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Abstract

Video is an ample source of information. It provides visual information about 

scenes, actions or some activity. However, this information is implicitly buried inside the 

raw video data, and is provided with the cost of very high temporal redundancy. While 

the standard sequential form of video storage is adequate for viewing in a "movie mode", 

it fails to support rapid access to information of interest that is required in many of the 

emerging  applications  of  video.  Extracting  a  small  number  of  key  frames  that  can 

abstract the content of video is very important for efficient browsing and retrieval in 

video  databases.  This  paper  presents  a  training-free  approach  of  detection  of  salient 

object in a segmented video sequence. A video can be segmented by assuming that there 

is  an  abrupt  change  in  the  video  sequence.  After  the  video  is  segmented  the  frame 

obtained is  matched using  local  adaptive  kernel  regression (LARK) against  a  single 

query.
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Chapter 1

Introduction

When we have large database of images and videos in the form of home videos or 

videos from news feeds from different channels, they are always abundant in information 

in the form of space time images. If we want to find a particular object then we have to go  

through the whole video to search for that object. This search could be based on metadata 

such as color, keyword, captioning or description to the image, but relying on metadata is 

not satisfactory since it tend to produce large result with most of them being garbage only,  

and it's almost impossible to manually search for keywords of an image in a video.

Content-based  image  retrieval  (CBIR),  is  the  application  of  computer  vision 

techniques to the image retrieval problem, that is,  the problem of searching for digital 

images in large databases. Content-based means that the search will  analyze the actual 

contents of the image. Most of the image retrieval techniques are based on the some kind 

of  feature  extraction  or  content  based  algorithm  in  which  resultant  feature  vector  is 

compared with the feature vector of the query image. The closest image in comparison 

with the query image from the feature database is returned such that the result images 

share common elements with the provided query. The term 'content' in this context might 

refer to colors, shapes, textures, or any other information that can be derived from the 

image itself. A system that can filter images based on their content would provide better 

indexing and return more accurate results.

Tamura,  Mori & Yamawaki (1978) [1] proposed texture based feature in which 

measures  look  for  visual  patterns  in  images  and  how they  are  spatially  defined.  The 

relative brightness of pairs of pixels is computed such that degree of contrast, regularity, 

coarseness  and directionality  may be  estimated.  Tushabe and Wilkinson [2]  use  shape 

filters to identify given shapes of an image which will often be determined first applying 

segmentation or edge detection to an image. Recent techniques in image retrieval include 

boundary  detection  feature  extraction  by  Dr  Kekre  H.B,  Mishra  D,  (2011)[3],  in  the 

boundary  detection  method,  the  binary  image  is  scanned  until  a  boundary  is  found. 

Scanning is done on the basis of K- Nearest Neighbor Method. PCA Algorithm for Feature 

Extraction by Dr Kekre. H.B, Thepade S.D., Maloo A., (2010)[4] a 2-D data is reduced 
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into  one-dimensional  format  by  concatenating  each  row  into  a  long  thin  vector.  The 

average  image  i.e  the  common  part  of  each  image  in  the  test  data  is  calculated  and 

subtracted from the original image to get the unique part of the image. Dr Kekre H.B, 

Mishra D, (2010)[5] present a feature extraction using DCT transform which make use of 

the DCT transform to design the sectors required for the search and retrieval of images 

from a database. Feature extraction using fast fourier transform is used to generate the 

feature vectors based on the mean values of real and imaginary parts of complex numbers 

of polar coordinates in thefrequency domain 

Many CBIR systems have been developed, but the problem of retrieving images on 

the basis of their pixel content remains largely unsolved and for image retrieval they are 

mostly dependent upon the training of algorithm of classifier.

Here we present an approachh which uses training free method and finds the 

object pattern mostly on the basis of pixel conent.  In a video indexing system we are 

required to segment the video and retrieve the salient frames of the video and index them 

according to our requirement. Image retrieval is the first problem in the task of video 

indexing. One effective way of approaching this problem would be to segment the video 

in the frames and detecting the change in frame which could be gradual or abrupt. When 

this changing frame is obtained we can query this frame for salient object detection to 

index  it  using  local  adaptive  regression  kernel.  There  is  a  recent  work  on  video 

segmentation using syntactic features with a fuzzy theoretic approach by R.S. Jadon, 

Santanu Chaudhary and K.  K.  Biswas [7].  Feature matching algorithm in  this  paper 

makes use of the  generic object detection algorithm proposed by Seo and Milanfar [8].

1.1 Background of the Proposed Approach

Our proposal to the object detection task are three-fold. First, we propose to use 

histogram intersection to segment the video in the video shots which comprises of a 

frame at which an abrupt change in the videos frames has occurred. Second we propose 

to use local regression kernels as descriptors which capture the underlying local structure 

of the data exceedingly well, even in the presence of significant distortions. Third, we 
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propose the approach to the detection object using a non-parametric nearest-neighbor 

classifier, along with a generalization of the cosine similarity to the matrix case. The 

origin  and  motivation  behind  the  use  of  these  local  kernels  is  the  earlier  work  on 

adaptive kernel regression for image processing and reconstruction [8]. In that work, 

localized  nonlinear  filters  were  derived,  which  adapt  themselves  to  the  underlying 

structure of the image in order to very effectively perform denoising, interpolation, and 

deblurring [9]. The fundamental component of the so called steering kernel regression 

method is the calculation of the local steering kernel (LSK) which essentially measures 

the local similarity of a pixel to its neighbors both geometrically and radiometrically. The 

key idea is to robustly obtain local data structures by analyzing the radiometric (pixel 

value) differences based on estimated gradients, and use this structure information to 

determine the shape and size of a canonical kernel. Denoting the target image (T), and 

the query image (Q), we compute a dense set of local steering kernels from each. These 

Figure 1.1:  Given a query image Q, we want to detect/localize objects of interest in a target 
image T. T is divided into a set of overlapping patches.

densely  computed  descriptors  are  highly  informative,  but  taken  together  tend  to  be 

redundant.  Therefore,  we derive  features  by applying dimensionality reduction  using 

PCA to these resulting arrays, in order to retain only the salient characteristics of the 
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local steering kernels. Generally, T is bigger than the query image Q. Hence, we divide 

the target image T into a set of overlapping patches which are the same size as  Q and 

assign a class to each patch (Ti). The feature vectors which belong to a patch are thought 

of as training examples in the corresponding class (See Fig. 1.1). The feature collections 

from Q and Ti form feature matrices FQ and FTi. We compare the feature matrices FTi and 

FQ from ith patch of T and Q to look for matches. We employ “Matrix Cosine Similarity” 

as a similarity measure which generalizes the cosine similarity between two vectors to 

the matrix case. We illustrate the optimality properties of the proposed approach using a 

naive Bayes framework, which leads to the use of the Matrix Cosine Similarity (MCS) 

measure. In order to deal with the case where the target image may not include any 

objects of interest or when there are more than one object in the target, we also adopt the 

idea of a significance test and non-maxima suppression.
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Chapter 2

Kernel Regression

Kernel  regression is  known as  a  nonparametric  approach that  requires  minimal 

assumptions, and hence the framework is one of the suitable approaches to the regression 

problem. In this introductory chapter, we study the classic kernel regression frame-work, 

and expand it and develop applications for image.

2.1: Classic Kernel Regression and its Properties

In this section, we review the classic kernel regression framework, provide some 

intuitions on computational efficiency as well as weaknesses of this basic approach, and 

motivate the development of more powerful regression tools presented in the following 

chapters.

2.1.1: Kernel Regression in 1-D

Classical  parametric  image processing methods rely on a  specific  model  of the 

signal of interest, and seek to compute the parameters of this model in the presence of 

noise. Examples of this approach range from denoising to upscaling, interpolation, and 

deblurring. A generative model based upon the estimated parameters is then produced as 

the best estimate of the underlying signal. 

