
A

Dissertation

On

TRAINING FREE SALIENT OBJECT

DETECTION IN VIDEO USING LOCAL STEERING
KERNEL

Submitted in Partial fulfillment of the requirement

For the award of the degree of

MASTER OF TECHNOLOGY

In

(Signal Processing and Digital Design)

Submitted by

Yogesh Kumar

Roll No. 08/SPD/2K10

Under the Guidance of

Asst. Prof. D. K. Vishwakarma

Department of Electronics and Communication Engineering

DEPARTMENT OF ELECTRONICS & COMMUNICATION
ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI- 110042

June 2012

2

DECLARATION BY THE CANDIDATE

June 2012

Date: ___________

I hereby declare that the work presented in this dissertation entitled “Training free

salient object detection in video using local steering kernel” has been carried out by me

under the guidance of Mr. D. K. Vishwakarma Assistant Professor, Department of

Electronics & Communication Engineering, Delhi Technological University, Delhi and

hereby submitted for the partial fulfillment for the award of degree of Master of

Technology in Signal Processing & Digital Design at Electronics & Communication

Department, Delhi Technological University, Delhi.

I further undertake that the work embodied in this major project has not been

submitted for the award of any other degree elsewhere.

Yogesh Kumar

DTU/M.Tech/176

M.Tech (SP&DD)

–––

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my

knowledge and belief.

Mr. D. K. Vishwakarma

Assistant Professor

Electronics & Communication Department

Dated:––––––––––– Delhi Technological University, Delhi-42

3

ACKNOWLEDGEMENTS

At this point I would like to thank the people that helped me producing this dissertation.

First, I thank Dr. Rajiv Kapoor Head of Department (Electronics and Communication

Engineering, DTU), and Mr. D. K. Vishwakarma for giving me the opportunity to write

this dissertation and supporting me along the way. Next, I would like to say thanks to all

my seniors and friends for their goodwill and support that helped me a lot in successful

completion of this dissertation.

Yogesh Kumar

DTU/M.Tech/176

M.Tech (SP&DD)

4

Table of Contents

Certificate ii

Acknowledgment iii

Table of contents iv

List of Figures vii

List of Tables viii

Abstract 1

 1 Introduction …...2

 1.1 Background of the Proposed Approach …..3

 2 Kernel Regression …..6

 2.1 Data Adaptive Regression Kernel …..6

 2.1.1 Kernel Regression in 1-D …...6

 2.1.2 Kernel Regression in 2-D …..10

 2.2 Smoothing Matrix Selection …...14

 3 Data Adaptive Kernel Regression …...16

 3.1 Data Adaptive Kernels …...16

 3.1.1 Bilateral Kernels …..17

 3.1.2 Steering Kernels …...20

 4 Principal Component Analysis …..27

 4.1 Principal Component Analysis …...28

 4.1.1 Dual PCA …...31

 4.2 Kernel PCA …..32

 4.2.1 Centering …..33

 4.3 Proof of PCA …..34

 5 Resemblance Map and Significance Testing …..36

 5.1 Feature Representation …...36

 5.2 Matrix Cosine as a Measure of Similaritry …..36

 5.3 Non-Parametric Significance Test and Non-Maxima Suppression ….......….......38

5

 6 Methodology ….........…..41

 6.1 Histogram Intersection ….....…........…..41

 6.2 Locally Adaptive Kernel Regression ….......…......…..42

 7 Simulation and Result …..47

 7.1 Result ….....................…...47

 7.2 Limitation …...48

 7.3 Conclusions …..49

A Equivalent Kernels 51

B Local Gradient Estimation 53

References 54

6

List of Figures

1.1) Given a query image Q, we want to detect/localize objects of interest in a target
image T. T is divided into a set of overlapping patches. - - - - - - - - - - - - - - - - - 4

2.1) The effect of the regression orders: (a) Zeroth order kernel regression (constant
model, N= 0), (b) First order kernel regression (linear model, N = 1), and (c)
Second order kernel regression (quadratic model, N = 2) - - - - - - - - - - - - - - -9

2.2) The data model for the kernel regression framework in 2-D. - - - - - - - - - - - - - 10

3.1) Kernel contours in a uniformly sampled data set: (a) Kernels in the classic
method depend only on the spatial distances, and (b) Data-adaptive kernels
elongate with respect to the local edge structure. -17

3.2) Bilateral kernel weights given by (2.2) at flat, edge, and Lena’s eye regions of a
clean image. -18

3.3) A visual analysis of the bilateral equivalent weight function Wi (K, Hs , hp, N, xi

−x, yi−y) in (3.4) at a variety of image structures; flat, strong edge, corner,

texture, and weak edge for the zeroth and second order (N = 0 and 2). - - - - 19

3.4) Horizontal cross-sections of the bilateral equivalent weight function Wi (K, Hs ,

hp, N, xi−x, yi−y) at the strong edge for the zeroth and second order (N =

0and 2): (a)-(b) the footprints of Wi for the zeroth and second order, respectively.

- 20

3.5) Bilateral kernel weights given by (3.2) at flat, edge, and Lena’s eye regions of a
noisy image. The noisy image is given by adding white Gaussian noise. - - - - 21

3.6) A schematic representation illustrating the effects of the steering matrix and its
components on the size and shape of the regression kernel footprint. - - - - - - - 23

3.7) A schematic representation of the estimates of local covariance metrics and the
steering kernel weights at a local region with one dominant orientation:

 (a) First, we estimate the gradients and compute the local covariance matrix Ci by

(2.13) for each pixel, and

(b) for y13, we compute the steering kernel weights with Ci for neighboring

pixels. Even though, in this case, the spatial distances between y13 and y1 and

between y13 y21 are equal, the steering kernel weight for y21 (i.e. KH21(x21 −

x13)) is larger than the one for y1 (i.e. KH1(x1 − x13)). This is because y13 and

7

y21 are located along the same edge. -26

5.1) (a) Resemblance map (RM) which consists of |ρi|

 (b) Resemblance map (RM) which consists of f (ρi). - - - - - - - - - - - - - - - - - - 38

5.2) (a) Query

(b) Target with detection

(c) Two significance tests

 (d) Non-maxima suppression -39

6.1) System Overview - 42

6.2) Steering Kernel - 43

7.1) Query Image - 47

7.2) Histogram intersection graphical output showing the frame at which abrupt
change occurs. -47

7.3) Tanks detected in the system in the frames. - 48

7.4) Chained query image generation

 (a) shows the detection using the image of figure 7.1(a)

 (b) shows the detection using the image of figure 7.1(b) - - - - - - - - - - - - - 49

8

List of Tables

1. Algorithm 4.1 – Direct PCA Algorithm..30

2. Algorithm 4.2 – Dual PCA …...32

3. Algorithm 5.1 – Pseudo-code for training-free video-shot object detection …....45

9

Abstract

Video is an ample source of information. It provides visual information about

scenes, actions or some activity. However, this information is implicitly buried inside the

raw video data, and is provided with the cost of very high temporal redundancy. While

the standard sequential form of video storage is adequate for viewing in a "movie mode",

it fails to support rapid access to information of interest that is required in many of the

emerging applications of video. Extracting a small number of key frames that can

abstract the content of video is very important for efficient browsing and retrieval in

video databases. This paper presents a training-free approach of detection of salient

object in a segmented video sequence. A video can be segmented by assuming that there

is an abrupt change in the video sequence. After the video is segmented the frame

obtained is matched using local adaptive kernel regression (LARK) against a single

query.

10

Chapter 1

Introduction

When we have large database of images and videos in the form of home videos or

videos from news feeds from different channels, they are always abundant in information

in the form of space time images. If we want to find a particular object then we have to go

through the whole video to search for that object. This search could be based on metadata

such as color, keyword, captioning or description to the image, but relying on metadata is

not satisfactory since it tend to produce large result with most of them being garbage only,

and it's almost impossible to manually search for keywords of an image in a video.

Content-based image retrieval (CBIR), is the application of computer vision

techniques to the image retrieval problem, that is, the problem of searching for digital

images in large databases. Content-based means that the search will analyze the actual

contents of the image. Most of the image retrieval techniques are based on the some kind

of feature extraction or content based algorithm in which resultant feature vector is

compared with the feature vector of the query image. The closest image in comparison

with the query image from the feature database is returned such that the result images

share common elements with the provided query. The term 'content' in this context might

refer to colors, shapes, textures, or any other information that can be derived from the

image itself. A system that can filter images based on their content would provide better

indexing and return more accurate results.

Tamura, Mori & Yamawaki (1978) [1] proposed texture based feature in which

measures look for visual patterns in images and how they are spatially defined. The

relative brightness of pairs of pixels is computed such that degree of contrast, regularity,

coarseness and directionality may be estimated. Tushabe and Wilkinson [2] use shape

filters to identify given shapes of an image which will often be determined first applying

segmentation or edge detection to an image. Recent techniques in image retrieval include

boundary detection feature extraction by Dr Kekre H.B, Mishra D, (2011)[3], in the

boundary detection method, the binary image is scanned until a boundary is found.

Scanning is done on the basis of K- Nearest Neighbor Method. PCA Algorithm for Feature

Extraction by Dr Kekre. H.B, Thepade S.D., Maloo A., (2010)[4] a 2-D data is reduced

11

into one-dimensional format by concatenating each row into a long thin vector. The

average image i.e the common part of each image in the test data is calculated and

subtracted from the original image to get the unique part of the image. Dr Kekre H.B,

Mishra D, (2010)[5] present a feature extraction using DCT transform which make use of

the DCT transform to design the sectors required for the search and retrieval of images

from a database. Feature extraction using fast fourier transform is used to generate the

feature vectors based on the mean values of real and imaginary parts of complex numbers

of polar coordinates in thefrequency domain

Many CBIR systems have been developed, but the problem of retrieving images on

the basis of their pixel content remains largely unsolved and for image retrieval they are

mostly dependent upon the training of algorithm of classifier.

Here we present an approachh which uses training free method and finds the

object pattern mostly on the basis of pixel conent. In a video indexing system we are

required to segment the video and retrieve the salient frames of the video and index them

according to our requirement. Image retrieval is the first problem in the task of video

indexing. One effective way of approaching this problem would be to segment the video

in the frames and detecting the change in frame which could be gradual or abrupt. When

this changing frame is obtained we can query this frame for salient object detection to

index it using local adaptive regression kernel. There is a recent work on video

segmentation using syntactic features with a fuzzy theoretic approach by R.S. Jadon,

Santanu Chaudhary and K. K. Biswas [7]. Feature matching algorithm in this paper

makes use of the generic object detection algorithm proposed by Seo and Milanfar [8].

