# ASSESSMENT OF AMBIENT NOISE LEVELS IN THE METROPOLITAN CITIES OF INDIA

&

## A Special Emphasis on Delhi for the years 1995, 1999 & 2011

A major thesis submitted towards the partial fulfilment of the requirement for the award of the degree of

## MASTER OF TECHNOLOGY

IN

## ENVIRONMENTAL ENGINEERING



Submitted By: RITIKA SINGH 04/ENV/2K10

Under the guidance of

# Dr. (Mrs.) ANUBHA MANDAL (Professor (UGC), Environmental Engg. D.T.U.)

# DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY DELHI -110042

(SESSION 2010 - 2012)

# DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY



# **CERTIFICATE**

This is to certify that the thesis entitled

## "ASSESSMENT OF AMBIENT NOISE LEVELS IN THE METROPOLITAN CITIES OF INDIA

&

## A Special Emphasis on Delhi for the years 1995, 1999 & 2011"

Is being submitted by Ritika Singh (Roll no. 04/ENV/2K10) in partial fulfilment for the award of "Master of Technology in Environmental Engineering" in Delhi Technological University, Delhi and is the original work carried out by her under my guidance and supervision. The matter contained in this thesis has not been submitted elsewhere for award of any other degree.

**Dr. (Mrs.) Anubha Mandal** Professor (UGC) Department of Civil and Environmental Engineering Delhi Technological University, Delhi

#### **ACKNOWLEDGEMENT**

I would like to express my hearty gratitude and thanks to my project guide Dr.(Mrs.) Anubha Mandal, Professor (UGC), Department of Civil and Environmental Engineering, Delhi Technological University, Delhi for her continuous inspiration, encouragement and guidance during every stage of preparation of this project work without which this project would not have been possible.

I would also like to thank Sh. A.K. Sinha (Scientist – 'C', CPCB) & Dr. D.D. Basu (Scientist – 'E', CPCB) for their invaluable guidance and assistance during the preparation of this report. The information and data has been collected in guidance of Various CPCB officials, I would like to acknowledge all of them, for their helping attitude. I would also like to acknowledge the various sources of information, and literature that I studied from, in order to make this report.

#### **RITIKA SINGH**

(Roll no. 04/ENV/2K10) Department of Civil and Environmental Engineering Delhi Technological University, Delhi

# **TABLE OF CONTENTS**

| Certificate                                | 1  |
|--------------------------------------------|----|
| Acknowledgement                            | 2  |
| Table of Contents                          | 3  |
| List of Figures                            | 4  |
| List of Tables                             | 5  |
| ABSTRACT                                   | 6  |
| 1. INTRODUCTION                            | 7  |
| 2. LITERATURE REVIEW                       | 10 |
| 3. BASICS OF NOISE & ITS CHARACTERISTICS   | 13 |
| 3.1 Sound                                  |    |
| 3.2 Noise                                  |    |
| 3.3 Classification of Noise                |    |
| 3.4 Sources of Noise                       |    |
| 3.5 Impacts of Noise                       |    |
| 3.6 Noise Pollution                        |    |
| 3.7 Air Act & Noise Rules                  |    |
| 4. METHODOLOGY                             | 23 |
| 4.1 Measurement Techniques                 |    |
| 4.2 Instrumentation                        |    |
| 4.3 Area under Study                       |    |
| 5. RESULTS & DISCUSSION                    | 33 |
| 6. CASE STUDY                              | 60 |
| 7. CONCLUSION                              | 67 |
| 8. RECOMMENDATIONS AND FUTURE PLAN OF WORK | 69 |
| 9. ANNEXURES                               | 72 |
| 10. REFERENCES                             | 84 |

# List of Figures

| FIGURE                                                                      | PAGE NO. |
|-----------------------------------------------------------------------------|----------|
| 3.1 Generation of continuous noise                                          | 15       |
| 3.2 Generation of intermittent noise                                        | 15       |
| 3.3 Generation of impulsive noise                                           | 16       |
| 4.1 Relationship between pressure, amplitude & time period                  | 24       |
| 4.2 Graphical representation of negative and positive skew                  | 26       |
| 4.3. Noise monitoring system                                                | 30       |
| 4.4. Map 1: Map showing various noise monitoring stations across the nation | 32       |
| 5.1 - 5.28 Day wise Graphical Representation of Ambient Noise Level         | 37-53    |
| A. Map 2: Map of Delhi showing ambient noise monitoring stations across the | city 62  |
| B. Average ambient noise level at various zones during 1995, 1999 & 2011    | 66       |

# List of Tables

| <b>TABLE</b> Table 3.1: Various sound levels and its effects on human being                                                        | <b>PAGE NO.</b> 20 |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Table3.2: Ambient Air Quality Standards in Respect of Noise as notified under Noise Pollution (Regulation and Control) Rules, 2000 | 22                 |
| Table 5.1: Various Calculated Ambient Noise Parameters (23/10/2011)                                                                | 34                 |
| Table 5.2: Various Calculated Ambient Noise Parameters (26/10/2011)                                                                | 35                 |
| Table 5.3: Various Calculated Ambient Noise Parameters (29/10/2011)                                                                | 36                 |
| Table 5.4: Calculations of Statistical parameters of day 1 noise monitoring of                                                     | lata 55            |
| Table 5.5: Calculations of Statistical parameters of day 2 noise monitoring of                                                     | lata 56            |
| Table 5.6: Calculations of Statistical parameters of day 3 noise monitoring of                                                     | lata 57            |
| Table 6.1: Noise quality in accordance with the land use pattern                                                                   | 61                 |
| Table6.2: Population in NCT-Delhi                                                                                                  | 63                 |
| Table 6.3: Ambient Noise Levels at various zones during 1995, 1999 & 201                                                           | 1 65               |

#### **ABSTRACT**

Noise has been identified as a pollutant under the Air (Prevention and Control of Pollution) Act, 1981, as amended by amendment act, 1987. The ambient noise standard has been laid down and notified under environmental protection Act (G.S.R. 1063 (E) dt. 26<sup>th</sup> Dec. 1989). Ambient noise is a composite of sounds from many sources. The ambient noise level is increasing day by day in urban estates due to fast growth of urbanisation and rapid change in life style of people.

Acoustic noise beyond a certain limit is harmful. Noise is usually unwanted sound pollutant which produces undesirable physiological and psychological effects in an individual, by interfering with one's social activities like work, rest, recreation, sleep etc. The fact that a regulation to abate noise is in force should remove all doubts about the damaging aspect of noise pollution. The metropolitan cities are being more polluted and the main thrust is towards the estimation of level of noise pollution in these cities. Measurement of noise levels were carried out in 7 metropolitan cities in India, viz. Bangalore, Chennai, Delhi, Hyderabad, Kolkata, Lucknow and Mumbai to assess ambient noise level during Diwali week. Measurement of noise levels were carried out in 4 zones of the metropolitan cities, viz. Commercial, Industrial, Residential and Silence zones. Based on the data of the measured equivalent noise levels in the residential, commercial, industrial, and silence zones of the 7 cities, it can be stated that during day time noise levels from 40 to 60 dB(A) prevail in residential areas away from traffic roads, noise levels from 60 - 80 dB(A) prevail in residential areas close to traffic roads and in commercial areas, noise level from 70 - 90dB(A) exits at the traffic junctions and in industrial areas, and noise level from 80 - 105 dB(A) exists in areas with heavy traffic (Singal,2000, 2005). Even the silent zones are quite noisy as has been shown by data collected by CPCB. Further, merely 30% of the residential colonies in metropolitan cities have noise level within prescribed limits, the quiet period is only during the early morning hours from 0200 - 0500 hours when noise level falls within 40 -45 dB(A), and the ambient noise levels during festivities e.g. Diwali festival becomes quite high i.e., from 85 - 120 dB(A). All noise level measurements were A-weighted.

# **INTRODUCTION**

## **CHAPTER 1**

### **INTRODUCTION**

Mechanical energy released by any source in a medium creates vibrations of molecules. The molecules start vibrating in the oscillatory mode and the energy travels through the medium in form of vibrations. If the oscillation in the medium are in the range of 20 Hz to 20 KHz it is audible by human ears and categorises as sound. The frequency below 20 Hz is known as sub sonic and above 20 KHz are categorised as Ultrasonic and these are beyond audible range. For example, when one plays a musical instrument, say a guitar, the vibrating chords set air particles into vibration. The vibration of air particles produces sound.

The sound waves act as stimulus and the effect of stimulus produces on our senses is called sensation. The source of mechanical disturbance in the medium act as a transmitter where as our ear are receivers. Sensation is something that we experience and it could be different for different human, for example any song or voice creates different sensation for different person; it may be music for someone and the noise for other human. Stimuli can be measured which is produced from instrument whereas it is difficult to measure sensation.

'Noise' is any unwanted sound. It can be produced by many sources - man's vocal cord, a running engine, a vibrating loudspeaker diaphragm, an operating machine tool, and so on. There are two important characteristics of sound or noise - frequency and loudness. Sound is the quickly varying pressure wave travelling through a medium. When sound travels through air, the atmospheric pressure varies periodically. The number of pressure variations per second is called the frequency of sound, and is measured in Hertz (Hz) which is defined as cycles per second. The higher the frequency, the more high-pitched a sound is perceived. The sounds produced by drums have much lower frequencies than those produced by a whistle.

The response of the human ear to sound is dependent on the frequency of the sound. The human ear has peak response around 2,500 to 3,000 Hz and has a relatively low response at low frequencies. Another property of sound or noise is its loudness. A loud noise usually has a larger pressure variation and a weak one has a smaller pressure variation. Pressure and pressure variations are expressed in Pascal (Pa). To express sound or noise in terms of Pa is quite inconvenient because we have to deal with numbers from as small as 20 to as big as 2,000,000,000. A simpler way is to use a logarithmic scale. As such, the loudness of sound is commonly expressed in decibel (dB).

In the "A-weighting" scale, the sound pressure levels for the lower frequencies and higher frequencies are reduced by certain amounts before they are being combined together to give one single sound pressure level value. This value is designated as dB(A). The dB(A) is often used as it reflects more accurately the frequency response of the human ear. A perceived loud noise has a high dB or dB(A) value and a soft noise has a low one.

Noise pollution in urban areas is now being recognized as a major environmental issue around the world. With increasing awareness of the adverse impacts of noise on human health, more and more people becoming less tolerant to environmental noise. According to World Health Organization, noise pollution is nowadays the third most hazardous environmental type of pollution, preceded only by air (gas emission) and water pollution.

Noise Pollution in larger cities is an ever-growing problem due to the fact that the urban environment is becoming increasingly crowded, busy and noisy. The people living in the metropolis have leading sources of noise as Road Traffic Noise, Air Craft Noise, Noise from railroads, Resident & Community Noise and Construction Noise etc. Therefore, in order to assess the impact of noise on the citizen in 7 major Metropolitan cities for 24 hours across the nation.

Under section 2(a) of Air (Prevention and Control of Pollution) Act, 1981 noise is defined as air pollutant "Air pollutant" means any solid, liquid or gaseous substance (including noise) present in the atmosphere in such concentration as may be or tend to be injurious to human beings or other living creatures or plants or property or environment."

Increasing ambient noise level in public places from various sources, inter-alia, industry activity, construction activity, generators sets, loud speakers, public address systems, music systems, vehicular horns and other mechanical devices have deleterious effects on human health and the psychological well being of the people. Therefore, it is considered necessary to regulate and control of noise producing and generating sources with the objective of maintaining the ambient air quality standards in respect of noise.

#### **Objectives of Study**

- To assess the noise level status of 7 metropolitan cities of India, viz. Delhi, Bangalore, Kolkata, Lucknow, Mumbai, Hyderabad and Chennai.
- To perform statistical analysis of noise monitoring data.
- To compare the measured noise level against absolute noise standard and its violation.
- To identify the factors of significant contributors as to take overall decision at the source itself.
- To express about each significant factor and its individual impact and also find alternative schemes.
- To find collective significant factor and its collective impacts as to help to the planners to take decision at the earliest possible stage.
- To communicate the information to the public for creating awareness.

# LITERATURE REVIEW

## **CHAPTER 2**

#### LITERATURE REVIEW

In recent years, due to the rapid increase in population density, building density, traffic density and energy consumption, the outdoor air quality has deteriorated in the crowded urban areas. Noise is also a pollutant which has a significant effect on air pollution level.

A study was conducted in the residential areas of Delhi, India, to assess the variation in ambient noise levels during pre Diwali month (DM), Diwali day (DD) and post Diwali month during the period 2006 to 2008. The use of fireworks during DD showed the ambient noise level were 1.2 to 1.3 times higher than normal day. The correlation between noise level and gaseous pollutant were moderate ( $\mathbb{R}^2 \ge 0.5$ ). The average concentration of the pollutants during DD was found higher in 2007 which could be due to adverse meteorological conditions. The statistical interpretation of data indicated that the celebration of Diwali festival affects the ambient air and noise quality. The study would provide public awareness about the health risks associated with the celebration of Diwali festival so as to take proper precautions (Mandal *et al.*, Prakash *et al.*; 2011).

Fireworks display during festive celebrations can cause acute short term air pollution. Deepawali – the festival of light- is celebrated in India, every year during October or November with great fireworks display. Concentration of air pollutants such as SPM,  $PM_{10}$ ,  $PM_{2.5}$ ,  $SO_2$  and  $NO_2$  were monitored for 6 consecutive days during Deepawali in Salkia, a densely populated residential area near Kolkata, India, for assessing the impacts of firewoks on ambient air quality. The pollutant concentrations as recorded on Deepawali were found to be several times higher compared to a typical winter day value. The results indicated the huge contribution of fireworks on the pollution levels. The probable health impact of this huge though short lived deterioration of ambient air quality is estimated through monte carlo's simulation in terms of increase in relative risk of mortality and morbidity in exposed individuals and found to be extremely high. It suggests some control on fireworks during festive celebrations (Thakur *et al.*, chakraborty *et al.*, 2010).

A study was conducted which shows a new approach to monitor noise pollution involving citizens and built upon the notions of participatory sensing and citizen science which enable citizens to measure their personal exposure to noise in their everyday environment by using GPS-equipped mobile phones as noise sensors. The geo-localised measures and user generated meta-data can be automatically sent and shared online with the public to contribute to the collective noise mapping of cities. The prototype, called Noise Tube, can be found online (Maisonneuve *et al.*, Stevens *et al.*; 2008).

A noise assessment study was conducted in Kerala, which shows the measurement of noise levels in the three major cities in Kerala viz., Thiruvananthapuram, Kochi, and Calicut shows that commercial zones experience about 15 dB(A) noise level above the prescribed limit the

silence zones experience similar noise levels and hence about 25 dB (A) above the prescribed limit. Special events like festivals, election campaigns generate noise levels that are prohibitively above the permissible limit with the only redeeming factor being that they last over a comparatively shorter duration (Sampath. *et al.*, Murali Das *et al.*, 2004).

During day time noise levels from 40 to 60 dB(A) prevail in residential areas away from traffic roads, noise levels from 60 - 80 dB(A) prevail in residential areas close to traffic roads and in commercial areas, noise level from 70 - 90 dB(A) exits at the traffic junctions and in industrial areas, and noise level from 80- 105 dB(A) exists in areas with heavy traffic (Singal *et al.*, 2000, 2005). Even the silent zones are quite noisy as has been shown by data collected by CPCB.

According to D.B. Smith, 20 dB is whisper, 40 dB is quiet office, 60 dB is normal conversation and 80 dB is the level at which sound become physically painful.

Noise studies made by (Ingerslev *et al.*, 1987) further shows that for noise exposures of 80 dB(A) to 100 dB(A) for a period of 10 years, the percentage of persons who get hearing handicap, increases from zero to as high as 42. This percentage increases only marginally with more number of years of exposure.

To assess the Ambient Noise Level status of India, 7 metropolitan cities, viz. Delhi, Bangalore, Kolkata, Lucknow, Mumbai, Hyderabad and Chennai have chosen. These cities have their own continuous noise monitoring stations which are located at various locations within the state, and connected to the Central Receiving Station, CPCB Delhi, through GPS server. These cities are divided into 4 zones viz. are industrial, commercial, residential and silence zones. Various Noise parameters e.g.  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) are calculated for every noise monitoring station all over the nation.

# BASICS OF NOISE & ITS CHARACTERISTICS

## CHAPTER 3

## **BASICS OF NOISE & ITS CHARACTERISTICS**

#### 3.1 SOUND

Sound is such a common part of everyday life that we rarely appreciate all of its functions. It provides enjoy-able experiences such as listening to music or to the singing of birds. It can alert or warn us for example with the ringing of a telephone, or a wailing siren. Sound can be heard underwater too, just as in air. Whales are familiar with this and communicate with one another. Dolphins too have complex system of communication.

A sound source radiates power and this result in a sound pressure. Sound power is the cause. Sound pressure is the effect. What we hear is sound pressure but it is caused by the sound power emitted from the source. The sound pressure that we hear or measure with a microphone is dependent on the distance from the source and acoustic environment (or sound field) in which sound waves are present. This is in turn depends on the size of the room and the sound absorption of the surfaces.

Sound may be defined as any pressure variation (in air, water or other medium) that human ear can detect. If variation in atmospheric pressure occurs more rapidly i.e. at least 20 times a second, then it can be heard and hence is called sound. Sound travels as small waves of pressure through air at a speed of about 740 miles per hour and what we hear are sound waves provided by vibrations of air molecules.

Sound is produced by vibrating objects and reaches the listener's ears as waves in the air or other media. When an object vibrates, it causes slight changes in air pressure. These air pressure changes travel as waves through the air and produce sound. To illustrate, imagine striking a drum surface with a stick. The drum surface vibrates back and forth. As it moves forward, it pushes the air in contact with the surface. This creates a positive (higher) pressure by compressing the air. When the surface moves in the opposite direction, it creates a negative (lower) pressure by decompressing the air. Thus, as the drum surface vibrates, it creates alternating regions of higher and lower air pressure. These pressure variations travel through the air as sound waves.

#### 3.2 NOISE

The word "noise" descends from the Latin word "nausea," meaning seasickness, or, more generally, any similar sensation of disgust, annoyance, or discomfort. Noise is usually defined as unwanted sound pollutant which produces undesirable physiological and psychological effects in an individual, by interfering with one's social activities like work, rest, recreation, sleep etc. A sound might be unwanted because it is:

- Loud
- Unpleasant or annoying

• Intrusive or distracting

Usually the sound of a violin is referred to as music - is something pleasing. Depending on other factors, the sound may be perceived as noise. Noise perception is subjective. Factors such as the magnitude, characteristics, duration, and time of occurrence may affect one's subjective impression of the noise.

Noise is also considered a mixture of many different sound frequencies at high decibel levels. Before measuring noise, we need to know the type of noise so that we can choose the parameters to measure, the equipment to use, and the duration of the measurement.

**1. Continuous Noise:** Continuous noise is produced by machinery that operates without interruption in the same mode, for example blowers, pumps and processing equipment. Measuring for just a few minutes with handheld equipment is sufficient to determine the noise level.

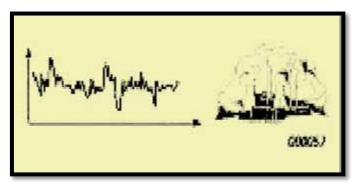



Figure 3.1 Generation of continuous noise

**2. Intermittent Noise:** When machinery operates in cycles, or when single vehicles or airplanes pass by, the noise level increases and decreases rapidly. For each cycle of a machinery noise source, the noise level can be measured just as for continuous noise. A single passing vehicle or aircraft is called an event. To measure the noise of an event, the sound exposure level is measured, combining level and duration into a single description.

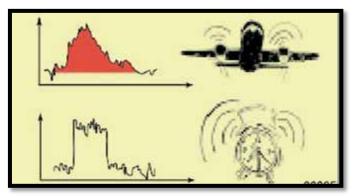



Figure 3.2 Generation of intermittent noise

**3. Impulsive Noise:** The noise from impacts or explosions, e.g. from a pile driver, punch press or gunshot is called impulsive noise. It is brief and abrupt, and its startling effects cause greater annoyance than would be expected from a simple measurement of sound pressure level.