In contrast  to the parametric methods,  non-parametric methods rely on the data 

itself to dictate the structure of the model, in which case this implicit model is referred to 

as  a regression function [10]. With the relatively recent emergence of machine learning 

methods,  kernel  methods  have  become  well-known  and  used  frequently  for  pattern 

detection  and  discrimination  problems.  Surprisingly,  it  appears  that  the  corresponding 

ideas in non-parametric estimation – what we call here kernel regression, are not widely 

recognized  or  used  in  the  image  and  video  processing  literature.  Indeed,  in  the  last 

decades,  several  concepts  related  to  the  general  theory  we  promote  here  have  been 

rediscovered in different guises, and presented under different names such as normalized 
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convolution,  bilateral  filter,  edge-directed  interpolation,  and  moving  least-squares.  To 

simplify this introductory presentation, we here treat the 1-D case where the measured data 

are given by 

y i=z ( xi)+εi ,i=1,2,. .. , P (2.1)

z(·) is the (hitherto unspecified) regression function,  εi is the independent and identically 

distributed zero mean noise value, and  P is the number of measured samples in a local 

analysis  window. As such, kernel regression provides a rich mechanism for computing 

point-wise estimates of the function with minimal assumptions about global signal or noise 

models.

While the specific form of the regression function z(·) may remain unspecified, if 

we assume that it is locally smooth to some order N, then in order to estimate the value of 

the function at any point x given the data, we can rely on a generic local expansion of the 

function about this point. Specifically, if the position of interest x is near the sample at xi, 

we have the N -term Taylor series

z ( xi)= z (x)+ z ' ( x)(x i−x)+
1
2!

z ' ' ( x)(x i−x)2
+...+

1
N !

z(N )
(x )( x i−x )N

= β0+β1(x i− x)+β2(x i− x)2+...+βN (x i− x)N (2.2)

where  z′(·) and  z(N)(·) are the first and  N-th derivatives of the regression function. The 

above  suggest  that  if  we  now  think  of  Taylor  series  as  a  local  representation  of  the 

regression function, estimating the parameters β0 can yield the desired (local) estimate of 

the regression function based on the data. Indeed, the parameters  {βn}N
n=1 will provide 

localized information on the nth derivatives of the regression function. Naturally, since this 

approach  is  based  on  local  approximation,  a  logical  step  to  take  is  to  estimate  the 

parameters  {βn}N
n=0 from the data while giving the nearby samples higher weight than 

samples  farther  away.  A least-squares  formulation  capturing  this  idea  is  to  solve  the 

following optimization problem:

min
βn

∑
i=1

P

[ y i−β1(x i− x)−β2(x i−x)2
−⋯−β0(xi− x)N ] 1

h
K( xi−x

h ) (2.3)

where  K (·) is the kernel function which penalizes distant away from the local position 

where  the  approximation  is  centered,  ant  the  smoothing  parameter  h (also  called  the 

“bandwidth”)  controls  the  strength  of  this  penalty.  In  particular,  the  function  K is  a 
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symmetric function which attains its maximum at zero, satisfying 

∫δK (δ)d δ ,∫ δ
2 K (δ)d δ=c (2.4)

where  c is some constant value. The choice of the particular form of the function  K is 

open, and may be selected as a Gaussian, exponential, or other forms which comply with 

the above constraints. It is known that for the case of classic regression the choice of the 

kernel has only a small effect on the accuracy of estimation and therefore preference is 

given  to  the  differentiable  kernels  with  low  computational  complexity  such  as  the 

Gaussian kernel.

Several important points are worth making here. First, the above structure allows 

for tailoring the estimation problem to the local characteristics of the data, whereas the 

standard  parametric  model  is  generally  intended  as  a  more  global  fit.  Second,  in  the 

estimation of the local structure, higher weight is given to the nearby data as com-pared to 

samples that are farther away from the center of the analysis window. Mean-while, this 

approach  does  not  specifically  require  the  data  to  follow a  regular  or  equally  spaced 

sampling structure.  More specifically,  so long as  the  samples  are  near  the  point  x the 

framework is valid.  Again this is in contrast  to the general parametric approach which 

generally either does not directly take the location of the data samples into account, or 

relies  on regular  sampling  over  a  grid.  Third,  and no less  important  the  data-adaptive 

approach is both useful for denoising, and equally viable for interpolation of sampled data 

at points where no actual samples exist. Given the above observations, the kernel-based 

methods are well-suited for a wide class of image/video processing problems of practical 

interest.

Returning to the estimation problem based upon (2.3), one can choose the order N 

to  effect  an increasingly more complex local  approximation of the signal.  In  the non-

parametric  statistics  literature,  locally  constant,  linear,  and  quadratic  approximation 

(corresponding to N = 0, 1, 2) have been considered most widely. In particular, choosing N 

= 0, a locally linear filter is obtained, which is known as the Nadaraya-Watson Estimator 

(NWE) [11]. Specifically, this estimator has the form:

ẑ ( x)=
Σi=1

P K h( xi−x) y i

Σi=1
P Kh( x i−x )

(2.5)

where
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K h(x i− x)=
1
h

K ( xi−x

h ) (2.6)

The  NWE  is  the  simplest  manifestation  of  an  adaptive  filter  resulting  from  kernel 

regression framework.

 Of course, higher order approximations (N > 0) are also possible. The choice of 

order in parallel with the smoothness (h) affects the bias and variance of the estimate. In 

general, lower order approximates, such as NWE, result in smoother signals (large bias 

and small variance) as there are fewer degrees of freedom. On the other hand over-fitting 

happens in regressions using higher orders of approximation, resulting in small bias and 

large estimation variance. we illustrate the effect of the regression orders from N = 0 to 2 

with a fixed smoothing parameter in Figure 2.1, where the blue curve is the regression 

(true) function, the gray circles (y1, y2, and y3) are the measurements with some noise at 

x1, x2 and x3, respectively, and, in this illustration, we estimate an unknown value at the 

position of interest  x located between the samples  y2 and  y3 with different  regression 

orders. First, for the zeroth order (constant model, N = 0), we take only the constant term 

of  Taylor series into account, i.e. β0. In this case, the kernel regression estimates z(x) by 

NWE (2.34); a weighted average of nearby samples with the weights that the kernel 

Figure 2.1: The effect of the regression orders: (a) Zeroth order kernel regression (constant model, 
N = 0),  (b)  First  order  kernel  regression  (linear  model,  N =  1),  and  (c)  Second order  kernel 
regression (quadratic model, N = 2)

function gives. The red circle is the estimated value and the red line is the estimated fitted line.  
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Similar to the zeroth order case, we draw draw the estimate values and fitted lines by the first and  

second order kernel regression, which ncorporate up to the linear and quadratic terms, respectively.  

As seen in Figures 2.1(a)-(c), the estimated line fits the neighboring samples better the higher the 

regression order becomes.  This is because a high order regressor has more degrees of freedom, 

which is the cause of small bias and large variance. We also note that smaller values for h  result in 

small bias and consequently large variance in estimates. 

2.1.2 Kernel Regression in 2-D

Similar to the 1-D case in (2.1), the data model in 2-D is given by

y i=z ( x i)+εi ,i=1,... , P , x i=[ x1i , x2i ]
T

(2.17)

where  yi is  a  noisy  sample  at  a  sampling  position  xi (Note:  x1i and  x2i are  spatial 

coordinates),  z(·) is  again  the  (unspecified  and  bivariate)  regression  function  to  be 

estimated,  εi is  an  i.i.d.  zero  mean noise,  and  P is  the total  number of  samples  in  an 

arbitrary  “window”  around  a  position  x of  interest  as  shown  in  Figure  2.2. 