1.1 Background of the Proposed Approach

Our proposal to the object detection task are three-fold. First, we propose to use

histogram intersection to segment the video in the video shots which comprises of a

frame at which an abrupt change in the videos frames has occurred. Second we propose

to use local regression kernels as descriptors which capture the underlying local structure

of the data exceedingly well, even in the presence of significant distortions. Third, we

12

propose the approach to the detection object using a non-parametric nearest-neighbor

classifier, along with a generalization of the cosine similarity to the matrix case. The

origin and motivation behind the use of these local kernels is the earlier work on

adaptive kernel regression for image processing and reconstruction [8]. In that work,

localized nonlinear filters were derived, which adapt themselves to the underlying

structure of the image in order to very effectively perform denoising, interpolation, and

deblurring [9]. The fundamental component of the so called steering kernel regression

method is the calculation of the local steering kernel (LSK) which essentially measures

the local similarity of a pixel to its neighbors both geometrically and radiometrically. The

key idea is to robustly obtain local data structures by analyzing the radiometric (pixel

value) differences based on estimated gradients, and use this structure information to

determine the shape and size of a canonical kernel. Denoting the target image (T), and

the query image (Q), we compute a dense set of local steering kernels from each. These

Figure 1.1: Given a query image Q, we want to detect/localize objects of interest in a target
image T. T is divided into a set of overlapping patches.

densely computed descriptors are highly informative, but taken together tend to be

redundant. Therefore, we derive features by applying dimensionality reduction using

PCA to these resulting arrays, in order to retain only the salient characteristics of the

13

local steering kernels. Generally, T is bigger than the query image Q. Hence, we divide

the target image T into a set of overlapping patches which are the same size as Q and

assign a class to each patch (Ti). The feature vectors which belong to a patch are thought

of as training examples in the corresponding class (See Fig. 1.1). The feature collections

from Q and Ti form feature matrices FQ and FTi. We compare the feature matrices FTi and

FQ from ith patch of T and Q to look for matches. We employ “Matrix Cosine Similarity”

as a similarity measure which generalizes the cosine similarity between two vectors to

the matrix case. We illustrate the optimality properties of the proposed approach using a

naive Bayes framework, which leads to the use of the Matrix Cosine Similarity (MCS)

measure. In order to deal with the case where the target image may not include any

objects of interest or when there are more than one object in the target, we also adopt the

idea of a significance test and non-maxima suppression.

14

Chapter 2

Kernel Regression

Kernel regression is known as a nonparametric approach that requires minimal

assumptions, and hence the framework is one of the suitable approaches to the regression

problem. In this introductory chapter, we study the classic kernel regression frame-work,

and expand it and develop applications for image.

2.1: Classic Kernel Regression and its Properties

In this section, we review the classic kernel regression framework, provide some

intuitions on computational efficiency as well as weaknesses of this basic approach, and

motivate the development of more powerful regression tools presented in the following

chapters.

2.1.1: Kernel Regression in 1-D

Classical parametric image processing methods rely on a specific model of the

signal of interest, and seek to compute the parameters of this model in the presence of

noise. Examples of this approach range from denoising to upscaling, interpolation, and

deblurring. A generative model based upon the estimated parameters is then produced as

the best estimate of the underlying signal.

In contrast to the parametric methods, non-parametric methods rely on the data

itself to dictate the structure of the model, in which case this implicit model is referred to

as a regression function [10]. With the relatively recent emergence of machine learning

methods, kernel methods have become well-known and used frequently for pattern

detection and discrimination problems. Surprisingly, it appears that the corresponding

ideas in non-parametric estimation – what we call here kernel regression, are not widely

recognized or used in the image and video processing literature. Indeed, in the last

decades, several concepts related to the general theory we promote here have been

rediscovered in different guises, and presented under different names such as normalized

15

convolution, bilateral filter, edge-directed interpolation, and moving least-squares. To

simplify this introductory presentation, we here treat the 1-D case where the measured data

are given by

y i=z (xi)+εi ,i=1,2,. .. , P (2.1)

z(·) is the (hitherto unspecified) regression function, εi is the independent and identically

distributed zero mean noise value, and P is the number of measured samples in a local

analysis window. As such, kernel regression provides a rich mechanism for computing

point-wise estimates of the function with minimal assumptions about global signal or noise

models.

While the specific form of the regression function z(·) may remain unspecified, if

we assume that it is locally smooth to some order N, then in order to estimate the value of

the function at any point x given the data, we can rely on a generic local expansion of the

function about this point. Specifically, if the position of interest x is near the sample at xi,

we have the N -term Taylor series

z (xi)= z (x)+ z ' (x)(x i−x)+
1
2!

z ' ' (x)(x i−x)2
+...+

1
N !

z(N)
(x)(x i−x)N

= β0+β1(x i− x)+β2(x i− x)2+...+βN (x i− x)N (2.2)

where z′(·) and z(N)(·) are the first and N-th derivatives of the regression function. The

above suggest that if we now think of Taylor series as a local representation of the

regression function, estimating the parameters β0 can yield the desired (local) estimate of

the regression function based on the data. Indeed, the parameters {βn}N
n=1 will provide

localized information on the nth derivatives of the regression function. Naturally, since this

approach is based on local approximation, a logical step to take is to estimate the

parameters {βn}N
n=0 from the data while giving the nearby samples higher weight than

samples farther away. A least-squares formulation capturing this idea is to solve the

following optimization problem:

min
βn

∑
i=1

P

[y i−β1(x i− x)−β2(x i−x)2
−⋯−β0(xi− x)N] 1

h
K(xi−x

h) (2.3)

where K (·) is the kernel function which penalizes distant away from the local position

where the approximation is centered, ant the smoothing parameter h (also called the

“bandwidth”) controls the strength of this penalty. In particular, the function K is a

16

symmetric function which attains its maximum at zero, satisfying

∫δK (δ)d δ ,∫ δ
2 K (δ)d δ=c (2.4)

where c is some constant value. The choice of the particular form of the function K is

open, and may be selected as a Gaussian, exponential, or other forms which comply with

the above constraints. It is known that for the case of classic regression the choice of the

kernel has only a small effect on the accuracy of estimation and therefore preference is

given to the differentiable kernels with low computational complexity such as the

Gaussian kernel.

Several important points are worth making here. First, the above structure allows

for tailoring the estimation problem to the local characteristics of the data, whereas the

standard parametric model is generally intended as a more global fit. Second, in the

estimation of the local structure, higher weight is given to the nearby data as com-pared to

samples that are farther away from the center of the analysis window. Mean-while, this

approach does not specifically require the data to follow a regular or equally spaced

sampling structure. More specifically, so long as the samples are near the point x the

framework is valid. Again this is in contrast to the general parametric approach which

generally either does not directly take the location of the data samples into account, or

relies on regular sampling over a grid. Third, and no less important the data-adaptive

approach is both useful for denoising, and equally viable for interpolation of sampled data

at points where no actual samples exist. Given the above observations, the kernel-based

methods are well-suited for a wide class of image/video processing problems of practical

interest.

Returning to the estimation problem based upon (2.3), one can choose the order N

to effect an increasingly more complex local approximation of the signal. In the non-

parametric statistics literature, locally constant, linear, and quadratic approximation

(corresponding to N = 0, 1, 2) have been considered most widely. In particular, choosing N

= 0, a locally linear filter is obtained, which is known as the Nadaraya-Watson Estimator

(NWE) [11]. Specifically, this estimator has the form:

ẑ (x)=
Σi=1

P K h(xi−x) y i

Σi=1
P Kh(x i−x)

(2.5)

where

17

K h(x i− x)=
1
h

K (xi−x

h) (2.6)

The NWE is the simplest manifestation of an adaptive filter resulting from kernel

regression framework.

 Of course, higher order approximations (N > 0) are also possible. The choice of

order in parallel with the smoothness (h) affects the bias and variance of the estimate. In

general, lower order approximates, such as NWE, result in smoother signals (large bias

and small variance) as there are fewer degrees of freedom. On the other hand over-fitting

happens in regressions using higher orders of approximation, resulting in small bias and

large estimation variance. we illustrate the effect of the regression orders from N = 0 to 2

with a fixed smoothing parameter in Figure 2.1, where the blue curve is the regression

(true) function, the gray circles (y1, y2, and y3) are the measurements with some noise at

x1, x2 and x3, respectively, and, in this illustration, we estimate an unknown value at the

position of interest x located between the samples y2 and y3 with different regression

orders. First, for the zeroth order (constant model, N = 0), we take only the constant term

of Taylor series into account, i.e. β0. In this case, the kernel regression estimates z(x) by

NWE (2.34); a weighted average of nearby samples with the weights that the kernel

Figure 2.1: The effect of the regression orders: (a) Zeroth order kernel regression (constant model,
N = 0), (b) First order kernel regression (linear model, N = 1), and (c) Second order kernel
regression (quadratic model, N = 2)

function gives. The red circle is the estimated value and the red line is the estimated fitted line.

18

Similar to the zeroth order case, we draw draw the estimate values and fitted lines by the first and

second order kernel regression, which ncorporate up to the linear and quadratic terms, respectively.

As seen in Figures 2.1(a)-(c), the estimated line fits the neighboring samples better the higher the

regression order becomes. This is because a high order regressor has more degrees of freedom,

which is the cause of small bias and large variance. We also note that smaller values for h result in

small bias and consequently large variance in estimates.

2.1.2 Kernel Regression in 2-D

Similar to the 1-D case in (2.1), the data model in 2-D is given by

y i=z (x i)+εi ,i=1,... , P , x i=[x1i , x2i]
T

(2.17)

where yi is a noisy sample at a sampling position xi (Note: x1i and x2i are spatial

coordinates), z(·) is again the (unspecified and bivariate) regression function to be

estimated, εi is an i.i.d. zero mean noise, and P is the total number of samples in an

arbitrary “window” around a position x of interest as shown in Figure 2.2.

Correspondingly, the local representation of the regression function using Taylor series (up

to the Nth polynomial) is given by

Figure 2.2: The data model for the kernel regression framework in 2-D.

