other_Attribute = Non join attribute  // either tuple.P or tuple.R 
 Write( Join_Key, Tag + Other_Attribute); 
} 
Reduce(Key Join_Attribute, Value list)   // list contains Tag and other attributes 
{ 
 R1_list = Other_Attributes with Tag R1; 
 R2_list = Other_Attributes with Tag R2; 
 
 //perform the cross product between R1_list and R2_list 
 
 For(each X in R1_list){ 
    For(each Y in R2_list) 
    Write(Join_Attribute + X + Y);  
 } 
} 

Algorithm 1: Repartition Join. 

Default Hadoop Join mechanism has some drawbacks – 

1. Sorting and movement of all tuples from both relations is required between Map and Reduce 

phases. It increases network traffic and hence affects the performance. 

2. If there is a Popular key then all records for that key are sent to single reducer. This would 

consume more time. 

3. Minor overhead of tagging tuples in map phase is involved. 

Improved Repartition Join was suggested by authors of [5] where the output of map phase was adjusted 

such that tuples of smaller relation appeared before tuples of larger relation and generation of join 

result needed buffering the tuples of smaller relation and streaming the tuples of larger relation. 
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2.2 Broadcast Join 

 

Broadcast join described by [5] is similar to Naïve Asymmetric join in [3].  Broadcast join is a type of 

asymmetric join because it treats two relations differently. When relations R1 and R2 are such that, 

number of tuples from R1 are very less as compared to R2, then the smaller relation R1 is copied 

mapper nodes before execution of the join. This is possible by using Distributed Cache Mechanism 

provided by HDFS. It is used for efficient distribution of large and read only files. 

When relation R1 is not available at mapper then it is retrieved from the Distributed Cache. Once the 

smaller relation is available to each mapper node, a Hash table is built such that Join attribute act as 

Hash key and the tuple of R1 act as Value.  

 

Figure 4. Broadcast Join. 

Now, each mapper is assigned a split of a bigger relation R2. All tuples of R2 are scanned sequentially. 

For each tuple in R2, Hash of the Join Key of R2 is used to retrieve the matching tuple of R1 from the 

Hash table built earlier; tuple from R2 along with hash table value is added to the join result.  
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Note that Broadcast join need only Map phase, and network bandwidth requirement is reduced because 

only smaller relation is transmitted over network. 

 

Algorithm : Broadcast Join 
Input: Relation R1(P,Q)  & Relation R2(Q,R). 
Output:  Natural Join between R1 and R2. 
 
//Method to initialize mapper 
Setup()       
{  

Load data from Distributed Cache (R1); 
 

For(each tuples r1 in R1)  //Build Hash table for cached data 
{ 
   HashTable.put(r1.Q, r1.P);  //add key attribute and non-key attributes 
} 
  

} 
 
//invoked once for each tuple of R2 
Map(Key nameOfRelation, Value tuple)  // key = name of relation, value= single R2 tuple. 
{  
 r1.P = HashTable.get( r2.Q); //Lookup the matching tuple in Hash table 
  
 Write( r1.Q + r1.P + r2.R);  //Write result to HDFS 
} 

 

Algorithm 2: Broadcast Join. 

Figure 4, Depicts the processing of Broadcast join between relations Passenger and Train, Smaller 

relation Train is copied to all mapper nodes and hash table is built locally at each node before execution 

of map phase. And in map phase, a split of Passenger table is received by mapper and join execution is 

performed independently. Result is written to the HDFS. 
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2.3 Optimized Broadcast Join (Semijoin Approach) 

 

It is also termed as Optimized Asymmetric Join [3]. While performing join, most of the times it happens 

that there are many tuples which do not contributed to the join result. So if the relation R1 and R2 are 

large, then it may be costly to perform Broadcast join.  In such case extraction of only those tuples of R1 

which contribute to the join can reduce the size of R1 by significant number and can make it candidate 

for Broadcast join using semi join mechanism.   

 

      Semi join between R1 and R2 is performed using two MapReduce jobs. First, projection of 

unique join attribute values from relation R2 is done. Using these unique value, second MapReduce job 

is performed to find matching tuples from R1. These are the tuples required for performing actual join. 

As the size of R1 is reduced by semi join, it is copied to all mapper nodes and further join processing is 

performed same as Broadcast Join. 

 

 The join processing of Optimized broadcast join is depicted in figure 5. The join is processed in 

three steps. First step the unique train numbers are extracted from the Passenger table using one 

complete MapReduce job. These unique train numbers are added to the distributed cache.   

 

Second step, filters the required tuples from the Train table using unique train numbers 

obtained from Distributed cache. As a result we get only those tuples of the Train relation which 

contributes to the join result. These tuples are then added to distributed cache.  

 

In third step the Broadcast join is performed which produced the final join result. Here we can 

observe that instead of Broadcasting entire Train relation, only one tuple from Train relation is 

broadcasted/transmitted over network which reduces the join processing time. 
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Figure 5. Example of Semijoin. 

 

 

 

 

 

 

 

 

 

 



Page | 14  

 

2.4 Trojan Join 

 

Join strategies discussed above do not take advantage of schema knowledge, which is available 

earlier. And many cases join conditions do not change; there may be change in the number of tables 

used in the join query. Trojan join [6] is designed to take advantage of this. 

Co-partitioning is the basic idea behind Trojan join. Applying same partitioning function to both relations 

involved in join is called co-partitioning. 

 

Co-partitioning of the data is done at load time; and co-group pairs from each of two relations 

having similar join attribute values are kept on the same split.  As the data from both relations having 

the same join key value is available at the same split, joins are executed locally at that mapper node and 

there is no need of shuffle and reduce phases required, hence reducing the network communication. 

 

Co-grouped data is stored using headers to differentiate between two relations and split. Figure 

6 depicts the storage structure of co-grouped data. Two headers are required to indicate starting 

position of data of relations R1 and R2 and one header to indicate end of logical split. 

 

 

Figure 6. Co-partitioning data of relations R1, R2. 

 

Once data is loaded, map function collects data from a Co-Group and performs cross product 

between them and adds it to final result. This is possible because each Co-Group contains data with 

same join key value.  

 



Page | 15  

 

 

 

Figure 7. Trojan Join execution 

 

 Figure 7 depicts the processing of the Trojan join. The Passenger relation and Train relation are 

co-partitioned based on the train numbers. Tuples with the same train number are kept in the same co-

partition.  Also an index is built based on train number. All these steps are done as part of the pre-

processing. At the time of join execution, just the cross product is performed between the data of two 

different relations stored in same co-partition. 
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2.5 Replicated Join 

 

This is multi-way join query processing algorithm proposed in [4]. It performs the three-way join 

as a single map-reduce operation. Consider natural join between three relations R1(A,B), R2(B,C), 

R3(C,D). If we use previous approaches then we need to perform this in two map reduce processes, 

because we can join only two relations at a time.  

In this approach, each tuples from relations R1 and R3 are sent to multiple reducers, this may 

increase the communication cost, but it is acceptable because the join will be performed in the single 

MapReduce job. Each tuple from R2 is sent to single reducer only. As you can observe that Replicated 

join should be used when tuple from one relation is joined with many tuples of other relations.  

 

 

 

 

 

Table 1. Distribution of Tuples to Reduce processes, * indicates any value between 1 and m. 

 

 

 

Figure 8. Replicated join. 