Correspondingly, the local representation of the regression function using Taylor series (up 

to the Nth polynomial) is given by

Figure 2.2: The data model for the kernel regression framework in 2-D.
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z ( xi)≈ z (x )+{∇ z ( x)}T
( xi−x )+

1
2
( xi−x)T {H z ( x)}( x i−x )+ ...

z ( x)+{∇ z (x)}T (x i− x)+
1
2

vectT
{H z ( x)}vect {( x i−x )(x i− x)T }+... (2.18)

where  ∇ and  H are the gradient (2 × 1) and Hessian (2 × 2) operators, respectively, and 

vect(·)  is  the  vectorization  operator,  which  lexicographically  orders  a  matrix  into  a 

column-stack vector.  Defining vech(·)  as the half-vectorization operator  of the “lower-

triangular” portion of a symmetric matrix, e.g., 

vech([a11 a12

a12 a22])=[a11 a12 a22 ]
T

vech([
a11 a12 a13

a12 a22 a23

a13 a23 a33
])=[a11 a12 a13 a22 a23 a33]

T
(2.19)

and considering the symmetry of the Hessian matrix, the local representation in (2.18) is 

simplified to

z ( xi)≈β0+β1
T
( x i−x )+β2

T vech{(xi−x)( xi−x )T
}+⋯ (2.20)

then, comparison of (2.18) and (2.20) suggests that β0 is the pixel value of interest, and the 

vectors β1 and β2 are the first and second derivatives, respectively, i.e.,

β0=z ( x) , (2.21)

β1=∇ z (x )=[ ∂ z ( x)
∂ x1

∂ z (x)
∂ x2

]
T

(2.22)

β2=
1
2 [∂

2 z ( x)

∂ x1
2 2

∂
2 z ( x)

∂ x1∂ x2

∂
2 z ( x)

∂ x 2
2 ]

T

(2.23)

As in the case of univariate data, the  βn’s are computed from the following optimization 

problem:

min{βn}
Σi=1

P [ y i−β0−β1
T
( x i−x )−β2

T vech {(x i− x)(x i−x)T
}−...]

2
K H (x i−x) (2.24)

with

K H ( x i−x )=
1

det (H )
K (H−1(x i− x)) (2.25)

where K is the 2-D realization of the kernel function, and H is the 2 × 2 smoothing matrix. 

For example, if we choose Gaussian function for K , the kernel function is expressed as
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K H ( x i−x )=
1

2π√det (H T H )
exp {

−1
2

(xi− x)T
(H TH

)
−1
(x i− x)} (2.26)

Regardless of the regression order (N) and the dimensionality of the regression function, 

we can rewrite the optimization problem (2.24) as a weighted least squares optimization 

problem:

b̂=argmin
b

[( y−Xb)T K ( y−Xb)] (2.27)

y=[ y1 y2 ⋯ y p ]
T

(2.28)

b=[β0 β1
T ⋯ βN

T ]
T

(2.29)

k=diag [K H (x1− x) K H ( x2−x ) ⋯ K H (x p−x )] (2.30)

X=[
1 (x1− x)T vechT

{(x1− x)(x1− x)T
} ⋯

1 (x2− x)T vechT
{( x2− x)(x2−x)T

} ⋯
⋮ ⋮ ⋮ ⋮

1 (x p−x )T vechT
{( x p− x)(x p−x )T

} ⋯
] (2.31)

with “diag” defining a diagonal matrix. Using the notation above, the optimization (2.24) 

provides the weighted least square estimator:

b̂=(xT KX )
−1

X T Ky (2.32)

Since  our  primary interest  is  to  compute  an  estimate  of  the  image (pixel  values),  the 

necessary computations are limited to the ones that estimate the parameter β0. Therefore, 

the estimator is simplified to 

ẑ ( x)=β̂ 0=e1
T (X T KX )

−1
X T Ky (2.33)

where e1 is a column vector with the first element equal to one, and the rest equal to zero. 

Of course, there is a fundamental difference between computing β0 for the N = 0 case, and 

using a high order estimator (N > 0) and then effectively discarding all  βn’s except  β0. 

Unlike the former case,  the high regression order method computes estimates of pixel 

values assuming an  N-th order local polynomial structure is present by including higher 

order polynomial bases as in the matrix X (2.31). Similar to the 1-D case, for N = 0, the 

kernel estimator (2.33) is expressed as

ẑ ( x)=β̂ 0=
Σ

i=1

P
K H (x i−x) y i

Σ
i=1

P

K H ( xi−x )
(2.34)
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which is Nadaraya-Watson estimator (NWE) in 2-D. For example, when we choose the 

kernel function as Gaussian (2.26), NWE is nothing but the well-known Gaussian low-pass 

filter and it provides a pixel value of interest  β0 by a weighted linear combination of the 

nearby samples. Even the higher order estimator can be generally expressed in the weight 

linear fashion as

ẑ ( x)=β̂ 0=e1
T b̂= Σ

i=1

P
W i (K , H , N , x i− x) y i (2.35)

where

Σ
i=1

P
W i( .)=1 (2.36)

and we call  Wi the equivalent kernel function for  yi. It is worth noting that the estimator 

(2.32)  also  yield  local  gradients  for  the  regression  orders  N  >  0.  While  the  exact 

expressions  in  Appendices  A and  B  yield  the  mathematical  property  of  the  kernel 

regression  estimator,  the  pixel  estimator  and  the  gradient  estimator  can  be  simply 

expressed as follows. We can rewrite the overall estimator (2.32) for the regression order 

N > 0 as 

b̂=(X T KX )
T
X T Ky=W N y=[

w0
T
(N )

w1
T
(N )

w2
T
(N )
⋮

] y (2.37)

where N is the regression order, and w0(N), w1 (N), and w2 (N)  ∈ RP ×1 are the equivalent 

kernel  weight  matrices  that  compute  the  unknown  pixel  value  and  its  derivatives  as 

follows. From (2.35), we have

ẑ ( x)=β̂ 0=e1
T b̂=W 0

T
(N ) y (2.38)

∇ ẑ (x )=β̂ 1=[e2
T

e3
T ]b̂=[w1

T
(N )

w2
T
(N )] y (2.39)

Note that when we estimate the nth derivatives of  z(·), the regression order  N must be 

equal or higher than n (N ≥ n). For instance, w1(0) and w2(0) do not exist.

Therefore, regardless of the regression order, the classic kernel regression is local 

weighted  averaging  of  data  (linear  filtering),  where  the  order  determines  the  type  of 

complexity of the weighing scheme. This also suggests that higher order regressions (N > 

0)  are  equivalents  of  the  zeroth  order  regression  (N =  0)  but  with  a  more  complex 
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equivalent  kernel  function.  In  other  words,  to  effect  the  higher  order  regressions,  the 

original kernel KH(xi−x) is modified to yield a newly adapted “equivalent” kernel. 

2.2 Smoothing Matrix Selection

The  shape  (or  contour)  of  the  regression  kernel  as  defined  in  (2.25),  and 

consequently the performance of the estimator depends on the choice of the smoothing 

matrix  H. For the bivariate regression problem, the smoothing matrix  H is 2 × 2, and it 

should  extend  the  support  of  the  regression  kernel  to  contain  “enough”  samples.  As 

illustrated in Figure 2.10, it is reasonable to use a smaller support size in the area with 

more  available  samples,  whereas  a  larger  support  size  is  more  suitable  for  the  more 

sparsely sampled area of  the  image.  The cross  validation  “leave-one-out”  method is  a 

popular technique for estimating the elements of the local smoothing matrices Hi for all the 

given  samples  yi.  However,  as  the  cross  validation  method  is  computationally  very 

expensive,  we  can  use  a  simplified  and  computationally  more  efficient  model  of  the 

smoothing matrix as 

H i=hμ i I (2.40)

where µ0 is a scalar that captures the local density of samples (nominally set to µ0 = 1) and 

h is the global smoothing parameter.

The global  smoothing parameter is  directly computed from the cross validation 

method, by minimizing the following cost function

C cv(h)=
1
P

Σ
i=1

P

{ ̂z i−.(x i)− yi}
2

(2.41)

where ẑi −(xi) is the estimated pixel values without including the ith sample (i.e., y0 ) at xi. 

To further reduce the computations, rather than leaving a single sample out, we can leave 

out a set of samples (a whole row or column).