19

z (xi)≈ z (x)+{∇ z (x)}T
(xi−x)+

1
2
(xi−x)T {H z (x)}(x i−x)+ ...

z (x)+{∇ z (x)}T (x i− x)+
1
2

vectT
{H z (x)}vect {(x i−x)(x i− x)T }+... (2.18)

where ∇ and H are the gradient (2 × 1) and Hessian (2 × 2) operators, respectively, and

vect(·) is the vectorization operator, which lexicographically orders a matrix into a

column-stack vector. Defining vech(·) as the half-vectorization operator of the “lower-

triangular” portion of a symmetric matrix, e.g.,

vech([a11 a12

a12 a22])=[a11 a12 a22]
T

vech([
a11 a12 a13

a12 a22 a23

a13 a23 a33
])=[a11 a12 a13 a22 a23 a33]

T
(2.19)

and considering the symmetry of the Hessian matrix, the local representation in (2.18) is

simplified to

z (xi)≈β0+β1
T
(x i−x)+β2

T vech{(xi−x)(xi−x)T
}+⋯ (2.20)

then, comparison of (2.18) and (2.20) suggests that β0 is the pixel value of interest, and the

vectors β1 and β2 are the first and second derivatives, respectively, i.e.,

β0=z (x) , (2.21)

β1=∇ z (x)=[∂ z (x)
∂ x1

∂ z (x)
∂ x2

]
T

(2.22)

β2=
1
2 [∂

2 z (x)

∂ x1
2 2

∂
2 z (x)

∂ x1∂ x2

∂
2 z (x)

∂ x 2
2]

T

(2.23)

As in the case of univariate data, the βn’s are computed from the following optimization

problem:

min{βn}
Σi=1

P [y i−β0−β1
T
(x i−x)−β2

T vech {(x i− x)(x i−x)T
}−...]

2
K H (x i−x) (2.24)

with

K H (x i−x)=
1

det (H)
K (H−1(x i− x)) (2.25)

where K is the 2-D realization of the kernel function, and H is the 2 × 2 smoothing matrix.

For example, if we choose Gaussian function for K , the kernel function is expressed as

20

K H (x i−x)=
1

2π√det (H T H)
exp {

−1
2

(xi− x)T
(H TH

)
−1
(x i− x)} (2.26)

Regardless of the regression order (N) and the dimensionality of the regression function,

we can rewrite the optimization problem (2.24) as a weighted least squares optimization

problem:

b̂=argmin
b

[(y−Xb)T K (y−Xb)] (2.27)

y=[y1 y2 ⋯ y p]
T

(2.28)

b=[β0 β1
T ⋯ βN

T]
T

(2.29)

k=diag [K H (x1− x) K H (x2−x) ⋯ K H (x p−x)] (2.30)

X=[
1 (x1− x)T vechT

{(x1− x)(x1− x)T
} ⋯

1 (x2− x)T vechT
{(x2− x)(x2−x)T

} ⋯
⋮ ⋮ ⋮ ⋮

1 (x p−x)T vechT
{(x p− x)(x p−x)T

} ⋯
] (2.31)

with “diag” defining a diagonal matrix. Using the notation above, the optimization (2.24)

provides the weighted least square estimator:

b̂=(xT KX)
−1

X T Ky (2.32)

Since our primary interest is to compute an estimate of the image (pixel values), the

necessary computations are limited to the ones that estimate the parameter β0. Therefore,

the estimator is simplified to

ẑ (x)=β̂ 0=e1
T (X T KX)

−1
X T Ky (2.33)

where e1 is a column vector with the first element equal to one, and the rest equal to zero.

Of course, there is a fundamental difference between computing β0 for the N = 0 case, and

using a high order estimator (N > 0) and then effectively discarding all βn’s except β0.

Unlike the former case, the high regression order method computes estimates of pixel

values assuming an N-th order local polynomial structure is present by including higher

order polynomial bases as in the matrix X (2.31). Similar to the 1-D case, for N = 0, the

kernel estimator (2.33) is expressed as

ẑ (x)=β̂ 0=
Σ

i=1

P
K H (x i−x) y i

Σ
i=1

P

K H (xi−x)
(2.34)

21

which is Nadaraya-Watson estimator (NWE) in 2-D. For example, when we choose the

kernel function as Gaussian (2.26), NWE is nothing but the well-known Gaussian low-pass

filter and it provides a pixel value of interest β0 by a weighted linear combination of the

nearby samples. Even the higher order estimator can be generally expressed in the weight

linear fashion as

ẑ (x)=β̂ 0=e1
T b̂= Σ

i=1

P
W i (K , H , N , x i− x) y i (2.35)

where

Σ
i=1

P
W i(.)=1 (2.36)

and we call Wi the equivalent kernel function for yi. It is worth noting that the estimator

(2.32) also yield local gradients for the regression orders N > 0. While the exact

expressions in Appendices A and B yield the mathematical property of the kernel

regression estimator, the pixel estimator and the gradient estimator can be simply

expressed as follows. We can rewrite the overall estimator (2.32) for the regression order

N > 0 as

b̂=(X T KX)
T
X T Ky=W N y=[

w0
T
(N)

w1
T
(N)

w2
T
(N)
⋮

] y (2.37)

where N is the regression order, and w0(N), w1 (N), and w2 (N) ∈ RP ×1 are the equivalent

kernel weight matrices that compute the unknown pixel value and its derivatives as

follows. From (2.35), we have

ẑ (x)=β̂ 0=e1
T b̂=W 0

T
(N) y (2.38)

∇ ẑ (x)=β̂ 1=[e2
T

e3
T]b̂=[w1

T
(N)

w2
T
(N)] y (2.39)

Note that when we estimate the nth derivatives of z(·), the regression order N must be

equal or higher than n (N ≥ n). For instance, w1(0) and w2(0) do not exist.

Therefore, regardless of the regression order, the classic kernel regression is local

weighted averaging of data (linear filtering), where the order determines the type of

complexity of the weighing scheme. This also suggests that higher order regressions (N >

0) are equivalents of the zeroth order regression (N = 0) but with a more complex

22

equivalent kernel function. In other words, to effect the higher order regressions, the

original kernel KH(xi−x) is modified to yield a newly adapted “equivalent” kernel.

2.2 Smoothing Matrix Selection

The shape (or contour) of the regression kernel as defined in (2.25), and

consequently the performance of the estimator depends on the choice of the smoothing

matrix H. For the bivariate regression problem, the smoothing matrix H is 2 × 2, and it

should extend the support of the regression kernel to contain “enough” samples. As

illustrated in Figure 2.10, it is reasonable to use a smaller support size in the area with

more available samples, whereas a larger support size is more suitable for the more

sparsely sampled area of the image. The cross validation “leave-one-out” method is a

popular technique for estimating the elements of the local smoothing matrices Hi for all the

given samples yi. However, as the cross validation method is computationally very

expensive, we can use a simplified and computationally more efficient model of the

smoothing matrix as

H i=hμ i I (2.40)

where µ0 is a scalar that captures the local density of samples (nominally set to µ0 = 1) and

h is the global smoothing parameter.

The global smoothing parameter is directly computed from the cross validation

method, by minimizing the following cost function

C cv(h)=
1
P

Σ
i=1

P

{ ̂z i−.(x i)− yi}
2

(2.41)

where ẑi −(xi) is the estimated pixel values without including the ith sample (i.e., y0) at xi.

To further reduce the computations, rather than leaving a single sample out, we can leave

out a set of samples (a whole row or column).

The local density parameter µi is estimated as follows

μ i={
f̂ (xi)

exp(1
P
Σi=1

P log f̂ (x i))}
−ζ

(2.42)

where the sample density f̂ (x i) is measured as

23

f̂ (x i)=
1
P

Σ
i=1

P
K H i

(x i− x) (2.43)

and ζ, the density sensitivity, is a scalar satisfying 0 < ζ ≤ 1. Note that Hi and µi are

estimated in an iterative fashion. In the first iteration, µi is initialized by 1 and we estimate

the density by (2.43). Then, we update µi by (2.42) with the estimated density and estimate

the density. The process is repeated until µi converges (typically, only a few iterations (at

most 5 iterations)).

24

Chapter 3

Data-Adaptive Kernel Regression

In the previous chapter, we studied the classic kernel regression framework and

its properties. One fundamental improvement on the above method can be realized by

noting that, the local polynomial kernel regression estimates, independent of the

regression order N, are always local “linear” combinations of the data. As such, though

elegant, relativity easy to analyze, and with attractive asymptotic properties, they suffer

from an inherent limitation due to this local linear action on the data. In what follows, we

discuss extensions of the kernel regression method that enable this structure to have

nonlinear, more effective, action on the given data: data-adaptive kernel regression.

3.1 Data-Adaptive Kernels

Data-adaptive kernel regression relies on not only the spatial properties (the

sample location and density), but also the photometric properties of these samples (i.e.

pixel values). Thus, the effective size and shape of the regression kernel are adapted

locally to image feature such as edges. A desired property of such regression kernel is

illustrated in Figure 3.1, in which the classic kernel estimates the pixel z(x) by the

combination of neighboring samples with linear weights while the data-adaptive kernel

elongates/spreads along the local edge structure and the estimate is most strongly

affected by the edge pixels. Hence, the data-adaptive kernel approach effectively sup-

presses noise while preserving local image structures. Data-adaptive kernel regression is

formulated as an optimization problem where the data-adaptive kernel function

min {Βn}
Σi=1

P [y i−Β0−Β1
T (x i− x)−Β2

T vech {(x i− x)(x i−x)T }−...]2 K adapt(xi−x , y i− y)

(3.1)

Kadapt now depends on the spatial sample co-ordinates xi’s and density as well as the

photometric values yi of the data. In the following, we study two different data-adaptive

kernels: bilateral kernel and steering kernel, and discuss their properties.

25

(a) Contour of classic kernel (b) Contours of data-adaptive kernels

Figure 3.1: Kernel contours in a uniformly sampled data set: (a) Kernels in the classic method
depend only on the spatial distances, and (b) Data-adaptive kernels elongate with respect to the
local edge structure.