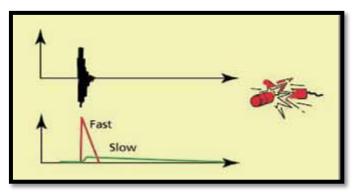



Figure 3.3 Generation of impulsive noise

#### **3.3 Classification of Noise**

**1. Ambient Noise:** It is the noise from all sources combined-factory noise, traffic noise, bird song etc.

**2. Specific Noise:** Specific noise is the noise from the source under investigation. The specific noise is a component of the ambient noise and can be identified and associated with specific source.

**3. Residual Noise:** Residual Noise is ambient noise without specific noise. The residual noise is the noise remaining at a point under certain conditions when the noise from the specific source is suppressed.

**4. Background noise:** Background noise is also a common one but should not be confused with residual noise.

#### 3.4 Sources of Noise

Variety of sources of noise cumulatively leads to noise pollution. Though the sources of noise seem almost to be infinite, but the various sources of noise to which a person is exposed can be categorised as follows:

#### Industrial noise:

The industry in which drilling, grinding, turning, riveting, fabricating, welding, hammering, forging, compressing, breaking, moulding, streaming, boiling, cooling, heating, venting, painting, pumping, packing and transporting are involved is creates the most serious of all large-scale noise problems, subjecting a significant fraction of the working population to potentially hazardous noise levels.

Mechanical noise is the major part of industrial noise. The noise is due to machinery of all kinds and often increases with the type of operation and power of the machines. The

characteristics of industrial noise vary considerably depending on specific industrial process. High noise levels common in petrochemical, steel industries, thermal power stations, cement industries, and mines etc can be due to presence of unsteady force and its structural elements caused by moving parts, vibration of heavy equipments, noise from engines, gear, bearings, rotating and reciprocating machines, combustion, fans, pressurised flow, during shifting of raw materials and end products, trucks and dumpers.

#### Non-industrial noise

Some of the important non-industrial sources are as follows:

**Community:** the community noise is an unwise display of man's vanity and whims. It occurs due to various activities of community during religious festivals, fairs, marriages, or public functions. The use of amplifiers provides one of most frequent sources of disturbances. Loudspeaker systems are in almost continual use at many open- air events. Loudspeakers and amplified music are rampantly used in unrestricted way at restaurants, marriage, functions and clubs, religious and festive gatherings and even in sale of lottery tickets. There is also the perennial problem of the use of portable radios and cassette players on beaches or in places where either people have gone in search of peace. Most of the problems which occur in public originate from three main groups of sources.

- Amplified sound: loud speakers, public gatherings, and festivals
- Rowdy behaviour: people not thinking about the amount of noise they are creating.
- Leisure activities: such as rash driving adopting various kind of horns or music in vehicle.

**Traffic:** In cities, surface vehicles have increased tremendously and use of pressure horn become a constant source of noise pollution. The rising environmental noise level is because of appreciable growth of scooters, motor cycles, passenger cars, tempo, heavy trucks and buses. It disturbs more people in any country than all other form of noise nuisance. Today metropolitan cities have become noisiest cities in the world due to increasing number of vehicles. Everywhere it is growing in intensity. Noise can be generated from individual vehicle or from continuous flow of vehicles of all types. Traffic noise can be classified in to two distinct categories:

**Those related to engine speed:** noise from vehicle can be from engine, intake, exhaust, cooling fan, gear box, horns, and from accessories air compressor, hydraulic pump, electrical generators etc. Diesel powered vehicle add another dimension to noise problem.

**Those related to road speed:** related to road speed include engagement of gears, rolling noise produced by tyre and aerodynamically generated noise. Traffic noise affects those persons in great extent who live adjacent to roads. Overall, the factors of traffic noise depend on the following:

#### **Traffic parameters**

- Vehicle volume
- Vehicle mix
- Average speed

#### Road way characteristic

- Pavement width
- Flow characteristic
- Gradient
- Surface finish

## **Observer characteristic**

- Observer distance
- Element size
- Shielding
- Observer relative height

#### Aircraft noise:

The use of aircrafts of many types has been generating varying types of noise. The higher the speed of an aircraft, then greater would be the noise pollution. The invention of supersonic aircrafts has added more noise for the plight of persons who live near aerodromes. Taking off and landing of an aircraft produces unbearable noise for a normal human being.

It has been observed that supersonic jet planes are one of the biggest irritants in today's noisy world. The noise of these planes may sometimes break window panes, crack plaster and shake buildings. By these effects of noise can very easily understand that what would be the effects of such noise on human body.

#### Miscellaneous:

In India and many other countries urbanisation has been developing very fast and huge buildings have been being constructed with fastest speed. During demotion of huge sites and construction of new buildings, huge machines, which produce a lot of noise, are being commissioned and it has become a common scene in every big city where construction work is in progress. A lot of noise has been created during the construction of repair work of roads in cities.

#### **3.5 Impacts of Noise**

The development of society, modern technology, exploitation of nature have lead to more and more sound sources giving higher and higher noise levels. Noise is one of the most widely and most frequently experienced problems in the metropolitan cities. Noise effects man both physically, psychologically, pathologically and socially.

#### a) Human health:

The World Health Organization (WHO) defines health as "A state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity." We separate noise effects into two broad categories: auditory (noise-induced hearing loss) and non-auditory (behavioural and physiological effects). Behavioural effects are those that are associated with activity interference. This includes interference with communication, rest or and sleep, and learning; or that produces annoyance. Non-auditory physiological health effects include such things as cardiovascular disease and hypertension. These categories of effects are examined in the following sections.

**1. Noise-Induced Hearing Loss -** Hearing loss is measured as "threshold shift". Threshold refers to the quietest sound a person can hear. When a threshold shift occurs, the sound must be louder before it can be heard - a person's hearing is not as sensitive as it was before the threshold shift. The natural decrease of hearing sensitivity with age is called presbycusis. For hundreds of years it has been known that excessive exposure to loud noises can lead to noise-induced temporary threshold shifts, which in time can result in permanent hearing impairment, causing individuals to experience difficulty in understanding speech.

**2. Community Annoyance -** Social survey data have long made it clear that individual reactions to noise vary widely for a given noise level. Nevertheless, as a group, people's aggregate response to factors such as speech and sleep interference and desire for an acceptable environment is predictable and relates well to measures of cumulative noise exposure such as DNL.

**3. Speech Interference -** One of the primary effects of aircraft noise is its tendency to drown out or "mask" speech, making it difficult or impossible to carry on a normal conversation without interruption. The sound level of speech decreases as distance between a talker and listener increases. As the level of speech decreases in the presence of background noise, it becomes harder and harder to hear. As the background level increases, the talker must raise his/her voice, or the individuals must get closer together to continue their conversation.

**4. Sleep Interference -** The effect of aviation noise on sleep is a long recognized concern of those interested in addressing the impacts of noise on people. Historical studies of sleep disturbance were conducted mainly in laboratories; field studies also were conducted, in which subjects were exposed to noise in their own homes, using real or simulated noise. The data from these field studies show a consistent pattern, with considerably less percent of the exposed population expected to be behaviourally awakened than had been shown with laboratory studies.

**5. Non-Auditory Health Effects -** In spite of considerable worldwide research, there is little solid evidence supporting a claim that noise affects human physical and mental health in the workplace or in communities. Our scientific understanding is far from being able to reliably demonstrate a cause-effect relationship. Researchers have based such claims on laboratory studies of extremely high noise levels or of animals. Many effects observed with intense noises, capable of harming our hearing in a short time, cannot be assumed to occur at

moderate and low levels, or to manifest themselves in chronic clinical effects at moderate and low levels. For practical noise control considerations, the present status of our knowledge means that the criteria for evaluating noise impact, with respect to its direct and indirect effects on health, are the same criteria as those applied to prevent any hearing impairment. In other words, by using criteria that prevent noise induced hearing loss, minimize speech and sleep disruption, and minimize community reactions and annoyance, any effects on health will also be prevented.

6. The Effects of Noise on Children's Learning - There has been much attention focused recently on the issue of the effects of aviation noise on children and their learning. The research suggests that there are effects in the areas of reading, motivation, language and speech, and memory. One common theory for the causes of these problems is speech interference: if children who are learning to read cannot understand their teacher, they may develop reading problems. The strength of sound level and its subjective feeling, effects on human being are summarized in table 1.

| Sound source               | strength of | subjective   | Effects on human               |  |  |
|----------------------------|-------------|--------------|--------------------------------|--|--|
|                            | sound in    | feeling of   |                                |  |  |
|                            | dB(A)       | human beings |                                |  |  |
| Rockets and missiles,      | 150 - 160   | unbearable   | Above 150 dB(A) may cause      |  |  |
| heavy explosives           |             |              | severe damage to the whole     |  |  |
| Jet planes and cannons,    | 140         | unbearable   | body such as loss of hearing   |  |  |
| explosives                 |             |              | of both ears, dizziness,       |  |  |
| Aircraft propeller and     | 130         | unbearable   | nausea, disturbance of speech, |  |  |
| machine guns               |             |              | confusion or psychosis         |  |  |
| Diesel, steam engine, and  | 120         | unbearable   | Above 90 dB(A) headache,       |  |  |
| ball mills, crackers       | 120         | anovaruore   | dizziness, tinnitus, insomnia, |  |  |
|                            |             |              | deafness, heart diseases,      |  |  |
| Electric saws and looms,   | 110         | Ear ache     | hypertension, gastric ulcer,   |  |  |
| heavy trucks               | 110         |              | neurosis, temporary hearing    |  |  |
| neuvy trucks               |             |              | threshold shift.               |  |  |
| Lorries, highway vehicles  | 90 -100     | Very noisy   | 50- 90 dB(A) may cause         |  |  |
| and very busy streets      |             |              | various degrees of effects in  |  |  |
| Commercial place, air      | 70 - 80     | noisy        | sleeping, studying, working    |  |  |
| conditioners, loud voice & | 70 - 80     | noisy        | and talking                    |  |  |
| busy streets               |             |              | Sense of noisy feeling         |  |  |
| Office complex, average    | 60          |              |                                |  |  |
| loudness of voice          | 60          | noisy        |                                |  |  |
| Ordinary room              | 50          | quiet        | Pleasant feeling               |  |  |
| Silent night, library      | 30 - 40     | Very quiet   |                                |  |  |
| Hospital, bedroom at       | 20 - 30     | Very quiet   |                                |  |  |
| night, church              |             |              | Silence feeling                |  |  |
| In sound proof room        | 10 - 20     | Very quiet   |                                |  |  |
| broadcasting studio        |             |              |                                |  |  |
| Lower limit of hearing     | 0           | Very quiet   | Threshold of hearing           |  |  |
|                            | l           |              |                                |  |  |

 Table 3.1: Various sound levels and its effects on human being

#### b) Animal Health:

In general, a noise impact to wildlife can be determined by the degree to which the noise disrupts a functioning ecosystem. Noise has the potential to affect wildlife in a variety of ways, varying between different types of animals. Research shows that the degree of reaction to noise often varies with age, sex, season, situation, previous exposure to noise (habituation), noise level, and frequency spectrum. Potential noise effects on wildlife include; auditory damage, physiological changes, and behavioural alterations. These effects are further characterized into primary and secondary effects. Primary effects are direct physical effects to the animal. Secondary effects are indirect changes which occur between the animal and its environment.

**1. Physiological Effects -** Physiological effects, such as metabolic and hormonal changes, are often associated with stress. Stress in wildlife in their natural setting is typically a difficult response to quantify. For wildlife, stress reactions are part of survival and a routine occurrence. Stress reactions involve what is commonly referred to as the "fight or flight" response. When this reaction is inappropriate, such as fleeing from a non-threaten noise, impacts begin to occur. Inappropriate reactions unnecessarily deplete an animal's energy resources which can increase susceptibility to predators, disease, and starvation.

**2.** Behavioural Effects - Changes in normal behavioural patterns are the most apparent effects of noise on wildlife.

#### **2.6 Noise Pollution**

**Noise pollution** refers to sounds in the environment that are caused by humans and that threaten the health or welfare of human or animal inhabitants. The most common source of noise pollution by far, the one that affects the most people on the planet is motor vehicles. Aircraft and industrial machinery are also major sources. Additional noise pollution is contributed by office machines, sirens, power tools, and other equipment. The response of ear to sound is very dependent on the frequency content of the sound. The ear has a peak response around 2.5 - 3 kHz and has a relatively low response at low frequencies.

**Threshold of Pain:** sound level at which the ear starts to feel pain. The threshold of pain is different for sounds of different frequencies.

#### 2.7 Air Act & Noise Rules

Under section 2(a) of Air (Prevention and Control of Pollution) Act, 1981 noise is defined as air pollutant "Air pollutant" means any solid, liquid or gaseous substance (including noise) present in the atmosphere in such concentration as may be or tend to be injurious to human beings or other living creatures or plants or property or environment."

Increasing ambient noise level in public places from various sources, inter-alia, industry activity, construction activity, generators sets, loud speakers, public address systems, music systems, vehicular horns and other mechanical devices have deleterious effects on human

health and the psychological well being of the people. Therefore, it is considered necessary to regulate and control of noise producing and generating sources with the objective of maintaining the ambient air quality standards in respect of noise.

Central Government notified the Noise Pollution (Regulation and Control) Rules, 2000 as it is published in the Gazette of India, Extraordinary, Part-II –section 3(ii), vide S.O 123 (E) dated 14.2.2000. In reference to abovementioned rules following responsibilities are vested with State Governments, District Magistrate, Police Commissioner, or any other officer not below the rank of Deputy Superintendent of Police:

1. Enforcement of Noise Pollution control measures and the due compliance of ambient air quality standards in respect of noise.

2. Restriction on the use of Loud Speakers/ Public Address system.

3. Restriction on the use of Horns, Sound emitting construction equipment and bursting of Fire crackers.

4. Prohibition of continuance Music Sound or Noise.

5. Authority shall act on the complaint and take action against the violator in accordance with the provisions of rules.

6. Disallowing sound producing instrument after 10 p.m to 6 a.m except in closed premises.

7. State Government may permit loud speakers or public address system in night hours (between 10.00 p.m. to 12.00 midnight not exceeding 15 days in year.

**Table 3.2:** Ambient Air Quality Standards in Respect of Noise is notified under Noise Pollution (Regulation and Control) Rules, 2000

| Area<br>code | Category of Area / Zone | Limit in dB (A) Leq* |            |  |  |
|--------------|-------------------------|----------------------|------------|--|--|
|              | Category of Area / Zone | Day time             | Night time |  |  |
| А            | Industrial Area         | 75                   | 70         |  |  |
| В            | Commercial Area         | 65                   | 55         |  |  |
| С            | Residential Area        | 55                   | 45         |  |  |
| D            | Silence Zone            | 50                   | 40         |  |  |

Note:

#### 1. Day time is from 6 AM to 10 PM

2. Night time is from 10 PM to 6AM

3. Silence Zone is defined as areas up to 100 meters around premises such as hospitals, educational institutes and courts. Silence Zones are declared by competent authority.

4. Mixed categories of areas may be declared as one of the four above mentioned categories by the competent authority.

\*dB(A) Leq denotes the time weighted average of the level of sound in decibels on scale A which is relatable to human hearing.

A "decibel" is a unit in which noise is measured.

Leq: It is energy mean of the noise level over a specific period.

# METHODOLOGY

# CHAPTER 4 METHODOLOGY

The ambient noise level termed as the total noise associated with a given environment and usually comprises sound from many sources both near and far. In order to assess the ambient noise level at different stations in the seven big cities of India viz., Delhi, Bangalore, Kolkata, Lucknow, Mumbai, Hyderabad and Chennai, monitoring was conducted during October 2011. The noise level was monitored for 24 hours continuously at each station, through central receiving station located at CPCB Delhi. Morning, afternoon, evening, and night hours are considered according to the various activities of the entire day.

#### 4.1 Measurement techniques

Sound is mechanical energy from vibrating source transmitted by cycling series of compressions and rare fractions of molecules of the material through which it passes (Chanlett 1973).

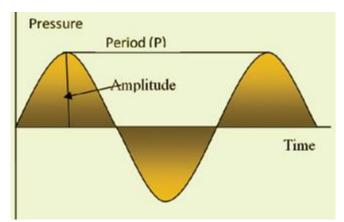



Figure 4.1 Relationship between pressure, amplitude & time period

Sound waves are often simplified to a description in terms of sinusoidal plane waves, which are characterized by these generic properties:

- Frequency, or its inverse, the period
- Wavelength
- Amplitude
- Intensity

Frequency: The number of compression and rare fraction of the air molecules in a unit of time is described as the frequency. The normal range of hearing for a healthy person extends from approximately 20 Hz up to 20,000 Hz.

Amplitude (A) of the wave is the height of the peak sound pressure measured above or below the zero pressure line. Distance between successive peaks or troughs are called the wavelength ( $\lambda$ ) which is related to frequency (f) by the relation:

$$\lambda = C/f$$

#### 4.1.1 Measuring Sound Levels

Sound produced from any source is stimuli and it can be measured as sound pressure. The sound pressure range varies from  $20\mu$ Pa- 200 Pa and it can be expressed on a scale based on the log of the ratio of measured sound pressure and a reference standard pressure Sound Level,

$$L = Log 10 P/Po$$

Where,

P= Measured quantity of sound pressure or sound power, or sound intensity.

Po=Reference standard quantity of sound pressure, or sound power, or sound intensity ( $20 \times 10-6$  Pa)

L= Sound Level in Bels (B)

However, above unit bels (B) is turn out to be a rather large unit, a smaller unit of decibels (dB) is generally used.

$$L = 10 \log 10 \left( P/P0 \right) \left( dB \right)$$

Sound Pressure level,

$$Lp = 20 Log 10 (Pr.m.s/20\mu Pa)$$

The logarithmic unit of measurement means, for example, 80dB is 10 times louder than 79dB. This is one of the motivations for using the decibel scale to measure sound intensity.

#### 4.1.2 Noise rating system

**1. Leq:** Leq is that statistical value of sound pressure level that can be equated to any fluctuating noise level. For e.g. a sound of 40 dB last for 5 min, for the next 10 min sound is 85 dB and then followed by a sound of 100 dB for next 5 min, will compose a fluctuating noise level, which is indicative of producing the same effect over the entire time period of 5+10+5=20 minutes in dB. This value is called Equivalent continuous equal energy level, Leq.

Leq =  $10 \text{Log } \sum_{i=1}^{i=n} (10)^{\text{Li/10}} \text{ X (ti/tt)}$ Where, n= number of sound samples Li=the noise level of any ith sample, ti= time duration of ith sample, tt= total time period of event. Leq is also defined as the constant noise level, which over a given time, expands the same amount of energy, as is expanding by the fluctuating levels over the same time.

A sound level meter that measures the sound pressure level with a "flat" response will indicate the strength of low frequency sound with the same emphasis as higher frequency sounds.

Therefore, sound meter is equipped with frequency-weighting filter.

The human ear does not respond uniformly to sounds of all frequencies being less efficient to low and high frequencies as compared to medium range frequencies. In order to obtain sound level which cover wide range of frequencies and conforms approximately to the response of the human ear, frequency weighting filter is used. Resultant sound level obtained is Aweighted sound.

Therefore, we measure sound level as Leq in dB(A).

**2.** Ln: The Ln is a statistical measure indicating how frequently a particular Sound level is exceeded. The value of Ln will represent the sound pressure level that will exceed for N% of the gauging time. For e.g.  $L_{60}$  over entire period is 70 dB and this 70 dB shows that the sound level will exceed 70 dB for 60 % of the measuring time. Ln is nothing but percentile value over the measuring time, i.e.  $L_{90}$ ,  $L_{50}$ , and  $L_{10}$ .

3. Skewness: The skewness of a data population is defined by the following formula, where  $\mu_2$  and  $\mu_3$  are the second and third central moments.

$$\gamma_1 = \mu_3 / \mu_2^{3/2}$$

Intuitively, the skewness is a measure of symmetry. As a rule, negative skewness indicates that the mean of the data values is less than the median and the data distribution is left-skewed; positive skewness would indicates that the mean of the data values is larger than the median and the data distribution is right-skewed. Of course, this rule applies only to unimodal distributions whose histograms have a single peak.