The local density parameter µi is estimated as follows 

μ i={
f̂ ( xi)

exp( 1
P
Σi=1

P log f̂ (x i))}
−ζ

(2.42)

where the sample density f̂ (x i) is measured as
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f̂ (x i)=
1
P

Σ
i=1

P
K H i

(x i− x) (2.43)

and  ζ,  the density sensitivity,  is  a scalar satisfying 0 <  ζ ≤ 1.  Note that  Hi and  µi are 

estimated in an iterative fashion. In the first iteration, µi is initialized by 1 and we estimate 

the density by (2.43). Then, we update µi by (2.42) with the estimated density and estimate 

the density. The process is repeated until µi converges (typically, only a few iterations (at 

most 5 iterations)).
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Chapter 3 

Data-Adaptive Kernel Regression

In the previous chapter, we studied the classic kernel regression framework and 

its properties. One fundamental improvement on the above method can be realized by 

noting  that,  the  local  polynomial  kernel  regression  estimates,  independent  of  the 

regression order N, are always local “linear” combinations of the data. As such, though 

elegant, relativity easy to analyze, and with attractive asymptotic properties, they suffer 

from an inherent limitation due to this local linear action on the data. In what follows, we 

discuss extensions of the kernel  regression method that enable this  structure to have 

nonlinear, more effective, action on the given data: data-adaptive kernel regression.

3.1 Data-Adaptive Kernels

Data-adaptive  kernel  regression  relies  on  not  only  the  spatial  properties  (the 

sample location and density), but also the photometric properties of these samples (i.e. 

pixel values). Thus, the effective size and shape of the regression kernel are adapted 

locally to image feature such as edges. A desired property of such regression kernel is 

illustrated  in  Figure  3.1,  in  which  the  classic  kernel  estimates  the  pixel  z(x)  by the 

combination of neighboring samples with linear weights while the data-adaptive kernel 

elongates/spreads  along  the  local  edge  structure  and  the  estimate  is  most  strongly 

affected by the edge pixels. Hence, the data-adaptive kernel approach effectively sup-

presses noise while preserving local image  structures. Data-adaptive kernel regression is 

formulated  as  an  optimization  problem  where  the  data-adaptive  kernel  function

min {Βn}
Σi=1

P [ y i−Β0−Β1
T (x i− x)−Β2

T vech {(x i− x)(x i−x)T }−...]2 K adapt( xi−x , y i− y)  

(3.1)

Kadapt now depends on the spatial  sample co-ordinates xi’s and density as well as the 

photometric values yi of the data. In the following, we study two different data-adaptive 

kernels: bilateral kernel and steering kernel, and discuss their properties.
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(a) Contour of classic kernel (b) Contours of data-adaptive kernels

Figure 3.1: Kernel contours in a uniformly sampled data set: (a) Kernels in the classic method  
depend only on the spatial distances, and (b) Data-adaptive kernels elongate with respect to the  
local edge structure.

3.1.1 Bilateral Kernel

A simple and intuitive choice of the Kadapt is to use separate terms for penalizing 

the spatial distance between the pixel position of interest  x and its neighboring pixel 

positions {xi}, and the photometric “distance” between the pixel of interest  y and its 

neighbors { yi }:

Kbilat (x i− x , y i− y)=K H s
(x i− x) . K hp

( yi− y) .

where  Hs (=  hsI) is the spatial smoothing (diagonal) matrix and  hp is the photometric 

smoothing scalar. Figure 3.2 illustrates weight values for this bilateral kernel function at 

a few different regions of the clean Lena image: flat, edge, and Lena’s eye. As seen in the 

figure, the photometric kernel captures local image structures effectively. The properties 

of this adaptive method, which we call bilateral kernel regression (for reasons that will 

become clear shortly), can be better understood by studying the special case of the zeroth 

order (N = 0), which results in a data-adapted version of the Nadaraya-Watson estimator 

(NWE):

ẑ ( x)=Β̂0=
Σi=1

P K H S
(x i−x)K h p

( y i− y) y i

Σi=1
P K H S

( xi−x )K h p
( y i− y )

 (3.3)
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Interestingly, this is nothing but the well-studied and popular bilateral filter. We note that, 

in general, since the pixel values (y) at an arbitrary position (x) might be unavailable 

from the given data, the direct application of the bilateral kernel function (3.2) is limited 

to the denoising problem.

 This  limitation,  however,  can  be  overcome by using  an initial  estimate  of  y by an 

appropriate  interpolation  technique.  Also,  it  is  worth  noting  that  the  bilateral  kernel 

choice, along with higher order choices for  N (> 0), will lead to generalizations of the 

bilateral filter.

Similar to classic kernel regression, the pixel estimator given by bilateral kernel 

regression is also summarized as the form of the weighted linear combination of all the 

neighboring samples using the bilateral “equivalent” weight function Wi regardless of the 

regression order N as follows:

Figure 3.2: Bilateral kernel weights given by (2.2) at flat, edge, and Lena’s eye regions of a 
clean image.

ẑ ( x)=Β̂0=Σi=1
P W i(K , H S , hp , N , x i− x , y i− y) y i   (3.4)

Figure 3.3 illustrates the bilateral equivalent weight function Wi (K , Hs , hp, N , xi −x, yi 

− y ) in (3.4) at a variety of image structures for the zeroth and second orders (N = 0 and 

2). Note that each weigh function is respectively normalized. Figure 3.4 illustrates the 

details of Wi at the strong edge:
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As a further extension of the standard bilateral filter,  iterative filtering in order to 

intensify the smoothing effect.  The iterative filtering process is  as follows:  (i)  apply 

bilateral filter to the given noisy data, (ii) apply bilateral filter to the previous estimate, 

(iii) repeat the step (ii).  For N = 0, such estimator can be written as

ẑ(l+1 )
( x)=

Σi=1
P K H s

(x i−x)K h p
( ẑ(l )( xi)− ẑ(l )(x )) ẑ(l )(x i)

Σi=1
P K H s

( x i−x )Kh p
( ẑ(l )(x i)− ẑ(l )( x))

  (3.5)

Figure 3.3: A visual analysis of the bilateral equivalent weight function Wi (K , Hs , hp, N , xi  
−x, yi−y ) in (3.4) at a variety of image structures; flat, strong edge, corner, texture, and weak 
edge for the zeroth and second order (N = 0 and 2). 

where Z(0)(xi) = yi and ℓ is the index of the number of iterations. This filtering algorithm is very 

similar to Mean-Shift algorithm, in which the spatial kernel function Khs (xi − x) is not taken into 

account.

The bilateral filter has appeared in another form (3.3), which is known as the Susan filter.  

The difference between bilateral filter and Susan filter is minor; Susan filter  excludes the center  

pixel from the estimates. That is to say, Susan filter is expressed as

ẑ ( x)=Β̂0=
Σx i≠ x K H s

( x i−x )K H p
( y i− y ) y i

Σx i≠ x K H s
(x i− x)K H p

( y i− y )
(3.6)

 This small modification significantly improves the filter performance in particular when 
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the given data contains a few outliers (e.g. salt & pepper noise).   For the bilateral filter, such 

(a)  Zeroth order (b) Second order

Figure 3.4: Horizontal cross-sections of the bilateral equivalent weight function Wi (K,  Hs ,  hp,  
N ,  xi − x,  yi − y) at the strong edge for the zeroth and second order (N = 0and 2): (a)-(b) the  
footprints of Wi for the zeroth and second order, respectively.

outlier pixels yields very small photometric kernel values for neighboring pixels because 

the photometric distances,  yi − y,  tend to be large. In other words, the bilateral filter 

doesn’t smooth an outlier pixel with its neighboring pixels. 

In any event, breaking K adapt into spatial and photometric terms as utilized in 

the  bilateral  case  weakens  the  estimator  performance  since  it  limits  the  degrees  of 

freedom and ignores correlations between positions of the pixels and their values. In 

particular, we note that, for very noisy data sets, the photometric distances, yi − y , tend 

to be large and noisier. Therefore, most photometric weights are close to zero and also 

noisy as shown in Figure 3.5. Such weights are effectively useless. Although we could 

set the photometric smoothing parameter (hp) larger in order to reduce the effect of the 

noisy photometric distances, the bilateral filter becomes almost equivalent to the non-

linear (Gaussian low-ass) filter with a large hp. The following section provides a general 

solution to overcome this and many other drawbacks of competing approaches.