3.1.1 Bilateral Kernel

A simple and intuitive choice of the Kadapt is to use separate terms for penalizing

the spatial distance between the pixel position of interest x and its neighboring pixel

positions {xi}, and the photometric “distance” between the pixel of interest y and its

neighbors { yi }:

Kbilat (x i− x , y i− y)=K H s
(x i− x) . K hp

(yi− y) .

where Hs (= hsI) is the spatial smoothing (diagonal) matrix and hp is the photometric

smoothing scalar. Figure 3.2 illustrates weight values for this bilateral kernel function at

a few different regions of the clean Lena image: flat, edge, and Lena’s eye. As seen in the

figure, the photometric kernel captures local image structures effectively. The properties

of this adaptive method, which we call bilateral kernel regression (for reasons that will

become clear shortly), can be better understood by studying the special case of the zeroth

order (N = 0), which results in a data-adapted version of the Nadaraya-Watson estimator

(NWE):

ẑ (x)=Β̂0=
Σi=1

P K H S
(x i−x)K h p

(y i− y) y i

Σi=1
P K H S

(xi−x)K h p
(y i− y)

 (3.3)

26

Interestingly, this is nothing but the well-studied and popular bilateral filter. We note that,

in general, since the pixel values (y) at an arbitrary position (x) might be unavailable

from the given data, the direct application of the bilateral kernel function (3.2) is limited

to the denoising problem.

 This limitation, however, can be overcome by using an initial estimate of y by an

appropriate interpolation technique. Also, it is worth noting that the bilateral kernel

choice, along with higher order choices for N (> 0), will lead to generalizations of the

bilateral filter.

Similar to classic kernel regression, the pixel estimator given by bilateral kernel

regression is also summarized as the form of the weighted linear combination of all the

neighboring samples using the bilateral “equivalent” weight function Wi regardless of the

regression order N as follows:

Figure 3.2: Bilateral kernel weights given by (2.2) at flat, edge, and Lena’s eye regions of a
clean image.

ẑ (x)=Β̂0=Σi=1
P W i(K , H S , hp , N , x i− x , y i− y) y i (3.4)

Figure 3.3 illustrates the bilateral equivalent weight function Wi (K , Hs , hp, N , xi −x, yi

− y) in (3.4) at a variety of image structures for the zeroth and second orders (N = 0 and

2). Note that each weigh function is respectively normalized. Figure 3.4 illustrates the

details of Wi at the strong edge:

27

As a further extension of the standard bilateral filter, iterative filtering in order to

intensify the smoothing effect. The iterative filtering process is as follows: (i) apply

bilateral filter to the given noisy data, (ii) apply bilateral filter to the previous estimate,

(iii) repeat the step (ii). For N = 0, such estimator can be written as

ẑ(l+1)
(x)=

Σi=1
P K H s

(x i−x)K h p
(ẑ(l)(xi)− ẑ(l)(x)) ẑ(l)(x i)

Σi=1
P K H s

(x i−x)Kh p
(ẑ(l)(x i)− ẑ(l)(x))

 (3.5)

Figure 3.3: A visual analysis of the bilateral equivalent weight function Wi (K , Hs , hp, N , xi
−x, yi−y) in (3.4) at a variety of image structures; flat, strong edge, corner, texture, and weak
edge for the zeroth and second order (N = 0 and 2).

where Z(0)(xi) = yi and ℓ is the index of the number of iterations. This filtering algorithm is very

similar to Mean-Shift algorithm, in which the spatial kernel function Khs (xi − x) is not taken into

account.

The bilateral filter has appeared in another form (3.3), which is known as the Susan filter.

The difference between bilateral filter and Susan filter is minor; Susan filter excludes the center

pixel from the estimates. That is to say, Susan filter is expressed as

ẑ (x)=Β̂0=
Σx i≠ x K H s

(x i−x)K H p
(y i− y) y i

Σx i≠ x K H s
(x i− x)K H p

(y i− y)
(3.6)

 This small modification significantly improves the filter performance in particular when

28

the given data contains a few outliers (e.g. salt & pepper noise). For the bilateral filter, such

(a) Zeroth order (b) Second order

Figure 3.4: Horizontal cross-sections of the bilateral equivalent weight function Wi (K, Hs , hp,
N , xi − x, yi − y) at the strong edge for the zeroth and second order (N = 0and 2): (a)-(b) the
footprints of Wi for the zeroth and second order, respectively.

outlier pixels yields very small photometric kernel values for neighboring pixels because

the photometric distances, yi − y, tend to be large. In other words, the bilateral filter

doesn’t smooth an outlier pixel with its neighboring pixels.

In any event, breaking K adapt into spatial and photometric terms as utilized in

the bilateral case weakens the estimator performance since it limits the degrees of

freedom and ignores correlations between positions of the pixels and their values. In

particular, we note that, for very noisy data sets, the photometric distances, yi − y , tend

to be large and noisier. Therefore, most photometric weights are close to zero and also

noisy as shown in Figure 3.5. Such weights are effectively useless. Although we could

set the photometric smoothing parameter (hp) larger in order to reduce the effect of the

noisy photometric distances, the bilateral filter becomes almost equivalent to the non-

linear (Gaussian low-ass) filter with a large hp. The following section provides a general

solution to overcome this and many other drawbacks of competing approaches.

3.1.2 Steering Kernel

The filtering procedure that we propose next takes the data-adaptive idea one step

29

further, based upon the earlier nonparametric framework. In particular, we observe that

the effect of computing the photometric kernel, Khp (yi − y) in (3.2) is to implicitly

measure a function of the local

Figure 3.5: Bilateral kernel weights given by (3.2) at flat, edge, and Lena’s eye regions of a
noisy image. The noisy image is given by adding white Gaussian noise.

gradient estimated between neighboring pixels and to use this estimate to weight the

respective measurements. As an example, if a pixel is located near an edge, then pixels

on the same side of the edge will have much stronger influence in the filtering. With this

an initial estimate of the image gradients is made using some kind of gradient estimator

(say the second order classic kernel regression method). Next, this estimate is used to

measure the dominant orientation of the local gradients in the image. In a second

filtering stage, this orientation information is then used to adaptively “steer” the local

kernel, resulting in elongated, contours spread along the directions of the local edge

structure. With these locally adapted kernels, the denoising is effected most strongly

along the edges, rather than across them, resulting in strong preservation of details in the

final output. To be more specific, the data-adaptive kernel function takes the form

30

K steer(x i−x , yi− y)=K H i

steer(xi−x) (3.7)

where Hi
steer’s are now the data-dependent full (2 × 2) matrices which we call steering

matrices. We define them as

H i
steer

=hμi C i

−1
2 (3.8)

where again h and µi are the global smoothing parameter and the local density parameter,

respectively, and Ci’s are (symmetric, 2 × 2) covariance matrices based on differences in

the local gray-values. A good choice for Ci will effectively spread the kernel function

along the local edges, as shown in Figure 3.1(b). It is worth noting that, even if we

choose a large h in order to have a strong denoising effect, the undesirable blurring

effect, which would otherwise have resulted, is tempered around edges with appropriate

choice of Ci. With such steering matrices, for example, if we choose a Gaussian kernel,

i.e. plugging the steering matrix (3.8) into Gaussian kernel function, the steering kernel

is mathematically represented as

K H i
steer(x i−x)=

√det(C i)

2πh2
μ

2 exp{
−(x i− x)T C i(xi−x)

2 πh2
μ

2 } (3.9)

It is also noteworthy that, for the estimate of the unknown pixel β0(= z (x)), the steering

kernel function takes all the steering matrices (Hi
steer) of the neighboring pixels yi around

the position of interest x into account, and hence, the steering kernel is not simply elliptic

but it provides us weights that fit the local image structures more flexibly. We will show

some actual steering kernels shortly in this section.

The local edge structure is related to the gradient covariance (or equivalently, the

locally dominant orientation), where a naive estimate of this covariance matrix may be

obtained as follows:

C i
naive

= J i
T J i (3.10)

where Ji is a stack of local gradient vectors in a local analysis window ωi:

31

J i=[
⋮ ⋮

zx1
(x j) z x2

(x j)

⋮ ⋮] (3.11)

zx1(·) and zx2(·) are the first derivatives along x1 (vertical) and x2 (horizontal) directions,

and ωi is a local analysis window around the position of a given sample. The dominant

local orientation of the gradients is then related to the eigenvectors of this estimated

matrix. Since the gradients, zx1(·) and zx2(·), depend on the pixel values {yi}, and since

the choice of the localized kernels in turns depends on these gradients, it, therefore,

follows that the “equivalent” kernels for the proposed data-adaptive methods form a

locally “nonlinear” combination of the data:

ẑ (x)=Σi=0
P W i(K , H i

steer , N , xi− x) y i (3.12)

While the above approach to computing the steering matrices, is simple and has nice

tolerance to noise, the resulting estimate can be unstable, and, therefore, care must be

taken not to take the inverse of the estimate directly in this case. In such case, a diagonal

loading or regularization methods can be used to obtain stable estimates of the

covariance. We take a more robust approach to the design of the steering matrix.

Figure 3.6: A schematic representation illustrating the effects of the steering matrix and its
components C i=γ i Rθi

Λ i Rθi

T on the size and shape of the regression kernel footprint.

In order to have a more convenient form of the covariance matrix, we decompose

it into three components (equivalent to eigenvalue decomposition) as follows:

C i=γ i Rθi
Λi Rθi

T (3.13)

where Rθi is the rotation matrix and Λi is the elongation matrix:

32

Rθi
=[cosθi sinθi

−sinθi cosθi
] , Λ i=[

ϱi 0

0
1
ϱ i
] (3.14)

Now, the covariance matrix given by the three parameters γi, θi , and ϱi, which are the

scaling, rotation, and elongation parameters, respectively. Figure 3.6 schematically

explains how these parameters affect the spreading of kernels. First, the circular kernel is

elongated by the elongation matrix Λi , and its semi-minor and major axes are given by

ϱi. Second, the elongated kernel is rotated by the matrix Rθi. Finally, the kernel is scaled

by the scaling parameter γi.