Relation Reducer process number 

R1(A,B) [hash(b),*] 

R2(B,C) [hash(b),hash(c)] 

R3(C,D) [*,hash(c) ] 

Reducer processes, arranged as 

a 4 X 4 matrix. 
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If we have ‘k’ number of reduce processes where k=m*m, for some value of m, reducers are 

numbered as [i,j] where values of i and j are 1,2,..m. A hash function selected such that tuples from R1, 

R2 and R3 can be hashed into ‘m’ buckets. Each reducer is responsible to process one bucket for B and 

one for C.  Tuples are sent to reducer using the hashed values of join attributes B and C. Table 1, shows 

the distribution of tuples to the reduce processes. After distribution of tuples at each reducer numbered 

[hash(b), hash(c)] we have tuples from R1, R2, R3 such that they have same value for join attribute. Now 

the join can be performed locally at the reducer. 

 

Figure 8, depicts the distribution of tuples in Replicated join, where k=16=4*4. Relations R, S, T 

represent relations Employee, EmpDept and Department respectively. 4X4 matrix represents reducer 

processes, cells marked in Yellow represents reducers contributing to final results. 

An optimization algorithm to find minimum number of replicas/reducers needed for join execution was 

proposed in [4]. 

 

 

 

 

 

 

 

 

 

 

 

 



Page | 18  

 

Chapter 3  Comparison of Join Algorithms 

   
Consider that a join is performed between relations R1(a,b) and R2(b,c). Table 1 compares above 

mentioned join algorithms based on number of MapReduce jobs required for execution, advantages of 

using a particular method and issues involved. 

 

Join Type MapReduce jobs Advantages Issues 

Repartition 1 MapReduce job Simple 
implementation of 
Reduce phase 

Sorting and movement of 
tuples over network. 

Broadcast 1 Map phase. No sorting and 
movement of tuples. 

Useful only if one relation 
is small. 

Optimized 
Broadcast 

2 MapReduce jobs for 
Semi join and 1 Map 
phase for Broadcast 
join.  

Applicable when the 
selectivity of a 
relation is very low. 

Extra MapReduce jobs are 
required to perform semi 
join 

Trojan 1 Map phase. Uses schema 
knowledge. 

Useful, if join conditions 
are known. 
 

Replicated 1 MapReduce job. Efficient for Star join 
and Chain join. 

For large relations more 
number of reducers / 
replicas are required 

 

Table 2. Comparison of Join processing methods 
 

 Repartition join requires one complete MapReduce job. It involves sorting of all tuples 

based on the join key and then the tuples with same join key are sent to single reducer. This movement 

of tuples degrades the performance of repartition join. Its performance is lowest as compared to other 

algorithms. 

 Broadcast join is executed in single Map phase. But, before execution of the map phase the 

data of the smaller relation is made available to the mapper using the distributed cache. It is useful only 

when one of the relation involved in the join is very small such that it could be transmitted to all nodes 
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in less amount of time. It is better than Repartition join as no sorting and movement of the data is 

involved. 

 Optimized broadcast join requires three MapReduce jobs. First two jobs are required for 

the execution of the semijoin, and the third job performs the normal broadcast join. This join is useful 

only when all tuples from smaller relation do not contribute to the final result.  More number of jobs are 

required as compared to the other join algorithms. Also, it is useful in very few cases. 

 

 Trojan join requires prior knowledge of database schema and join conditions. It involves 

preprocessing steps in which data from both relations is stored such that the tuples with same join key 

are stored in the same co-partition. Also an index is maintained which reduces the join execution time. 

Trojan join required only one Map phase, as data is locally available on the same partition. Trojan join is 

more similar to the traditional databases as it requires schema knowledge. 

 

 Performing join between more than two relations may require more than one MapReduce 

jobs, because a cascade of two way joins is required to be performed. But, in some special cases like the 

star join and chain joins – mostly used in the data mining applications, a Multiway join could be 

performed. But, it requires more number of reducers and high amount of replication of data when the 

relation is large. 

 

 Broadcast join and Trojan join are Map side join algorithms and Repartition join and 

Replicated join are the Reduce side join algorithms. 
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Chapter 4  Optimizations 

   
4.1 Related Work  

  

 One new framework is designed to improve the join processing, called as Map-Reduce-Merge [8]; it 

includes one more stage called Merge which is used for joining tuples from multiple relations.  

 

 Join execution can be improved by including indexes; [6] introduces Hadoop++ which describes 

Trojan join and Trojan index to improve performance.   

 

 Methods described in this report are applicable when the data is organized in Row-wise manner. For 

Column-wise data store, join optimization algorithms are described in [9].  

 

 Authors in [7] described a design of query optimizer for Hadoop which creates optimized query 

execution plan before execution of query. 

 

4.2 Proposed Optimization Techniques 
 

We have proposed three optimization techniques – Dynamic Hash Table Creation, Compressed 

Broadcast Join and Hash Broadcast Join. These techniques are applicable in different scenarios described 

below. 

4.2.1 Dynamic Hash Table Creation  

As per the definition of Broadcast join provided by authors in [3] Distributed Cache distributes a 

copy of smaller relation to each Mapper before performing the actual job. Then a hash table is created 

for the smaller relation locally. 

This solution provides better results when the size of smaller relation (R1) is less than the input 

split size of larger relation (R2).  Because the size of hash table/number of entries in the hash table are 

less. But, if the size of R1 is greater than the size of input split of R2 then the performance gain can be 

achieved by constructing the hash table for the input split of R2. Doing this will result in less number of 

entries in hash table and would be more efficient. 
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Figure 9. Hash table creation in Normal Broadcast join. 

 

 

 

Figure 10. Hash table creation based on the input size. 
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 Following code described the process of Broadcast join with Dynamic Hash table creation – 

 

  Input: Relation R1(P,Q)  & Relation R2(Q,R). 
  Output:  Natural Join between R1 and R2. 
 

Setup() 
{ //Method to initialize mapper 
  

Load data from Distributed Cache (R1); 
 
R1_Size=Calculate size of cached data; 
R2_Size=Calculate size of Input split of R2; 
 
If(R1_Size < R2_Split_Size) 
{ 
 Build Hash table for cached data (R1_HASH_TABLE) 
} 

} 
 
Map() 
{ //invoked once for each tuple of R2 
 If(R1_Size<R2_Split_Size) 
 { 
  Lookup the matching tuple in Hash table (R1_HASH_TABLE) 
  Write result to HDFS 
 } 
 else 
 { 
  //build hash table for R2 
  Add this tuple of R2 to hash table.( R2_HASH_TABLE) 
 } 
} 
 
CleanUp() 
{ 

//function called at the end of Map Phase. 
  
 If(R2_Split_Size > R1_Size) 

{ 
 //For each tuple in Cached relation R1 

  Lookup the matching tuple in Hash table (R2_HASH_TABLE) 
  Write result to HDFS. 
 } 
} 
  

 
Algorithm 3 – Dynamic Hash table Broadcast Join. 
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The Mapper contains a run() method which calls its setup() method once, its map() method for each 

input record, and finally its cleanup() method [2]. 

 

Setup Method :  Called once for each Mapper.  In the approach suggested by authors in [3], this method 

is used to build the hash table for the smaller relation R1 obtained from the distributed cache. But, in 

our approach this method checks the size of relation R1 and the size of input split which is to be 

processed by this mapper. If the R1 relation is small then the hash table is built for it called as 

R1_HASH_TABLE, else no action is taken. 

 

Map Method : This method is called once for each tuple in the input split of relation R2. If R1 is small 

then R1_HASH_TABLE is looked up to obtain matching tuples. In case match is found, the result of join is 

written to the HDFS. 