3.1.2 Steering Kernel

The filtering procedure that we propose next takes the data-adaptive idea one step 
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further, based upon the earlier nonparametric framework. In particular, we observe that 

the effect  of computing the photometric  kernel,  Khp (yi − y)  in  (3.2) is  to implicitly 

measure a function of the local

Figure 3.5: Bilateral kernel weights given by (3.2) at flat, edge, and Lena’s eye regions of a 
noisy image. The noisy image is given by adding white Gaussian noise.

gradient estimated between neighboring pixels and to use this estimate to weight the 

respective measurements. As an example, if a pixel is located near an edge, then pixels 

on the same side of the edge will have much stronger influence in the filtering. With this 

an initial estimate of the image gradients is made using some kind of gradient estimator 

(say the second order classic kernel regression method). Next, this estimate is used to 

measure  the  dominant  orientation  of  the  local  gradients  in  the  image.  In  a  second 

filtering stage, this orientation information is then used to adaptively “steer” the local 

kernel,  resulting in elongated,  contours spread along the directions  of the local  edge 

structure.  With these locally adapted kernels,  the denoising is  effected most  strongly 

along the edges, rather than across them, resulting in strong preservation of details in the 

final output. To be more specific, the data-adaptive kernel function takes the form 
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K steer( x i−x , yi− y)=K H i

steer( xi−x ) (3.7)

where  Hi
steer’s are now the data-dependent full (2 × 2) matrices which we call steering 

matrices. We define them as

H i
steer

=hμi C i

−1
2 (3.8)

where again h and µi are the global smoothing parameter and the local density parameter, 

respectively, and Ci’s are (symmetric, 2 × 2) covariance matrices based on differences in 

the local gray-values. A good choice for  Ci will effectively spread the kernel function 

along the local edges, as shown in Figure 3.1(b). It  is worth noting that, even if we 

choose a large  h in  order to have a strong denoising effect,  the undesirable  blurring 

effect, which would otherwise have resulted, is tempered around edges with appropriate 

choice of Ci. With such steering matrices, for example, if we choose a Gaussian kernel, 

i.e. plugging the steering matrix (3.8) into Gaussian kernel function, the steering kernel 

is mathematically represented as 

K H i
steer( x i−x )=

√det(C i)

2πh2
μ

2 exp{
−(x i− x)T C i( xi−x )

2 πh2
μ

2 } (3.9)

It is also noteworthy that, for the estimate of the unknown pixel β0(= z (x)), the steering 

kernel function takes all the steering matrices (Hi
steer) of the neighboring pixels yi around 

the position of interest x into account, and hence, the steering kernel is not simply elliptic 

but it provides us weights that fit the local image structures more flexibly. We will show 

some actual steering kernels shortly in this section. 

The local edge structure is related to the gradient covariance (or equivalently, the 

locally dominant orientation), where a naive estimate of this covariance matrix may be 

obtained as follows:

C i
naive

= J i
T J i (3.10)

where Ji is a stack of local gradient vectors in a local analysis window ωi:
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J i=[
⋮ ⋮

zx1
(x j) z x2

( x j)

⋮ ⋮ ] (3.11)

zx1(·) and zx2(·) are the first derivatives along x1 (vertical) and x2 (horizontal) directions, 

and ωi is a local analysis window around the position of a given sample. The dominant 

local orientation of the gradients is then related to the eigenvectors of this estimated 

matrix. Since the gradients,  zx1(·) and zx2(·), depend on the pixel values {yi}, and since 

the choice of the localized kernels  in turns depends on these gradients,  it,  therefore, 

follows that  the “equivalent” kernels  for  the proposed data-adaptive methods form a 

locally “nonlinear” combination of the data:

ẑ ( x)=Σi=0
P W i(K , H i

steer , N , xi− x) y i (3.12)

While the above approach to computing the steering matrices, is simple and has nice 

tolerance to noise, the resulting estimate can be unstable, and, therefore, care must be 

taken not to take the inverse of the estimate directly in this case. In such case, a diagonal 

loading  or  regularization  methods  can  be  used  to  obtain  stable  estimates  of  the 

covariance. We take a more robust approach to the design of the steering matrix. 

Figure 3.6: A schematic  representation illustrating the effects  of  the  steering matrix  and its 
components C i=γ i Rθi

Λ i Rθi

T on the size and shape of the regression kernel footprint.

In order to have a more convenient form of the covariance matrix, we decompose 

it into three components (equivalent to eigenvalue decomposition) as follows:

C i=γ i Rθi
Λi Rθi

T (3.13)

where Rθi is the rotation matrix and Λi is the elongation matrix:

32



Rθi
=[ cosθi sinθi

−sinθi cosθi
] ,  Λ i=[

ϱi 0

0
1
ϱ i
] (3.14)

Now, the covariance matrix given by the three parameters  γi, θi , and  ϱi, which are the 

scaling,  rotation,  and  elongation  parameters,  respectively.  Figure  3.6  schematically 

explains how these parameters affect the spreading of kernels. First, the circular kernel is 

elongated by the elongation matrix Λi , and its semi-minor and major axes are given by 

ϱi. Second, the elongated kernel is rotated by the matrix Rθi. Finally, the kernel is scaled 

by the scaling parameter γi.

We  define  the  scaling,  elongation,  and  rotation  parameters  as  follow.  The 

dominant orientation of the local gradient field is the singular vector corresponding to 

the smallest (nonzero) singular value of the local gradient matrix Ji (3.11) arranged in the 

following form:

J i=U i S iV i
T=U i[s1 0

0 s2
][ v1 v2 ]

T
(3.15)

where UiSiVi
T is the truncated singular value decomposition of Ji , and Si is a diagonal 2 

× 2 matrix representing the energy in the dominant directions. Then, the second column 

of the 2 × 2 orthogonal matrix Vi, v2 = [v12, v22]T, defines the dominant orientation angle 

θi as

θi=arctan( v12

v22
) (3.16)

That is, the singular vector corresponding to the smallest nonzero singular value s2 of Ji 

represents the dominant orientation of the local gradient field. The elongation parameter 

ϱi can be scaled corresponding to the energy of the dominant gradient direction 

ϱi=
s1+λ

'

s2+λ
' ,λ '

≥0, (3.17)

where  λ′ is a “regularization” parameter for the kernel elongation, which dampens the 
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effect of the noise and restricts the ratio from becoming degenerate. The intuition behind 

(3.17) is to keep the shape of the kernel circular in flat areas (s1 ≈ s2 ≈ 0), and elongate it 

near edge areas (s1 >> s2). Finally, the scaling parameter γi is defined by

γi=( s1 S2+λ ' '

M )
α

(3.18)

where  λ′′ is again a “regularization” parameter, which dampens the effect of the noise 

and keeps γi from becoming zero,  M is  the number of samples in  the local  analysis 

window, and α is the structure sensitivity parameter. The intuition behind (3.18) is that, 

to reduce noise effects while producing sharp images, large footprints are preferred in the 

flat (smooth regions) and smaller ones in the textured areas. Note that the local gradients 

and the eigenvalues  of  the local  gradient  matrix  Ci
naïve  are  smaller  in  the flat  (low-

frequency) areas than the textured (high-frequency) areas. As the product  s1 s2 is the 

geometric mean of the eigenvalues of Ci
naïve  γi makes the steering kernel area large in the 

flat, and small in the textured areas. The structure sensitivity  α (typically 0 ≤ α ≤ 0.5) 

controls how strongly the size of the kernel footprints is affected by the local structure. 

The product of the singular values indicates the amount of energy of the local signal 

structure: the larger the product, the stronger and the more complex the local structure is. 

A large α is preferable when the given signal carries severe noise. 

Figure  3.7  illustrates  a  schematic  representation  of  the  estimate  of  local  co-

variance matrices and the computation of steering kernel weights for the center pixel y13. 

First, we estimate the gradients and compute the local covariance matrix  Ci by (3.13)-

(3.18) for each pixel.

 We compute the steering kernel weights for each neighboring pixel with its Ci. In 

this case, even though the spatial distances from y13 to y1 and to y21 are equal, the steering 

kernel weight for y21 (i.e. KH21(x21 − x13)) is larger than the one for yi (i.e. KH1(x1 − x13)). 