We define the scaling, elongation, and rotation parameters as follow. The

dominant orientation of the local gradient field is the singular vector corresponding to

the smallest (nonzero) singular value of the local gradient matrix Ji (3.11) arranged in the

following form:

J i=U i S iV i
T=U i[s1 0

0 s2
][v1 v2]

T
(3.15)

where UiSiVi
T is the truncated singular value decomposition of Ji , and Si is a diagonal 2

× 2 matrix representing the energy in the dominant directions. Then, the second column

of the 2 × 2 orthogonal matrix Vi, v2 = [v12, v22]T, defines the dominant orientation angle

θi as

θi=arctan(v12

v22
) (3.16)

That is, the singular vector corresponding to the smallest nonzero singular value s2 of Ji

represents the dominant orientation of the local gradient field. The elongation parameter

ϱi can be scaled corresponding to the energy of the dominant gradient direction

ϱi=
s1+λ

'

s2+λ
' ,λ '

≥0, (3.17)

where λ′ is a “regularization” parameter for the kernel elongation, which dampens the

33

effect of the noise and restricts the ratio from becoming degenerate. The intuition behind

(3.17) is to keep the shape of the kernel circular in flat areas (s1 ≈ s2 ≈ 0), and elongate it

near edge areas (s1 >> s2). Finally, the scaling parameter γi is defined by

γi=(s1 S2+λ ' '

M)
α

(3.18)

where λ′′ is again a “regularization” parameter, which dampens the effect of the noise

and keeps γi from becoming zero, M is the number of samples in the local analysis

window, and α is the structure sensitivity parameter. The intuition behind (3.18) is that,

to reduce noise effects while producing sharp images, large footprints are preferred in the

flat (smooth regions) and smaller ones in the textured areas. Note that the local gradients

and the eigenvalues of the local gradient matrix Ci
naïve are smaller in the flat (low-

frequency) areas than the textured (high-frequency) areas. As the product s1 s2 is the

geometric mean of the eigenvalues of Ci
naïve γi makes the steering kernel area large in the

flat, and small in the textured areas. The structure sensitivity α (typically 0 ≤ α ≤ 0.5)

controls how strongly the size of the kernel footprints is affected by the local structure.

The product of the singular values indicates the amount of energy of the local signal

structure: the larger the product, the stronger and the more complex the local structure is.

A large α is preferable when the given signal carries severe noise.

Figure 3.7 illustrates a schematic representation of the estimate of local co-

variance matrices and the computation of steering kernel weights for the center pixel y13.

First, we estimate the gradients and compute the local covariance matrix Ci by (3.13)-

(3.18) for each pixel.

 We compute the steering kernel weights for each neighboring pixel with its Ci. In

this case, even though the spatial distances from y13 to y1 and to y21 are equal, the steering

kernel weight for y21 (i.e. KH21(x21 − x13)) is larger than the one for yi (i.e. KH1(x1 − x13)).

Moreover, as Figure 3.8(a) illustrates the steering kernel weights on a variety of image

structures of a clean Lena image, weights given by the steering kernel function (3.9)

with (3.13) captures local structures more effectively. This is because the steering kernel

function is a function of the position of neighboring samples (xi) with the position of

34

interest (x) held fixed. Each neighboring sample (yi) has a steering matrix (Hi
steer), and,

(a) A covariance matrix from local gradients with 3 × 3 analysis window (b)Steering kernel
weights

Figure 3.7: A schematic representation of the estimates of local covariance metrics and the
steering kernel weights at a local region with one dominant orientation: (a) First, we estimate the
gradients and compute the local covariance matrix Ci by (2.13) for each pixel, and (b) Next, for
y13, we compute the steering kernel weights with Ci for neighboring pixels. Even though, in this
case, the spatial distances between y13 and y1 and between y13 y21 are equal, the steering kernel
weight for y21 (i.e. KH21(x21 − x13)) is larger than the one for y1 (i.e. KH1(x1 − x13)). This is because
y13 and y21 are located along the same edge.

unlike the adaptive normalized convolution method, the steering kernel function takes

not only the steering matrix at the position of interest but also its neighborhoods’ into

account. As a result, the steering kernel has more flexibility to adapt to local image

structures. This property is effective for object recognition applications.

35

Chapter 4

Principal component analysis

In many problems, the measured data vectors are high-dimensional but we may

have reason to believe that the data lie near a lower-dimensional manifold. In other words,

we may believe that high-dimensional data are multiple, indirect measurements of an

underlying source, which typically cannot be directly measured. Learning a suitable low-

dimensional manifold from high-dimensional data is essentially the same as learning this

underlying source.

Dimensionality reduction can also be seen as the process of deriving a set of

degrees of freedom which can be used to reproduce most of the variability of a data set.

Consider a set of images produced by the rotation of a face through different angles.

Clearly only one degree of freedom is being altered, and thus the images lie along a

continuous one-dimensional curve through image space.

Manifold learning techniques can be used in different ways including:

1. Data dimensionality reduction: Produce a compact low-dimensional encoding of a

given high dimensional data set.

2. Data visualization: Provide an interpretation of a given data set in terms of intrinsic

degree of freedom, usually as a by-product of data dimensionality reduction.

3. Pre-processing for supervised learning: Simplify, reduce, and clean the data for

subsequent supervised training.

Many algorithms for dimensionality reduction have been developed to accomplish

these tasks. However, since the need for such analysis arises in many areas of study,

contributions to the field have come from many disciplines. While all of these methods

have a similar goal, approaches to the problem are different.

Principal components analysis (PCA) [12] is a classical method that provides a

sequence of best linear approximations to a given high-dimensional observation. It is one

of the most popular techniques for dimensionality reduction. However, its effectiveness is

limited by its global linearity. Multidimensional scaling (MDS) [13], which is closely

related to PCA, suffers from the same drawback. Independent component analysis (ICA)

[14] also assume that the underling manifold is a linear subspace. However, they differ

36

from PCA in the way they identify and model the subspace. The subspace modeled by

PCA captures the maximum variability in the data, and can be viewed as modeling the

covariance structure of the data, whereas factor analysis models the correlation structure.

ICA starts from a factor analysis solution and searches for rotations that lead to

independent components. The main drawback with all these classical dimensionality

reduction approaches is that they only characterize linear subspaces (manifolds) in the

data.

4.1 Principal Components Analysis

Principal components analysis (PCA) is a very popular technique for

dimensionality reduction. Given a set of data on n dimensions, PCA aims to find a linear

subspace of dimension d lower than n such that the data points lie mainly on this linear

subspace (See Figure 1.2 as an example of a two-dimensional projection found by PCA).

Such a reduced subspace attempts to maintain most of the variability of the data.

The linear subspace can be specified by d orthogonal vectors that form a new

coordinate system, called the `principal components'. The principal components are

orthogonal, linear transformations of the original data points, so there can be no more than

n of them. However, the hope is that only d < n principal components are needed to

approximate the space spanned by the n original axes. The most common definition of

PCA, due to Hotelling [15], is that, for a given set of data vectors x i ,i∈1 . .. t , the d

principal axes are those orthonormal axes onto which the variance retained under

projection is maximal. In order to capture as much of the variability as possible, let us

choose the first principal component, denoted by U1, to have maximum variance. Suppose

that all centered observations are stacked into the columns of an n×t matrix X, where each

column corresponds to an n-dimensional observation and there are t observations. Let the

first principal component be a linear combination of X defined by coefficients (or weights)

w = [w1 . . .wn]. In matrix form:

U 1=wT X

var (U 1)=var (wT X)=wT Sw

where S is the n × n sample covariance matrix of X.

Clearly var(U1) can be made arbitrarily large by increasing the magnitude of w.

37

Therefore, we choose w to maximize wTSw while constraining w to have unit length.

max wT Sw

subject to wT w=1

To solve this optimization problem a Lagrange multiplier α1 is introduced:

L(w ,α)=wT Sw−α1(w
T x−1) (4.1)

Differentiating with respect to w gives n equations,

Sw=α1 w

Pre-multiplying both sides by wT we have:

wT Sw=α1 wT w=α1

var(U1) is maximized if α1 is the largest eigenvalue of S.

Clearly α1 and w are an eigenvalue and an eigenvector of S. Differentiating (4.1)

with respect to the Lagrange multiplier α1 gives us back the constraint:

wT w=1

This shows that the first principal component is given by the normalized

eigenvector with the largest associated eigenvalue of the sample covariance matrix S. A

similar argument can show that the d dominant eigenvectors of covariance matrix S

determine the first d principal components.

Another nice property of PCA, is that the projection onto the principal subspace

minimizes the squared reconstruction error, ∑i=1

t

∥x i− x̂ i∥
2

.In other words, the principal

components of a set of data in ℝ
n provide a sequence of best linear approximations to

that data, for all ranks d ≤n

Consider the rank-d linear approximation model as:

f (y)= x̄+U d y

This is the parametric representation of a hyperplane of rank d.

For convenience, suppose x = 0 (otherwise the observations can be simply replaced

by their centered versions x̃= xi− x̄). Under this assumption the rank d linear model

would be f (y)=U d y , where Ud is a n × d matrix with d orthogonal unit vectors as

columns and y is a vector of parameters. Fitting this model to the data by least squares

leaves us to minimize the reconstruction error:

38

min
U d , yi

∑
i

t

∥xi−U d y i∥
2

By partial optimization for yi we obtain:

d
dy i

=0⇒ y i=U d
T xi

Now we need to find the orthogonal matrix Ud:

min
Ud

∑
i

t

∥x i−U d Dd
T xi∥

2

Define H d=U d U d
T . Hd is an n× n matrix which acts as a projection matrix and

projects each data point xi onto its rank d reconstruction. In other words, Hd xi is the

orthogonal projection of xi onto the subspace spanned by the columns of Ud. A unique

solution U can be obtained by finding the singular value decomposition of X [17]. For

each rank d, Ud consists of the first d columns of U.

Clearly the solution for U can be expressed as singular value decomposition (SVD)

of X.

X =U ΣV T

since the columns of U in the SVD contain the eigenvectors of XXT. The PCA procedure is

summarized in Algorithm 4.1

Algorithm 4.1

Recover basis: Calculate XX T
=∑i=1

t
x i x i

T and let U = eigenvectors of XX T

corresponding to the top d eigenvalues.

Encode training data: Y = UTX where Y is a d × t matrix of encodings of the original

data.

Reconstruct training data: X̂ =UY=UU T X

Encode test example: y = UTx where y is a d-dimensional encoding of x.

Reconstruct test example: x̂=Uy=UU T x

Table 4.1: Direct PCA Algorithm

39

4.1.1 Dual PCA

It turns out that the singular value decomposition also allows us to formulate the

principle components algorithm entirely in terms of dot products between data points and

limit the direct dependence on the original dimensionality n. This fact will become

important below.

Assume that the dimensionality n of the n×t matrix of data X is large (i.e., n >> t).