 Else if split of R2 is small, then the Map function builds the Hash table (R2_HASH_TABLE) for the 

split of R2- by adding each input tuple of Map function into the Hash table- this Hash table is used in the 

cleanup method to compute the final join result 

 

Cleanup Method:  This function is called at the end of Map function call. If split of R2 is small then the 

actual join results are produced in this function. For each tuple in the cached relation R1- the hash table 

(R2_HASH_TABLE) is looked up to find matching tuples. And the result is written to HDFS. 
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4.2.2 Zip Broadcast Join 

 

As described earlier broadcast join Broadcasts the smaller relation using Distributed. The 

distributed cache needs to distribute/transfer these files over network to all nodes participating in the 

Hadoop job, MapReduce job starts only after receiving the files from Distributed Cache. So the time 

required for the broadcast of relation R1 can be reduced if we perform compression of the data. 

 

  

Figure 11. Zip Broadcast Join. 

 

Distributed Cache passes the compressed files to each slave node and decompresses the archive 

 as part of caching. Distributed Cache supports the following compression formats: 

 

 zip –  This format is suitable for the archival of a large number of small files. In the zip 

 archive format, the metadata for each entry—the information about each 

 individual entry—is not compressed. [13] 

 tar- tar stands for Tape Archive. As the name suggests, this file format is used to 

 bundle various files into a single file so that it can be written to the tape for 

 archival purpose. Files are not compressed in this. [14] 

 tgz (tar.gz)-   

 gzip compression algorithm is used to compress the entire tape archive. The 

 metadata is also compressed, so the individual files can’t be accessed without 

 complete decompression. [14] 
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 jar - This file format is used to group together various Java class files and associated 

 resources like images, text into single file – to distribute the code over java 

 platform. [15] 

 

As described above, the tar format is not useful because it does not compress the data, also 

the jar is not suitable because we are not broadcasting java code. So, the remaining formats zip 

and tgz can be used. But, since zip format is suitable for compressing large number of small files, 

we prefer using zip format for the compression of smaller relation involved in the join. 

 

The performance gain achieved by this method is because of less amount of data to be 

transmitted to different number of users. Suppose for a MapReduce job, we have more than 50 

slave nodes involved in the Cluster, then Broadcasting a relation means we need to provide 

same copy of the data to 50 different locations, so if we reduce the size of data to be 

broadcasted then the network traffic would be reduced by large amount. So, this techniques 

requires less time for execution. 
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4.2.3 Hash Broadcast Join 

 

In Memory Hash table: 

 The Map phase of Broadcast join involves building of hash table for smaller relation. As 

 JAVA is most widely used language for the Hadoop, we have observed some issues with 

 the Hash Table for JAVA. For a given relation we construct a -In Memory Hash table, 

 which uses the JVM heap space for construction of Hash Table.  

 

JVM Heap size limitation: 

 We have used HashMap class of JAVA for creation of Hashtable. We have tested it for 

 user relation which was used for Broadcast. For each user very few details were 

 considered such as username, age, contact number. Number of tuples in the relation 

 were 10,00,000 – 20,00,000 – 30,00,000.  

Heap size for the JVM was set to 640MB. Hash  table was successfully created for the 

first two cases. But, for 30,00,000 entries the JVM ran out of memory and 

OutOfMemory exception was thrown.  

 

So, we can conclude that it is not always possible that the in memory hash table could be built 

for smaller relation. Because smaller relation means the size of relation is such that it can be 

transmitted over the network. Now there are two situations – 

1. Size of each tuple is small – We have more number of tuples – Thus, more number 

of entries in hash table. 

2. Size of each tuple is larger- We get less number of tuples – Thus, less number of 

entries in hash table. 

So, we a Hash table mechanism which – 

1. Could handle large number of tuples. 

2. Does not depend on the JVM heap size. 

To handle above requirements we suggest use of DISC BASED HASH TABLE – one such Disc 

based hash table available is JDBM2 [17].  
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JDBM2- 

 It was developed to support data which does not fit into memory. 

 It provides fast access. 

 Scales well up to 109 records. 

 Uses java serialization. 

 It does not support integrity checks such as foreign keys.  

 This library is provides simple usage. 

Based on these features we can say that it would be better alternative for the in memory hash 

table when there are large number of tuples to be broadcasted. 

 

Compressed Hash table file distribution- 

In the Broadcast join - Each Map process creates Hash table for the smaller relation. If we have 

150 Map processes then 150 times the Hash Table will be created. This would waste significant 

amount of time. This can be optimized by following the approach mentioned below- 

1. Generate Disc based hash table only once. 

2. Compress the hash table files. 

3. Broadcast the compressed hash table files. 

4. Use the JDBM hash table directly. 

 

Size of Compressed Hash table files is little more than the size of Compressed relation. Below is 

one example  – 

Original File size Compressed file size JDBM Hash 

table file size 

Compressed JDBM 

hash table file size 

98 MB 30.3 MB 99 MB 32.1 MB 
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Figure 12. Hash Broadcast Join. 

 

Figure 12, depicts the various stages of Hash broadcast join. For a relation R1, a disc based hash 

table is created on one node (Master node). Then the hash table is compressed. This compressed hash 

table is added to the distributed cache. Hadoop distributes this hash table to each node in the cluster. 

Then Mappers at the slave nodes, can use this hash table directly – no time is wasted in creation of the 

hash table. Hence performance is improved. 
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CHAPTER 5 Experiments 

 

Experiments to test the performance of various techniques described above were conducted on 

Amazon web services (AWS) platform. AWS provides cloud infrastructure to perform distributed 

computing. We have used EC2 instances for the execution of the MapReduce jobs along with Elastic 

MapReduce. 

5.1 AWS Cloud - 

 Amazon Web services (AWS) provides a flexible, cost-effective, scalable, and easy-to-use cloud 

computing platform that is suitable for research, educational use, individual use, and organizations of all 

sizes. It’s easy to access AWS cloud services via the Internet. Because the AWS cloud computing model 

allows to pay for services on-demand and to use as much as you need 

5.1.1    Amazon Elastic Compute Cloud (Amazon EC2)- 

Amazon EC2 is a web service that provides resizable compute capacity in the cloud. It is 

designed to make web-scale computing easier for developers. Amazon EC2’s simple web service 

interface allows us to obtain and configure capacity with minimal friction. It provides us with complete 

control of our computing resources and lets us run on Amazon’s proven computing environment.  

 Amazon EC2 provides resizable compute capacity in the cloud.  

 It is designed to make web-scale computing easier for developers.  

 In Minutes – you can obtain a new server and boot it. 

 Quickly scalable (scale up and scale down). 

 Features - Elastic Load Balancing,  Auto scaling, Amazon Cloud Watch. 

Amazon EC2 reduces the time required to obtain and boot new server instances to minutes, 

allowing you to quickly scale capacity, both up and down, as your computing requirements change. 

Amazon EC2 provides various features like Amazon Elastic Load Balancing, Auto scaling, Amazon 

CloudWatch for monitoring to developers the tools to build failure resilient elastic applications and 

isolate themselves from common failure scenarios. [18] 
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5.1.2    Amazon Simple Storage Service (Amazon S3)- 

Amazon S3 is storage for the Internet. Amazon S3 provides a simple web services interface that 

can be used to store and retrieve any amount of data, at any time, from anywhere on the web. It gives 

any developer access to the same highly scalable, reliable, fast, inexpensive data storage infrastructure 

that Amazon uses to run its own global network of web sites. The service aims to maximize benefits of 

scale and to pass those benefits on to developers. 

