M. TECH. PROJECT REPORT

ON

Implementation of Simulated Inductor with

recently introduced active building blocks

Submitted by

V. V. UDAYA BHANU

10/C&I/2K10

Submitted in partial fulfillment of the requirements for the award of degree of

Master of Technology In Control and Instrumentation

Under the supervision of

Mr. Ram Bhagat

(Assistant Professor)

DEPARTMENT OF ELECTRICAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY NEW DELHI 2010 - 2012

CERTIFICATE

This is to certify that the thesis entitled "IMPLEMENTATION OF SIMULATED INDUCTOR WITH RECENTLY INTRODUCED ACTIVE BUILDING BLOCKS" being submitted by V V Udaya Bhanu in the partial fulfillment for the award of degree of Master of Technology in Control and Instrumentation of Electrical Engineering Department of Delhi Technological University is a record of bonafide work done by him under my supervision and guidance. It is also certified that dissertation has not been submitted elsewhere for any other degree.

Mr. RAM BHAGAT

Assistant Professor

Department of Electrical Engineering

Delhi Technological University

ACKNOWLEDGEMENT

I am thankful to the Almighty because without his blessings this work was not possible. It is a great pleasure to have the opportunity to extent my heartfelt gratitude to everybody who helped me throughout the course of this project. It is distinct pleasure to express my deep sense of gratitude and indebtedness to my project supervisor **Mr. Ram Bhagat** for his invaluable guidance, encouragement and patient reviews. His continuous inspiration has made me complete this dissertation. He kept on boosting me time and again for putting an extra ounce of effort to realize his work.

I would also like to take this opportunity to present my sincere regards to **Prof. Narendra Kumar**, Head Electrical Engineering Department, D.T.U Delhi for his support and encouragement.

At last but not the least, I am grateful to my **Parents**, and **friends** for their encouragement and cooperation which has helped me in a great way to complete this thesis.

V.V.UDAYA BHANU M tech. (C&I) Roll No. 10/C&I/2K10

ABSTRACT

In this work few simulations of inductors is performed with recently developed active devices. Firstly, a Bipolar transistors based Operational Transconductance Amplifier (OTA) was used for realizing floating positive and Negative Inductance. The simulated inductance values can be controlled electronically by adjusting the bias currents of the OTA. Each inductance simulators comprises of only two OTAs and one grounded capacitor, without any external resistors and components matching requirements. The performance of the floating Positive inductance is verified by an series RLC resonant circuit while the performance of the Negative floating inductance is verified by an inductance cancellation circuit [1]. Secondly, a current mode CMOS based Modified Dual Output Differential Difference Current Conveyor (MDO-DDCC) is used for realizing a grounded inductor. The grounded inductance simulator comprises of only one current conveyor, two resistors and one grounded capacitor. The performance of this inductance is verified by an parallel RLC resonant circuit [2]. Lastly, a Bipolar transistor based Four Terminal Floating Nullor (FTFN) with electronically tunable current gain was proposed. It mainly employs a transconductance amplifier, an improved translinear cell, two complementary current mirrors with variable current gain and five improved Wilson current mirrors which provide high bandwidth and suitability to implementation in monolithic bipolar technology. The performance of this FTFN is verified by a Voltage to Current converter and an All pass filter [3]. Then, this FTFN is employed for realizing a floating inductance comprising of four resistors and one capacitor. The performance of this floating inductance is verified by an Low Pass and High Pass filter [4]. All the above computer simulations were performed on Pspice simulator. The Bipolar Transistors were employed using AT&T ALA 400 transistors parameters while, the CMOS were employed using 0.35um TSMC CMOS technology parameters.

INDEX

		Page No.
	Certificate	ii
	Acknowledgement	iii
	Abstract	iv
	Table of contents	
Chapter 1:	Introduction	1-3
Chapter 2:	Literature Review	4-13
Chapter 3:	Operational Transconductance Amplifier based Inductor	14-31
	3.1 Introduction	14
	3.2 Operational Transconductance Amplifier (OTA)	15-16
	3.3 Principal of operation	16-19
	3.4 Proposed Floating Positive Inductance Simulator	20-21
	3.5 Simulation result	21-23
	3.6 Application of the simulated positive Inductor when	
	used in series RLC circuit	24-25
	3.7 Proposed Floating Negative Inductance Simulator	26
	3.8 Simulation result	27-28
	3.9 Application of Negative Inductance simulator in	
	Inductance Cancellation circuit	29-30
	3.10 Conclusion	31
Chapter 4:	Current Conveyor based Inductor	32-48
	4.1 Introduction	32
	4.2 Current Conveyor	33-38
	4.2.1 First generation Current Conveyor (CCI)	34-35
	4.2.2 Second generation Current Conveyor (CCII)	36-37
	4.2.3 Third generation Current Conveyor (CCIII)	38
	4.3 Modified Dual Output Differential Difference	
	Current Conveyor	39-40