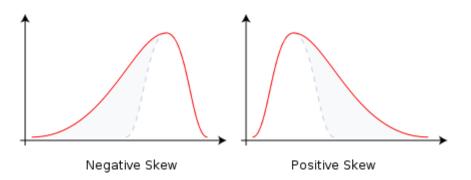



Figure 4.2 Graphical representation of negative and positive skew

4. **Kurtosis:** In probability theory and statistics, kurtosis is the measure of the "peak" of the probability distribution of a real-valued random variable. In a similar way to the concept of skewness, *kurtosis* is a descriptor of the shape of a probability distribution and just as for

skewness; there are different ways of quantifying it for a theoretical distribution and corresponding ways of estimating it from a sample of a population.

#### 4.1.3 Tool used in statistical analysis of noise monitoring data – SPSS

SPSS is among the most widely used programs for statistical analysis in social science. It is used by market researchers, health researchers, survey companies, government, education researchers, marketing organizations and others. The original SPSS manual (Nie, Bent & Hull, 1970) has been described as one of "sociology's most influential books". In addition to statistical analysis, data management (case selection, file reshaping, creating derived data) and data documentation (a metadata dictionary is stored in the datafile) are features of the base software.

Statistics included in the base software:

- Descriptive statistics: Cross tabulation, Frequencies, Descriptives, Explore, Descriptive Ratio Statistics
- Bivariate statistics: Mean, t- Test, Correlation (bivariate, partial, distances), Nonparametric tests
- Prediction for numerical outcomes: Linear Regression
- Prediction for identifying groups: Factor Analysis, Cluster analysis (two-step, K-means, hierarchical), Discriminant.

SPSS can read and write data from ASCII text files (including hierarchical files), other statistics packages, spreadsheets and databases. SPSS can read and write to external relational database table via ODBC and SQL.

Statistical output is to a proprietary file format (\*.spv file, supporting pivot tables) for which, in addition to the in-package viewer, a stand-alone reader can be downloaded. The proprietary output can be exported to text or Microsoft word, PDF, Excel, and other formats. Alternatively, output can be captured as data (using the OMS command), as text, tab-delimited text, PDL, XLS, HTML, XML, SPSS dataset or a variety of graphic image formats (JPEG, PNG, BMP and EMF).

#### 4.2 Instrumentation

The basic tool of all noise measurement is the sound level meter intended for field use meeting rigorous environmental specifications. A sound level meter is a sensitive electronic volt meter used to measure the electrical signal from a microphone. It is calibrated in sound pressure level for use with a particular microphone, which is ordinarily attached to the instrument. It is expensive and easily damaged by careless use or handling, particularly by the untrained persons and repairs can be very expensive.

All these instruments of whatever complexity have common elements: microphone, input amplifier (adjustable), weighing networks, output amplifier and indicating meter as to meet the accuracy and the facilities. In addition, some may have complex indicators, memory, auxiliary inputs and a host of accessories which may or may not be vital for noise measurement. The vital common parts of a sound level meter are:

#### 1. Microphone:

Microphone is very important and there are three main types – crystal, moving coil and condenser. Crystal and moving coil types are severely affected by humidity and temperature. Condenser type which is referred as electrostatic or capacitor microphone are stable, have a wide range, are not affected by temperature, never have a power failure, and can be calibrated at any frequency. Many different methods of microphone calibration have been developed. The most widely accepted absolute calibration method is the reciprocity method, which is used generally for calibrating standard microphones in the laboratories as to meet American national standards ANSI and IEC standards. But most microphones are calibrated by a substitution method in which a previously calibrated reference microphone is used as a standard comparison.

#### 2. Input amplifier (adjustable):

This is linked with one control switch to the output amplifier in stages of some dB attenuation. It follows immediately after the microphone and it is designed for amplifying electrical signal obtained from microphone to the accurate attenuation of the input signal in steps of some dB.

#### **3.** Weighting networks

These are introduced between the input amplifier and the output amplifier. The weightings, known as A, B and C weighting networks are internationally agreed. The use of all the scales A, B and C can be advantageous in obtaining a broad outline of the frequency of the noise being measured.

#### 4. Output amplifier

The electrical output from the filter circuits is fed through two amplifier stages with associated attenuators. The attenuators can again amplifying accurately varied in some dB steps.

#### 5. Indicating meter

After the frequency weightings and amplifiers, it converts the electrical signal from alternating current to direct current to cause the needle of the display meter to register the sound pressure level directly in decibels either in the form of analog or digital outputs. The moving coil indicators include two damping characteristics FAST and SLOW both in accordance with British standard specifications. The response speed of the needle plays a large part in the reading for noise which varies with time, as noise mostly do. The actual response speed is defined as the averaging time of the exponential integration in the root mean square (rms) circuit in the meter. The infinite number of time constants possible, have

been standardised in (international electrochemical commission) IEC 651 to 3 options as below:

| 'S' (slow)      | Time constant for 1 second |
|-----------------|----------------------------|
| 'F' (fast)      | Time constant for 125 mSec |
| 'I' (impulsive) | Time constant for 35 mSec  |

Sound level meters are used to measure many types of sound under different conditions, and for variety of reasons. The instrument is carefully handled to obtain valid and consistent results.

#### **4.2.1 Principle of Operation:**

The diaphragm and back plate form the parallel of a simple air-capacitor which is polarized by a charge on the back plate. When the diaphragm vibrates in a sound field, the capacitance of the capacitor varies and an output voltage is generated. The voltage signal replicates the sound-field pressure variations as long as the charge on the microphone backplate is kept fixed. The electric signal produced by the microphone is quite small and so it is amplified by a preamplifier before being processed.

Several different types of processing may be performed on the signal. The signal may pass through a weighting network. It is relatively simple to build an electronic circuit whose sensitivity varies with frequency in the same way as the human ear, thus simulating the equal loudness contours.

#### 4.2.3 Noise Monitoring System:

Nowadays, Noise Monitoring System (NMS) is used for measuring real time noise since large number of stations can be managed easily using this technology. NMSs are optimized for outdoor use with small, custom designed enclosure, and also designed for use in all climatic environments. NMS consist of a weatherproof cabinet containing a noise level analyzer and a battery, a communication device for transmitting data to receiving station, a back plate and an outdoor microphone (for measuring sound) all of which can be mounted on a mast. Some of the features and particulars of NMS are mentioned as follows:

- NMSs are modular both in hardware and software.
- The NMS has been specifically designed to operate unattended in inhospitable environments protecting the contents from weather, tampering, vandalism etc. The robust, durable, weatherproof cabinet includes a kit for fastening the cabinet to a wall or pole. Protection is also provided for the cabling, to reduce the risk of tampering or accidental damage
- The NMS includes one battery, but up to two batteries can be used so that the NMS can function when there is no usable local power source or mains power has been disrupted. The batteries are charged whenever external AC or DC is applied to the NMS.
- The NMS can be powered from a variety of sources, such as solar panels, connected through the DC supply input.

- Data Retrieval with automatic and manual operation and data storage in a SQL database, in order to allow the users to carry out their data analysis and data processing.
- The NMS supports GPS, so that with a standard commercial GPS receiver and antenna unit, longitude, latitude and height can be monitored and stored in the NMS with the noise measurements. Data from NMS is directly transferred to main server (Central Receiving Station) via GPRS.
- Dusite architecture of Activity and its network its given below. ROUTER SERVER DATA RECEPTION CENTRE Station 1 Station 2 Station 3 Statio

• Basic architecture of NMS and its network is given below:

Figure 4.3 Noise monitoring system

#### 4.2.4 Central Receiving Station:

The Central receiving station gets data from all remote stations through GPRS mode, processes the Noise data and generates different reports. The central station software allows CPCB officials for research, development, and analysis of the noise data. The data from the Remote unit can be displayed through Internet to the authorize addresses. The central receiving station receiving station comprises hot redundant servers including web hosting server and software for analysis and other purpose.

**Hot redundant servers including web hosting server:** The High-end dual servers have been used for data reception, processing, visualization, communication and archiving. The servers are hot redundant mode to insure that under no condition data reception process fails as in the event of failure of main server the alternate hot redundant servers takes over the entire process automatically within milliseconds.

**Central Receiving Software:** Software package is capable for communication, from measuring and acquisition stations, both locally and remotely via a PC. It is intuitive and easy to use application which runs on Windows, Windows<sup>®</sup> Operating System (2000 SP4, XP)

SP2). Data Retrieval in real time or by command with automatic and/or manual operation and data storage in a Microsoft Access database, or alternatively in a SQL database, in order to allow and carry out the data analysis and data processing.

#### Software Management

- Software is capable for requesting, downloading, editing, processing and representation and management of data.
- The software integrates the entire data request commands made to the stations in real time data or data saved in the memory.
- Software allows the user to change and/or modify the configuration of the stations, enables to perform tasks such as date and time synchronisation with the computer and adds new measuring channels specifying the different sampling and storage periods, as well as the statistical calculations to be stored.

#### **Data Analysis**

- Data enquiry over several days
- Comparison of readings between stations
- Daily statistics enquiry
- Strip charts of the daily statistics.
- Comparison between the daily statistics of various stations
- Comparison between parameters from the same station or from different stations.

#### **Visualization of Data**

- Enquiry of data in Table Form
- Enquiry of data in graph form
- Temporary graphs composition window

#### **Additional Features**

- Printing of various reports and graphs.
- Zoom in and Zoom out facility with automatic graph scale Resizing.
- Registers all the events like Information messages, error messages.
- Information of the communications resources used by the PC at that moment.

#### 4.3 Area under study

The noise monitoring was conducted in the following 7 cities of India: Delhi, Bangalore, Kolkata, Lucknow, Mumbai, Hyderabad and Chennai.

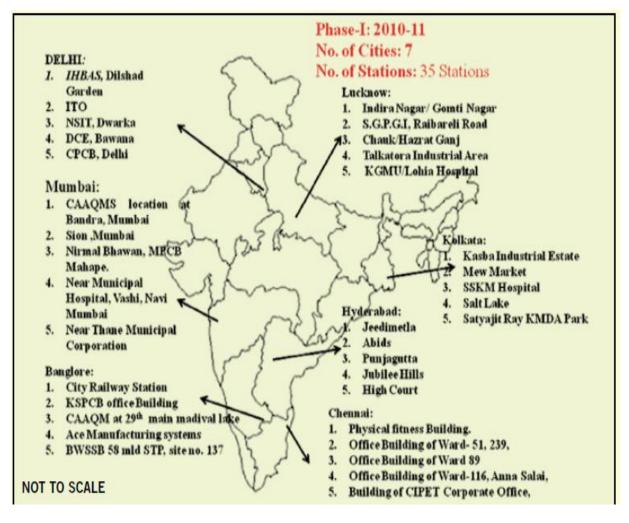



Figure 4.4: Map showing various noise monitoring stations across the nation

# **RESULTS & DISCUSSION**

## **CHAPTER 5**

#### **RESULTS & DISCUSSION**

Ambient Noise Level data of 7 metropolitan cities (Bangalore, Hyderabad, Kolkata, Delhi, Lucknow, Chennai and Mumbai) spread over 7 states (Karnataka, Andhra Pradesh, West Bengal, Delhi, Uttar Pradesh, Tamil Nadu & Maharashtra) and their respective calculated noise parameters are given in Table 5.1, 5.2, 5.3, 5.4 and 5.5 and figures 5.1 to 5.28. Raw data is taken from the Central Pollution Control Board in txt. format.

| S.  | City      | Station   | L 90    | L 50    | L 10    | L max   | L min  | Leq dB | (A)    |
|-----|-----------|-----------|---------|---------|---------|---------|--------|--------|--------|
| No. |           |           |         |         |         |         |        | Day    | Night  |
|     |           |           |         |         |         |         |        | time   | time   |
| 1   | Bangalore | btm       | 55.761  | 62.392  | 65.446  | 67.431  | 53.609 | 63.869 | 56.654 |
| 2   |           | marthhali | 50.877  | 52.543  | 54.031  | 55.289  | 50.013 | 52.635 | 52.137 |
| 3   |           | pari      | 53.524  | 64.072  | 66.981  | 79.947  | 50.826 | 61.185 | 57.726 |
| 4   |           | nisa      | 45.594  | 53.729  | 57.025  | 62.533  | 43.08  | 54.878 | 47.417 |
| 5   |           | pnya      | 49.212  | 51.606  | 55.624  | 92.05   | 46.958 | 49.366 | N/A    |
| 6   | Chennai   | eyeh      | 46.824  | 60.847  | 64.208  | 70.163  | 43.738 | 62.261 | 49.619 |
| 7   |           | gndy      | 69.767  | 74.472  | 75.748  | 89.853  | 66.692 | 75.485 | 70.546 |
| 8   |           | prmb      | 52.536  | 66.674  | 68.788  | 72.02   | 47.034 | 67.608 | 56.392 |
| 9   |           | tngr      | 57.453  | 71.978  | 74.388  | 75.869  | 53.267 | 72.567 | 61.001 |
| 10  |           | trln      | 53.141  | 66.327  | 68.944  | 81.62   | 48.341 | 67.594 | 55.795 |
| 11  | Delhi     | cpcb      | 49.206  | 59.765  | 62.293  | 64.299  | 46.259 | 60.355 | 52.564 |
| 12  |           | dce       | 46.997  | 48.812  | 50.989  | 54.239  | 45.941 | 49.497 | 48.013 |
| 13  |           | dgdn      | 47.247  | 50.814  | 57.102  | 64.049  | 44.178 | 52.850 | 49.090 |
| 14  |           | ito       | 71.292  | 72.019  | 73.382  | 103.213 | 68.408 | 69.497 | N/A    |
| 15  |           | nsit      | 53.814  | 55.805  | 72.601  | 101.476 | 50.498 | 62.095 | 55.164 |
| 16  | Hyderabad | abit      | 60.923  | 70.734  | 74.477  | 78.208  | 56.445 | 72.001 | 63.984 |
| 17  |           | jdmt      | 55.215  | 61.773  | 64.546  | 65.658  | 53.262 | 62.702 | 56.492 |
| 18  |           | pngt      | 68.8282 | 74.324  | 75.6928 | 76.319  | 65.193 | 74.525 | 70.509 |
| 19  | Kolkata   | gprk      | 58.4884 | 60.838  | 71.8028 | 72.579  | 55.695 | 64.653 | 59.656 |
| 20  |           | hq        | 53.8127 | 59.2755 | 61.1677 | 72.01   | 51.12  | 60.032 | 55.367 |
| 21  |           | ptli      | 49.5875 | 53.9895 | 59.441  | 90.05   | 47.195 | 53.651 | 51.786 |
| 22  |           | sskm      | 53.5162 | 57.4725 | 60.7034 | 62.829  | 50.859 | 58.704 | 54.600 |
| 23  |           | newmarket | 57.5829 | 64.8685 | 67.5219 | 68.703  | 56.919 | 65.676 | 59.159 |
| 24  | Lucknow   | hgnj      | 61.3934 | 69.479  | 74.5789 | 76.76   | 56.416 | 71.159 | 64.262 |
| 25  |           | ingr      | 44.4415 | 50.3005 | 57.1736 | 64.511  | 42.252 | 53.484 | 45.996 |
| 26  |           | tlkt      | 52.7267 | 60.1375 | 66.3684 | 68.735  | 49.116 | 62.598 | 54.256 |
| 27  | Mumbai    | ahsp      | 58.7406 | 63.184  | 64.3175 | 65.443  | 56.267 | 63.511 | 60.233 |
| 28  |           | bndr      | 67.2488 | 68.4255 | 69.3235 | 70.508  | 65.79  | 68.588 | 67.812 |

 Table 5.1: Various Calculated Ambient Noise Parameters (23/10/2011)

Page | 34

| 29 | hq   | 62.1308 | 64.464  | 65.6405 | 67.093 | 60.131 | 64.923 | 62.846 |
|----|------|---------|---------|---------|--------|--------|--------|--------|
| 30 | tmco | 55.6022 | 59.2535 | 62.0212 | 66.994 | 52.355 | 59.847 | 57.565 |
| 31 | vhsp | 54.5844 | 66.7985 | 69.2663 | 70.565 | 50.008 | 66.938 | 58.178 |

| Table 5.2: Variou | s Calculated Amb | ient Noise Paramete | rs (26/10/2011) |
|-------------------|------------------|---------------------|-----------------|
|-------------------|------------------|---------------------|-----------------|

| S.  | City      | Station | L 90    | L 50    | L 10    | L max   | L min  | Leq dB(A) |        |
|-----|-----------|---------|---------|---------|---------|---------|--------|-----------|--------|
| no. |           |         |         |         |         |         |        | Day       | Night  |
|     |           |         |         |         |         |         |        | time      | time   |
| 1   | Bangalore | btm     | 56.8277 | 67.067  | 71.7508 | 78.101  | 54.423 | 68.343    | 59.561 |
| 2   |           | mart    | 51.5379 | 56.2455 | 65.1934 | 70.027  | 50.971 | 58.396    | 54.156 |
| 3   |           | pari    | 54.3267 | 66.2345 | 70.1945 | 89.994  | 51.576 | 61.917    | 44.252 |
| 4   |           | nisa    | 46.2211 | 62.77   | 73.5036 | 79.328  | 45.079 | 65.563    | 51.368 |
| 5   |           | pnya    | 53.933  | 56.609  | 68.815  | 74.008  | 52.703 | 51.995    | N/A    |
| 6   | Chennai   | eyeh    | 46.7549 | 65.605  | 77.8286 | 84.002  | 43.367 | 70.998    | 52.711 |
| 7   |           | gndy    | 71.5848 | 74.2045 | 76.6348 | 87.624  | 68.605 | 70.540    | 52.98  |
| 8   |           | prmb    | 67.1116 | 72.411  | 80.295  | 102.11  | 58.563 | 69.349    | 57.891 |
| 9   |           | tngr    | 58.7335 | 71.2915 | 77.4446 | 83.426  | 52.133 | 73.028    | 61.437 |
| 10  |           | trln    | 53.3694 | 71.395  | 79.3741 | 84.733  | 44.822 | 74.430    | 58.409 |
| 11  | Delhi     | cpcb    | 49.6503 | 60.0655 | 75.7784 | 80.416  | 46.292 | 61.790    | 57.977 |
| 12  |           | dce     | 48.288  | 50.1655 | 64.7158 | 67.915  | 46.511 | 53.400    | 52.520 |
| 13  |           | dgdn    | 46.6363 | 51.9375 | 75.1651 | 77.584  | 43.801 | 57.510    | 54.180 |
| 14  |           | ito     | 70.9316 | 71.4    | 86.4128 | 102.729 | 70.01  | 56.464    | N/A    |
| 15  |           | nsit    | 53.592  | 59.099  | 73.224  | 99.705  | 52.757 | 54.156    | 20.121 |
| 16  | Hyderabad | abit    | 60.3737 | 71.789  | 80.1722 | 98.433  | 56.56  | 73.964    | 65.932 |
| 17  |           | jdmt    | 54.503  | 62.4305 | 65.5573 | 69.433  | 52.623 | 63.327    | 57.520 |
| 18  |           | pngt    | 68.0776 | 75.7375 | 80.7213 | 82.906  | 66.238 | 76.805    | 71.648 |
| 19  | Kolkata   | gprk    | 59.5071 | 63.6945 | 68.1194 | 73.35   | 57.096 | 65.185    | 61.802 |
| 20  |           | hq      | 54.2538 | 60.663  | 63.886  | 65.491  | 51.988 | 61.456    | 57.142 |
| 21  |           | ptli    | 45.472  | 53.992  | 69.7074 | 73.284  | 43.927 | 58.956    | 51.954 |
| 22  |           | sskm    | 51.3544 | 60.0105 | 64.6439 | 69.62   | 49.117 | 60.851    | 55.823 |
| 23  |           | New     | 57.7156 | 65.0555 | 67.1461 | 70.063  | 56.237 | 65.689    | 60.343 |
|     |           | market  |         |         |         |         |        |           |        |
| 24  | Lucknow   | hgnj    | 59.2087 | 70.307  | 73.7485 | 75.72   | 54.543 | 70.413    | 63.273 |
| 25  |           | ingr    | 41.4695 | 51.431  | 70.9926 | 79.108  | 38.7   | 55.597    | 49.955 |
| 26  |           | tlkt    | 50.235  | 59.5545 | 68.946  | 78.154  | 48.295 | 61.471    | 54.999 |
| 27  | Mumbai    | ahsp    | 57.5379 | 63.9395 | 69.8138 | 72.209  | 54.839 | 65.068    | 61.198 |
| 28  |           | bndr    | 66.1742 | 68.512  | 72.4375 | 74.781  | 64.6   | 69.320    | 67.747 |
| 29  |           | hq      | 61.5579 | 63.936  | 65.9142 | 67.703  | 59.036 | 64.289    | 62.841 |
| 30  |           | tmco    | 53.251  | 61.2665 | 72.5409 | 78.146  | 51.277 | 63.794    | 58.211 |
| 31  |           | vhsp    | 55.2578 | 67.9365 | 74.3393 | 77.518  | 48.701 | 69.205    | 60.321 |