Moreover, as Figure 3.8(a) illustrates the steering kernel weights on a variety of image 

structures of a clean Lena image, weights  given by the steering kernel function (3.9) 

with (3.13) captures local structures more effectively. This is because the steering kernel 

function is a function of the position of neighboring samples (xi) with  the position of 
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interest (x) held fixed. Each neighboring sample (yi ) has a steering matrix (Hi
steer), and, 

(a) A covariance matrix from local gradients with 3 × 3 analysis window     (b)Steering kernel 
weights

Figure 3.7:  A schematic  representation of  the  estimates  of  local  covariance metrics  and the 
steering kernel weights at a local region with one dominant orientation: (a) First, we estimate the 
gradients and compute the local covariance matrix Ci by (2.13) for each pixel, and (b) Next, for 
y13, we compute the steering kernel weights with Ci for neighboring pixels. Even though, in this 
case, the spatial distances between y13 and y1 and between y13 y21 are equal, the steering kernel 
weight for y21 (i.e. KH21(x21 − x13)) is larger than the one for y1 (i.e. KH1(x1 − x13)). This is because 
y13 and y21 are located along the same edge.

unlike the adaptive normalized convolution method, the steering kernel function takes 

not only the steering matrix at the position of interest but also its neighborhoods’ into 

account.  As a result,  the steering kernel has more flexibility to adapt  to local image 

structures. This property is effective for  object recognition applications. 
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Chapter 4

Principal component analysis

In many problems, the measured data vectors are high-dimensional but we may 

have reason to believe that the data lie near a lower-dimensional manifold. In other words, 

we may believe  that  high-dimensional  data  are  multiple,  indirect  measurements  of  an 

underlying source, which typically cannot be directly measured. Learning a suitable low-

dimensional manifold from high-dimensional data is essentially the same as learning this 

underlying source.

Dimensionality  reduction  can  also  be  seen  as  the  process  of  deriving  a  set  of 

degrees of freedom which can be used to reproduce most of the variability of a data set. 

Consider  a  set  of  images  produced by the  rotation of  a  face through different  angles. 

Clearly only one degree of  freedom is  being  altered,  and thus  the  images  lie  along a 

continuous one-dimensional curve through image space. 

Manifold learning techniques can be used in different ways including:

1. Data dimensionality reduction: Produce a compact low-dimensional encoding of a 

given high dimensional data set.

2. Data visualization: Provide an interpretation of a given data set in terms of intrinsic 

degree of freedom, usually as a by-product of data dimensionality reduction.

3. Pre-processing for supervised learning: Simplify,  reduce,  and clean the data  for 

subsequent supervised training.

Many algorithms for dimensionality reduction have been developed to accomplish 

these  tasks.  However,  since  the  need for  such analysis  arises  in  many areas  of  study, 

contributions to the field have come from many disciplines. While all of these methods 

have a similar goal, approaches to the problem are different.

Principal components analysis  (PCA) [12] is  a classical method that provides a 

sequence of best linear approximations to a given high-dimensional observation. It is one 

of the most popular techniques for dimensionality reduction. However, its effectiveness is 

limited  by its  global  linearity.  Multidimensional  scaling  (MDS) [13],  which  is  closely 

related to PCA, suffers from the same drawback. Independent component analysis (ICA) 

[14] also assume that the underling manifold is a linear subspace. However, they differ 
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from PCA in the way they identify and model the subspace. The subspace modeled by 

PCA captures the maximum variability in the data, and can be viewed as modeling the 

covariance structure of the data, whereas factor analysis models the correlation structure. 

ICA  starts  from  a  factor  analysis  solution  and  searches  for  rotations  that  lead  to 

independent  components.  The  main  drawback  with  all  these  classical  dimensionality 

reduction approaches is  that they only characterize linear  subspaces (manifolds) in  the 

data.

4.1 Principal Components Analysis

Principal  components  analysis  (PCA)  is  a  very  popular  technique  for 

dimensionality reduction. Given a set of data on n dimensions, PCA aims to find a linear 

subspace of dimension d lower than n such that the data points lie mainly on this linear 

subspace (See Figure 1.2 as an example of a two-dimensional projection found by PCA). 

Such a reduced subspace attempts to maintain most of the variability of the data. 

The linear  subspace  can be specified by  d orthogonal  vectors  that  form a  new 

coordinate  system,  called  the  `principal  components'.  The  principal  components  are 

orthogonal, linear transformations of the original data points, so there can be no more than 

n of them. However,  the hope is  that  only d < n principal  components are  needed to 

approximate the space spanned by the n original axes. The most common definition of 

PCA, due to Hotelling [15], is that, for a given set of data vectors  x i ,i∈1 . .. t , the  d 

principal  axes  are  those  orthonormal  axes  onto  which  the  variance  retained  under 

projection is maximal. In order to capture as much of the variability as possible, let us 

choose the first principal component, denoted by U1, to have maximum variance. Suppose 

that all centered observations are stacked into the columns of an n×t matrix X, where each 

column corresponds to an n-dimensional observation and there are t observations. Let the 

first principal component be a linear combination of X defined by coefficients (or weights) 

w = [w1 . . .wn]. In matrix form: 

U 1=wT X

var (U 1)=var (wT X )=wT Sw

where S is the n × n sample covariance matrix of X.

Clearly var(U1) can be made arbitrarily large by increasing the magnitude of  w. 
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Therefore, we choose w to maximize wTSw while constraining w to have unit length.

max wT Sw

subject to wT w=1

To solve this optimization problem a Lagrange multiplier α1 is introduced:

L(w ,α)=wT Sw−α1(w
T x−1) (4.1)

Differentiating with respect to w gives n equations,

Sw=α1 w

Pre-multiplying both sides by wT we have:

wT Sw=α1 wT w=α1

var(U1) is maximized if α1 is the largest eigenvalue of S.

Clearly α1  and w are an eigenvalue and an eigenvector of  S. Differentiating (4.1) 

with respect to the Lagrange multiplier α1  gives us back the constraint:

wT w=1

This  shows  that  the  first  principal  component  is  given  by  the  normalized 

eigenvector with the largest associated eigenvalue of the sample covariance matrix  S. A 

similar  argument  can  show  that  the  d  dominant  eigenvectors  of  covariance  matrix  S 

determine the first d principal components. 

Another nice property of PCA, is that the projection onto the principal subspace 

minimizes the squared reconstruction error, ∑i=1

t

∥x i− x̂ i∥
2

.In other words, the principal 

components of a set of data in ℝ
n provide a sequence of best linear approximations to 

that data, for all ranks d ≤n

Consider the rank-d linear approximation model as:

f ( y)= x̄+U d y

This is the parametric representation of a hyperplane of rank d.

For convenience, suppose x = 0 (otherwise the observations can be simply replaced 

by their centered versions x̃= xi− x̄ ).  Under this assumption the rank  d linear model 

would be  f ( y)=U d y , where  Ud is a  n × d matrix with d orthogonal unit vectors as 

columns and  y is a vector of parameters. Fitting this model to the data by least squares 

leaves us to minimize the reconstruction error:
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min
U d , yi

∑
i

t

∥xi−U d y i∥
2

By partial optimization for yi we obtain:

d
dy i

=0⇒ y i=U d
T xi

Now we need to find the orthogonal matrix Ud:

min
Ud

∑
i

t

∥x i−U d Dd
T xi∥

2

Define H d=U d U d
T . Hd is an n× n matrix which acts as a projection matrix and 

projects each data point xi onto its rank d reconstruction. In other words,  Hd   xi is the 

orthogonal projection of  xi onto the subspace spanned by the columns of  Ud. A unique 

solution  U can be obtained by finding the singular value decomposition of X [17]. For 

each rank d, Ud consists of the first d columns of U.

Clearly the solution for U can be expressed as singular value decomposition (SVD) 

of X.