5.1.3    Amazon Elastic MapReduce- 

Amazon Elastic MapReduce is a web service that enables businesses, researchers, data analysts, 

and developers to easily and cost-effectively process vast amounts of data. It utilizes a hosted Hadoop 

framework running on the web-scale infrastructure of Amazon Elastic Compute Cloud (Amazon EC2) and 

Amazon Simple Storage Service (Amazon S3).[18] 

 

5.2 Experimental Setup – 
 

 

 

Figure 13. Experimental Setup 
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 Figure 13 depicts the experimental setup. Data for performing the experiment is stored in the 

AWS S3 buckets, S3 provides storage capacity similar to the hard disc.  Hadoop environment is provided 

by the Elastic MapReduce, jar file of the new job is deployed on the Elastic MapReduce.  

To execute each job we need to specify number of EC2 instances to be used, based on the 

requirement the EC2 instances becomes available before execution of MapReduce job. These EC2 

instances get the data from S3 buckets for the processing. 

 

 

Figure 14. Elastic MapReduce Job 

 Figure 14, shows a sample job flow created for the execution of Broadcast join with 1 master 

and 4 slave nodes. 
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5.3 Dataset – 
 
 Two relations user and log are considered for join. User relation is small relation used for 

broadcast and the log relation contained more tuples. 

User 
User ID Age Email ID Country 

    
    
     

Log 

User ID Click Action Ip Address URL 

    

    

     

The dataset was generated by using vbscript, various data was randomly assigned to the tuples 

from a set of values. Dataset was split into smaller files, each file containing 1,00,000 entries. All this 

data was uploaded to the S3 bucker named s3://joindataset. 

For testing performance of semi join, we have generated dataset with different amount of 

selectivity- 10%, 25%, 75%.  10% selectivity means that only 10% records from the User relation 

contribute to the final result, 90% tuples are not useful for the final result. 
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5.4 Results – 
 

5.4.1  Comparison of Default Join and Broadcast Join 
 

Experiment# Nodes Tuples Time Required (in milli-sec) 

Master Slave User Log Default Join Broadcast join 
1 1 2 5,00,000 7,00,000 176589 130344 

2 1 4 5,00,000 15,00,000 188692 134254 
3 1 4 5,00,000 25,00,000 238164 152238 
4 1 4 10,00,000 50,00,000 284396 207016 

5 1 4 10,00,000 1,00,00,000 406418 266595 

6 1 4 10,00,000 1,50,00,000 529810 378064 

7 1 10 10,00,000 50,00,000 192933 156184 

8 1 10 10,00,000 1,00,00,000 257297 208333 

9 1 10 10,00,000 1,50,00,000 391207 254261 

 
Table 3. Result of Comparison of Default Join and Broadcast Join 
 

 

Figure 15. Comparison graph of Default Join and Broadcast Join processing time. 

 

Observation: In all the experiments it is observed that the Broadcast join always took less time 

 as compared to the Default Hadoop join.  

0

100000

200000

300000

400000

500000

600000

1 2 3 4 5 6 7 8 9

Default Join Vs Broadcast Join 

Default Join

Broadcast join

Experiment # 

Ti
m

e
 (

in
 m

il
li

-s
e

c)
 



Page | 34  

 

5.4.2  Comparison of Broadcast Join and Semijoin (Optimized Broadcast Join) 

 

Expt. 
No. 

Nodes Selectivity Tuples Time Required (in milliseconds) 

Master Slave  
User Log Broadcast join Semi Join 

1 1 10 100% 10,00,000 1,00,00,000 208333 477895 

2 1 10 75% 10,00,000 1,00,00,000 199741 447728 

3 1 10 25% 10,00,000 1,00,00,000 193040 387249 

4 1 10 10% 10,00,000 1,00,00,000 219046 388568 

 
Table 4. Result of Comparison of Broadcast Join and Semi Join. 

 

 

Figure 16. Comparison graph of Semi Join and Broadcast Join processing time. 

 

Observation: Experiments were conducted for different selectivity of user relation tuples.  

 Selectivity 10% means only ten percent of the User tuples were contributing to the join result.  

 The time taken by Semi join was found to be more than the Broadcast join in all the 

 experiments.  Actually at the lower value of selectivity the performance should have increased. 

 But due to the more number of MapReduce jobs involved, semi join approach took more time to 

 complete the join execution. 
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5.4.3  Comparison of Normal Broadcast Join & Dynamic hash table Broadcast  

 

Expt 
No. 

Nodes Tuples Time Required (in milliseconds) 

Master Slave R1 size R2 split size Broadcast Join Dynamic Hash Table 

1 1 4 

1,00,000  
(3178 KB) 

4,00,000  
(8333 KB) 

98634 96745 

2 1 4 

1,00,000 
(10857KB) 

4,00,000  
(8333 KB) 

103010 98602 

3 1 5 

10,00,000 
(110516KB) 

100,00,000  
(8333 KB) 

Out of Memory 
Exception 

540045 

 
Table 5. Result of Comparison of Broadcast Join and Dynamic Hash table broadcast. 
 

 

 

Figure 17. Comparison graph of Broadcast Join & Dynamic Hash table processing time. 

 

 Observation:  Dynamic hash table Broadcast join, builds the hash table based on the size of the 

 input split and the broadcasted relation. It builds the hash table for the smaller data. 

 Experiments with different R1-size and R2-split size were conducted.  

For the first experiment  the size of R1 relation which is broadcasted was less than the input split 

of R2, so the hash table  will be built for the R1 relation by both relations, so the time required is 

near about same. 

92000

94000

96000

98000

100000

102000

104000

1 2

Ti
m

ie
 (m

ill
i-

se
co

n
d

s)
 

Experiment Number 

Broadcast Join



Page | 36  

 

 But, for the second experiment the size of R1 is greater than the size of input split of R2, so the 

 Normal Broadcast join will create hash table for the R1 relation (takes more time for creation 

 and probing of the hash table) and Dynamic Broadcast Join will create the hash table for the 

 split of R2 relation (takes less time for creation and probing of the hash table). And as expected 

 the time for completion is less in case of Dynamic Broadcast Join. 

 In the third experiment it is observed that the Normal Broadcast join could not work because 

 the hash table for the 10,00,000 tuples could not be built as the size of relation R1 is 107MB. So, 

 JVM throws out of memory exception. So, it is better to use Dynamic hash table creation 

 approach for the broadcast join. 
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 5.4.4  Comparison of Broadcast join and Zip Broadcast Join 

 

Expt 
# 

Nodes Tuples Time Required (in milliseconds) 

Master Slave User Log 
Default 

Join 
Broadcast 

Join 
Zip-Broadcast 

Join 

1 1 10 10,00,000 50,00,000 192933 156184 135514 

2 1 10 10,00,000 1,00,00,000 257297 208333 195752 

3 1 10 10,00,000 1,50,00,000 391207 254261 243593 

 
Table 6. Result of Comparison of Broadcast Join and Zip Broadcast join. 

 

 

Figure 18. Comparison graph of Broadcast Join and Zip Broadcast join processing time. 

 

Observation:  Zip broadcast join transmits the compressed version of the smaller relation to the 

 working nodes. From the above experiments it can be observed that the Zip broadcast join takes 

 less time than the broadcast join and default join, because of less network communication.  
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 5.4.5  Comparison of Default join and Hash Broadcast Join 

 

 

 

 

Table 7. Result of Comparison of Default join and Hash Broadcast join. 