In this case, Algorithm 4.1 (Table 4.1) is impractical. We would prefer a run time that

depends only on the number of training examples t, or that at least has a reduced

dependence on n.

Note that in the SVD factorization X = UΣVT , the eigenvectors in U corresponding

to nonzero singular values in Σ (square roots of eigenvalues) are in a one-to-one

correspon-dence with the eigenvectors in V. Now assume that we perform dimensionality

reduction on U and keep only the first d eigenvectors, corresponding to the top d nonzero

singular values in Σ. These eigenvectors will still be in a one-to-one correspondence with

the first d eigenvectors in V:

XV = U Σ

where the dimensions of these matrices are:

 X U Σ V

n×t n×d d×d t×d

 diagonal

Crucially, Σ is now square and invertible, because its diagonal has nonzero entries. Thus,

the following conversion between the top d eigenvectors can be derived:

U = XV Σ-1 (4.2)

Replacing all uses of U in Algorithm 1 with XV Σ-1 gives us the dual form of PCA,

Algorithm 2 (see Table 4.2). Note that in Algorithm 4.2 (Table 4.2), the steps of

''Reconstruct training data" and ''Reconstruction test example" still depend on n, and

therefore still will be impractical in the case that the original dimensionality n is very

large. However all other steps can be done conveniently in the run time that depends only

on the number of training examples t.

40

Algorithm 4.2

U eigenvectors, X

Recover basis: Calculate XTX and let V = eigenvectors of XTX corresponding to the top d

eigenvalues. Let Σ = diagonal matrix of square roots of the top d eigenvalues.

Encode training data: Y = UTX = Σ VT where Y is a d × t matrix of encodings of the

original data.

Reconstruct training data: X̂ = UY = U ΣV T
= XV Σ

−1
ΣV T

= XVV T

Encode test example: y = UT x = Σ
−1V T X T x = XV T X T x where y is a d

dimensional encoding of x.

Reconstruct test example: x̂=Uy=UU T x=XV Σ
−2V T X T x=XV Σ

−2 V T X T x
Table 4.2: Dual PCA Algorithm

4.2 Kernel PCA

PCA is designed to model linear variabilities in high-dimensional data. However,

many high dimensional data sets have a nonlinear nature. In these cases the high-

dimensional data lie on or near a nonlinear manifold (not a linear subspace) and therefore

PCA can not model the variability of the data correctly. One of the algorithms designed to

address the problem of nonlinear dimensionality reduction is Kernel PCA. In Kernel PCA,

through the use of kernels, principle components can be computed efficiently in high-

dimensional feature spaces that are related to input space by some nonlinear mapping.

Kernel PCA finds principal components which are nonlinearly related to the input

space by performing PCA in the space produced by the nonlinear mapping, where the low-

dimensional latent structure is, hopefully, easier to discover.

Consider a feature space Ή such that:

Φ:x →Ή

x→Φ(x)

Suppose Σi
t
Φ(x i) = 0 . This allows us to formulate the kernel PCA objective as

follows:

41

min∑
i

t

∥Φ(xi)−U q U q
TΦ(x i)∥ (4.3)

By the same argument used for PCA, the solution can be found by SVD:

Φ(X)=U ΣV T (4.4)

where U contains the eigenvectors of Φ(X)Φ(X)
T . Note that if Φ(X) is n×t and the

dimensionality of the feature space n is large, then U is n × n which will make PCA

impractical.

To reduce the dependence on n, first assume that we have a kernel K (. , .) that

allows us to compute K (x , y)=Φ(x)T
Φ(y) Given such a function, we can then

compute the matrix Φ(X)
T
Φ(X)=K efficiently, without computing Φ(X) explicitly.

Crucially, K is t × t here and does not depend on n. Therefore it can be computed in a run

time that depends only on t. Also, note that PCA can be formulated entirely in terms of dot

products between data points (Algorithm 2 represented in Table 1.2). Replacing dot

products in Algorithm 2 (1.2) by kernel function K, which is in fact equivalent to the inner

product of a Hilbert space yields to the Kernel PCA algorithm.

4.2.1 Centering

In the derivation of the kernel PCA we assumed that Φ(X) has zero mean. The

following normalization of the kernel satisfies this condition.

K̃ (x , y)=K (x , y)−Ex [K (x , y)]−E y [K (x , y)]+E X [E y [K (x , y)]] (4.5)

In order to prove that, define:

Φ̃(X)=Φ(x)−E x [Φ(X)] (4.6)

Finally, the corresponding kernel is:

K̃ (x , y)=Φ̃(x)Φ̃(y) (4.7)

This expands as follows:

K̃ (x , y)=(Φ(x)−E x [Φ(x)])⋅(Φ(y)−E y [Φ(y)])

 = K (x , y)−E x [K (x.y)]−E y [K (x , y)]+E x [E y [K (x , y)]] (4.8)

To perform Kernel PCA, one needs to replace all dot products xTy by K̃ (x , y) in

Algorithm 2 (Table 1.2). Note that V is the eigenvectors of K(X;X) corresponding to the top

42

d eigenvalues, and Σ is diagonal matrix of square roots of the top d eigenvalues.

Unfortunately Kernel PCA does not inherit all the strength of PCA. More specifically

reconstruction of training and test data points is not a trivial practice in Kernel PCA.

Algorithm 2 (Table 1.2) shows that data can be reconstructed in feature space Φ(x).

4.3 Proof of PCA

With the knowledge from linear algebra, we now can prove that PCA results in the

best compression with the minimal loss of information. We use the following

considerations in the proof:

The first consideration is:

E [x̄T x̄]=E [∑i=1

N

xi
2]=∑i=1

N

E [x i
2]=∑

i=1

N

Rii (I) (4.9)

The second consideration, with

 i
T

i qxc = (4.10)

E [ci c j]=E [x̄T q̄ i q̄ j
T x̄]

 = E [q̄ j
T x̄ x̄T q̄i]

 = q̄ j
T E [x̄ x̄T] q̄i

 = q̄ j
T ̄̄R q̄i

 = q̄ j
T λi q̄i

 = λi q̄ j
T q̄i

 = λi δij (4.11)

The difference between two random vectors with the same correlation matrix now is:

E [∥x̄−̄̃x∥2]=E [(x̄−∑
i=1

N

ci q̄i)
2

]
= E [(x̄−∑

i=1

N

c i q̄i)
T

(x̄−∑
i=1

N

c i q̄ i)]
= E [x̄T x̄]−2∑

i=1

N

E [ci x̄T q̄i]+∑
j=1

N

∑
i=1

N

E [c i c j q̄
iT

q̄ j] (⃗ I) ∧ (II)

43

= ∑
i=1

N

Rii−2∑
i=1

N

E [c i
2]+∑

j=1

N

∑
i=1

N

λi δij

= ∑
i=1

N

Rii−2∑
i=1

N

λi+∑
j=1

N

∑
i=1

N

λi δ ij

= ∑
i=1

N

Rii−2∑
i=1

N

λi+∑
i=1

N

λ i

= ∑
i=1

N

Rii−∑
i=1

N

λ i (4.12)

Since the matrix R is Hermitian this error equals 0, because for such a Hermitian matrix it

holds that:

∑ ∑
= =

=
N

i

N

i
iiiR

1 1

λ (4.13)

Now we have proven that a measure for the difference or error between x and x
~ is given

by:

∑∑
==

−=



 −

N

i
i

N

i
iiRxxE

11

2~ λ (4.14)

We may rewrite x as a combination of eigenvectors:

∑∑
+==

+=
N

Mi
ii

M

i
ii qcqcx

11

(4.15)

If we want to compress x the next question is, which terms can we best leave out?

The error by leaving out terms is expressed by:

∑∑∑∑∑
+=====

−−=−
N

Mi
i

M

i
i

N

i
ii

N

i
i

N

i
ii RR

11111

λλλ (4.16)

Clearly, when we use the smallest eigenvalues iλ for the part we leave out (the terms

numbered M+1 until N), we obtain the smallest error.

44

Chapter 5

Resemblance Map and Significance Testing

An ensemble of local features with little discriminative power can together offer a

significant discriminative power, both quantization and informative feature selection on a

long-tail distribution can lead to a precipitous drop in performance. Therefore, instead of

any quantization and informative feature selection, we focus on reducing the dimension of

densely computed LSKs using PCA to enhance the discriminative power and reduce

computational complexity. This idea results in a new feature representation with a

moderate dimension which inherits the desirable discriminative attributes of LSK.

5.1 Feature representation:

In order to organize W Q
j
(x i−x) and W T

j
(x l− x) , which are densely computed

from Q and T, let WQ, WT be matrices whose columns are vectors wj
Q, wj

T , which are

column-stacked (rasterized) versions of wQ
j
(xl−x) ,W T

j
(x l− x) respectively:

W Q=[wQ
1,
⋯ ,wQ

n]∈ℝ
P2
×n , W T=[wQ

1,
⋯ ,wQ

nT]∈ℝP 2
×nT

the next step is to apply PCA to WQ for dimensionality reduction and to retain only its

salient characteristics. Applying PCA to WQ we can retain the first (largest) d principal

components which form the columns of a matrix AQ ∈ ℝ
P2
×d . Next, the lower

dimensional features are computed by projecting WQ and WT onto AQ

FQ=[f Q
1,
⋯, f q

n]=AQ
T W Q∈ℝ

d×n , F Q=[f Q
1,
⋯ , f q

nT]=AQ
T W Q∈ℝ

d×nT

5.2 Matrix Cosine as a Measure of Similarity

The next step in the proposed framework is a decision rule based on the

measurement of a “distance” between the computed features FQ, FTi. Correlation based

metrics outperforms the conventional Euclidean and Mahalanobis distances for the

45

classification and subspace learning tasks. Motivated by the effectiveness of correlation-

based similarity measure, we introduce “Matrix Cosine Similarity” for the matrix case and

explore the idea behind this measure in this section. In general, “correlation” indicates the

strength and direction of a linear relationship between two random variables. But the idea

of correlation is quite malleable.

The Pearson’s correlation coefficient which is the familiar standard correlation

coefficient, and the cosine similarity (so-called non-Pearson-compliant). Cosine similarity

coincides with the Pearson’s correlation when each vector is centered to have zero-mean. It

has been shown that the Pearson correlation is less discriminating than the cosine

similarity due to the fact that centered values are less informative than the original values,

and the computation of centered values is sensitive to zero or small values in the vectors.

