ACKNOWLEDGEMENT

I feel honored in expressing my profound sense of gratitude and indebtedness to **Prof. Narendra Kumar**, Head Of the Electrical Engineering Department, Delhi Technological University, Delhi for his guidance, meticulous efforts, constructive criticism, inspiring encouragement and invaluable co-operation which enabled me to enrich my knowledge and reproduce it in the present form.

I also like to extend my gratefulness to **Sh. S.T. Nagarajan**, Asst. Professor, for his perpetual encouragement, generous help and inspiring guidance.

I am also very thankful to the entire faculty and staff members of Electrical Engineering Department for their direct-indirect help, cooperation, love and affection, which made my stay at Delhi Technological University memorable,

I wish lot thank to all **my classmates** for their time to time suggestions and cooperation without which I would not have been able to complete my work.

I wish lot thank to all my friends specially **Rashmita**, **Priyanka** for their kind endeavors.

I would like to thanks the **Almighty**, who has always guided me to work on the right path of the life, My greatest thanks are to my **parent**, **masiji**, **brother and my cousins** who bestowed ability and strength in me to complete this work.

NISHA KAMBOJ 08/PS/2010

CERTIFICATE

This is to certify that NISHA KAMBOJ (08/PS/2010) has carried out her major project work in partial fulfillment for the degree of MASTER OF TECHNOLOGY IN POWER SYSTEM on the topic "COMPARITIVE STUDY OF DAMPING SUBSYNCHRONOUS RESONANCE USING SSSC AND STATCOM " during the period under my supervision and guidance and has completed the project to my satisfaction.

DATED:

Dr. NARENDRA KUMAR

Professor & Head Department of Electrical Engineering, Delhi Technological University, Delhi-110042

Mr. S.T. Nagarajan

Associate Professor Department of Electrical Engineering Delhi-110042

ABSTRACT

Application of series capacitor in long transmission line is a cost effective method to increase power transfer. But presence of series capacitor has sometimes been limited because of the concern for subsynchronous resonance phenomenon in transmission line. SSR is basically an electrical power system condition where the electrical network exchanges energy with the turbine generator at one or more of the natural frequencies of the combined system below the synchronous frequency of the system. Presence of SSR torque causes oscillation which introduces shaft fatigue and possible damage or failure of shaft. Long transmission line needs series or shunt compensation for power flow control as well as for mitigating the SSR phenomenon.

An idea of this thesis is to damp SSR by adding static synchronous series compensator (SSSC, Series device) or Static compensator (STATCOM, Shunt device). This thesis shows that damping characteristics obtained by SSSC is better than STATCOM for damping SSR phenomenon. The results are obtained by modelling a lineralized system in MATLAB and study is performed on the system adapted from the IEEE first bench mark model for Eigenvalue analysis for SSR study.

SSSC is a series FACTS device, which could be used to completely replace traditional series capacitor with even more flexibility of series compensation. By including STATCOM in series compensated transmission line which do not change the SSR characteristics of network significantly. This thesis provides comparative study of damping SSR by using FACTS Devices SSSC and STATCOM which is series and shunt device respectively. It is found that SSSC a series FACTS device is more effective in damping SSR in comparison with STATCOM which is a shunt FACTS device.

LIST OF TABLES

Table No.	Caption	Page
No.		
Table 3.1:	Eigenvalues of the combined system	29
Table 4.1:	Eigenvalues of the combined system with SSSC	40
Table 5.1:	To study electrical parameter of first benchmark model for	48
	simulation study	
Table 5.2:	Table of Eigen value analysis using STATCOM	49
Table B-1:	Network impedances, (in per unit, base: 892.4MVA, 500 kV)	63
Table B-2:	Synchronous machine parameters,	63
	(in per unit, base: 892.4MVA, 26 kV)	
Table B-3:	Shaft inertia and spring constants	64

LIST OF FIGURES

Figure 5.5

Figure No.	Caption	Page No
Figure 1.1	A schematic diagram of a series compensated single machine infinite bus system.	5
Figure 3.1	The IEEE First Benchmark Model schematic diagram.	16
Figure 3.2	Schematic diagram of a conventional synchronous machine.	17
Figure 3.3	Mechanical structure of six mass FBM system.	20
Figure 3.4	A series capacitor-compensated transmission line.	25
Figure 3.5	Network Diagram	27
Figure 3.6	Variation of torque angle with time ($X_c=0.35$)	30
Figure 3.7	Variation of torque at GE shaft with time ($X_c=0.35$)	30
Figure 3.8	Variation of torque at LBG shaft with time ($X_c=0.35$)	31
Figure 3.9	Variation of torque at LAB shaft with time ($X_c=0.35$)	31
Figure 3.10	Variation of torque at ILA shaft with time ($X_c=0.35$)	31
Figure 3.11	Variation of torque at HI shaft with time ($X_c=0.35$)	32
Figure 4.1	A basic two machine system with series capacitor Compensated line and phasor diagram	35
Figure 4.2	SSSC operation	36
Figure 4.3	Variation of torque angle with time (with SSSC)	40
Figure 4.4	Variation of torque at GE shaft with time (with SSSC)	41
Figure 4.5	Variation of torque at LBG shaft with time (with SSSC)	41
Figure 4.6	Variation of torque at LAB shaft with time (with SSSC)	41
Figure 4.7	Variation of torque at ILA shaft with time (with SSSC)	42
Figure 4.8	Variation of torque at HI shaft with time (with SSSC)	42
Figure 5.1	Equivalent circuit representation of STATCOM	44
Figure 5.2	Type 1 controller for 3 level VSC based STATCOM	45
Figure 5.3	Type 2 controller for 2 level VSC based STATCOM	45
Figure 5.4	Static schematic diagram	47
D ² C C		