 

 

Figure 19. Comparison graph of Broadcast Join and Hash Broadcast join processing time. 

 

 Observation:  In Hash broadcast join the disc based hash table of the smaller relation is 

 compressed and then transmitted to the working nodes. Here we are comparing it with  the 

 Default join because the Hash Broadcast Join is designed for the situations when the normal 

 Broadcast join fails due to lack of the heap space. Results show that the   Hash  broadcast join 

 performed better than the Default join in both experiments.  
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 Nodes Tuples Time (in milliseconds) 

Expt 
# Master Slave 

User Log Default Join 
Hash Broadcast 

Join 
1 1 10 10,00,000 1,00,00,000 296331 291220 

2 1 10 10,00,000 1,50,00,000 413040 403476 
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CHAPTER 6 Proposed Join Algorithm Selection Strategy 

 

Based on the results of experiments described above, we have proposed a join algorithm 

selection strategy, depicted as a decision tree in Figure 20. One such strategy was proposed in [5] based 

on tradeoff between few join algorithms and preprocessing of data, but we have considered more 

number of join algorithms and optimizations described above.  

 

 

Figure 20. Join Selection Strategy. 

 

The join algorithm selection stratergy is described below in details- 

 In case of Prior knowledge of schema and join condition, Trojan index and Trojan join should be 

used for better performance.   

 Multiway join (Replicated join) would be efficient when star or chain join is performed between 

more than two relations, otherwise performing cascade of two-way join would be better.  
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 For join between two relations such that one relation is smaller and efficient to transmit over 

network then Broadcast join would be a good choice.  It would reduce the network traffic and 

time required for the transmission is also less. 

 Based on the number of tuples in the smaller relation, we perform either Zip Broadcast join or 

Hash Broadcast join. If we can construct in memory hash table for the relation then Zip 

broadcast join is preferred else disc based hash table could be constructed and broadcasted 

using Hash Broadcast join. 

 When selectivity of relation is less (less number of tuples of a relation contributes to join result) 

then prefer Optimized Broadcast Join or Semi join. One more condition to be checked is the size 

of tuple in the smaller relation, if the size of tuple is considerably large then performing semi 

join would be better. 

This join selection is useful when we know the nature of the data we are going to receive as the input 

for the join operation. It would allow us to make proper decision in selecting the most appropriate 

algorithm for the join operation. In case we don’t have any knowledge about the input, then it would be 

better to perform the Default Hadoop join as it involves single MapReduce job and its implementation is 

simple. But, when details about input are available then it’s better to select good algorithms from 

various available options.  
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Conclusion 

 

In this thesis we have described various join query processing algorithms for MapReduce environment.  

These algorithms are compared on basis of number of jobs required, communication overhead and time 

required for execution. Based on our observations we have proposed three optimization techniques- 

Dynamic hash table creation, Compressed Broadcast and Disc Based Hash table Broadcast- to improve 

the performance of the Broadcast join. Our goal was to reduce the cost of communication and reduce 

the time of join execution. These optimizations could be utilized when performing join between large 

data sets. Experiments proved that these optimizations provided better performance than the original 

Broadcast join. Dataset used for performing experiments contained millions of tuples and experiments 

were conducted on 5 to 10 nodes. Not a single algorithm described in thesis is ideal in all situations; 

each algorithm has its own area of application, where it provides better performance. So, based on 

study of various join processing algorithms a join selection strategy is proposed, which would help in the 

selection of right algorithm.  Overall three things are done in this thesis – Survey of various join query 

processing algorithms, proposed techniques for optimization of the Broadcast join, proposed a join 

algorithm selection strategy.  
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Future Work 

 

Join algorithms described in this thesis focus on the data sets stored in the row wise format. In future 

this work can be extended for the optimization of join query processing for the column wise data. This 

work can be utilized for further improvement of join query execution in MapReduce environment. Any 

of the algorithms above does not provide generic solution which will give optimized results in all cases. 

These algorithms can be applied dynamically based on the various parameters like size of relation; 

knowledge of schema etc. So a query optimizer can be designed based on various join processing 

techniques. Optimizations discussed in this thesis could be applied to Replicated join algorithm, because 

replicated join involves lots of replication of the data. Trojan join could be optimized further by storing 

the data in compressed format and metadata in un-compressed format. Further improvement to the 

semi join could be done by maintaining an index, which would increase the performance of the semi join 

step.  Another variant of MapReduce that is Map-Reduce-Merge could also be utilized for the join 

execution, so optimization of join could be done for Map-Reduce-Merge environment also.  
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Appendix - A 

VB Script – to generate User and Log data. 

 

' Function to generate random user tuples 

' List of countries & cities is provided, one of them is selected randomly 

' Age, email id and IP address are generated for each user 

 

Sub generateUserNames() 

 

  numberOfUsers = 1000000 

   

  Dim country(0 To 16) As String 

  country(0) = "india (asia)" 

  country(1) = "nepal (asia)" 

  country(2) = "us (usa)" 

  country(3) = "uk (europe)" 

  country(4) = "pak (asia)" 

  country(5) = "bangla (asia)" 

  country(6) = "korea (continent-1)" 

  country(7) = "africa (african)" 

  country(8) = "germny (asia)" 

  country(9) = "lanka (asia)" 

  country(10) = "saudi (asia)" 

  country(11) = "dubai (asia)" 

  country(12) = "rusia (rusia)" 

  country(13) = "china (asia)" 

  country(14) = "france (french)" 

  country(15) = "japan (asia)" 

  country(16) = "bhutan (asia)" 

   

  Dim city(0 To 16) As String 

  city(0) = "delhi" 

  city(1) = "kathmandu" 

  city(2) = "new york" 

  city(3) = "london" 

  city(4) = "karachi" 

  city(5) = "dhaka" 

  city(6) = "koreacity" 

  city(7) = "johanceberg" 

  city(8) = "hitler" 

  city(9) = "srilanka" 

  city(10) = "baghdad" 

  city(11) = "dubaicity" 

  city(12) = "rusiacity" 

  city(13) = "bejing" 

  city(14) = "francecity" 

  city(15) = "tokyo" 

  city(16) = "bhutancity" 

   

   

    ' format 
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  ' username  age email country 

  For i = 1 To numberOfUsers 

     Range("A" & i).Value = "usr" & i 

     age = CInt(Int((80 - 18 + 1) * Rnd() + 18)) 

     Range("B" & i).Value = age 

     Range("C" & i).Value = "email" & i & "@domain.com" 

     Index = CInt(Int((16 + 1) * Rnd())) 

     Range("D" & i).Value = country(Index) 

     Range("E" & i).Value = city(Index) 

     Range("F" & i).Value = Round((9999999999# - 9010200000# + 1) * Rnd() +  

     9010200000#) 

     Range("G" & i).Value = CInt(Int((255 - 10 + 1) * Rnd() + 10)) & "." &  

     CInt(Int((255 - 0 + 1) * Rnd() + 0)) & "." &  

     CInt(Int((255 - 0 + 1) * Rnd() + 0)) & "." &  

     CInt(Int((255 - 0 + 1) * Rnd() + 0)) 

      

  Next i 

 

End Sub 

 

' Function to generate log entries 

' 10,00,000 entries are created in each excel sheet 

' Various possible click actions are provided along with their urls 

' Dynamically a user is associated with a click action and url along with ip 

address 

 

 

Sub generateLogEntries() 

     

  numberoflog = 3000000 

  perSheet = 1000000 

  numberOfUsers = 500000 

 