Since the discriminative power is critical in our detection framework, we focus on the

cosine similarity. The cosine similarity is defined as the inner product between two

normalized vectors as follows:

ρ(f Q , F T I
)=〈

f Q

∥ f Q∥
,

f T i

∥ f T i
∥
〉=

FQ
T f T i

∥ f Q∥ ∥ f T i
∥
=cosθ i ,∈[−1,1] ,

where f Q , f T i
∈ℝ

d are column vectors. The cosine similarity measure therefore focuses

only on the angle (phase) information while discarding the scale information.

The next step is to generate a so-called “resemblance map” (RM), which will be an

image withvalues indicating the likelihood of similarity between the Q and T . When it

comes to interpreting the value of “correlation”, it is noted that the proportion of variance

in common between the two feature sets as opposed to ρi which indicates a linear

relationship between two feature matrices FQ, FTi. At this point, we can use ρi directly as a

measure of resemblance between the two feature sets. However, the shared variance

interpretation of ρ2
i has several advantages. In particular, as for the final test statistic

comprising the values in the resemblance map, we use the proportion of shared variance

(ρ2
i) to that of the “residual” variance (1 − ρ2

i). More specifically, RM is computed using

the mapping function f as follows:

46

RM: f (ρi)=
ρi

2

1−ρi
2

 (a) (b)

Figure 5.1 (a) Resemblance map (RM) which consists of |ρi| (b) Resemblance map (RM) which
consists of f (ρi).

In Figure 5.1, examples of resemblance map (RM) based on |ρi| and ƒ(ρi) are presented.

Red color represents higher resemblance. As is apparent from these typical results,

qualitatively, the resemblance map generated from ƒ(ρi) provides better contrast and

dynamic range in the result (f (ρi) [0, ∞]). More importantly, from a quantitative point of∈

view, we note that ƒ(ρi) is essentially the Lawley-Hotelling Trace statistic, which is used as

an efficient test statistic for detecting correlation between two data sets. Furthermore, it is

worth noting that historically, this statistic has been suggested in the pattern recognition

literature as an effective means of measuring the separability of two data clusters

5.3 Non-Parametric Significance Test and Non-Maxima Suppression

If the task is to find the most similar patch (Ti) to the query (Q) in the target image,

one can choose the patch which results in the largest value in the RM (i.e., max ƒ(ρi))

among all the patches, no matter how large or small the value is in the range of [0, ∞].

This, however, is not wise because there may not be any object of interest present in the

target image. We are therefore interested in two types of significance tests. The first is an

overall test to decide whether there is any sufficiently similar object present in the target

image at all. If the answer is yes, we would then want to know how many objects of

interest are present in the target image and where they are. Therefore, we need two

thresholds: an overall threshold τo and a threshold τ to detect the possibly multiple objects

47

present in the target image.

In a typical scenario, we set the overall threshold τo to be, for instance, 0.96 which

is about 50% of variance in common (i.e., ρ2 = 0.49). In other words, if the maximal ƒ(ρi)

is just above 0.96, we decide that there exists at least one object of interest. The next step

is to choose τ based on the properties of ƒ(ρi). When it comes to choosing the τ , there is

need to be more careful. If we have a basic knowledge of the underlying distribution of

ƒ(ρi), then we can make predictions about how this particular statistic will behave, and thus

it is relatively easy to choose a threshold which will indicate whether the pair of features

from the two images are sufficiently similar. But, in practice, we do not have a very good

way to model the distribution of ƒ(ρi). Therefore, instead of assuming a type of underlying

distribution, we employ the idea of nonparametric testing. We compute an empirical PDF

from all the give samples of ƒ(ρi) and we set τ so as to achieve, for instance, a 99 %

confidence level in deciding whether the given

Figure 5.2 (a) Query (b) Target with detection (c) Two significance tests (d) Non-maxima
suppression

 values are in the extreme (right) tails of the distribution. This approach is based on the

assumption that in the target image, most of patches do not contain the object of interest,

and therefore, the few matches will result in values which are in the tails of the

distributions of ƒ(ρi). After the two significance tests with τo, τ are performed, we employ

the idea of non-maxima suppression for the final detection. We take the region with the

48

highest ƒ(ρi) value and eliminate the possibility that any other object is detected within

some radius of the center of that region again. This enables us to avoid multiple false

detections of nearby objects already detected. Then we iterate this process until the local

maximum value falls below the threshold τ. Fig. 5. shows the graphical illustration of

significance tests and the non-maxima suppression idea.

49

Chapter 6

Methodology

For video indexing it is necessary that we first segment the video in frames for

which the LARK algorithm could be used to work upon. Here we assume a new object

appears in a new frame which causes an abrupt change in pixel values which is usually the

case with a random videos. An abrupt change in video can be detected using histogram

intersection.

Here we take the example of a Tank that we will try to identify in the video and

will be used as a query here in the process. Our methodology involves the following steps

as shown in the figure.

6.1 Histogram intersection

A histogram difference value HDi (difference between ith and (i+1)th frame is

computed using normalized histogram intersection as follows:

HDi=1−(1 /3n)×[Σ j=1
n min (F rj

i , F rj
i+1
)+Σ j=1

n min (F gj
i , F gj

i+1
)+Σ j=1

n min(Fbj
i ,F bj

i+1
)] (6.1)

where n is the number of pixels in the frame, and Frj
i is the number of jth bin of the red

plane of the ith frame. Similar terms are defined for green and blue planes. This measure

ensures that frame which are nearly similar, HDi turns out to be close to zero, while for

dissimilar frame HDi is closer to one.

Once we have obtained the frame using histogram intersection we can use the local

adaptive regression kernel to identify the image in the frame. We apply this method on the

whole frame sequence so that we can identify the frame break in video and could match

the frame for possible relevance with the query object.

50

Fig

Figure 6.1 System Overview

6.2 Locally Adaptive Kernel Regression

In kernel regression, we made use of spatial differences to weigh the input values. In

locally-adaptive kernel regression, we not only make use of spatial differences, but also the

difference in data (pixel gradients). In particular, in steering kernel regression, this is done

by setting the smoothing matrix Hi to be

H i=hC i
1/2 (6.2)

where h is a global smoothing parameter and Ci is the covariance matrix at the ith pixel,

51

Local
Steering
Kernel

PCA A
Q

AT
Q
W

Q

AT
Q
W

T

“Matrix
Cosine

Similarity”
decision rule

(RM)

1. Significance
tests

2. Non-maxima
suppression

Step 2 Step 3 Step 4

Video Shot detection

W
Q

W
T

F
Q

F
Q

Query

Target
T

Q

Step 1

Video

An estimate of this covariance matrix can be obtained using the following formula:

 C i=[Σ x jϵw i
f x (x j) f x (x j) Σ x jϵw i

f x (x j) f y(x j)

Σx j ϵw i
f y (x j) f x (x j) Σx j ϵw i

f y (x j) f y (x j)] (6.3)

where fx and fy are the derivatives along the x and y directions, and wi is a window

surrounding the pixel. If we choose our kernel function to be a Gaussian kernel, then the

local steering kernel (LSK) at a pixel xi will now be given by:

K (x i− x; H i)=
√det (C i)

2πh
2 exp(−(x i−x)T C i(xi−x)

2h
2) (6.4)

Because the smoothing matrix is now a function of the local pixel data (represented by the

covariance matrix), this has the effect of spreading the kernel along local edges. Figure 6.2

shows how a Gaussian kernel adapts to the image data inside the red box.

Figure 6.2 Steering Kernel

Object Detection Using Local Steering Kernels Local steering kernels represent the local

structures in images, and give us a measure of local pixel similarities. Given a query image

Q, target image T, overall threshold τ0, and a window size P2, the generic object detection

algorithm involves the following:

First, the LSKs for the (grayscale) target and query images must be computed. Let

these be denoted by KQ(xi - x; Hi) and KQ
T(xi - x; Hi), where the subscripts Q and T denote

the LSKs for the query and target, respectively, and the superscript j denotes that the

kernels were computed for the jth patch in T that is the same size as Q. Now, the LSKs are

too dense to use as effective descriptors, and so the next step would be to reduce the

dimensionality of these vectors. Before this, however, we first need to normalize our data.

52

Normalization of KQ(xi - x; Hi) and KQ
T(xi - x; Hi) is given by the following formulas

W Q(x i−x)=
Kq (x i−x ; H i)

Σl=1
P2

K Q(xl−x ; H l)
(6.5)

W T
j
(x i−x)=

KT
j
(xi−x ; H i)

Σl=1
P 2

KT
j
(x l−x ; H l)

(6.6)

Let WQ and Wj
T denote the collection of normalized LSKs for all the xi’s in the query, and

all the xi’s in the jth patch in the target, respectively. After normalization, Principal

Component Analysis (PCA) can then be used to reduce the dimensionality. Applying PCA

to WQ and extracting the top d eigenimages gives us the collection of eigenimages, FQ, and

the projection space AQ that was used to obtain these eigenimages. We then project Wj
T

onto AQ to obtain FT, which is a a collection of eigenimages for the target that are in the

same space as that of the query.

With these reduced descriptors, we can now compute the similarity between two

patches. For this, the Cosine Similarity measure is used. The similarity of the jth patch in

the target to the query is given by

ρ j=〈
FQ

∥FQ∥
,

F Q

∥F Q∥
〉 (6.7)

From this measure, we generate the resemblance map by calculating the resemblance

f (ρ j)=
ρ j

2

1−ρ j
2 (6.8)

for all patches in the target. Finally, significance tests and non-maximum suppression are

applied to find the objects. First, the resemblance map is thresholded by the overall

threshold τ0 (ideally set to 0.99), to determine if there are any objects present in the target.

If no values are above τ0, then no objects are present. Then, the resemblance map is

thresholded by a second threshold, τ, which is extracted from the PDF of ƒ(ρj) and is set

so that only 1% of the resemblance values are above it. This gives a 99% confidence level

in the produced data. The last step is to apply non-maximum suppression to find the

53

locations of the objects.

We determine the result of the video for abrupt changes in frames by histogram

intersection and we see from the figure (3), that it shows the number of the frame at

which the change is happening, which we captured and applied to LARK.

We have summarized the above procedure in the form of a pseudo-code which

shows the step by step procedure to find out the steering kernel and then detection of the

object.