X =U ΣV T

since the columns of U in the SVD contain the eigenvectors of XXT. The PCA procedure is 

summarized in Algorithm 4.1

Algorithm 4.1

Recover  basis:  Calculate  XX T
=∑i=1

t
x i x i

T and  let  U  =  eigenvectors  of  XX T

corresponding to the top d eigenvalues.

Encode training data: Y = UTX where Y is a d × t matrix of encodings of the original 

data.

Reconstruct training data: X̂ =UY=UU T X

Encode test example: y = UTx where y is a d-dimensional encoding of x.

Reconstruct test example: x̂=Uy=UU T x

Table 4.1: Direct PCA  Algorithm
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4.1.1 Dual PCA

It turns out that the singular value decomposition also allows us to formulate the 

principle components algorithm entirely in terms of dot products between data points and 

limit  the  direct  dependence  on  the  original  dimensionality  n.  This  fact  will  become 

important below. 

Assume that the dimensionality n of the n×t matrix of data X is large (i.e., n >> t). 

In this case, Algorithm 4.1 (Table 4.1) is impractical. We would prefer a run time that 

depends  only  on  the  number  of  training  examples  t,  or  that  at  least  has  a  reduced 

dependence on n.

Note that in the SVD factorization X = UΣVT , the eigenvectors in U corresponding 

to  nonzero  singular  values  in  Σ (square  roots  of  eigenvalues)  are  in  a  one-to-one 

correspon-dence with the eigenvectors in V. Now assume that we perform dimensionality 

reduction on U and keep only the first d eigenvectors, corresponding to the top d nonzero 

singular values in Σ. These eigenvectors will still be in a one-to-one correspondence with 

the first d eigenvectors in V:

XV = U Σ

where the dimensions of these matrices are:

  X   U    Σ   V

n×t n×d d×d t×d

        diagonal

Crucially, Σ is now square and invertible, because its diagonal has nonzero entries. Thus, 

the following conversion between the top d eigenvectors can be derived: 

U = XV Σ-1 (4.2)

Replacing all uses of U in Algorithm 1 with XV Σ-1  gives us the dual form of PCA, 

Algorithm  2  (see  Table  4.2).  Note  that  in  Algorithm  4.2  (Table  4.2),  the  steps  of 

''Reconstruct  training  data"  and  ''Reconstruction  test  example"  still  depend  on  n,  and 

therefore still  will  be impractical in the case that the original dimensionality  n is very 

large. However all other steps can be done conveniently in the run time that depends only 

on the number of training examples t. 
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Algorithm 4.2

U eigenvectors, X

Recover basis: Calculate XTX and let V = eigenvectors of XTX corresponding to the top d 

eigenvalues. Let Σ = diagonal matrix of square roots of the top d eigenvalues.

Encode training data:  Y = UTX =  Σ VT where  Y is a  d × t  matrix of encodings of the 

original data. 

Reconstruct training data: X̂ = UY = U ΣV T
= XV Σ

−1
ΣV T

= XVV T

Encode test  example:  y = UT x = Σ
−1V T X T x = XV T X T x where  y is  a  d 

dimensional encoding of x.

Reconstruct test example: x̂=Uy=UU T x=XV Σ
−2V T X T x=XV Σ

−2 V T X T x
Table 4.2: Dual PCA Algorithm

4.2 Kernel PCA

PCA is designed to model linear variabilities in high-dimensional data. However, 

many  high  dimensional  data  sets  have  a  nonlinear  nature.  In  these  cases  the  high-

dimensional data lie on or near a nonlinear manifold (not a linear subspace) and therefore 

PCA can not model the variability of the data correctly. One of the algorithms designed to 

address the problem of nonlinear dimensionality reduction is Kernel PCA. In Kernel PCA, 

through the use of kernels,  principle components can be computed efficiently in high-

dimensional feature spaces that are related to input space by some nonlinear mapping.

Kernel PCA finds principal components which are nonlinearly related to the input 

space by performing PCA in the space produced by the nonlinear mapping, where the low-

dimensional latent structure is, hopefully, easier to discover. 

Consider a feature space Ή such that:

Φ:x →Ή

x→Φ(x)

Suppose Σi
t
Φ( x i) = 0 . This allows us to formulate the kernel PCA objective as 

follows:
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min∑
i

t

∥Φ( xi)−U q U q
TΦ(x i)∥ (4.3)

By the same argument used for PCA, the solution can be found by SVD:

Φ(X )=U ΣV T (4.4)

where U contains the eigenvectors of Φ(X )Φ(X )
T . Note that if Φ(X) is  n×t and the 

dimensionality of the feature space n is large,  then  U is  n × n  which will  make PCA 

impractical. 

To reduce the dependence on n, first assume that we have a kernel K ( . , .)  that 

allows  us  to  compute  K ( x , y)=Φ( x)T
Φ( y)  Given  such  a  function,  we  can  then 

compute the matrix  Φ(X )
T
Φ(X )=K efficiently,  without computing Φ(X) explicitly. 

Crucially, K is t × t here and does not depend on n. Therefore it can be computed in a run 

time that depends only on t. Also, note that PCA can be formulated entirely in terms of dot 

products  between  data  points  (Algorithm  2  represented  in  Table  1.2).  Replacing  dot 

products in Algorithm 2 (1.2) by kernel function K, which is in fact equivalent to the inner 

product of a Hilbert space yields to the Kernel PCA algorithm.

4.2.1 Centering

In the derivation of the kernel PCA we assumed that  Φ(X) has zero mean. The 

following normalization of the kernel satisfies this condition. 

K̃ ( x , y)=K ( x , y)−Ex [ K (x , y) ]−E y [K (x , y )]+E X [E y [ K ( x , y)] ] (4.5)

In order to prove that, define:

Φ̃(X )=Φ( x)−E x [Φ(X )] (4.6)

Finally, the corresponding kernel is:

K̃ ( x , y)=Φ̃( x)Φ̃( y ) (4.7)

This expands as follows:

K̃ ( x , y)=(Φ( x)−E x [Φ( x)])⋅(Φ( y )−E y [Φ( y)])

   = K ( x , y)−E x [K (x.y )]−E y [K (x , y )]+E x [E y [ K ( x , y)] ] (4.8)

To perform Kernel  PCA,  one needs  to  replace  all  dot  products  xTy by  K̃ ( x , y)  in 

Algorithm 2 (Table 1.2). Note that V is the eigenvectors of K(X;X) corresponding to the top 
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d eigenvalues,  and  Σ is  diagonal  matrix  of  square  roots  of  the  top  d eigenvalues. 

Unfortunately Kernel  PCA does not  inherit  all  the strength of  PCA. More specifically 

reconstruction of  training and test  data  points is  not  a  trivial  practice in  Kernel  PCA. 

Algorithm 2 (Table 1.2) shows that data can be reconstructed in feature space Φ(x). 

4.3 Proof of PCA

With the knowledge from linear algebra, we now can prove that PCA results in the 

best  compression  with  the  minimal  loss  of  information.  We  use  the  following 

considerations in the proof:

The first consideration is:

E [ x̄T x̄]=E [∑i=1

N

xi
2]=∑i=1

N

E [ x i
2]=∑

i=1

N

Rii ( I ) (4.9)

The second consideration, with

       i
T

i qxc = (4.10) 

E [ ci c j ]=E [ x̄T q̄ i q̄ j
T x̄ ]

   = E [ q̄ j
T x̄ x̄T q̄i ]

   = q̄ j
T E [ x̄ x̄T ] q̄i

   = q̄ j
T ̄̄R q̄i

   = q̄ j
T λi q̄i

   = λi q̄ j
T q̄i

   = λi δij (4.11)

The difference between two random vectors with the same correlation matrix now is:

E [∥x̄−̄̃x∥2]=E [( x̄−∑
i=1

N

ci q̄i)
2

]
= E [( x̄−∑

i=1

N

c i q̄i)
T

( x̄−∑
i=1

N

c i q̄ i)]
= E [ x̄T x̄ ]−2∑

i=1

N

E [ci x̄T q̄i ]+∑
j=1

N

∑
i=1

N

E [c i c j q̄
iT

q̄ j] (⃗ I ) ∧ ( II )
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= ∑
i=1

N

Rii−2∑
i=1

N

E [c i
2 ]+∑

j=1

N

∑
i=1

N

λi δij

= ∑
i=1

N

Rii−2∑
i=1

N

λi+∑
j=1

N

∑
i=1

N

λi δ ij

= ∑
i=1

N

Rii−2∑
i=1

N

λi+∑
i=1

N

λ i

= ∑
i=1

N

Rii−∑
i=1

N

λ i (4.12)

Since the matrix R is Hermitian this error equals 0, because for such a Hermitian matrix it 

holds that:

∑ ∑
= =

=
N

i

N

i
iiiR

1 1

λ (4.13)

Now we have proven that a measure for the difference or error between x and x
~  is given 

by:

∑∑
==

−=



 −

N

i
i

N

i
iiRxxE

11

2~ λ (4.14)

We may rewrite x as a combination of eigenvectors:

∑∑
+==

+=
N

Mi
ii

M

i
ii qcqcx

11

(4.15)

If we want to compress x the next question is, which terms can we best leave out?