Page | 35

| S.  | City      | Station       | L 90    | L 50    | L 10    | L max  | L min  | Leq dB | (A)    |
|-----|-----------|---------------|---------|---------|---------|--------|--------|--------|--------|
| no. |           |               |         |         |         |        |        | Day    | Night  |
|     |           |               |         |         |         |        |        | time   | time   |
| 1   | Bangalore | btm           | 52.096  | 64.74   | 67.0928 | 75.345 | 48.878 | 65.501 | 55.724 |
| 2   |           | mart          | 53.1502 | 54.1655 | 65.0797 | 72.163 | 51.006 | 56.875 | 53.896 |
| 3   |           | pari          | 61.08   | 67.0265 | 72.082  | 88.415 | 54.801 | 65.141 | 46.972 |
| 4   |           | nisa          | 47.0493 | 54.384  | 57.7773 | 68.292 | 44.607 | 54.037 | 48.105 |
| 5   |           | pnya          | 54.093  | 57.2865 | 59.3745 | 86.101 | 51.367 | 54.070 | N/A    |
| 6   | Chennai   | eyeh          | 46.1118 | 61.442  | 65.1376 | 66.711 | 43.174 | 62.825 | 49.029 |
| 7   |           | gndy          | 69.7028 | 75.427  | 76.651  | 93.382 | 66.524 | 71.472 | 53.623 |
| 8   |           | prmb          | 53.2013 | 67.495  | 69.2744 | 72.866 | 48.284 | 68.097 | 56.894 |
| 9   |           | tngr          | 58.4569 | 73.275  | 76.3796 | 77.982 | 53.689 | 74.249 | 61.040 |
| 10  |           | trln          | 52.2339 | 66.5725 | 68.5663 | 71.947 | 47.234 | 67.389 | 55.368 |
| 11  | Delhi     | cpcb          | 48.2022 | 60.3595 | 63.9905 | 66.696 | 45.012 | 61.387 | 50.912 |
| 12  |           | dce           | 49.5002 | 50.484  | 51.7571 | 53.901 | 48.364 | 50.769 | 50.183 |
| 13  |           | dgdn          | 46.0777 | 49.282  | 53.1017 | 57.785 | 43.748 | 50.992 | 47.293 |
| 14  |           | ito           | 68.2015 | 72.9195 | 73.8945 | 74.435 | 66.826 | 68.719 | 69.651 |
| 15  |           | nsit          | 52.8413 | 55.1565 | 61.8061 | 67.533 | 51.421 | 57.047 | 54.395 |
| 16  | Hyderabad | abit          | 59.9863 | 73.6405 | 75.8889 | 94.096 | 55.528 | 65.506 | 63.835 |
| 17  |           | jdmt          | 57.8109 | 62.216  | 65.1384 | 66.353 | 54.956 | 63.150 | 59.262 |
| 18  |           | pngt          | 69.4441 | 76.515  | 77.935  | 80.348 | 66.888 | 76.848 | 71.682 |
| 19  | Kolkata   | gprk          | 59.2196 | 62.7225 | 65.5084 | 68.427 | 56.871 | 63.443 | 60.424 |
| 20  |           | hq            | 53.016  | 60.6735 | 62.7766 | 67.026 | 49.162 | 61.091 | 56.143 |
| 21  |           | ptli          | 44.517  | 51.27   | 60.7973 | 65.615 | 41.762 | 53.922 | 49.168 |
| 22  |           | sskm          | 53.0359 | 58.204  | 64.0853 | 64.784 | 50.737 | 60.826 | 54.419 |
| 23  |           | New<br>market | 56.8487 | 65.5265 | 68.1658 | 77.998 | 55.834 | 66.480 | 59.484 |
| 24  | Lucknow   | hgnj          | 59.5224 | 70.131  | 74.6075 | 75.984 | 50.9   | 71.813 | 62.513 |
| 25  |           | ingr          | 45.7119 | 50.132  | 53.7626 | 55.402 | 44.486 | 51.426 | 46.926 |
| 26  |           | tlkt          | 47.9486 | 56.8265 | 63.3222 | 70.406 | 44.545 | 59.614 | 50.351 |
| 27  | Mumbai    | ahsp          | 57.8054 | 63.6635 | 65.5487 | 66.876 | 56.341 | 64.319 | 59.408 |
| 28  |           | bndr          | 65.6881 | 68.6015 | 69.5465 | 70.474 | 64.103 | 68.684 | 66.784 |
| 29  |           | hq            | 61.0755 | 64.342  | 66.0247 | 68.191 | 59.477 | 65.055 | 61.859 |
| 30  |           | tmco          | 53.2855 | 60.29   | 62.7646 | 66.371 | 51.433 | 60.858 | 55.468 |
| 31  |           | vhsp          | 53.7008 | 67.5325 | 70.1397 | 72.26  | 48.144 | 67.755 | 58.023 |

 Table 5.3: Various Calculated Ambient Noise Parameters (29/10/2011)

AMBIENT NOISE LEVEL PARAMETERS FOR BANGALORE HAS BEEN CALCULATED IN TABLE 5.1, 5.2 AND 5.3 AND SHOWN IN FIGURE 5.1, 5.2, 5.3, & 5.4

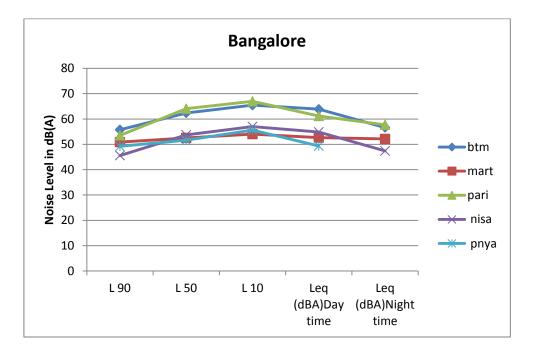



Figure 5.1: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 1 i.e. 23/10/2011

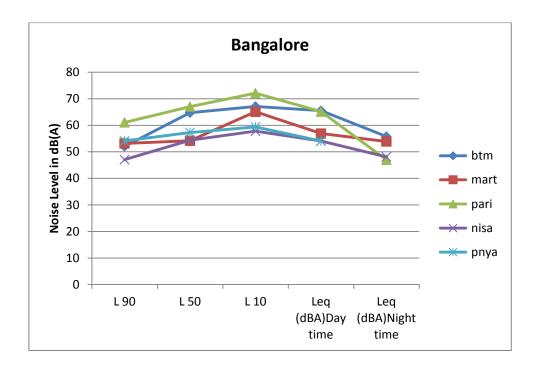



Figure 5.2: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 2 i.e. 26/10/2011

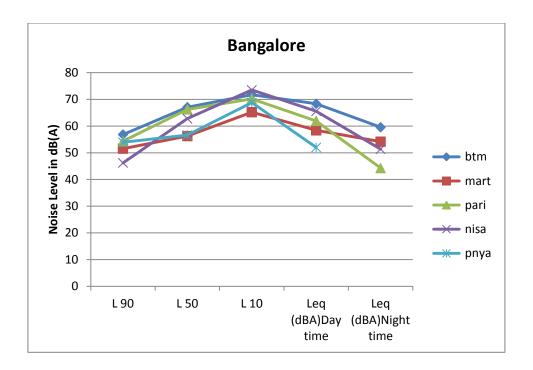



Figure 5.3: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 3 i.e. 29/10/2011

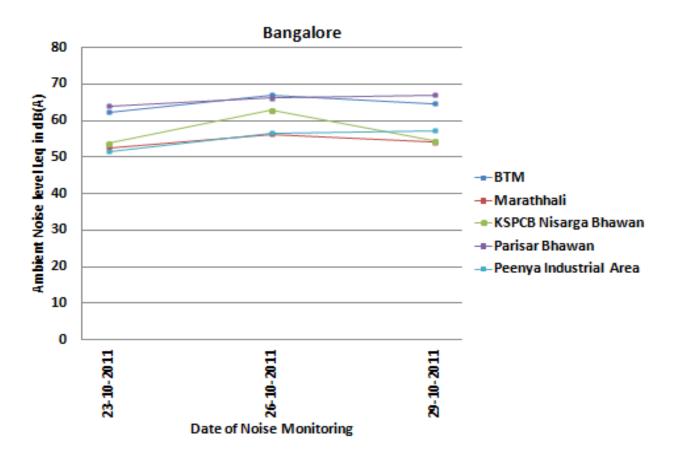



Figure 5.4: Comparison of Leq values at various Noise Monitoring stations

#### **Bangalore:**

From figures 5.1, 5.2, 5.3 & 5.4, it is clear that the ambient noise level, Leq was more on 26/10/2011 i.e. Diwali day than any other day. Leq for peenya industrial area was in between 60 to 70 dB(A), which is in between the standard Leq of 75 dB(A) (day time) and 70 dB(A) (night time). This implies that industrial area alone contribute a major proportion in noise pollution. Leq of commercial area of Bangalore i.e. Nisarga bhawan was near 65 dB(A) very much close to the standard Leq dB(A) value of 65 dB(A) (day time) & 55 dB(A) (night time). From figures shown above, it is clear that Diwali festival results in increased ambient noise level considerably.

### AMBIENT NOISE LEVEL PARAMETERS FOR CHENNAI HAS BEEN CALCULATED IN TABLE 5.1, 5.2 AND 5.3 AND SHOWN IN FIGURE 5.5, 5.6, 5.7, & 5.8

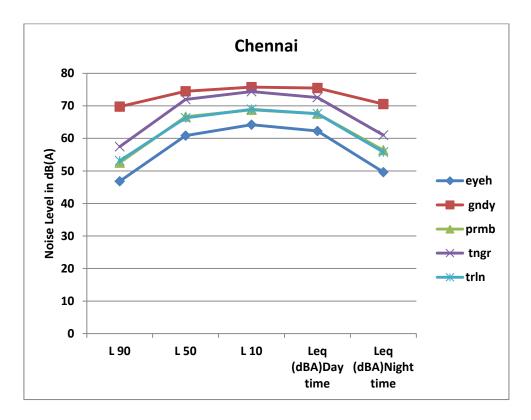



Figure 5.5: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 1 (23/10/2011)

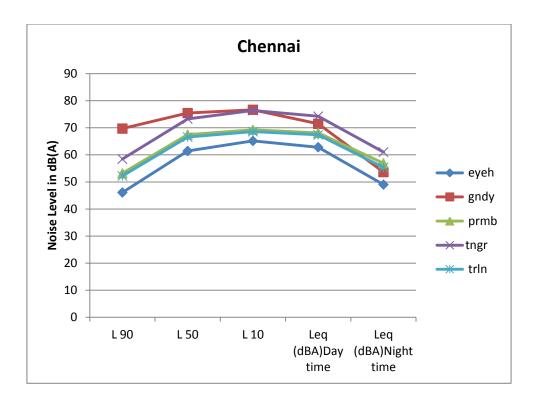



Figure 5.6: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day2 i.e. 26/10/2011

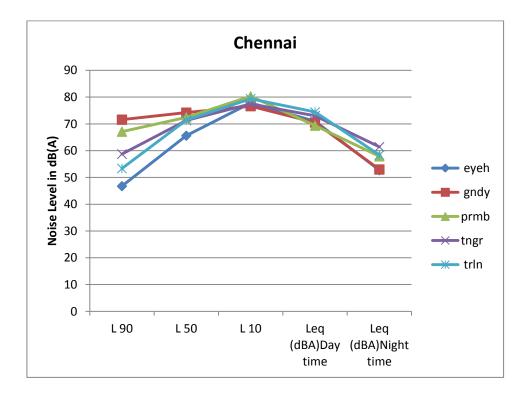



Figure 5.7: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day3 i.e. 29/10/2011

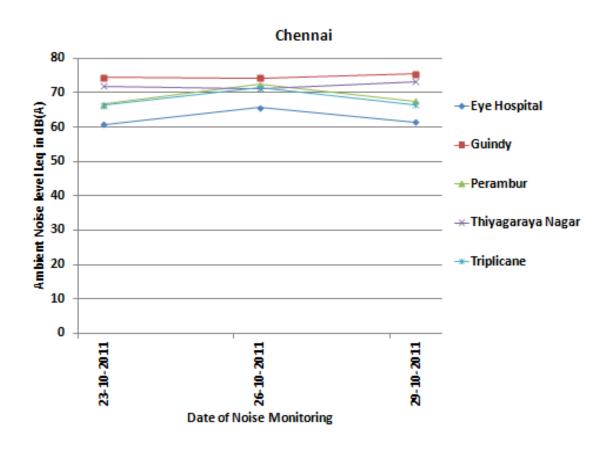



Figure 5.8: Comparison of Leq values at various Noise Monitoring stations

### Chennai:

The ambient noise level, Leq was maximum on 26/10/2011 i.e. Diwali at Guindy station, which is the commercial area of Chennai which is more than 75 dB(A), that is there is a slight increase in Leq value from the standard for commercial areas which is 65 dB(A) (day time) & 55 dB(A) (night time). The ambient noise level of silence zone in Chennai i.e. eye hospital is around 65 dB(A) which is very much high from the standard Leq of 50 dB(A) (day time) & 40 dB(A) (night time) which shows that there must be some ongoing activity which is contributing towards the increasing ambient noise level.

### AMBIENT NOISE LEVEL PARAMETERS FOR DELHI HAS BEEN CALCULATED IN TABLE 5.1, 5.2 AND 5.3 AND SHOWN IN FIGURE 5.9, 5.10, 5.11, & 5.12

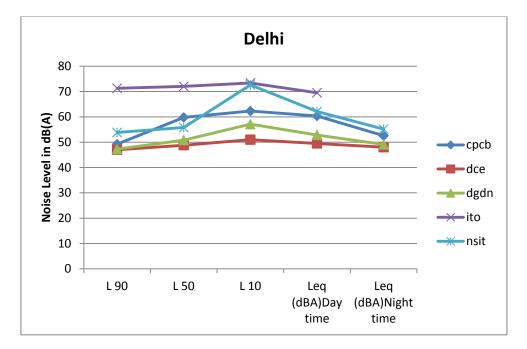



Figure 5.9: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day1 i.e. 23/10/2011

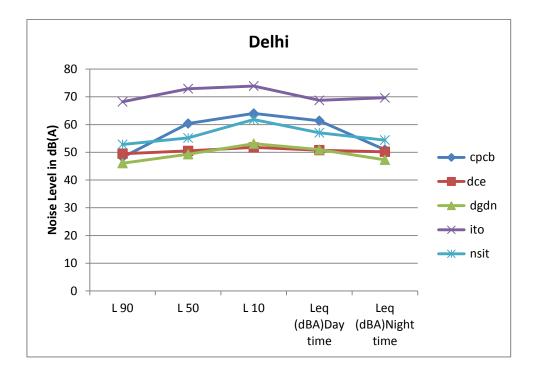



Figure 5.10: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day2 i.e. 26/10/2010

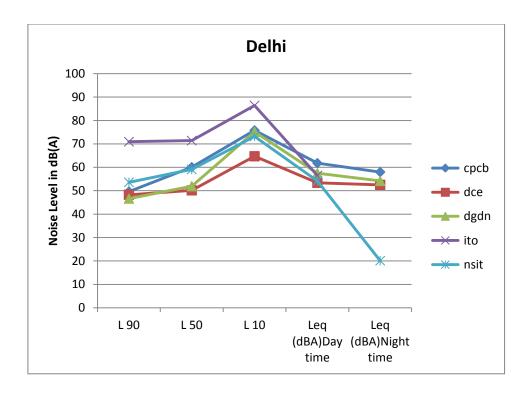



Figure 5.11: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 3 i.e. 29/10/2010

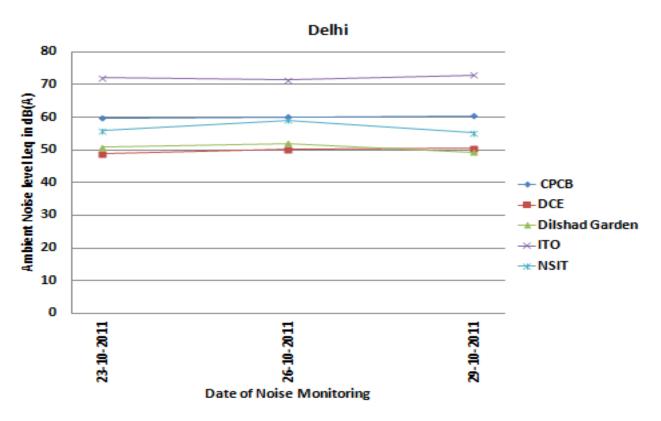



Figure 5.12: Comparison of Leq values at various Noise Monitoring stations

### Delhi:

The ambient noise level (Leq) at ITO, which is a commercial area of Delhi was very high, around 75 dB(A) which is crossing 65 dB(A) (day time) & 55 dB(A) (night time) the standard for commercial area. This area is a business hub, a place full of office buildings, and huge amount of traffic flows per hour here. The Leq for CPCB (residential area) is approximately 60 dB(A) which is above the standard ambient noise level for residential areas of 55 dB(A) (day time) & 45dB(A) (night time). The Leq for DCE (silence zone) is 50 dB(A) which is falling within the standard for ambient noise level for silence zone i.e. 50 dB(A) (during day time) & 40 dB(A) (during night time). The Leq for IHBAS, Dilshad garden (silence zone) is slightly above 50 dB(A) on Diwali. And this increase may be due to the bursting of crackers in nearby dilshad garden residential area.