	4.4 Realization of Modified Dual Output Differential	
	Difference Current Conveyor (MDO-DDCC)	
	based Inductance	41-42
	4.5 CMOS realization of Modified Dual Output	
	Differential Difference Current Conveyor	
	(MDO-DDCC) based Inductance	43-47
	4.6 Conclusion	48
Chapter 5:	Four Terminal Floating Nullor based Inductor	49-73
	5.1 The Nullator, Norator and Nullor	49-50
	5.2 Equivalence and properties of Nullators and Norators	51
	5.3 Nullor as a modeling device	52-53
	5.4 Nullors and transistors	53
	5.5 Operational Amplifier, Current Conveyor and Nullor	54-55
	5.6 Operational Amplifier realizations based on Nullors	56-57
	5.7 Nullor Model of the FTFN	57
	5.8 Four Terminal Floating Nullor (FTFN)	58
	5.9 Proposed Tunable Four Terminal Floating Nullor	59
	5.10 Circuit description	59-60
	5.11 Simulation result	61-62
	5.12 Application of Simulated FTFN	63-69
	5.12.1 Voltage to Current Converter	63-67
	5.12.2 TFTFN based All Pass Filter	68-69
	5.13 FTFN Based Inductor	70-72
	5.13.1 Low pass LR filter using FTFN based Inductor	71
	5.13.2 High pass RL filter using FTFN based Inductor	72
	5.14 Conclusion	73
Chapter 6:	Conclusion and Future scope	74-75
	References	76-82
	Appendix	83-85

LIST OF FIGURES

S.No.	Title	Page No.
Figure 3.1	Ideal OTA	15
Figure 3.2	OTA (a) Symbol (b) Equivalent circuit	17
Figure 3.3	Internal construction of dual output OTA	18
Figure 3.4	Impedance characteristic of dual output OTA	19
Figure 3.5	Proposed Floating Positive Inductance simulator	20
Figure 3.6	Output Current and Voltage characteristics of the proposed Positive Floating Inductor	22
Figure 3.7	Impedance characteristics of the proposed Positive Floating Inductor	23
Figure 3.8	Series RLC resonant Circuit	24
Figure 3.9	Current characteristics of the Series RLC resonant circuit	25
Figure 3.10	Proposed floating Negative Inductance simulator	26
Figure 3.11	Current and Voltage characteristics of the proposed Negative Floating Inductor	27
Figure 3.12	Impedance characteristics of the proposed Negative Floating Inductor	28
Figure 3.13	Inductance cancellation circuit	29
Figure 3.14	Inductance cancellation circuit simulated with Proposed Negative floating Inductance	30
Figure 4.1	Black Box representation of Current Conveyor	34
Figure 4.2	Nullator - Norator representation of CCI	35
Figure 4.3	CCI implementation of Negative Impedance Converter (NIC)	36
Figure 4.4	Nullator - Norator representation of a CCII	37
Figure 4.5	A simplified representation of CCII-	37
Figure 4.6	Block diagram representation	38
Figure 4.7	Block diagram representation of Modified dual output-Differential Difference Current conveyor	40

Figure 4.8	Proposed grounded lossless inductance simulator	41
Figure 4.9	CMOS structure of MDO-DDCC	43
Figure 4.10	Output port characteristic of I _Z + and I _Z -	44
Figure 4.11	Impedance response of Parallel Resonant RLC circuit for L=5mH, C= 2.5nF, R=1K Ω	45
Figure 4.12	Impedance response of Parallel Resonant RLC circuit for L=9mH, C= 4.5nF, R=1K Ω	46
Figure 4.13	Impedance response of Parallel Resonant RLC circuit for L=13mH, C= 6.5nF, R=1K Ω	47
Figure 5.1	Nullator symbol representations	49
Figure 5.2	Norator symbol representations	50
Figure 5.3	Two-port Nullor symbol	50
Figure 5.4	Nullator and Norator equivalences	51
Figure 5.5	Unitor and its port description	52
Figure 5.6	AC modeling of transistors and triodes by a Unitor, or three terminal Nullor	53
Figure 5.7	Composite transistor representations for a four terminal Nullor.	53
Figure 5.8	Operational Amplifier symbol, ideal and non-ideal model	54
Figure 5.9	Current-conveyor circuit symbol	55
Figure 5.10	Nullor based general immittance converter	56
Figure 5.11	Equivalent GIC using operational amplifiers	57
Figure 5.12	Model of the FTFN (a) and (b)	57
Figure 5.13	Four Terminal Floating Nullor block representation	58
Figure 5.14	The proposed tunable FTFN : circuit diagram	59
Figure 5.15	The proposed tunable FTFN : its symbol	59
Figure 5.16	Output Current characteristic of the simulated FTFN (Iz and Iw)	61
Figure 5.17	Transconductance gain of simulated FTFN	62
Figure 5.18	TFTFN-based voltage-to-current converter	63
Figure 5.19	Voltage transfer characteristic from port Y to port X of the simulated FTFN	64

Figure 5.20	Current transfer characteristic Iz /Iw when the external bias current I1 was set to 80uA	65
Figure 5.21	Current transfer characteristic Iz /Iw when the external bias current I1 was set to 100uA	66
Figure 5.22	Current transfer characteristic Iz /Iw when the external bias current I1 was set to 130uA	67
Figure 5.23	Current-mode allpass filter using TFTFN	68
Figure 5.24	Phase characteristic of the TFTFN-based Current mode All Pass Filter	69
Figure 5.25	FTFN-based Inductor Circuit	70
Figure 5.26	FTFN-based LR low pass filter output	71
Figure 5.27	FTFN-based RL High pass filter output	72