STATCOM implementation in IEEE first bench mark model

48

LIST OF SYMBOLS

С	Capacitor
V _a ,V _b , V _c	Stator three-phase voltages, respectively
E _{fd}	Field voltage
EXC	Exciter
F	Frequency
GEN	Generator
HP	High pressure turbine
i _a , i _b , i _c	Stator currents in phase a, b, and c, respectively
IP	Intermediate pressure turbine
L	Inductor
LPA	Low pressure turbine A
LPB	Low pressure turbine B
Р	Active power
p.u.	Per unit
Pe	Electrical power
Q	Reactive power
R	Resistor
RMS	Root mean square value
T _e	Air gap torque
Ψ_{d} , Ψ_{q}	Stator flux linkages in d-q components
δ_{GEN}	Generator power angle
X _C	Capacitive reactance
X_L	Inductive reactance
Δ	Prefix to denote a small deviation in the initial
	operating point

A	State matrix			
В	Control or input matrix			
C	Output matrix			
DEXC, DGEN, DLPB, DLPA, DIP,	Damping coefficient of the corresponding inertia			
DHP , DIM				
SEXC, SGEN, SLPB, SLPA, SIP, SHP,	Slip of the corresponding inertia			
SIM				
IMDU	Induction machine damping unit			
TGE, TLBG, TLAB, TILA, THI, TPI	Input torques to the respective Shaft section			
0	suffix to denote the initial operating operation			
ω _B	Natural frequency of system			

INDEX

Acknowledgement Certificate Abstract List of tables	I II III IV
List of figures Symbols	V VI
PAGE NO.	
CHAPTER 1 : INTRODUCTION	1-9
1.1.Defination of SSR 1.2.Impact of phase imbalance on SSR	4 6
	-
1.3.Type of SSR interaction	6-8
1.3.1.Self excitation or steady state SSR	6-7
1.3.2.Transient state or transient SSR.	7-8
1.4.SSR analysis tool	8
1.4.1.Frequency scanning.	8
1.4.2. Eigen value analysis	8-9
CHAPTER 2:LITERATURE REVIEW	10 -14
2.1:Introduction	10-13
2.2:Conclusion	14
CHAPTER 3 :SMALL SIGNAL ANLYSIS OF SUNSYNCHRONOUS 15-3 RESONANCE	33
3.1.Introduction	15
3.2.IEEE FIRST BENCH MARK MODEL small signal analysis.	15-16
3.3. Power system modeling.	16-32
3.3.1.Synchronous machine modeling.	16-20
3.3.2. Modelling of turbine generator mechanical system	20-23
3.3.3.Synchronous machine mechanical and electrical system	
combined equation	23-25
3.3.4.Modelling of transmission line.	25-26
3.3.5.Combined generator and transmission line modeling.	26-28
3.3.6.Eigen value analysis of IEEE first benchmark model.	28-29
3.3.6.(a)Results when compensating device is not attached to it.	30-32
3.4.Summary	33

CHAPTER 4 : DAMPING SUBSYNCHRONOUS RESONANCE 3		
USING SSSC		
4.1.Introduction	34	
4.2.Principle of operation	34-37	
4.3Modeling of SSSC for damping SSR phenomenon	37-42	
5.3.1.Results when compensated device SSSC attached to it	40-42	
4.4.summary	43	
CHAPTER 5: DAMPING SUBSYNCHRONOUS RESONANCE USING	44-53	
STATIC SYNCHRONOUS COMPENSATOR		
5.1.Introduction	44-46	
5.2Principle of operation		
5.3STATCOM implementation in the IEEE First benchmark model	48	
5.3.1.Application 5.4.Conclusion	49 50	
CHAPTER 6.COMPARISION OF DAMPING SUBSYNCHRONOUS	50	
RESONANCE USING STACOM AND SSSC	51-52	
CHAPTER 7:MAIN CONCLUSION AND FUTURE SCOPE OF WORK	53-54	
REFRENCES	55-61	
• APPENDIX A	62	
• APPENDIX B	63-64	
• APPENDIX C	65	
• APPENDIX D	66-70	