### AMBIENT NOISE LEVEL PARAMETERS FOR HYDERABAD HAS BEEN CALCULATED IN TABLE 5.1, 5.2 AND 5.3 AND SHOWN IN FIGURE 5.13, 5.14, 5.15, & 5.16

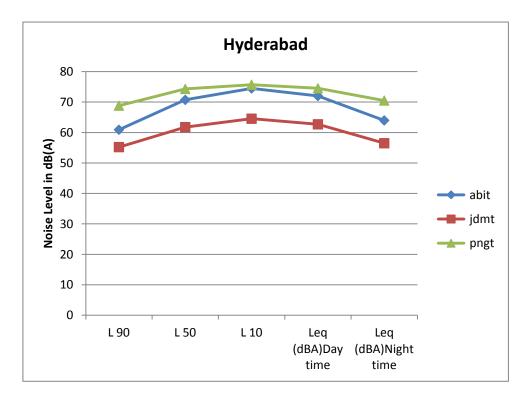



Figure 5.13: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day1 i.e. 23/10/2011

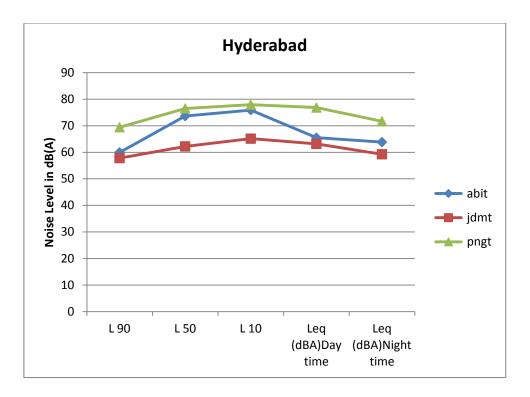



Figure 5.14: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day2 i.e. 26/10/2011

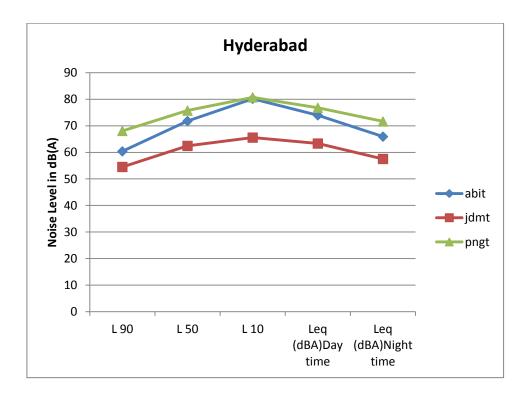



Figure 5.15: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day3 i.e. 29/10/2011

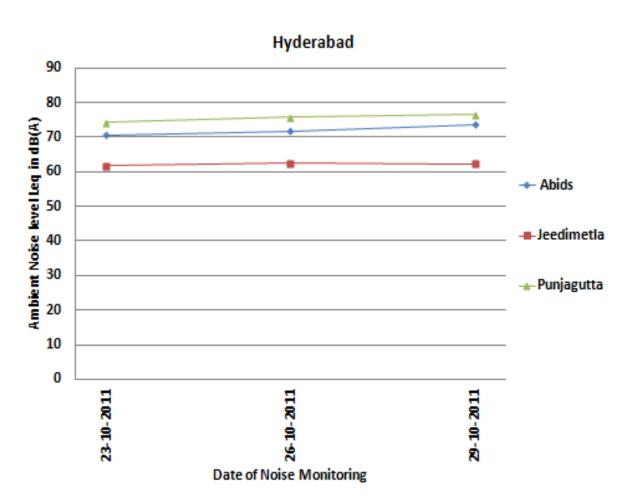
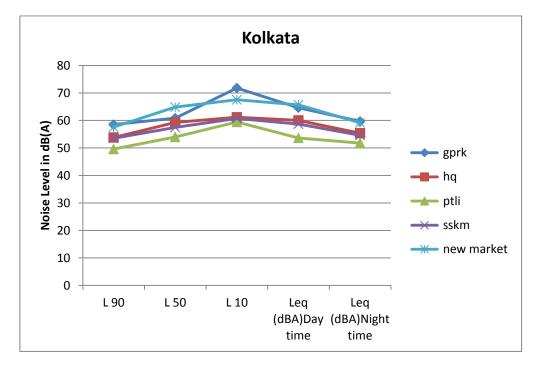




Figure 5.16: Comparison of Leq values at various Noise Monitoring stations

### Hyderabad:

The ambient noise level, Leq for Abids is 75 dB(A), which is exceeding the prescribed standard of 65 dB(A) for commercial areas. The ambient noise level, Leq for jeedimetla is 63 dB(A), which is falling within prescribed commercial area standards. The ambient noise level, Leq for punjagatta is 78 dB(A), which is slightly more than the prescribed ambient noise level standard for commercial areas.

AMBIENT NOISE LEVEL PARAMETERS FOR KOLKATA HAS BEEN CALCULATED IN TABLE 5.1, 5.2 AND 5.3 AND SHOWN IN FIGURE 5.17, 5.18, 5.19, & 5.20



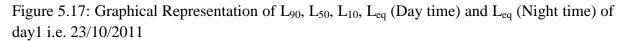





Figure 5.18: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day2 i.e. 26/10/2011

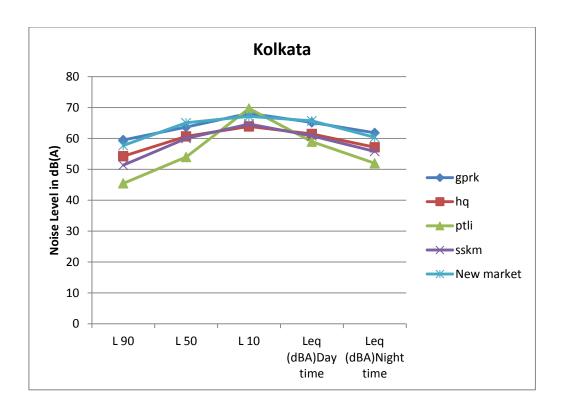



Figure 5.19: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day3 i.e. 29/10/2011

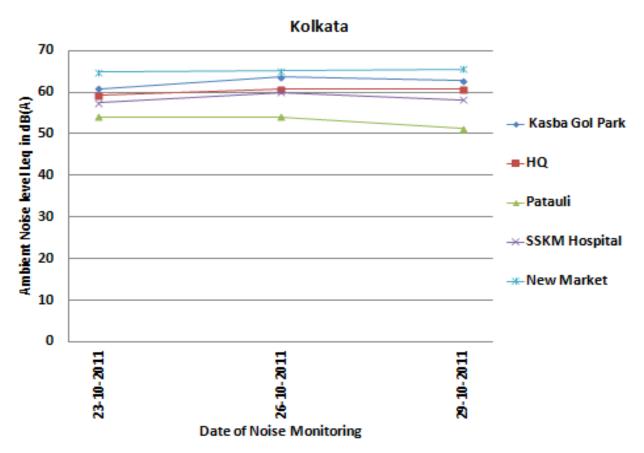



Figure 5.20: Comparison of Leq values at various Noise Monitoring stations

### Kolkata:

The Leq for kasba golpark (residential area) is 65 dB(A), which is 10 dB(A) more than the prescribed Leq for residential areas. The Leq for SSKM Hospital is 60 dB(A), which is 10 dB(A) more than the prescribed Leq for silence zones. The Leq for patauli is 55 dB(A), which is within the prescribed Leq (Day time) = 65 dB(A) for commercial areas. These figures depicts that the Leq dB(A) for commercial areas is either near the standard or exceeding the standard ambient noise level for commercial areas.

# AMBIENT NOISE LEVEL PARAMETERS FOR LUCKNOW HAS BEEN CALCULATED IN TABLE 5.1, 5.2 AND 5.3 AND SHOWN IN FIGURE 5.21, 5.22, 5.23, & 5.24




Figure 5.21: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day1 i.e. 23/10/2011



Figure 5.22: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 2 i.e. 26/10/2011

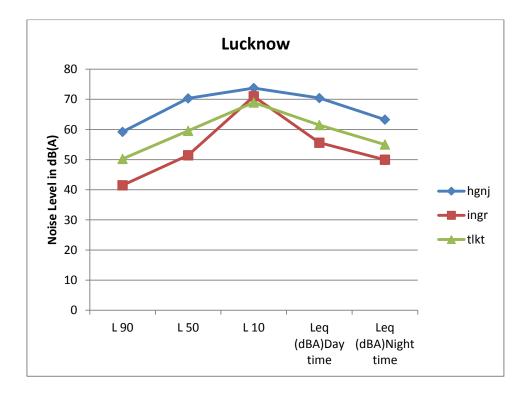



Figure 5.23: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day3 i.e. 29/10/2011

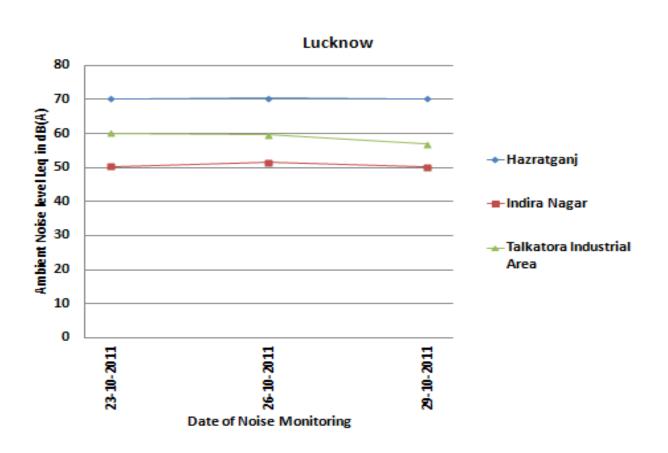



Figure 5.24: Comparison of Leq values at various Noise Monitoring stations

### Lucknow:

The Leq for Hazrat ganj (commercial area) is 70 dB(A), which is 5 dB(A) more than the standard ambient noise level, Leq (day) of 65 dB(A) for commercial areas. The Leq for Indira nagar (residential area) is 52 dB(A), which is falling within the standard for residential areas prescribed by the government. The Leq for Talkatora industrial area is 60 dB(A), which is 15 dB(A) less than the standard ambient noise level for industrial areas i.e. 75 dB(A) (day time).

AMBIENT NOISE LEVEL PARAMETERS FOR MUMBAI HAS BEEN CALCULATED IN TABLE 5.1, 5.2 AND 5.3 AND SHOWN IN FIGURE 5.25, 5.26, 5.27, & 5.28

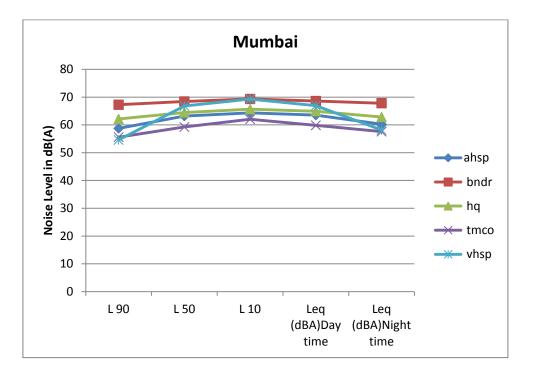



Figure 5.25: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 1 i.e. 23/10/2011

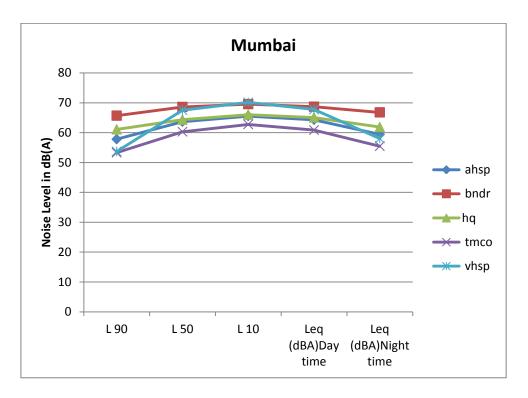



Figure 5.26: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day 2 i.e. 26/10/2011

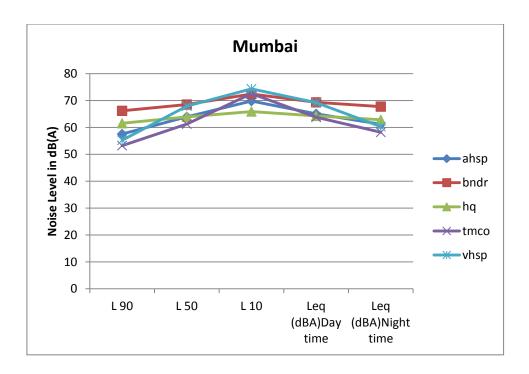



Figure 5.27: Graphical Representation of  $L_{90}$ ,  $L_{50}$ ,  $L_{10}$ ,  $L_{eq}$  (Day time) and  $L_{eq}$  (Night time) of day3 i.e. 29/10/2011

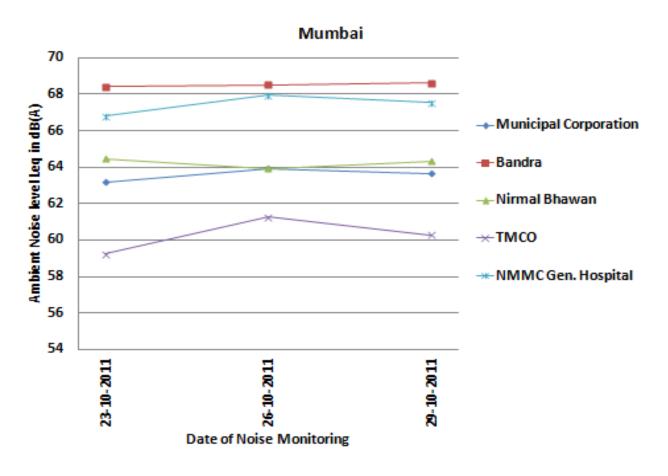



Figure 5.28: Comparison of Leq values at various Noise Monitoring stations

### Mumbai:

From the figure it is clear that, In MUMBAI, the noise levels in all locations were exceeding the standards. On comparing the noise levels during day time & night time, it shows that the noise level were higher during both day time and night time. The Leq for NMMC Gen. Hospital (silence zone) is 68 dB(A), which is 18 dB(A) more than the standard ambient noise level for silence zone i.e. 50 dB(A). The Leq for Municipal Corporation (commercial area) is 64 dB(A), which is falling within the standard ambient noise level for commercial area. The Leq for Bandra (residential area) is 69 dB(A), which is 14 dB(A) more than the standard noise level for residential area i.e. 55 dB(A).

# **Statistical Analysis**

|                    | -             | 1      | 1      | 1        |                    | Γ        | Γ        |
|--------------------|---------------|--------|--------|----------|--------------------|----------|----------|
| City<br>23/10/2011 | Station       | Mean   | Median | Variance | Standard Deviation | Skewness | Kurtosis |
| Bangalore          | btm           | 61.464 | 62.489 | 14.451   | 3.801              | -0.513   | -1.418   |
|                    | mart          | 52.469 | 52.609 | 0.903    | 0.95               | -0.517   | -0.612   |
|                    | pari          | 62.642 | 63.846 | 27.193   | 5.214              | -0.453   | 0.371    |
|                    | nisa          | 52.391 | 54.057 | 16.993   | 4.122              | -0.55    | -1.006   |
|                    | pnya          | 54.03  | 52.325 | 40.488   | 6.363              | 2.659    | 7.961    |
| Chennai            | eyeh          | 58.047 | 61.218 | 44.057   | 6.637              | -0.967   | -0.533   |
|                    | gndy          | 73.838 | 74.81  | 9.442    | 3.072              | 0.394    | 2.61     |
|                    | prmb          | 63.869 | 66.969 | 39.495   | 6.284              | -1.247   | 0.126    |
|                    | tngr          | 68.712 | 71.999 | 42.374   | 6.509              | -0.976   | -0.506   |
|                    | trln          | 63.66  | 66.679 | 39.319   | 6.27               | -1.027   | -0.433   |
| Delhi              | cpcb          | 57.757 | 60.33  | 23.973   | 4.896              | -1.1     | -0.255   |
|                    | dce           | 49.002 | 48.994 | 1.809    | 1.345              | 0.166    | -1.311   |
|                    | dgdn          | 51.596 | 50.336 | 12.829   | 3.581              | 0.441    | -1.069   |
|                    | ito           | 74.129 | 72.062 | 22.511   | 4.744              | 2.167    | 3.96     |
|                    | nsit          | 59.784 | 55.701 | 102.24   | 10.111             | 2.211    | 3.611    |
| Hyderabad          | abit          | 69.328 | 70.88  | 25.746   | 5.074              | -0.714   | -0.355   |
|                    | jdmt          | 60.632 | 61.769 | 11.278   | 3.358              | -0.582   | -1.085   |
|                    | pngt          | 73.186 | 74.043 | 6.45     | 2.539              | -0.969   | -0.168   |
| Kolkata            | gprk          | 62.987 | 61.083 | 24.569   | 4.956              | 1.079    | -0.522   |
|                    | hq            | 58.476 | 59.436 | 7.664    | 2.768              | -0.476   | -0.322   |
|                    | ptli          | 56.082 | 54.145 | 53.293   | 7.3                | 2.072    | 4.564    |
|                    | sskm          | 57.336 | 57.202 | 6.161    | 2.483              | -0.473   | -0.697   |
|                    | new<br>market | 63.504 | 64.876 | 13.071   | 3.615              | -0.652   | -1.043   |
| Lucknow            | hgnj          | 68.86  | 69.336 | 24.834   | 4.983              | -0.385   | -1.264   |
|                    | ingr          | 50.987 | 51.276 | 19.7     | 4.438              | 0.011    | -1.125   |
|                    | tlkt          | 59.817 | 60.334 | 24.447   | 4.944              | -0.18    | -1.291   |
| Mumbai             | ahsp          | 62.418 | 63.329 | 4.086    | 2.021              | -1.595   | 1.464    |
|                    | bndr          | 68.329 | 68.467 | 0.561    | 0.749              | -1.264   | 1.687    |
|                    | hq            | 64.23  | 64.509 | 1.707    | 1.306              | -0.889   | 0.568    |
|                    | tmco          | 59.086 | 59.419 | 3.438    | 1.854              | -0.481   | -0.055   |
|                    | vhsp          | 64.018 | 66.942 | 31.573   | 5.619              | -0.891   | -0.691   |

**Table 5.4:** Calculations of Statistical parameters of day 1 noise monitoring data

Majority of the times the Ambient noise level is greater than the mean noise level, then it is known as negative skew, e.g. Hyderabad, Mumbai, Bangalore, Chennai and Lucknow have negative skew, while Delhi has positive skew. Kurtosis signifies the "peakedness" of the

normal distribution. Variance is the measure of dispersion from the mean value. Standard deviation is the square root of the variance.

| City<br>26/10/2011 | Stations      | Mean   | Median | Variance | Standard Deviation | Skewness | Kurtosis |
|--------------------|---------------|--------|--------|----------|--------------------|----------|----------|
| Bangalore          | btm           | 65.416 | 67.266 | 31.325   | 5.596              | -0.423   | -0.779   |
|                    | mart          | 56.982 | 56.297 | 21.637   | 4.651              | 1.279    | 1.456    |
|                    | pari          | 64.033 | 65.972 | 32.578   | 5.707              | -1.056   | 0.037    |
|                    | nisa          | 60.831 | 62.77  | 92.139   | 9.598              | -0.233   | -0.787   |
|                    | pnya          | 59.422 | 56.866 | 29.324   | 5.415              | 0.817    | -1.061   |
| Chennai            | eyeh          | 64.903 | 64.745 | 117.895  | 10.857             | -0.582   | -0.555   |
|                    | gndy          | 74.701 | 74.396 | 7.745    | 2.782              | 1.047    | 2.802    |
|                    | prmb          | 74.354 | 72.792 | 39.09    | 6.252              | 1.264    | 3.825    |
|                    | tngr          | 69.164 | 71.423 | 46.016   | 6.783              | -0.779   | -0.24    |
|                    | trln          | 69.09  | 71.77  | 92.436   | 9.614              | -0.856   | -0.097   |
| Delhi              | cpcb          | 60.519 | 60.389 | 74.425   | 8.627              | 0.724    | 0.224    |
|                    | dce           | 53.106 | 49.847 | 38.428   | 6.199              | 1.392    | 0.388    |
|                    | dgdn          | 56.4   | 52.95  | 102.611  | 10.129             | 1.052    | -0.158   |
|                    | ito           | 75.286 | 71.615 | 59.675   | 7.724              | 1.94     | 2.71     |
|                    | nsit          | 64.217 | 60     | 115.627  | 10.753             | 0.673    | -0.864   |
| Hyderabad          | abit          | 71.287 | 72.233 | 63.187   | 7.949              | 0.455    | 0.7      |
|                    | jdmt          | 61.391 | 62.329 | 14.262   | 3.776              | -1.011   | -0.158   |
|                    | pngt          | 75.086 | 75.776 | 17.341   | 4.164              | -0.457   | -0.321   |
| Kolkata            | gprk          | 64.057 | 63.682 | 10.813   | 3.288              | 0.262    | -0.472   |
|                    | hq            | 60.018 | 60.575 | 10.594   | 3.254              | -0.852   | -0.131   |
|                    | ptli          | 56.621 | 54.36  | 73.248   | 8.558              | 0.4      | -0.966   |
|                    | sskm          | 59.175 | 59.954 | 21.639   | 4.651              | -0.529   | -0.27    |
|                    | New<br>market | 63.907 | 64.514 | 11.418   | 3.379              | -1.034   | 0.059    |
| Lucknow            | hgnj          | 68.033 | 70.717 | 31.906   | 5.648              | -0.679   | -1.107   |
|                    | ingr          | 53.716 | 52.01  | 102.036  | 10.101             | 1.067    | 0.545    |
|                    | tlkt          | 59.314 | 60.157 | 43.929   | 6.627              | 0.285    | -0.352   |
| Mumbai             | ahsp          | 63.778 | 64.038 | 16.201   | 4.025              | -0.108   | -0.255   |
|                    | bndr          | 68.795 | 68.406 | 4.448    | 2.109              | 0.648    | -0.626   |
|                    | hq            | 63.806 | 63.826 | 2.361    | 1.536              | -0.184   | 0.178    |
|                    | tmco          | 61.933 | 60.908 | 42.343   | 6.507              | 0.36     | -0.599   |
|                    | vhsp          | 66.244 | 68.007 | 43.096   | 6.564              | -0.713   | -0.333   |