  Dim action(0 To 16) As String 

  action(0) = "login" 

  action(1) = "share photo" 

  action(2) = "uploade photo" 

  action(3) = "edit profile info" 

  action(4) = "change profile pic" 

  action(5) = "comment" 

  action(6) = "like" 

  action(7) = "unlike" 

  action(8) = "create album" 

  action(9) = "accept friend request" 

  action(10) = "remove friend" 

  action(11) = "send friend request" 

  action(12) = "deactivate account" 

  action(13) = "logout" 

  action(14) = "reset password" 

  action(15) = "add phone number" 

  action(16) = "change status" 

   

  Dim url(0 To 16) As String 

  url(0) = "login.html" 

    url(1) = "share_photo.html" 
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    url(2) = "uploade_photo.html" 

    url(3) = "edit_profile_info.html" 

    url(4) = "change_profile_pic.html" 

    url(5) = "comment.html" 

    url(6) = "like.html" 

    url(7) = "unlike.html" 

    url(8) = "create_album.html" 

    url(9) = "accept_friend_request.html" 

    url(10) = "remove_friend.html" 

    url(11) = "send_friend_request.html" 

    url(12) = "deactivate_account.html" 

    url(13) = "logout.html" 

    url(14) = "reset_password.html" 

    url(15) = "add_phone_number.html" 

    url(16) = "change_status.html" 

     

  Dim i As Double 

   

   

  For counter = 0 To numberoflog - 1 

   

     If counter Mod perSheet = 0 Then 

         sheetNum = (counter / perSheet) + 1 

         Sheets(sheetNum).Select 

         i = 0 

     End If 

      

     UserId = Round((numberOfUsers + 1) * Rnd()) 

     Range("A" & i + 1).Value = "usr" & UserId 

      

     Range("B" & i + 1).Value = action(CInt(Int((16 - 0 + 1) * Rnd() + 0))) 

      

     ipaddress = CInt(Int((255 - 10 + 1) * Rnd() + 10)) & "." & 

     CInt(Int((255 - 0 + 1) * Rnd() + 0)) & "." & 

     CInt(Int((255 - 0 + 1) * Rnd() + 0)) & "." &  

     CInt(Int((255 - 0 + 1) * Rnd() + 0)) 

             

     Range("C" & i + 1).Value = ipaddress 

 

     Range("D" & i + 1).Value = "http://www.mywebsite.domain/" & 

   url(CInt(Int((16 - 0 + 1) * Rnd() + 0))) 

 

     i = i + 1 

  Next counter 

   

End Sub 
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Appendix - B 

Code 

1. Broadcast Join 
JOBSETUP.java 

 
/* 
Package – broadCastJoin 
Class – Main 
Purpose – Main class to set the job parameters 
*/ 
 
// smallFilePath - path of the smaller relations files 
// inputPath - path of the larger relation files 
// outputPath - path of the output directory 
// start - start time of the job  
// end - end time of the job 

 
package broadCastNORMAL; 

public class JOBSETUP { 
  public static void main(String... args) throws Exception { 
  
    // set path 
    Path smallFilePath=new Path(args[0]); 
    Path inputPath=new Path(args[1]); 
    Path outputPath=new Path(args[2]); 
     
    //get start time 
    long start = new Date().getTime(); 
     
    //create new job configuration 
    Configuration conf = new Configuration(); 
 
    FileSystem fs = smallFilePath.getFileSystem(conf); 
 
    FileStatus smallFilePathStatus = fs.getFileStatus(smallFilePath); 
 
    // add all files from the directory to the distributed cache 
    if(smallFilePathStatus.isDir()) { 
      for(FileStatus f: fs.listStatus(smallFilePath)) { 
       System.out.println("cached file="+f.getPath().getName()); 
 
           DistributedCache.addCacheFile(f.getPath().toUri(), conf); 
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      } 
    } else { 
       DistributedCache.addCacheFile(smallFilePath.toUri(), conf); 
    } 
     
    Job job = new Job(conf); 
 
    job.setJarByClass(JOBSETUP.class); 
    job.setMapperClass(BroadcastJoin_Normal.class); 
    job.setInputFormatClass(KeyValueTextInputFormat.class); 
 
    //since it is Map only job, set the number of Reducers to zero  
    job.setNumReduceTasks(0);   
 
    outputPath.getFileSystem(conf).delete(outputPath, true); 
 
    //set input and output path 
    FileInputFormat.setInputPaths(job, inputPath); 
    FileOutputFormat.setOutputPath(job, outputPath); 
 
    //wait till job completes 
    job.waitForCompletion(true); 
     
    //mark the end time 
    long end = new Date().getTime(); 
     
    //display the time taken by job 
 System.out.println("Job took "+(end-start) + " milliseconds"); 
     
  } 
 
} 
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BroadcastJoin_Normal.java 
/* 
Package – broadCastJoin 
Class – BroadcastJoin_Normal   
Purpose –  Adds smaller relation to cache and then perform broadcast join. 
*/ 
 
package broadCastNORMAL; 
 
public class BroadcastJoin_Normal  extends Mapper<Object, Object, Object, Object> { 
 
  private Map<Object, List<Pair>> cachedRecords = new HashMap<Object, List<Pair>>(); 
 
  private Path[] cachedFiles; 
 
  //Setup Method - called before Map method 
  // Purpose - to cache the tuples of the smaller relation 
  @Override 
  protected void setup(Context context)throws IOException, InterruptedException  
  { 
    cachedFiles = DistributedCache.getLocalCacheFiles(context.getConfiguration()); 
 
    DistributedCacheFileReader reader = getDistributedCacheReader();  
      
    //read each file 
    for (Path distFile : cachedFiles) {       
 
      File distributedCacheFile = new File(distFile.toString()); 
 
      reader.init(distributedCacheFile); 
            
      //add each pair to cache 
      for (Pair p : (Iterable<Pair>) reader)  
       cahceThePair(p); 
       
      reader.close(); 
    } 
} 
 
  //Cache the key value pair 
  private void cahceThePair(Pair pair) { 
        
    List<Pair> values = cachedRecords.get(pair.getKey()); 
    if (values == null) { 
      values = new ArrayList<Pair>(); 
      cachedRecords.put(pair.getKey(), values); 
    } 
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    values.add(pair); 
  } 
 
  // Map method - Get a tuple from the larger relation, and perform join for that tuple 
  @Override 
  protected void map(Object key, Object value, Context context) 
      throws IOException, InterruptedException { 
   
   Pair pair = readFromInputFormat(key, value); 
      joinThisPair(pair, context); 
 
  } 
 
  // For a input tuple from large relation, find a matching tuple from the hash table. 
  // If match found output the joined tuple  
  public void joinThisPair(Pair inputPair, Context context) 
      throws IOException, InterruptedException { 
      
    List<Pair> cached = cachedRecords.get(p.getKey()); 
    if (cached != null) 
      for (Pair cachedPair : cached) { 
        
       StringBuilder sb = new StringBuilder(); 
       if (inputPair.getData() != null) { 
        sb.append(inputPair.getData()); 
       } 
       sb.append("\t"); 
       if (cachedPair.getData() != null) { 
        sb.append(cachedPair.getData()); 
       } 
       Pair result=new Pair(new Text(inputPair.getKey().toString()),new Text(sb.toString())); 
      
          if (result != null)  
           context.write(result.getKey(), result.getData()); 
      } 
   