Algorithm 5.1- Pseudo-code for the non-parametric object detection algorithm

Q : Query image, T : Target image, τo : Overall threshold, α : Confidence level, P2: Size

of local steering kernel (LSK) window.

Step 1: Histogram intersection

Apply the histogram intersection and find the videoshot in the movie.

Step 1: Feature representation

1) Construct WQ, WT which are a collection of normalized LSK associated with Q, T.

2) Apply PCA to WQ and obtain projection space AQ from its top d eigenvectors.

3) Project WQ and WT onto AQ to construct FQ and FT.

Step 2: Compute Matrix Cosine Similarity

for every target patch Ti , where i [0, · · · , ∈ M − 1] do

ρ i = 〈
F Q

∥F Q∥F

,
FQ

∥F Q∥F

〉 F and compute resemblance map (RM):

f (ρ i)=
ρi

2

1−ρi
2

.end for

Then, find max ƒ(ρi).

Stage3: Significance tests and Non-maxima suppression

54

1) If max ƒ(ρi) > τo, go on to the next test. Otherwise, there is no object of interest in T.

2) Threshold RM by τ which is set to achieve 99 % confidence level (α = 0.99) from the

empirical PDF of ƒ(ρi).

3) Apply non-maxima suppression to RM until the local maximum value is below τ.
Table 5.1: Pseudo-code for training free videoshot object detection

55

Chapter 7

Simulation and Results

7.1 Result

We take an image of a 'Tank' as query and try to detect the tank in the video which

consist of tanks trials mixed with other images so that we could test our algorithm if it

works or not. Figure 7.1 shows the tank query image, and figure 7.2 shows the output of

the histogram intersection graphically which shows that at which frame there is an abrupt

change in the video. Images of videoshot frames that are arranged in an image matrix form

in figure 7.3.

 (a) (b)
 Figure 7.1 Query image

Figure 7.2: Histogram instersection graphical output showing the frame at which abrupt change
occurs.

These detected shots are the input to the system for steering kernel matrix

calculation. Once these steering kernel matrix is obtained then by going along the

algorithm 6.1 we capture the object in these shots and validate our results. Result of above

system is again shown in the image matrix form in figure 7.3 which shows the tank

detected in each frame.

56

Figure 7.3: Tanks detected in the system in the frames.

7.2 Limitation

Since the above procedure is training free in which we detect the object on the

basis of only one query so system has an inherited problem of not being able to detect the

same object in case the object is tilted or oriented. For example an image of figure 7.1 is

unable to detect the tank as in figure 7.4. The solution for this problem is to use chained

query image generation[16] which take all the positive images that query 1 failed to

classify in first training set, and use these to generate a second query image. This second

query will now have information that contains more details that the first query, since it is

averaging over a smaller subset of images. These two queries are then used to perform

classification on Training Set.

As we see from the simple example of above procedure in which we use two query

images of tanks and for target we take a single image which contains many tanks in

different poses. By running the first query in the system we see that the system has

detected the tanks in the target image but there are many tanks which are still left

undetected. On the second iteration of the system, the system uses the second query image

to work on the target image and detects most of the rest of the tanks as we can see in the

figure 7.4.

57

(a) (b)

Figure 7.4: Chained query image generation (a) shows the detection using the image of figure
7.1(a) and 7.4(b) shows the detection using the image of figure 7.1(b)

7.3 Conclusions

In this thesis, we studied a non-parametric kernel regression (KR), proposed a

novel and powerful training-free non-parametric object detection framework by employing

local steering kernels (LSKs) which well capture underlying data structure, and by using

the “Matrix Cosine Similarity” (MCS) measure. The proposed method can automatically

detect in the target the presence, the number, also the location of objects. We applied the

proposed approach for indexing the data from a random video. The experimental results of

both simulated and real data showed that the proposed method was effective in indexing

the contents of video without any prior knowledge of data to be indexed.

However the success of the indexing is limited to the type of data present in the

video itself. An object is successfully indexed when it occupy a small portion the frame,

because this helps in identifying the underlying feature of the target object which could be

matched against the matrix kernel of query. In case the object occupies the larger portion

of the frame then the reliability of the algorithm decreases, but it still tries to find the

closest match for the query input.

58

The proposed method does not require any prior knowledge (learning) about

actions being sought; and does not require any segmentation or pre-processing step of the

target.

59

Appendix A

Equivalent Kernels

Study of (1.33) shows that XTKX is an (N + 1) × (N + 1) block matrix, with the

following structure:

X T KX=[
a11 a12 a13 ⋯

a21 a22 a23 ⋯

a31 a32 a33 ⋯
⋮ ⋮ ⋮ ⋱

] (A.1)

where alm is an l × m matrix for the 2-D case. The block elements of (A.1) for orders up to

N = 2 are as follows:

a11=∑
i=1

P

K H (x i− x) , (A.2)

a12=a21
T =∑

i=1

P

(x i− x)T K H (xi−x) , (A.3)

a22=∑
i=1

P

(x1−x)(x1− x)T K H (x1− x) , (A.4)

a13=a31
T
=∑

i=1

P

vechT {(x1− x)(x1− x)T }K H (x1−x) , (A.5)

a23=a32
T =∑

i=1

P

(x1−x)vechT {(x1−x)(x1−x)T }K H (x1−x) , (A.6)

a33=∑
i=1

P

(x1−x)vech {(x1−x)(x1−x)T }vechT {(x1− x)(x1− x)T }K H (x1−x) , (A.7)

60

With the above shorthand notations, the equivalent kernel functions Wi(·) in (1.35) for up

to N = 2 are given by

W i(K , H , N=0, xi−x)=
K H (xi−x)

a11

(A.8)

W i(K , H , N=0, xi−x)=
{1−a12 a22

−1(xi−x)}K H (xi−x)

a11−a12a22
−1 a21

(A.9)

W i(K , H , N=0, xi−x)=
[1−A12 a22

−1
(xi−x)−A13 A33

−1 vech {(x1−x)(x1−x)T }]K H (x i− x)

a11−a12 a22
−1 a21−A13 A33

−1a31

with

A12=a12−a13 a33
−1 a32, A22=a22−a23 a33

−1 a32,

A13=a13−a13 a22
−1 a23, A22=a22−a32 a22

−1 a23, (A.10)

61

Appendix B

Local Gradient Estimation

In this appendix, we formulate the estimation of the direct gradient β1 of the second

order kernel regressor (N = 2). Note that direct gradient estimation is useful not only for

the iterative steering kernel regression, but also for many diverse applications such as

estimating motion via gradient-based methods (e.g., optical flow) and dominant orientation

estimation. In the solution of the optimization of kernel regression (1.32), the second and

third element of b give the estimate of local gradient:

∇ ẑ (x)=β̂1=[e2
T

e3
T](X T KX)

−1X T Ky (B.1)

where e2 and e3 are column vectors with the second and third elements equal to one, and

the rest equal to zero. Using the notations of (A.3)-(A.7) in Appendix A, the local

quadratic gradient estimator is expressed as

∇ ẑ (x)=∑
i=1

P

Β
−1[−B21 B11

−1
+(x i− x)−B23 B33

−1 vech {(xi−x)(x i−x)T }]K H (x i−x) y i , (B.2)

where

B11=a11−a13 a33
−1 a31 , B21=a21−a22 a33

−1 a31,

B23=a23−a21a11
−1 a13 , B33=a33−a31 a11

−1 a13,

Β=a22−B21 B11
−1 a12−B23 B33−1 a32. (B.3)

62

References

1. Hideyuki Tamura, Shunji Mori, Takashi Yamawaki, “Textural Features

Corresponding to Visual Perception,” IEEE transactions on System Man and

Cybernatics, vol. 8, issue 6, pages 460-473.

2. Tushabe, F.; M.H.F. Wilkinson (2008). "Content-based Image Retrieval Using

Combined 2D Attribute Pattern Spectra". Springer Lecture Notes in Computer

Science.

3. Dr Kekre H.B, Mishra D, (2011), Content Based Image Retrieval using Density

Distribution and Mean of Binary Patterns of Walsh Transformed Color Images, Vol

3, No 2.

4. Dr Kekre. H.B, Thepade S.D., Maloo A., (2010), CBIR Feature Vector Dimension

Reduction with Eigenvectors of Covariance Matrix using Row, Column and

Diagonal Mean Sequences, Vol (3)-12, published in International Journal

ofComputer Applications (0975 – 8887).

5. Dr Kekre H.B, Mishra D, (2010), Performance Comparison of Four, Eight &

Twelve Walsh Transform Sectors Feature.

6. Hae Jong Seo, Peyman Milanfar, "Training-Free, Generic Object Detec-tion Using

Locally Adaptive Regression Kernels," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 32, no. 9, pp. 1688-1704, Aug. 2010,

doi:10.1109/TPAMI.2009.153.

7. R. S. Jadon, Santanu Chaudhury, K. K. Biswas, “A fuzzy theoretic approach for

video segmentation using syntactic features,”Elsevier Pattern Recognition Letters

22 (2001) 1359 -1369.

8. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel Regression for Image Processing

and Reconstruction,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp.

63

349-366, Feb. 2007.

9. “Deblurring using regularized locally-adaptive kernel regression,” IEEE

Transactions on Image Processing, vol. 17, pp. 550–563, April 2008.

10. M. P. Wand and M. C. Jones, Kernel Smoothing, ser. Monographs on Statistics and

Applied Probability. London; New York: Chapman and Hall, 1995.

11. M. G. Schimek, Smoothing and Regression -Approaches, Computation, and

Application-, ser. Wiley Series in Probability and Statistics. New York: Wiley-

Interscience, 2000.

12. I. Jolli®e. Principal Component Analysis. Springer-Verlag, New York, 1986.

13. T. Cox and M. Cox. Multidimensional Scaling. Chapman Hall, Boca Raton, 2nd

edition, 2001.

14. A. HyvÄarinen. Survey on independent component analysis. Neural Computing

Surveys, 2:94-128, 1999.

15. H. Hotelling. Analysis of a complex of statistical variables into components. J. Of

Educational Psychology, 24:417-441, 1933.

16. Arthur Louis Alaniz II, Christina Marianne G. Mantaring, “Using Local Steering

Kernels to Detect People in Videos”.

64

	1. Hideyuki Tamura, Shunji Mori, Takashi Yamawaki, “Textural Features Corresponding to Visual Perception,” IEEE transactions on System Man and Cybernatics, vol. 8, issue 6, pages 460-473.