Table 5.5: Calculations of Statistical parameters of day 2 noise monitoring data

Majority of the times the Ambient noise level is greater than the mean noise level, then it is known as negative skew, e.g. Hyderabad, Mumbai, Bangalore and Chennai, while Delhi has

positive skew. Kurtosis signifies the "peakedness" of the normal distribution. Variance is the measure of dispersion from the mean value. Standard deviation is the square root of the variance.

| City<br>29/10/2011 | Stations      | Mean   | Median | Variance | Standard Deviation | Skewness | Kurtosis |
|--------------------|---------------|--------|--------|----------|--------------------|----------|----------|
| Bangalore          | btm           | 62.241 | 64.833 | 31.861   | 5.644              | -1.01    | -0.451   |
|                    | mart          | 55.882 | 54.364 | 17.502   | 4.183              | 2.205    | 3.761    |
|                    | pari          | 67.526 | 67.594 | 35.149   | 5.928              | 1.545    | 5.926    |
|                    | nisa          | 53.298 | 54.77  | 18.618   | 4.314              | -0.486   | -0.941   |
|                    | pnya          | 57.675 | 56.881 | 21.885   | 4.678              | 3.082    | 11.172   |
| Chennai            | eyeh          | 58.226 | 61.508 | 54.75    | 7.194              | -0.91    | -0.719   |
|                    | gndy          | 74.882 | 75.547 | 10.876   | 3.297              | 0.502    | 4.127    |
|                    | prmb          | 64.362 | 67.651 | 38.359   | 6.193              | -1.235   | 0.037    |
|                    | tngr          | 69.846 | 73.192 | 50.516   | 7.107              | -0.793   | -0.982   |
|                    | trln          | 63.382 | 66.689 | 39.466   | 6.282              | -1.053   | -0.475   |
| Delhi              | cpcb          | 57.895 | 60.29  | 35.405   | 5.95               | -0.665   | -1.134   |
|                    | dce           | 50.573 | 50.478 | 0.513    | 0.716              | -0.018   | -0.402   |
|                    | dgdn          | 49.759 | 49.492 | 7.09     | 2.663              | 0.434    | 0.139    |
|                    | ito           | 72.031 | 73.132 | 4.544    | 2.131              | -1.192   | -0.054   |
|                    | nsit          | 56.163 | 54.949 | 11.734   | 3.425              | 1.456    | 1.385    |
| Hyderabad          | abit          | 70.853 | 73.847 | 41.273   | 6.424              | -0.703   | -0.282   |
|                    | jdmt          | 61.854 | 61.914 | 7.113    | 2.667              | -0.313   | -1.348   |
|                    | pngt          | 75.126 | 76.683 | 11.689   | 3.419              | -1.185   | -0.106   |
| Kolkata            | gprk          | 62.436 | 62.76  | 4.419    | 2.102              | -0.039   | -0.202   |
|                    | hq            | 59.441 | 60.79  | 13.233   | 3.637              | -1.136   | 0.614    |
|                    | ptli          | 52.337 | 51.177 | 26.933   | 5.189              | 0.37     | -0.456   |
|                    | sskm          | 58.69  | 58.167 | 15.359   | 3.919              | -0.114   | -0.947   |
|                    | new<br>market | 64.148 | 66.11  | 18.172   | 4.262              | -0.793   | -0.778   |
| Lucknow            | hgnj          | 68.713 | 69.991 | 37.358   | 6.112              | -1.009   | 0.293    |
|                    | ingr          | 49.926 | 50.497 | 7.361    | 2.713              | -0.299   | -1.101   |
|                    | tlkt          | 56.526 | 57.537 | 30.566   | 5.528              | -0.168   | -1.062   |
| Mumbai             | ahsp          | 62.682 | 63.589 | 7.854    | 2.802              | -0.904   | -0.452   |
|                    | bndr          | 68.05  | 68.809 | 2.098    | 1.448              | -0.938   | -0.609   |
|                    | hq            | 63.989 | 64.339 | 3.675    | 1.917              | -0.495   | -0.929   |
|                    | tmco          | 59.061 | 60.376 | 11.047   | 3.323              | -0.803   | -0.794   |
|                    | vhsp          | 64.511 | 67.882 | 37.802   | 6.148              | -0.931   | -0.482   |

Table 5.6: Calculations of Statistical parameters of day 3 noise monitoring data

Majority of the times the Ambient noise level is greater than the mean noise level, then it is known as negative skew, e.g. Hyderabad, Mumbai, Bangalore, Kolkata, Chennai and Lucknow. Kurtosis signifies the "peakedness" of the normal distribution. Variance is the

measure of dispersion from the mean value. Standard deviation is the square root of the variance.

Delhi's statistical calculation shows positive skew of all the zones, on 23/10/2011 & 26/10/2011. On 29/10/2011, Commercial and Industrial zones of Delhi e.g. ITO and CPCB have negative skew, while residential and silence zones show positive skew e.g. Dilshad garden and NSIT college respectively.

### Discussion

Based on the data of the measured equivalent noise levels in the residential, commercial, industrial, and silence zones of the 7 cities, it can be stated that during day time noise levels from 40 to 60 dB(A) prevail in residential areas away from traffic roads, noise levels from 60 – 80 dB(A) prevail in residential areas close to traffic roads and in commercial areas, noise level from 70 – 90 dB(A) exits at the traffic junctions and in industrial areas, and noise level from 80- 105 dB(A) exits in areas with heavy traffic (Singal,2000, 2005). Even the silent zones are quite noisy as has been shown by data collected by CPCB. Further, merely 30% of the residential colonies in metropolitan cities have noise level within prescribed limits, the quiet period is only during the early morning hours from 0200 – 0500 hours when noise level falls within 40 - 45dB(A), and the ambient noise levels during festivities e.g. Diwali festival becomes quite high i.e., from 85 – 120dB(A).

Further it has been found that traffic noise is the most annoying source of noise, and that the percentage of people highly annoyed by noise varies generally from 5 to 10 % in the comparatively quiet locations ( diurnal Leq values about 55 - 60 dB(A)), and up to 30 % in the noisiest locations ( with diurnal Leq values about 70 - 75dB(A)). Organisation for Economic Cooperation and Development in a report (OECD, 1986) has also stated that around 20 % of the people globally suffer from noise levels exceeding 65 dB(A), where most people become annoyed or have disturbed sleep or undergo adverse health effects, and another 40 % of the people are living in the so called grey areas (sound pressure levels in the range 55 – 65 dB(A) where noise levels are such as to cause serious annoyance only during night time.

It has been generally found that the degree of annoyance caused by any activity always depends upon the relative benefits derived from it under the conditions one is placed in. For example, the degree of annoyance experienced by the housewife due to equivalent noise levels from domestic appliances is less compared to traffic noise, and the degree of annoyance experienced by the children due to equivalent noise levels from bursting of crackers on Diwali is less compared to industrial noise.

Under noisy conditions, criterion for 100 % sentence intelligibility for normal people is that speech interference level should be about 10 dB(A) lower than the A – weighted sound pressure level for the same degree of interference. During relaxed conversation at home, a speech level of approximately 55dBA is required for a background noise level of 45 dB(A). As the background noise level increases, people naturally tend to raise their voice to overcome the masking effect.

Noise studies made by Ingerslev (1987) further shows that for noise exposures of 80 dB(A) to 100 dB(A) for a period of 10 years, the percentage of persons who get hearing handicap, increases from zero to as high as 42. This percentage increases only marginally with more number of years of exposure.

High intensity impulsive sounds due to bursting of crackers, exceeding a sound pressure level of 140 dB for more than 200 milliseconds regardless of rise of time spectrum and presence of oscillatory transients have been seen to cause instant damage to the ear (acoustic trauma) without any chance of recovery in the threshold shift at high frequencies. For the initial threshold shifts less than 40dB, recovery may be completed in 200 - 1000 minutes, however for the threshold shifts exceeding 40 dB, recovery has been found to be slow and in some cases may not completed at all leading to permanent threshold shift.

Noise affects even birds and animals. On animals, noise produces the same effect as it does on humans. According to one of the reports of the ministry of environment and forests, GOI, about 5 - 10 % birds of Delhi city die during Diwali festival every year. This is due to exposure to heavy sounds of crackers of the bird species that are 1000 times more sensitive to sound than man. Loud sounds can cause behavioural change, hypertension and brain haemorrhage resulting in sudden death.

Based on the statistical calculations of the ambient noise monitoring data, the most polluting city is Chennai, the 2<sup>nd</sup> most polluting city is Hyderabad, 3<sup>rd</sup> most polluting city is Bangalore, 4<sup>th</sup> polluting city is Mumbai, 5<sup>th</sup> polluting city is Kolkata, 6<sup>th</sup> polluting city is Lucknow and the last is Delhi.

# **CASE STUDY**

# Ambient Noise Levels of Delhi in 2011 compared to the year 1995, 1999

# **CHAPTER-6**

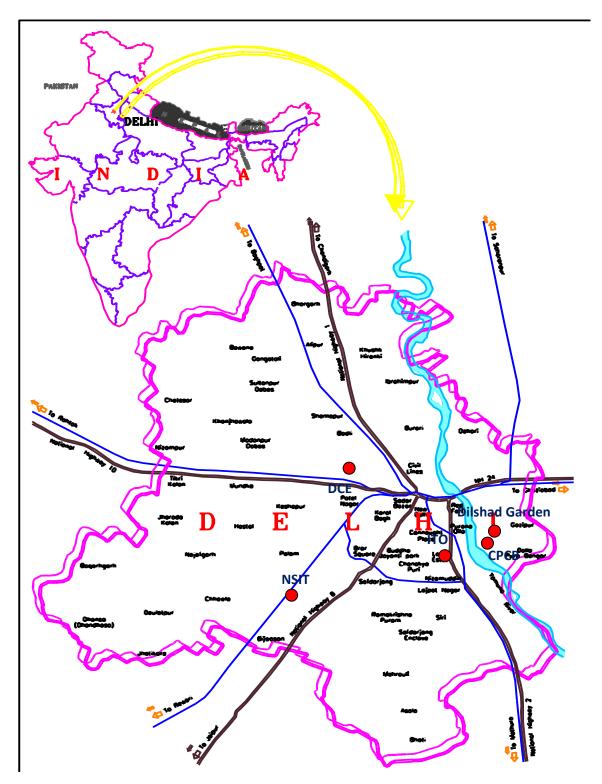
# CASE STUDY- AMBIENT NOISE LEVELS OF DELHI IN 2011 COMPARED TO THE YEAR 1995 & 1999

Delhi is located in northern India between the latitudes of 28°-24'-17" and 28°-53'-00" North and longitudes of 76°-50'-24" and 77°-20'-37" East. Delhi shares borders with the States of Uttar Pradesh and Haryana. Delhi has an area of 1,483 sq. kms. Its maximum length is 51.90 kms and greatest width is 48.48 kms.

Delhi is situated on the right bank of the river Yamuna at the periphery of the Gangetic plains. It lies a little north of 28 n latitude and a little to the west of 78 longitude. To the west and south-west is the great Indian Thar desert of Rajasthan state, formerly known as Rajputana and, to the east lies the river Yamuna across which has spread the greater Delhi of today. The ridges of the Aravalli range extend right into Delhi proper, towards the western side of the city, and this has given an undulating character to some parts of Delhi. The meandering course of the river Yamuna meets the ridge of Wazirabad to the north; while to the south, the ridge branches off from Mehrauli. The main city is situated on the west bank of the river.

| Land use                        | % of land |
|---------------------------------|-----------|
| Residential                     | 45 -55    |
| Commercial                      | 4-5       |
| Industrial                      | 4-5       |
| Green/ Recreational*            | 15 - 20   |
| Public & Semi-Public Facilities | 8 - 10    |
| Circulation                     | 10-12     |

**Table 6.1:** Noise quality in accordance with the land use pattern


\* This does not include green areas within the various gross land use categories.

Based on the data of the measured equivalent noise levels in the residential, commercial, industrial, and silence zones of the 7 metropolitan cities, it can be stated that during day time noise levels from 40 to 60dB(A) prevail in residential areas away from traffic roads, noise levels from 60 - 80dB(A) prevail in residential areas close to traffic roads and in commercial areas, noise level from 70 - 90dB(A) exits at the traffic junctions and in industrial areas, and noise level from 80 - 105dB(A) exits in areas with heavy traffic (Singal,2000, 2005). Even the silent zones are quite noisy as has been shown by data collected by CPCB. Further, merely 30% of the residential colonies in metropolitan cities have noise level within prescribed limits, the quiet period is only during the early morning hours from 0200 – 0500 hours when noise level falls within 40 - 45dB(A), and the ambient noise levels during festivities e.g. Diwali festival becomes quite high i.e., from 85 - 120dB(A).

### **6.1 DELHI MONITORING NETWORK**

There are five monitoring stations, established by CPCB, located at 5 different places in Delhi which represents the ambient noise quality of the city viz., DCE, NSIT, CPCB, ITO and Dilshad garden. Location of all five stations has been depicted in the map shown below

Figure 6.1: Map of Delhi showing ambient noise monitoring stations across the city



### **6.2 POPULATION**

As per 2001 Census, NCT of Delhi had a total population of 138 lakh. NCT Delhi is highly urbanized with 93.18% of its population living in urban areas as against the national average of 27.81%. During 1991-2001, the urban population of Delhi increased at 3.87 % annual growth rate. With the continuation of the present population trend, the total population of NCTD by the year 2011, 2012 and 2021 would be 182 lakh, 188.2 lakh and 225 lakh respectively.

There has been increase in natural growth from 55.80% in 1981 to 59.21% in 1991 and 60.18% in 2001 and decrease in the net migrants from 44.20% in 1981 to 40.78% in 1991 and 39.82% in 2001. However, a reduction in the rate of natural growth and increase in migration between 2001and 2021 is envisaged in the MPD 2021. The net increase of population in NCT-Delhi is given below:

| Year | Addition by natural | Increase by | Net increase (in |
|------|---------------------|-------------|------------------|
|      | growth              | migration   | lakh)            |
| 1981 | 12.0                | 9.52        | 21.54            |
|      | (55.8%)             | (44.2%)     | (100%)           |
| 1991 | 18.9                | 13.05       | 32.0             |
|      | (59.2%)             | (40.8%)     | (100%)           |
| 2001 | 26.66               | 17.64       | 44.30            |
|      | (60.18%)            | (39.82%)    | (100%)           |
| 2011 | 24.2                | 20.0        | 44.2             |
|      | (54.8%)             | (45.2%)     | (100%)           |
| 2021 | 24.0                | 24.0        | 48.0             |
|      | (50%)               | (50%)       | (100%)           |

#### Table6.2: Population in NCT-Delhi

Note: Figures (in bracket) indicate percentage to total net increase.

{Source: Census of India and projections by DDA Sub-Group (MPD- 2021)}

### **6.3 TRAFFIC DENSITY OF DELHI**

Delhi has significant reliance on its transport infrastructure. The city has developed a highly efficient public transport system with the introduction of the Delhi Metro, which is undergoing a rapid modernization and expansion. There are 5.5 million registered vehicles in the city, which is the highest in the world among all cities most of which do not follow any pollution emission norm (within municipal limits), while the Delhi metropolitan region (NCR Delhi) has 11.2 million vehicles. Delhi and NCR lose nearly 42 crore (420 million) manhours every month while commuting between home and office through public transport, due to the traffic congestion. Therefore serious efforts, including a number of transport infrastructure projects, are under way to encourage usage of public transport in the city.

The period between 1981 and 2001 has seen a phenomenal increase in the growth of vehicles and traffic in Delhi. There has been a rise in per capita trip rate (excluding walk trips) from 0.72 in 1981 to 0.87 in 2001. Keeping in view the population growth, this translates into an increase from 45 lakh trips to around 118 lakh trips. The population of motor vehicles has increased from 5.13 lakh in 1981 to 32.38 lakh in 2001, and the number of buses has increased from 8,600 to 41,483 during this period (Source: Delhi master plan, MPD- 2021).

Besides the above, Delhi has developed as a borderless city and an urban continuum comprising of a number of rapidly growing towns in Haryana and UP. This has added to the flow and movement of traffic within Delhi. Despite measures by way of increasing the length of the road network and road surface space through widening, construction of a number of flyovers/grade separators and, launching of the Metro, the traffic congestion has continued to increase unabated. This has its inevitable consequences in terms of accidents, pollution, commuting time, and wasteful energy / fuel consumption.

**6.3.1 History:** Prior to independence in 1930s, public transport in the city was in private hands, with people relying mainly on tongas and the bus services of the 'Gwalior Transport Company' and 'Northern India Transport Company'. But with the growing city, it soon proved inadequate, thus Delhi Transport Corporation (DTC) bus system was established in May 1948. The next big leap in city transport was the opening of Delhi Metro, a rapid transit system in 2002.

**6.3.2 Overview:** Public transport in the metropolis includes the Delhi Metro, the Delhi Transport Corporation (DTC) bus system, auto-rickshaws, cycle-rickshaws and taxis. With the introduction of Delhi Metro, a rail-based mass rapid transit system, rail-based transit systems have gained ground. Other means of transit include suburban railways, inter-state bus services and private taxis which can be rented for various purposes. However, buses continue to be the most popular means of transportation for intra-city travel, they cater to about 60% of the total commuting requirements. Private vehicles account for 30% of the total demand for transport, while the rest of the demand is met largely by auto-rickshaws, taxis, rapid transit system and railways. Indira Gandhi International Airport (IGI) serves Delhi for both domestic and international air connections, and is situated in the south-western corner of the city. In 2005-2006, IGI recorded traffic of more than 20.44 million passengers. (Both Domestic and International),

# 6.4 Zone-wise Variation in Average Ambient Noise Level in Delhi

The Leq average ambient noise level at Residential Zone was found to be 57 dB(A), 61 dB(A) in the day time and night time respectively in the year 1995, in 1999 it was 68 dB(A), 65 dB(A) in the day time and night time respectively, and in 2011, it was 57 dB(A) and 52 dB(A) during day time and night time respectively, were recorded.

The Leq average ambient noise level at Commercial Zone was found to be 70 dB(A), 71 dB(A) in the day time and night time respectively in the year 1995, in 1999 it was 74 dB(A),

72 dB(A) ) in the day time and night time respectively, and in 2011, it was 69 dB(A) and 52 dB(A) during day time and night time respectively, were recorded.

The Leq average ambient noise level at Industrial Zone was found to be 74 dB(A), 75 dB(A) in the day time and night time respectively in the year 1995, in 1999 it was 78 dB(A), 75 dB(A) in the day time and night time respectively, and in 2011, it was 69 dB(A) and 70 dB(A) during day time and night time respectively, were recorded.

The Leq average ambient noise level at Silence Zone was found to be 68 dB(A), 72 dB(A) in the day time and night time respectively in the year 1995, in 1999 it was 65 dB(A), 61 dB(A) in the day time and night time respectively, and in 2011, it was 56 dB(A) and 52 dB(A) during day time and night time respectively, were recorded.

|             | Ambient Noise Level, Leq in dB(A) |            |            |            |            |               |          |            |  |
|-------------|-----------------------------------|------------|------------|------------|------------|---------------|----------|------------|--|
| Month & Yr. | Day time                          | Night time | Day time   | Night time | Day tim    | ne Night time | Day time | Night time |  |
| Oct. 1995   | 57                                | 61         | 70         | 71         | 74         | 75            | 68       | 72         |  |
| Oct. 1999   | 68                                | 65         | 74         | 72         | 78         | 75            | 65       | 61         |  |
| Oct. 2011   | 57                                | 52         | 69         | 52         | 69         | 70            | 56       | 52         |  |
| CPCB std.   | 55                                | 45         | 65         | 55         | 75         | 70            | 50       | 40         |  |
| Zone        | Residential                       |            | Commercial |            | Industrial |               | Sile     | Silence    |  |

Table 6.3: Ambient Noise Levels at various zones during 1995, 1999 & 2011

Table 6.3 and figure 6.2 reveals the following:

In Residential areas, there is a considerable reduction in the ambient noise level in past 15 years, due to public awareness about the air and noise pollution and strict rules laid by the govt. under Air Act. The industries have been shifted from the residential areas to the distant places and due to the shifting of majority of industries; there is a countable reduction in the ambient noise level of the industrial areas. In commercial areas, the night time ambient noise level is reduced to an extent, due to less use of privately owned vehicles, and restriction on the use of pressure horns in public vehicles. It is reduced in silence areas also because of growing public awareness & stringent rules made by the govt. as prohibition on the use of horns in the sensitive areas like hospitals and institutions. Increasing ambient noise level in public places from various sources, industry activity, loud speakers, public address systems, music systems, vehicular horns and other mechanical devices have deleterious effects on human health and the psychological well being of the people. Therefore, it is considered necessary to regulate and control of noise producing and generating sources with the objective of maintaining the ambient air quality standards in respect of noise.