  } 
   
} 
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2. Dynamic Hash Table Creation 
 

broadcastJoin_Dynamic.java 
/* 
Package – broadCastJoin 
Class – broadcastJoin_Dynamic 
Purpose –  Create hash table dynamically based on the size of the input split and the cached file size. 
*/  
 
public class broadcastJoin_Dynamic extends Mapper<Object, Object, Object, Object> { 
 
  private boolean inputSplitLarger; 
  private Path[] cachedFiles; 
  private Map<Object, List<Pair>> cachedRecords = new HashMap<Object, List<Pair>>(); 
 
  //Setup Method - called before Map method 
  // Purpose - to cache the tuples of the either the smaller relation or the input split of larger relation - 
one with the smaller size 
  @Override 
  protected void setup(Context context) throws IOException, InterruptedException { 
 
    cachedFiles = DistributedCache.getLocalCacheFiles(context.getConfiguration()); 
 
    int cacheSize = 0; 
     
    //calculate size of smaller relation files 
    for (Path distFile : cachedFiles) { 
      File distributedCacheFile = new File(distFile.toString()); 
      cacheSize += distributedCacheFile.length(); 
    } 
 
    //get the input split size 
    if(context.getInputSplit() instanceof FileSplit) { 
      
      FileSplit split = (FileSplit) context.getInputSplit(); 
 
      long splitSize = split.getLength(); 
 
      inputSplitLarger = (cacheSize < splitSize); 
       
    } else { 
      inputSplitLarger = true; 
    } 
 
    // if smaller relation file is smaller then cache its tuples 
    if (inputSplitLarger) { 
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      for (Path distFile : cachedFiles) { 
        File distributedCacheFile = new File(distFile.toString()); 
        reader.init(distributedCacheFile); 
         
        for (Pair p : (Iterable<Pair>) reader) { 
          addToCache(p); 
        } 
         
        reader.close(); 
      } 
    } 
  } 
 
  // Map - called once for each tuple in the input split of larger relation 
  @Override 
  protected void map(Object key, Object value, Context context) 
      throws IOException, InterruptedException { 
 
    Pair pair = readFromInputFormat(key, value); 
     
    if (inputSplitLarger) { 
      //if input split is large then perform join for each tuples in larger relation 
      joinThisPair(pair, context); 
    } else { 
      //if input split is small then add the pair to cache 
      cacheThePair(pair); 
    } 
  } 
 
  // cache the pair for future use 
  private void cacheThePair(Pair pair) { 
    List<Pair> values = cachedRecords.get(pair.getKey()); 
    if (values == null) { 
      values = new ArrayList<Pair>(); 
      cachedRecords.put(pair.getKey(), values); 
    } 
    values.add(pair); 
  } 
   
  //find the matching tuple from the hash table 
  public void joinThisPair(Pair p, Context context) 
      throws IOException, InterruptedException { 
    List<Pair> cached = cachedRecords.get(p.getKey()); 
    if (cached != null) { 
      for (Pair cp : cached) { 
        Pair result; 
        if (inputSplitLarger) { 
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          result = writeResult(p, cp); 
        } else { 
          result = writeResult(cp, p); 
        } 
        if (result != null) { 
          context.write(result.getKey(), result.getData()); 
        } 
      } 
    } 
  } 
 
  //prepare the result of join  
  public Pair writeResult(Pair inputPair, Pair cachePair) { 
     StringBuilder sb = new StringBuilder(); 
     if (inputPair.getData() != null) { 
       sb.append(inputPair.getData()); 
     } 
     sb.append("\t"); 
     if (cachePair.getData() != null) { 
       sb.append(cachePair.getData()); 
     } 
      
     Pair result=new Pair<Text, Text>(new Text(inputPair.getKey().toString()),new 
Text(sb.toString())); 
     return result; 
   } 
 
  // if the input split is smaller, then the join is performed in the cleanup function 
  // this function is called when the Map process is complete 
  @Override 
  protected void cleanup(Context context) throws IOException, InterruptedException { 
    if (!inputSplitLarger) { 
 
      for (Path distFile : cachedFiles) { 
        File distributedCacheFile = new File(distFile.toString()); 
        DistributedCacheFileReader reader =getDistributedCacheReader(); 
        reader.init(distributedCacheFile); 
         
        //For each pair in the cached file, perform the join 
        for (Pair p : (Iterable<Pair>) reader) { 
          joinThisPair(p, context); 
        } 
        reader.close(); 
      } 
    } 
  } 

} 
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3. Zip Broadcast Join 
 
Changes to be done in the existing code 

1. In Main class – add code the cache zip file 
2. In BroadcastJoin class –  no change as the compressed files (zip files) are unzipped as part of the 

Distributed cache mechanism.  
 

JOBSETUP.java 
public class JOBSETUP { 
  public static void main(String... args) throws Exception { 
  
    // set path 
    Path smallFilePath=new Path(args[0]); 
    Path inputPath=new Path(args[1]); 
    Path outputPath=new Path(args[2]); 
         
    //create new job configuration 
    Configuration conf = new Configuration(); 
 
    FileSystem fs = smallFilePath.getFileSystem(conf); 
 
    FileStatus smallFilePathStatus = fs.getFileStatus(smallFilePath); 
 
    // add compressed file to the distributed cache 
    DistributedCache.addCacheArchive(smallFilePath.toUri(), conf); 
     
    Job job = new Job(conf); 
 
    job.setJarByClass(JOBSETUP.class); 
    job.setMapperClass(BroadcastJoin_Normal.class); 
    job.setInputFormatClass(KeyValueTextInputFormat.class); 
 
    //since it is Map only job, set the number of Reducers to zero  
    job.setNumReduceTasks(0);   
 
    outputPath.getFileSystem(conf).delete(outputPath, true); 
 
    //set input and output path 
    FileInputFormat.setInputPaths(job, inputPath); 
    FileOutputFormat.setOutputPath(job, outputPath); 
 
    //wait till job completes 
    job.waitForCompletion(true); 
         
  } 

} 
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4. Disk Based Hash Table Broadcast  
 
Compressed Hash table is broadcasted to all nodes so that the time required for creation of hash table 

and the limitation of the heap size are eliminated. 

 
Changes  required- 

1. Creation of Disc based hash table 

2. Broadcast compressed hash table  

3. Read tuples from disc based hash table 

 
GenerateHashTableJDBM.java 

package broadcastHASHjdbm; 
 
import jdbm.PrimaryTreeMap; 
import jdbm.RecordManager; 
import jdbm.RecordManagerFactory; 
 
public class GenerateHashTableJDBM { 
  
 static PrimaryTreeMap<String,String> userTreeMap; 
  
 public static void main(String args[]) throws Exception 
 { 
  File file=new File(args[0]); 
  String hashFileName = args[1] + "HashTable"; 
  RecordManager recman =  
   RecordManagerFactory.createRecordManager(hashFileName); 
 
  userTreeMap = recman.treeMap("userTreeMap"); 
 
  long start=new Date().getTime(); 
  processThisFile(file);  
  long end=new Date().getTime(); 
   
  System.out.println("Time for creating Hash table="+(end-start)); 
   
  /** Map changes are not persisted yet, commit them (save to disk) */ 
  recman.commit();   
   
  /** close record manager */ 
  recman.close(); 
 } 
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 static void processThisFile(File file) throws IOException 
 { 
  //create a reader 
  DistributedCacheFileReader reader =  new TextDistributedCacheFileReader(); 
     
  //process this file 
  reader.init(file); 
   
  for (Pair p : (Iterable<Pair>) reader)  
        {  
   userTreeMap.put(p.getKey().toString(), p.getData().toString()); 
 