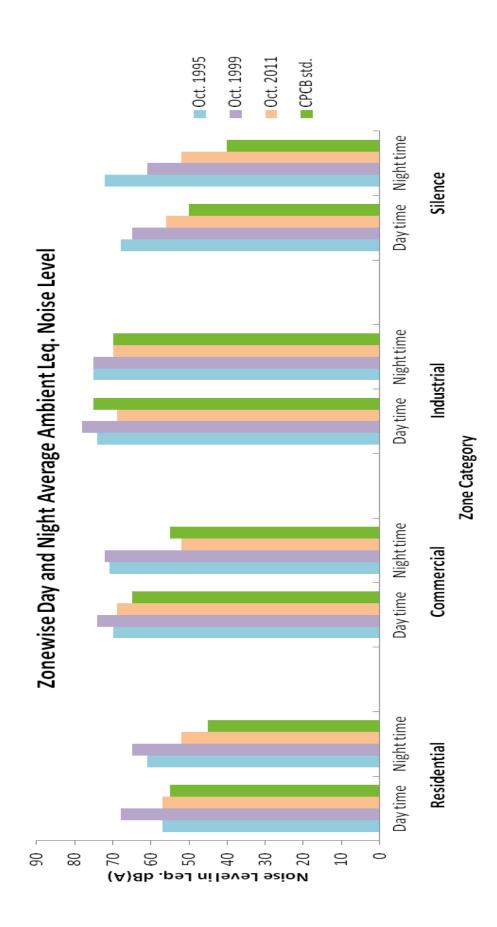



Figure 6.2: Average Ambient Noise Level at various zones during 1995, 1999 & 2011

# CONCLUSION

# CHAPTER 7

### CONCLUSION

During Diwali week, the measurement of ambient noise levels in the 7 major cities of India viz. Bangalore, Chennai, Delhi, Hyderabad, Kolkata, Lucknow and Mumbai, shows that the commercial zones experience about 20 dB(A) noise level above the prescribed limit. The industrial zones experience about 15 dB(A) noise level above the prescribed limit, the residential zones experience about 10 dB(A) noise level above the prescribed limit, the silence zones experience similar noise levels and hence about 10 dB(A) above the prescribed limit. Special events like Diwali festival and election campaigns generate noise levels that are prohibitively above the permissible limit with the only redeeming factor being that they last over a comparatively shorter duration.

Based on the statistical calculations of the ambient noise monitoring data, the most polluting city is Chennai, the 2<sup>nd</sup> most polluting city is Hyderabad, 3<sup>rd</sup> most polluting city is Bangalore, 4<sup>th</sup> polluting city is Mumbai, 5<sup>th</sup> polluting city is Kolkata, 6<sup>th</sup> polluting city is Lucknow and the last is Delhi.

Delineation of silence zones and commercial zones with closer measurements spatially will help to make these zone classifications more meaningful.

Whereas During normal days, it has been seen that road transport is the dominant source of noise in an urban area. It has been estimated that more than 20 % of the inhabitants in India and in many other countries suffer from noise levels that scientists and health experts consider unacceptable. Under these high noise level conditions, most people become annoyed, have disturbed sleep, and may encounter adverse effect on their cardiovascular and psycho – physiological systems.

# RECOMMENDATIONS AND FUTURE PLAN OF WORK

# CHAPTER 8 RECOMMENDATIONS & FUTURE PLAN OF WORK

1. Awareness should be generated among public because most of the noise is generated due to unawareness.

2. Reduction of traffic density, movement of vehicles to the inner arterial roads should be restricted in the residential areas.

3. Use of horns and pressure horns in case of buses, trucks and heavy vehicles should be strictly banned.

4. Residential colonies should be constructed with such a architectural design as to reduce the level of noise reverberation.

5. The commercial and industrial activities should be restricted strictly in residential areas.

6. Unorganised, highly congested commercial activities should not be encouraged very near to the residential colonies.

7. Residential colonies should not be allowed to develop nearby industrial areas and workers in the industries should not be exposed to noise levels more than the prescribed levels.

8. The noise from the industrial machines should be restricted by providing proper vibration isolators, damping material, designing, maintenance and silencing devices.

9. Special training should be given to the industrial personnel for reducing the noise level during operating process and handling the machine and materials.

10. Proper maintenance of vehicles reduces the ambient noise level. Public should be made aware through media, advertisement etc. to reduce the noise level.

11. The condition of roads should be improved in order to reduce the noise pollution.

12. Traffic should be regulated in a scientific manner in order to avoid traffic jams which will cause increase in ambient noise level.

13. Generators should be avoided as far as possible, if used it should be fitted with acoustic hoods, walls around the building and silencing devices such as mufflers.

14. Vegetation buffer zone and road side plantation should be developed in different parts of the nation.

15. The noise generating sources like public address system, music systems on the occasion of marriage should be kept preferably at low volume and should not be used atleast after mid night hours and it should not violate the ambient noise level standards as prescribed by the authority.

16. Progression should be laid for reducing the noise at the source, screening the noise, modifying the noise and providing protection devices.

18. Instead of using privately owned vehicles i.e. cars, motorcycles, people should use public conveyance vehicles i.e. buses. In order to avoid traffic congestion & jams and hence should save our precious environment from noise and air pollution.

17. This project work could be used on a larger scale to check the ambient noise level inside the premises of industrial, commercial, residential and silence zones on regular basis and hence could make our environment noise pollution free.

# ANNEXURES

#### **ANNEXURE 1**

Raw data of Ambient Noise Monitoring is taken from CPCB in txt form, which is further converted into the usable form.

Two types of data used in noise parameters calculations are

- Data on hourly basis or Hourly Data
- Data on 10 minutes interval basis

#### BANGALORE

| Date/Time | E.1713 BNG_BTM | E.1711 BNG_Mart | E.1693 BNG_Nisa | E.1682 BNG_Pari | E.1685 BNG_Pnya |
|-----------|----------------|-----------------|-----------------|-----------------|-----------------|
| 00:00     | 56.297         | 54.368          | 49.612          | 60.785          |                 |
| 01:00     | 52.886         | 53.931          | 47.349          | 62.065          |                 |
| 02:00     | 50.475         | 53.824          | 47.593          | 58.339          |                 |
| 03:00     | 51.787         | 53.631          | 45.132          | 58.008          |                 |
| 04:00     | 53.024         | 53.622          | 46.232          |                 |                 |
| 05:00     | 55.924         | 53.497          | 47.322          |                 |                 |
| 06:00     | 60.205         | 57.123          | 52.849          |                 |                 |
| 07:00     | 64.044         | 66.977          | 55.176          | 87.316          | 73.591          |
| 08:00     | 65.081         | 54.749          | 56.219          | 72.687          | 52.368          |
| 09:00     | 66.306         | 55.521          | 59.252          | 69.57           | 56.881          |
| 10:00     | 65.876         | 55.444          | 56.765          | 65.508          | 56.195          |
| 11:00     | 66.448         | 55.29           | 57.628          | 66.18           | 57.461          |
| 12:00     | 66.471         | 54.866          | 58.389          | 67.624          | 56.392          |
| 13:00     | 66.397         | 54.361          | 56.234          | 68.729          | 55.713          |
| 14:00     | 66.119         | 53.555          | 54.505          | 69.515          | 56.656          |
| 15:00     | 67.273         | 53.219          | 59.577          | 70.866          | 56.981          |
| 16:00     | 68.582         | 53.015          | 55.277          | 69.077          | 58.206          |
| 17:00     | 66.533         | 56.589          | 55.785          | 67.824          | 57.374          |
| 18:00     | 66.702         | 64.462          | 55.036          | 67.583          | 58.861          |
| 19:00     | 64.893         | 67.482          | 55.858          | 66.233          | 57.859          |
| 20:00     | 64.236         | 53.557          | 53.698          | 66.342          | 56.255          |
| 21:00     | 62.852         | 53.793          | 52.068          | 67.214          | 54.329          |
| 22:00     | 64.774         | 54.939          | 52.626          | 67.594          |                 |
| 23:00     | 60.622         | 53.362          | 48.977          | 68.989          |                 |

**Table A1.1:** Tabular Representation of hourly raw data of Bangalore on 29/10/2011

# CHENNAI

| Date/Time | E.1684 CHN_Eyeh | E.1710 CHN_Gndy | E.1706 CHN_Prmb | E.1692 CHN_Tngr | E.1717 CHN_Trln |
|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 00:00     | 49.504          |                 | 76.972          | 62.243          | 57.213          |
| 01:00     | 47.722          |                 | 93.068          | 59.965          | 53.231          |
| 02:00     | 44.91           |                 |                 | 56.113          | 50.715          |
| 03:00     | 45.123          |                 |                 | 55.02           | 48.068          |
| 04:00     | 48.551          |                 |                 | 57.788          | 58.315          |
| 05:00     | 60.218          |                 |                 | 62.913          | 69.613          |
| 06:00     | 63.982          |                 |                 | 68.549          | 72.967          |
| 07:00     | 64.737          | 82.312          | 79.51           | 69.633          | 74.366          |
| 08:00     | 64.396          | 78.121          | 78.664          | 69.991          | 74.422          |
| 09:00     | 70.467          | 73.052          | 71.726          | 71.584          | 72.72           |
| 10:00     | 74.149          | 74.033          | 71.391          | 71.944          | 74.41           |
| 11:00     | 73.572          | 74.396          | 73.574          | 74.308          | 72.521          |
| 12:00     | 70.203          | 75.185          | 73.332          | 73.472          | 72              |
| 13:00     | 69.372          | 74.724          | 69.996          | 73.145          | 69.616          |
| 14:00     | 76.268          | 74.255          | 72.711          | 72.194          | 71.541          |
| 15:00     | 63.953          | 76.64           | 69.425          | 71.263          | 68.65           |
| 16:00     | 64.589          | 76.452          | 69.184          | 72.003          | 69.888          |
| 17:00     | 75.588          | 75.307          | 72.792          | 72.307          | 76.785          |
| 18:00     | 77.881          | 74.641          | 78.859          | 78.325          | 82.192          |
| 19:00     | 82.579          | 74.308          | 79.645          | 78.543          | 83.105          |
| 20:00     | 74.647          | 72.647          | 76.469          | 78.059          | 78.742          |
| 21:00     | 69.6            | 72.568          | 72.32           | 73.128          | 76.965          |
| 22:00     | 64.754          | 71.499          | 70.423          | 71.241          | 71.479          |
| 23:00     | 60.909          | 69.782          | 62.668          | 66.217          | 58.639          |

 Table A1.2: Tabular Representation of hourly raw data of Chennai on 29/10/2011

## DELHI

| Date/Time | E.1671 DEL_CPCB | E.1672 DEL_DCE | E.1670 DEL_DGDN | E.1683 DEL_ITO | E.1688 DEL_NSIT |
|-----------|-----------------|----------------|-----------------|----------------|-----------------|
| 00:00     | 52.04           | 49.673         | 48.611          | 69.659         | 54.924          |
| 01:00     | 48.589          | 49.897         | 45.514          | 68.093         | 54.17           |
| 02:00     | 48.831          | 50.16          | 46.029          | 67.698         | 52.857          |
| 03:00     | 48.084          | 50.409         | 45.872          | 67.652         | 52.912          |
| 04:00     | 47.819          | 50.527         | 46.152          | 68.824         | 52.651          |
| 05:00     | 48.983          | 50.429         | 47.618          | 70.516         | 53.655          |
| 06:00     | 52.957          | 51.218         | 48.982          | 72.351         | 55.738          |
| 07:00     | 58.062          | 50.719         | 50.696          | 72.33          | 55.942          |
| 08:00     | 59.197          | 51.178         | 49.514          | 72.652         | 54.975          |
| 09:00     | 63.646          | 50.777         | 50.403          | 73.14          | 55.384          |
| 10:00     | 64.701          | 49.937         | 51.256          | 73.533         | 54.797          |
| 11:00     | 64.469          | 49.893         | 48.948          | 73.742         | 54.554          |
| 12:00     | 64.044          | 49.816         | 49.471          | 74             | 53.33           |
| 13:00     | 62.724          | 49.027         | 48.163          | 73.866         | 54.426          |
| 14:00     | 62.898          | 50.171         | 49.042          | 73.712         | 53.86           |
| 15:00     | 62.202          | 51.443         | 50.404          |                | 54.451          |
| 16:00     | 61.609          | 51.181         | 50.658          | 73.778         | 55.495          |
| 17:00     | 61.812          | 52.04          | 53.341          | 73.568         | 58.654          |
| 18:00     | 62.109          | 51.173         | 56.103          | 73.256         | 61.029          |
| 19:00     | 61.383          | 51.425         | 53.794          | 73.132         | 61.737          |
| 20:00     | 61.386          | 51.377         | 53.323          | 73.263         | 62.909          |
| 21:00     | 58.995          | 50.929         | 51.774          | 73.195         | 65.481          |
| 22:00     | 57.924          | 50.346         | 50.088          | 72.357         | 58.253          |
| 23:00     | 55.032          | 50.022         | 48.464          | 72.407         | 55.742          |

**Table A1.3:** Tabular Representation of hourly raw data of Delhi on 29/10/2011

## HYDERABAD

| Date/Time | E.1673 HYD_Abit | E.1689 HYD_Jdmt | E.1691 HYD_Jhls | E.1687 HYD_Pngt | E.1690 HYD_Zoo |
|-----------|-----------------|-----------------|-----------------|-----------------|----------------|
| 00:00     | 64.571          | 60.754          |                 | 71.27           |                |
| 01:00     | 62.727          | 61.081          |                 | 70.155          |                |
| 02:00     | 59.717          | 58.757          |                 | 68.633          |                |
| 03:00     | 58.09           | 57.371          |                 | 67.808          |                |
| 04:00     | 59.596          | 57.893          |                 | 68.605          |                |
| 05:00     | 65.478          | 58.68           |                 | 71.129          |                |
| 06:00     |                 | 58.495          |                 | 75.17           |                |
| 07:00     |                 | 59.64           |                 | 75.348          |                |
| 08:00     | 70.418          | 62.203          |                 | 76.409          |                |
| 09:00     | 82.46           | 64.07           |                 | 76.037          |                |
| 10:00     | 73.259          | 64.738          |                 | 76.717          |                |
| 11:00     | 73.539          | 65.09           |                 | 76.649          |                |
| 12:00     | 76.182          | 64.669          |                 | 76.644          |                |
| 13:00     | 75.509          | 63.989          |                 | 77.363          |                |
| 14:00     | 74.475          | 64.837          |                 | 77.012          |                |
| 15:00     | 74.378          | 64.534          |                 | 76.757          |                |
| 16:00     | 74.257          | 64.813          |                 | 77.785          |                |
| 17:00     | 74.414          | 65.014          |                 | 78.169          |                |
| 18:00     | 75.337          | 63.272          |                 | 77.182          |                |
| 19:00     | 74.75           | 61.857          |                 | 77.174          |                |
| 20:00     | 74.962          | 61.211          |                 | 77.551          |                |
| 21:00     | 74.156          | 61.971          |                 | 77.607          |                |
| 22:00     | 72.136          | 61.781          |                 | 78.844          |                |
| 23:00     | 68.363          | 57.78           |                 | 77.012          |                |

 Table A1.4: Tabular Representation of hourly raw data of Hyderabad on 29/10/2011

## LUCKNOW

| Date/Time | E.1704 LKN_Hgnj | E.1714 LKN_Ingr | E.1716 LKN_Lhsp | E.1709 LKN_PGI | E.1686 LKN_Tlkt |
|-----------|-----------------|-----------------|-----------------|----------------|-----------------|
| 00:00     | 65.56           | 48.76           |                 |                | 48.72           |
| 01:00     | 66.58           | 45.979          |                 |                | 50.524          |
| 02:00     | 60.091          | 45.812          |                 |                | 49.245          |
| 03:00     | 52.997          | 46.949          |                 |                | 48.656          |
| 04:00     | 59.598          | 46.24           |                 |                | 46.455          |
| 05:00     | 59.288          | 45.72           |                 |                | 52.09           |
| 06:00     | 62.048          | 48.045          |                 |                | 53.041          |
| 07:00     | 67.455          | 48.782          |                 |                | 53.06           |
| 08:00     | 67.502          | 51.487          |                 |                | 57.206          |
| 09:00     | 69.067          | 51.943          |                 |                | 66.313          |
| 10:00     | 70.916          | 50.427          |                 |                | 62.417          |
| 11:00     | 73.027          | 50.163          |                 |                | 62.279          |
| 12:00     | 74.148          | 53.6            |                 |                | 61.469          |
| 13:00     | 74.251          | 53.66           |                 |                | 59.205          |
| 14:00     | 74.515          | 50.87           |                 |                | 61.327          |
| 15:00     | 74.416          | 51.802          |                 |                | 63.083          |
| 16:00     | 74.28           | 50.959          |                 |                | 62.908          |
| 17:00     | 74.645          | 52.156          |                 |                | 60.624          |
| 18:00     | 73.979          | 52.807          |                 |                | 57.868          |
| 19:00     | 74.38           | 54.141          |                 |                | 58.648          |
| 20:00     | 72.777          | 50.568          |                 |                | 58.131          |
| 21:00     | 71.608          | 51.407          |                 |                | 56.238          |
| 22:00     | 69.019          | 50.15           |                 |                | 53.363          |
| 23:00     | 66.968          | 45.799          |                 |                | 53.757          |

 Table A1.5: Tabular Representation of hourly raw data of Lucknow on 29/10/2011

# KOLKATA

| Date/Time | E.1707 KOL_Gprk | E.1708 KOL_HQ | E.1719 KOL_Ptli | E.1705 KOL_SSKM | E.1720 KOL_Nmkt |
|-----------|-----------------|---------------|-----------------|-----------------|-----------------|
| 00:00     | 60.475          | 56.868        | 46.195          | 55.887          | 58.558          |
| 01:00     | 58.268          | 53.985        | 43.408          | 54.176          | 56.529          |
| 02:00     | 59.023          | 52.337        | 45.115          | 51.995          | 56.682          |
| 03:00     | 59.746          | 50.415        | 45.494          | 52.518          | 56.411          |
| 04:00     | 60.346          | 53.678        | 49.127          | 52.049          | 57.66           |
| 05:00     | 61.584          | 57.498        | 50.934          | 56.095          | 59.771          |
| 06:00     | 60.141          | 57.385        | 49.87           | 57.693          | 62.257          |
| 07:00     | 61.436          | 59.327        | 52.551          | 57.88           | 63.902          |
| 08:00     | 61.731          | 59.882        | 51.367          | 58.868          | 63.976          |
| 09:00     | 62.608          | 60.912        | 49.965          | 61.058          | 64.375          |
| 10:00     | 62.913          | 61.285        | 50.207          | 63.961          | 65.904          |
| 11:00     | 64.458          | 61.392        | 51.233          | 64.338          | 67.292          |
| 12:00     | 62.916          | 60.741        | 52.321          | 63.989          | 67.289          |
| 13:00     | 63.923          | 60.747        | 49.971          | 64.054          | 67.448          |
| 14:00     | 63.734          | 60.504        | 49.096          | 63.831          | 67.947          |
| 15:00     | 64.52           | 61.167        | 51.121          | 61.646          | 68.56           |
| 16:00     | 65.975          | 60.854        | 55.201          | 61.804          | 67.52           |
| 17:00     | 66.783          | 60.833        | 57.858          | 61.388          | 69.802          |
| 18:00     | 63.685          | 62.059        | 60.038          | 59.169          | 67.112          |
| 19:00     | 63.647          | 62.061        | 58.797          | 58.214          | 67.302          |
| 20:00     | 63.688          | 63.742        | 59.729          | 57.205          | 66.685          |
| 21:00     | 62.931          | 64.56         | 63.433          | 58.12           | 66.316          |
| 22:00     | 61.675          | 62.615        | 57.52           | 57.045          | 66.763          |
| 23:00     | 62.278          | 61.749        | 55.558          | 55.589          | 63.501          |

**Table A1.6:** Tabular Representation of hourly raw data of Kolkata on 29/10/2011

## MUMBAI

| Date/Time | F 1712 MMB Ahsp | F 1715 MMB Bndr | F 1718 MMB HO | E.1702 MMB_TMCO | F 1703 MMB Vhsp |
|-----------|-----------------|-----------------|---------------|-----------------|-----------------|
| 00:00     |                 | 68.084          | 61.802        | 62.745          |                 |
| 01:00     | 58.428          | 66.556          | 60.892        | 56.048          |                 |
| 01:00     | 57.424          | 65.418          | 61.13         | 54.069          |                 |
| 02:00     |                 | 64.984          | 61.191        | 53.029          |                 |
| 03:00     | 57.904          | 65.76           | 60.726        | 52.681          |                 |
| 04.00     |                 | 65.98           | 61.194        | 53.574          |                 |
| 05:00     | 61.874          | 66.234          | 62.512        | 57.748          |                 |
| 07:00     |                 | 67.159          | 64.26         | 60.961          |                 |
| 07:00     | 63.311          | 67.536          | 64.872        | 60.713          |                 |
| 09:00     |                 | 68.805          | 67.266        |                 |                 |
| 10:00     | 64.183          | 69.172          | 66            | 60.932          |                 |
| 11:00     | 64.945          | 69.229          | 65.722        | 61.138          |                 |
| 11:00     | 64.988          | 69.531          | 65.754        | 62.77           |                 |
| 12:00     |                 | 69.16           | 65.787        | 62.019          |                 |
| 13:00     |                 | 69.168          | 65.346        | 60.039          |                 |
| 15:00     | 65.109          | 69.073          | 65.634        | 61.049          |                 |
| 16:00     | 65.18           | 68.988          | 64.779        | 61.65           |                 |
| 17:00     | 64.596          | 69.155          | 65.086        | 61.881          |                 |
| 18:00     |                 | 69.495          | 65.324        | 61.4            |                 |
| 19:00     | 63.692          | 68.837          | 64.402        | 62.548          |                 |
| 20:00     |                 | 68.582          | 64.122        |                 |                 |
| 21:00     |                 | 68.814          | 64.01         | 59.332          |                 |
| 22:00     |                 | 69.09           | 64.277        | 56.594          |                 |
| 23:00     |                 | 68.403          | 63.663        |                 |                 |

Table A1.7: Tabular Representation of hourly raw data of Mumbai on 29/10/2011

| LPeakC1 (Ins) (dBC | LCE1 (Avg.) (dBC) | LCE1 (Ins) (dBC) | AE1 (Avg.) (dBA) | AE1 (Ins) (dBA) | LCS1 (Avg.) (dBC) | LCS1 (Ins) (dBC) | LAS1 (Avg.) (dBA) | LAS1 (Ins) (dBA) | LCF1 (Min.) (dBC) | .CF1 (Max.) (dBC) |
|--------------------|-------------------|------------------|------------------|-----------------|-------------------|------------------|-------------------|------------------|-------------------|-------------------|
| 71.42              | 64.234            | 64.808           | 49.517           | 50.929          | 64.232            | 64.645           | 49.518            | 50.722           | 63.156            | 66.572            |
| 71.07              | 64.743            | 64.349           | 50.372           | 50.098          | 64.747            | 64.314           | 50.471            | 50.098           | 63.678            | 66.585            |
| 70.66              | 63.847            | 63.825           | 49.607           | 49.333          | 63.828            | 63.861           | 49.57             | 49.373           | 62.814            | 65.917            |
| 72.04              | 64.291            | 64.808           | 49.385           | 50.188          | 64.297            | 64.958           | 49.364            | 50.119           | 63.222            | 65.71             |
| 69.6               | 64.527            | 63.863           | 49.906           | 48.96           | 64.488            | 63.676           | 49.853            | 48.698           | 63.315            | 66.482            |
| 71.14              | 64.337            | 64.748           | 49.253           | 49.912          | 64.339            | 64.722           | 49.242            | 49.948           | 63.435            | 65.266            |
| 72.3               | 64.91             | 64.789           | 50.401           | 51.465          | 64.9              | 64.669           | 50.372            | 50.931           | 64.189            | 67.205            |
| 70.23              | 64.176            | 63.993           | 50.037           | 48.745          | 64.152            | 63.931           | 49.914            | 48.688           | 63.041            | 66.808            |
| 71.26              | 64.438            | 64.944           | 49.241           | 49.935          | 64.441            | 64.686           | 49.23             | 49.823           | 63.531            | 66.253            |
| 70.91              | 64.733            | 63.883           | 50.05            | 49.332          | 64.708            | 63.983           | 50.021            | 49.254           | 63.465            | 66.116            |
| 71.23              | 64.32             | 64.568           | 49.705           | 49.625          | 64.318            | 64.433           | 49.667            | 49.143           | 63.263            | 66.401            |
| 71.74              | 64.91             | 64.876           | 49.948           | 50.105          | 64.903            | 64.81            | 49.931            | 49.926           | 64.123            | 65.688            |
| 72.6               | 64.623            | 65.093           | 49.978           | 50.403          | 64.614            | 64.917           | 49.956            | 50.231           | 63.59             | 65.831            |
| 72.10              | 64.89             | 64.771           | 50.422           | 50.282          | 64.873            | 64.676           | 50.389            | 50.195           | 63.942            | 68.59             |
| 71.60              | 64.643            | 64.482           | 50.327           | 50.325          | 64.627            | 64.479           | 50.301            | 50.424           | 63.702            | 66.442            |
| 70.62              | 64.405            | 63.943           | 50.46            | 50.768          | 64.383            | 63.912           | 50.427            | 49.9             | 62.746            | 65.36             |
| 70.65              | 63.822            | 63.497           | 50.082           | 49.187          | 63.804            | 63.609           | 50.018            | 49.16            | 62.77             | 64.918            |
| 71.73              | 64.261            | 64.376           | 49.692           | 49.489          | 64.258            | 64.299           | 49.637            | 49.444           | 63.002            | 67.683            |
| 72.53              | 64.667            | 64.834           | 50.567           | 50.518          | 64.662            | 64.902           | 50.431            | 50.712           | 63.832            | 69.458            |
| 72.93              | 64.903            | 64.441           | 50.908           | 51.818          | 64.885            | 64.224           | 50.88             | 50.843           | 63.481            | 68.874            |
| 73.06              | 64.32             | 64.483           | 50.358           | 50.376          | 64.31             | 64.343           | 50.316            | 50.191           | 63.389            | 65.281            |
| 71.11              | 64.614            | 63.793           | 51.493           | 49.811          | 64.589            | 63.638           | 51.337            | 49.807           | 63.03             | 71.059            |
| 70.2               | 63.387            | 63.559           | 49.2             | 49.181          | 63.37             | 63.255           | 49.166            | 49.122           | 62.407            | 64.548            |
| 70.89              | 64.206            | 64.375           | 49.929           | 49.441          | 64.203            | 64.446           | 49.873            | 49.354           | 61.223            | 68.455            |
| 72.65              | 64.908            | 65.206           | 50.527           | 51.874          | 64.906            | 65.109           | 50.502            | 50.64            | 63.854            | 67.621            |
| 73.62              | 64.82             | 64.801           | 50.946           | 50.41           | 64.802            | 64.922           | 50.869            | 50.284           | 63.805            | 67.081            |
| 74.48              | 64.518            | 64.949           | 50.38            | 52.17           | 64.51             | 65.819           | 50.393            | 55.585           | 63.449            | 67.361            |
| 70.94              | 64.545            | 63.94            | 51.401           | 49.894          | 64.507            | 63.838           | 51.207            | 49.907           | 63.297            | 70.149            |
| 74.10              | 63.855            | 65.544           | 50.141           | 57.164          | 63.861            | 65.116           | 50.183            | 56.427           | 62.514            | 68.477            |
| 72                 | 64.324            | 64.914           | 49.766           | 49.767          | 64.304            | 64.954           | 49.636            | 49.821           | 63.429            | 65.522            |
| 72.76              | 65.256            | 65.209           | 51.109           | 50.545          | 65.249            | 65.163           | 51.032            | 50.503           | 63.967            | 73.227            |
| 72                 | 64.58             | 64.159           | 50.336           | 49.942          | 64.552            | 64.094           | 50.303            | 49.874           | 62.949            | 66.224            |
| 72.73              | 64.346            | 64.229           | 50.442           | 50.205          | 64.333            | 64.516           | 50.418            | 50.105           | 63.355            | 66.613            |
| 70.42              | 63.987            | 63.44            | 50.43            | 50.083          | 63.962            | 63.635           | 50.373            | 50.11            | 62.539            | 68.873            |
| 79.2               | 63.94             | 73.093           | 50.766           | 56.362          | 64.005            | 70.918           | 50.643            | 51.91            | 62.056            | 77.873            |
| 72.09              | 64.129            | 63.784           | 49.493           | 48.74           | 63.987            | 64.292           | 49.376            | 48.936           | 62.942            | 71.925            |
| 71.88              | 64.509            | 64.533           | 50.592           | 50.657          | 64.491            | 64.286           | 50.551            | 50.62            | 63.154            | 70.667            |
| 71.87              | 64.38             | 64.573           | 50.49            | 50.241          | 64.37             | 64.612           | 50.447            | 50.336           | 62.374            | 66.957            |

**Table A1.8:** Tabular Representation of Data on 10 minutes interval at D.C.E. NoiseMonitoring Station, Delhi on 29/10/2011

#### ANNEXURE 2

## **CALCULATION SHEET**

| DEL_DCE |        |    |       |          |        |          |          |
|---------|--------|----|-------|----------|--------|----------|----------|
| 06:00   | 51.218 | 5. | .1218 | 132373.2 | 5.1218 | 0.320113 | 3.201125 |
| 07:00   | 50.719 | 5. | .0719 | 118004.9 | 5.0719 | 0.316994 | 3.169938 |
| 08:00   | 51.178 | 5. | .1178 | 131159.6 | 5.1178 | 0.319863 | 3.198625 |
| 09:00   | 50.777 | 5. | .0777 | 119591.4 | 5.0777 | 0.317356 | 3.173563 |
| 10:00   | 49.937 | 4. | .9937 | 98559.84 | 4.9937 | 0.312106 | 3.121063 |
| 11:00   | 49.893 | 4. | .9893 | 97566.34 | 4.9893 | 0.311831 | 3.118313 |
| 12:00   | 49.816 | 4. | .9816 | 95851.74 | 4.9816 | 0.31135  | 3.1135   |
| 13:00   | 49.027 | 4. | .9027 | 79928.19 | 4.9027 | 0.306419 | 3.064188 |
| 14:00   | 50.171 | 5. | .0171 | 104016   | 5.0171 | 0.313569 | 3.135688 |
| 15:00   | 51.443 | 5. | .1443 | 139411.9 | 5.1443 | 0.321519 | 3.215188 |
| 16:00   | 51.181 | 5. | .1181 | 131250.2 | 5.1181 | 0.319881 | 3.198813 |
| 17:00   | 52.04  |    | 5.204 | 159955.8 | 5.204  | 0.32525  | 3.2525   |
| 18:00   | 51.173 | 5. | .1173 | 131008.7 | 5.1173 | 0.319831 | 3.198313 |
| 19:00   | 51.425 | 5. | .1425 | 138835.3 | 5.1425 | 0.321406 | 3.214063 |
| 20:00   | 51.377 | 5. | .1377 | 137309.3 | 5.1377 | 0.321106 | 3.211063 |
| 21:00   | 50.929 | 5. | .0929 | 123851.1 | 5.0929 | 0.318306 | 3.183063 |
|         |        |    |       |          |        |          | 50.769   |
|         |        |    |       |          |        |          |          |
|         |        |    |       |          |        |          |          |
|         |        |    |       |          |        |          |          |
|         |        |    |       |          |        |          |          |
|         |        |    |       |          |        |          |          |
| 22:00   | 50.346 | 5. | .0346 | 108292.9 | 5.0346 | 0.629325 | 6.29325  |
| 23:00   | 50.022 | 5. | .0022 | 100507.9 | 5.0022 | 0.625275 | 6.25275  |
| 00:00   | 49.673 | 4. | .9673 | 92747.03 | 4.9673 | 0.620913 | 6.209125 |
| 01:00   | 49.897 | 4. | .9897 | 97656.24 | 4.9897 | 0.623713 | 6.237125 |
| 02:00   | 50.16  |    | 5.016 | 103752.8 | 5.016  | 0.627    | 6.27     |
| 03:00   | 50.409 | 5. | .0409 | 109875.3 | 5.0409 | 0.630113 | 6.301125 |
| 04:00   | 50.527 | 5. | .0527 | 112901.6 | 5.0527 | 0.631588 | 6.315875 |
| 05:00   | 50.429 | 5. | .0429 | 110382.4 | 5.0429 | 0.630363 | 6.303625 |
|         |        |    |       |          |        |          | 50.18288 |

**Table A2.1:** Tabular Representation of Calculation sheet (MS Excel) of Ambient NoiseLevel, Leq at DCE, Delhi on Day 3 i.e. 29/10/2011

## ANNEXURE 3

## S.P.S.S. CALCULATION

|                       |           |           | Descr     | iptive Statis | tics      |            |           |            |
|-----------------------|-----------|-----------|-----------|---------------|-----------|------------|-----------|------------|
|                       |           |           | Std.      |               |           |            |           |            |
|                       | Ν         | Mean      | Deviation | Variance      | Skewness  |            | Kurt      | osis       |
|                       | Statistic | Statistic | Statistic | Statistic     | Statistic | Std. Error | Statistic | Std. Error |
| L10                   | 31        | 65.535242 | 6.8747636 | 47.262        | 257       | .421       | 792       | .821       |
| L50                   | 31        | 61.844274 | 7.3368540 | 53.829        | 043       | .421       | 880       | .821       |
| L90                   | 31        | 55.421526 | 7.0999288 | 50.409        | .685      | .421       | 028       | .821       |
| LeqdBADa<br>ytime     | 31        | 62.73335  | 7.172196  | 51.440        | 187       | .421       | 658       | .821       |
| LeqdBANi<br>ghttime   | 29        | 57.06272  | 6.441067  | 41.487        | .405      | .434       | 137       | .845       |
| Valid N<br>(listwise) | 29        |           |           |               |           |            |           |            |

**Table A 3.1:** Tabular Representation of Statistical Parameters calculated by SPSS for Day 1 i.e. 23/10/2011

|                       |           |           | Descr     | riptive Statis | stics     |            |           |            |
|-----------------------|-----------|-----------|-----------|----------------|-----------|------------|-----------|------------|
|                       |           |           | Std.      |                |           |            |           |            |
|                       | Ν         | Mean      | Deviation | Variance       | Skewness  |            | Kurt      | osis       |
|                       | Statistic | Statistic | Statistic | Statistic      | Statistic | Std. Error | Statistic | Std. Error |
| L10                   | 31        | 66.063784 | 6.8343682 | 46.709         | 198       | .421       | 241       | .821       |
| L50                   | 31        | 62.654919 | 7.7300552 | 59.754         | 025       | .421       | 829       | .821       |
| L90                   | 31        | 55.181123 | 6.9886793 | 48.842         | .518      | .421       | 321       | .821       |
| LeqdBAD<br>aytime     | 31        | 62.88258  | 6.845556  | 46.862         | 127       | .421       | 528       | .821       |
| LeqdBANi<br>ghttime   | 30        | 56.29447  | 6.625929  | 43.903         | .507      | .427       | 211       | .833       |
| Valid N<br>(listwise) | 30        |           |           |                |           |            |           |            |

**Table A 3.2**: Tabular Representation of Statistical Parameters calculated by SPSS for Day 2 i.e. 26/10/2011

|                       |           |           | Descr             | iptive Statis | tics      |            |           |            |
|-----------------------|-----------|-----------|-------------------|---------------|-----------|------------|-----------|------------|
|                       | Ν         | Mean      | Std.<br>Deviation | Variance      | Skewness  |            | Kurtosis  |            |
|                       | Statistic | Statistic | Statistic         | Statistic     | Statistic | Std. Error | Statistic | Std. Error |
| L10                   | 31        | 72.419900 | 5.6592237         | 32.027        | .421      | .421       | 321       | .821       |
| L50                   | 31        | 63.766323 | 6.9176472         | 47.854        | 243       | .421       | 691       | .821       |
| L90                   | 31        | 55.659613 | 7.5710843         | 57.321        | .449      | .421       | 200       | .821       |
| LeqdBADa<br>ytime     | 31        | 64.29900  | 6.599709          | 43.556        | 043       | .421       | 788       | .821       |
| LeqdBANi<br>ghttime   | 29        | 56.49214  | 9.015653          | 81.282        | -2.292    | .434       | 9.103     | .845       |
| Valid N<br>(listwise) | 29        |           |                   |               |           |            |           |            |

**Table A 3.3:** Tabular Representation of Statistical Parameters calculated by SPSS for Day 3 i.e. 29/10/2011

#### REFERENCES

1. Pollution control law series: PCLS/02/2010 (Sixth Edition).

2. Mathematical Marvels, A primer on Logarithms by Sh. Shailesh Shirali.

3. Water and Wastewater Engineering by Prof. S.K Garg.

4. Handbook on Environmental Noise by Bruel & Kjaer.

5. Fundamentals of Noise and vibration by Frank Fahy and John Walker.

6. Noise pollution and its measurement newsletter publication of CPCB.

7. Reference from website:www.freehearingtest.com/about.shtml

8. Reference from website: www.wikipedia.com.

9. S.Sampath, S.Murali Das and V.Sasi Kumar, Oct. 2004. Ambient noise levels in major cities in Kerala.

10. Kameswaran, S., 1992. Noise in the workplace, Science Today, August

11. Sharp, B.H. & Donovan, P.R., 1979. Motor vehicle noise. In: handbook of Noise control (2<sup>nd</sup> edition). (Ed.) Harris C.M., New York, Mc–Graw Hill Book Company.

12. Indian journal of Air Pollution Control, March, 2011.

13. Singal, S.P., March, 2011. Exposure of Urban Communities to Noise Pollution.

14. O.E.C.D., 1986. Report – Fighting Noise. Organisation for Economic Cooperation and Development Publication, Paris.

15. Ingerslev, F., 1987. Danish regulations for industrial noise exposure, occupational and environmental noise. Inter – noise 87,1589-1592.

16. Miller, J.D., 1974. Effects of noise on people. J. Acoust. Soc. Amer., 56, 729-764.

17. Singal, S.P., 2000, 2005. Noise pollution and control strategy. Narosa publishing house, New Delhi.

18. Ward, W.D. and Glorig, A., 1961. A case of fire cracker induced Hearing loss. Larynogo scope, 71, 1590-1596.

MoEF, GOI, 1999a. Ambient Air Quality Standards in Respect of Noise. Notification no.
 528 (E), 28<sup>th</sup> june, Ministry of Environment & Forests, Government of India.

20. MoEF, GOI, 1999b. Noise standards for Firecrackers. Notification no. 682 (E) Sr. 89, 5<sup>th</sup> october, Ministry of Environment & Forests, Government of India.

21. G. Singh, December 2000; Ambient noise level status in Delhi (1995-1999).

22. R. Singh, Dr. Mandal, March 2012; Assessment of Ambient noise level in the metropolitan cities during Diwali.

23. Master plan of Delhi, MPD-2021.