   //System.out.println(p.getKey()+" "+p.getData()); 
        } 
   
  reader.close();       
 } 
} 
 

BroadcastJoin_HashJDBM.java 
package broadcastHASHjdbm; 
 
import jdbm.PrimaryTreeMap; 
import jdbm.RecordManager; 
import jdbm.RecordManagerFactory; 
 
public class BroadcastJoin_HashJDBM  extends Mapper<Object, Object, Object, Object> { 
 
 static PrimaryTreeMap<String,String> userTreeMap; 
 
 private Path[] cachedFiles; 
 File hashTableFile=null; 
  
 static PrimaryTreeMap<String,String> userTreeMap; 
 
 
  // Initilize the hash table to become usable. 
  @Override 
  protected void setup(Context context) throws IOException, InterruptedException 
  { 
 long start = new Date().getTime(); 
 cachedFiles = DistributedCache.getLocalCacheFiles(context.getConfiguration());    
      
    Path hashPath=cachedFiles[0]; 
         
    String jdbmHashFile=null; 
     



Page | 57  

 

    if(hashPath.toString().contains(".zip")) 
    { 
     //unzip the file 
     hashTableFile=new File("/mnt/var/lib/hadoop/mapred/taskTracker/hadoop/jobcache/unzip"); 
      
     if(!hashTableFile.exists()) 
     { 
      context.write("File does not exist", hashTableFile.toURI()); 
      File zipFile=new File(hashPath.toString()); 
      FileUtil.unZip(zipFile, hashTableFile); 
      context.write("Unzip done", "");       
     }   
      
     jdbmHashFile=hashTableFile.listFiles()[0].getAbsolutePath()+"/HashTable" ;          
    } 
    else 
    { 
     jdbmHashFile=hashPath.getParent().toString()+"/HashTable"; 
    } 
     
    context.write(jdbmHashFile, "-path"); 
     
    RecordManager recman = RecordManagerFactory.createRecordManager(jdbmHashFile); 
 
 userTreeMap = recman.treeMap("userTreeMap"); 
  
 long end=new Date().getTime(); 
 context.write("TIme required for unzip=",(end-start)+" millisecond"); 
  
 start=new Date().getTime(); 
 userTreeMap.get("usr1245"); 
 end=new Date().getTime(); 
 context.write("Time to access the Hash table = ",(end-start)+" millisecond"); 
  
  } 
 
   
  @Override 
  protected void map(Object key, Object value, Context context) 
      throws IOException, InterruptedException { 
 
 //find the matching tuple for each input tuple and write the result 
    String cachedValue = userTreeMap.get(key.toString()); 
   context.write(key, cachedValue+"\t"+value); 
  } 
 

} 
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Appendix - C 

Steps to create a MapReduce job using Amazon Cloud Computing services 
 

 

Figure 1. AWS console. 
 

Figure 1, shows the complete view of the Amazon web services console, from where we can 

control all parameters of a job. Various services of our interest are Simple storage service (S3), Elastic 

Compute (EC2) and Elastic MapReduce.  

In this section various steps involved in the complete execution of the MapReduce job in the 

Amazon Web service are discussed. First we discuss uploading on the dataset to AWS and then 

execution of the job over Elastic MapReduce. 
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1. Upload data and code to S3 : 

 
Figure 2, shows the view of Amazon S3. You can see five buckets at the left hand side. 

Terminologies used by AWS for S3 related tasks are Buckets, Objects, Regions, Key.   

 

Figure 2. S3 buckets. 

 

 Bucket – It is a container that holds objects of Amazon S3.  

- Each bucket name must be unique across all AWS users. 

- E.g. bucket named “joindataset “ can be accessed using URL http:// 

joindataset.s3.amazonaws.com 

- Buckets belongs to a particular region. 

- Each bucker can contain many files and folders. 

- We have create various buckets  

 Joincode – to store the code for join execution. 

 Joindataset  - to store dataset to be joined. 

 Joinlog – stores the log information of each MapReduce job. 
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 JoinResult – holds the result of join execution. 

 Objects – these are the basic entities stored in Amazon S3.  In a bucket the Object is 

uniquely identified using key. 

 Key – Unique identifier of the object. 

 Regions – These are the geographical location where Amazon stores data, various 

regions are  

 US Standard 

 US West (Oregon) Region 

 US West (Northern California) Region 

 EU (Ireland) Region 

 Asia Pacific (Singapore) Region 

 Asia Pacific (Tokyo) Region 

 South America (Sao Paulo) Region 

 

Figure 3. Elastic MapReduce job creation process. 

 



Page | 61  

 

2. Elastic MapReduce – Figure 3 shows various steps necessary to run a MapReduce job. 
 

3. Create a New Job Flow – provide a name to job flow, it can be descriptive. Also we need to 

provide which Hadoop version we are going to use, currently Hadoop 0.20.205 is supported. Then 

select “Run your own application” to execute our code. Figure 4. Shows the corresponding screen. 

 

 

Figure 4. Elastic MapReduce step-1. 

 

4. Specify Job Parameters -  Here we specify the location of the code, generally we provide a S3 URL 

– because our code is located in the S3 bucket. Also if there are any arguments that are required for 

execution then we must provide it in “JAR Arguments” section. Refer figure-5. 

 

 

Figure 5. Elastic MapReduce step-2. 
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5. Configure EC2 instances – MapReduce jobs can run on more than one computer. So in this step 

we specify number of computers and their configuration. We can specify the Instance type of the 

Master and Slave nodes. Also we need to provide number of Slave nodes that we want to use. 

Various instance types are – Small, Medium, Large, Extra Large. 

Small instance –  1.7 GB memory , 1 EC2 computer unit, 160 GB storage. 

Medium instance –  3.75 GB memory , 2 EC2 computer unit, 410 GB storage. 

Large instance –  7.5 GB memory , 4 EC2 computer unit, 850 GB storage. 

Extra-large instance –  15 GB memory , 8 EC2 computer unit, 1,690 GB storage. 

 

 

Figure 6. Elastic MapReduce step-3. 

 

6. Set Advanced Options – We can specify key pairs , to improve the security, person with the key 

pair can only access the instance. Also we can mention the S3 location where the log of the 

MapReduce job would be stored. Debugging can be enabled, which allows us to check the status of 

each Map and reduce process and number of execution attempts. Keep alive option allows us to 

make the instance accessible even after completion of the job. Refer figure 7. 
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Figure 7. Elastic MapReduce step-4. 

 

 
Figure 8. Elastic MapReduce step-5. 



Page | 64  

 

7. Set Bootstrap Actions -  Sometimes we need to configure the Hadoop cluster with some different 

configuration than the default one. So, we can specify the bootstrap action. These actions can be 

configuring the Hadoop parameters such as cache size, number of mapper and reducers, HDFS  

block size and many more. Also we can configure some external libraries on the Hadoop cluster. 

Refer figure 8. 

 

8. Review and Execution –  All the job configuration parameters are displayed in this step, user can 

choose to edit these parameters or can go ahead with this configuration. Figure 9 and 10 depicts this 

step. 

 

 

 

Figure 9. Elastic MapReduce step-6. 
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Figure 10. Elastic MapReduce step-7. 

 

9. Debugging a job flow – once the job is created, we can check the status of each Map and Reduce 

process using debug option. Various logs such as system log, error log can be seen. Also we can see 

individual logs and attempts made by each Mapper and Reducer. Figure 11 shows the debugging 

screen. 

 

 

Figure 11. Elastic MapReduce step-8. 

 

 