The error by leaving out terms is expressed by:

∑∑∑∑∑
+=====

−−=−
N

Mi
i

M

i
i

N

i
ii

N

i
i

N

i
ii RR

11111

λλλ (4.16)

Clearly,  when we use the smallest  eigenvalues  iλ for the part we leave out (the terms 

numbered M+1 until N), we obtain the smallest error.
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Chapter 5

Resemblance Map and Significance Testing

An ensemble of local features with little discriminative power can together offer a 

significant discriminative power, both quantization and informative feature selection on a 

long-tail distribution can lead to a precipitous drop in performance. Therefore, instead of 

any quantization and informative feature selection, we focus on reducing the dimension of 

densely  computed  LSKs  using  PCA to  enhance  the  discriminative  power  and  reduce 

computational  complexity.  This  idea  results  in  a  new  feature  representation  with  a 

moderate dimension which inherits the desirable discriminative attributes of LSK.

5.1 Feature representation: 

In order to organize W Q
j
(x i−x) and W T

j
( x l− x) , which are densely computed 

from  Q and  T,  let  WQ,  WT be matrices whose columns are vectors  wj
Q,  wj

T ,  which are 

column-stacked (rasterized) versions of wQ
j
( xl−x ) ,W T

j
( x l− x) respectively:

W Q=[wQ
1,
⋯ ,wQ

n ]∈ℝ
P2
×n , W T=[wQ

1,
⋯ ,wQ

nT ]∈ℝP 2
×nT

the next step is to apply PCA to  WQ for dimensionality reduction and to retain only its 

salient characteristics. Applying PCA to  WQ we can retain the first (largest) d principal 

components  which  form  the  columns  of  a  matrix  AQ  ∈ ℝ
P2
×d .  Next,  the  lower 

dimensional features are computed by projecting WQ and WT onto AQ 

FQ=[ f Q
1,
⋯, f q

n ]=AQ
T W Q∈ℝ

d×n , F Q=[ f Q
1,
⋯ , f q

nT ]=AQ
T W Q∈ℝ

d×nT

5.2 Matrix Cosine as a Measure of Similarity

The  next  step  in  the  proposed  framework  is  a  decision  rule  based  on  the 

measurement of a “distance” between the computed features FQ,  FTi.  Correlation based 

metrics  outperforms  the  conventional  Euclidean  and  Mahalanobis  distances  for  the 
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classification and subspace learning tasks. Motivated by the effectiveness of correlation-

based similarity measure, we introduce “Matrix Cosine Similarity” for the matrix case and 

explore the idea behind this measure in this section. In general, “correlation” indicates the 

strength and direction of a linear relationship between two random variables. But the idea 

of correlation is quite malleable.

The  Pearson’s  correlation  coefficient  which  is  the  familiar  standard  correlation 

coefficient, and the cosine similarity (so-called non-Pearson-compliant). Cosine similarity 

coincides with the Pearson’s correlation when each vector is centered to have zero-mean. It 

has  been  shown  that  the  Pearson  correlation  is  less  discriminating  than  the  cosine 

similarity due to the fact that centered values are less informative than the original values, 

and the computation of centered values is sensitive to zero or small values in the vectors. 

Since the discriminative power is critical  in our detection framework, we focus on the 

cosine  similarity.  The  cosine  similarity  is  defined  as  the  inner  product  between  two 

normalized vectors as follows:

ρ( f Q , F T I
)=〈

f Q

∥ f Q∥
,

f T i

∥ f T i
∥
〉=

FQ
T f T i

∥ f Q∥ ∥ f T i
∥
=cosθ i ,∈[−1,1 ] ,

where f Q , f T i
∈ℝ

d are column vectors. The cosine similarity measure therefore focuses 

only on the angle (phase) information while discarding the scale information. 

The next step is to generate a so-called “resemblance map” (RM), which will be an 

image withvalues indicating the likelihood of similarity between the  Q and  T . When it 

comes to interpreting  the value of “correlation”, it is noted that the proportion of variance 

in  common  between  the  two  feature  sets  as  opposed  to  ρi which  indicates  a  linear 

relationship between two feature matrices FQ, FTi. At this point, we can use ρi directly as a 

measure  of  resemblance  between  the  two  feature  sets.  However,  the  shared  variance 

interpretation  of  ρ2
i has  several  advantages.  In  particular,  as  for  the  final  test  statistic 

comprising the values in the resemblance map, we use the proportion of shared variance 

(ρ2
i) to that of the “residual” variance (1 − ρ2

i). More specifically, RM is computed using 

the mapping function f as follows: 
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RM: f (ρi)=
ρi

2

1−ρi
2

     (a) (b)

Figure 5.1 (a)  Resemblance map (RM) which consists of |ρi| (b) Resemblance map (RM) which 
consists of f (ρi).

In Figure 5.1, examples of resemblance map (RM) based on |ρi| and  ƒ(ρi) are presented. 

Red  color  represents  higher  resemblance.  As  is  apparent  from  these  typical  results, 

qualitatively,  the  resemblance  map  generated  from  ƒ(ρi)  provides  better  contrast  and 

dynamic range in the result (f (ρi)  [0, ∞]). More importantly, from a quantitative point of∈  

view, we note that ƒ(ρi) is essentially the Lawley-Hotelling Trace statistic, which is used as 

an efficient test statistic for detecting correlation between two data sets. Furthermore, it is 

worth noting that historically, this statistic has been suggested in the pattern recognition 

literature as an effective means of measuring the separability of two data clusters 

5.3 Non-Parametric Significance Test and Non-Maxima Suppression 

If the task is to find the most similar patch (Ti) to the query (Q) in the target image, 

one can choose the patch which results in the largest value in the RM (i.e.,  max  ƒ(ρi)) 

among all the patches, no matter how large or small the value is in the range of [0, ∞].  

This, however, is not wise because there may not be any object of interest present in the 

target image. We are therefore interested in two types of significance tests. The first is an 

overall test to decide whether there is any sufficiently similar object present in the target 

image at  all.  If the answer is yes,  we would then want to know how many objects of 

interest  are  present  in  the  target  image  and  where  they  are.  Therefore,  we  need  two 

thresholds: an overall threshold τo and a threshold τ to detect the possibly multiple objects 
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present in the target image.

In a typical scenario, we set the overall threshold τo to be, for instance, 0.96 which 

is about 50% of variance in common (i.e., ρ2 = 0.49). In other words, if the maximal ƒ(ρi) 

is just above 0.96, we decide that there exists at least one object of interest. The next step 

is to choose τ based on the properties of ƒ(ρi). When it comes to choosing the τ , there is 

need to be more careful. If we have a basic knowledge of the underlying distribution of 

ƒ(ρi), then we can make predictions about how this particular statistic will behave, and thus 

it is relatively easy to choose a threshold which will indicate whether the pair of features 

from the two images are sufficiently similar. But, in practice, we do not have a very good 

way to model the distribution of ƒ(ρi). Therefore, instead of assuming a type of underlying 

distribution, we employ the idea of nonparametric testing. We compute an empirical PDF 

from all the give samples of  ƒ(ρi) and we set τ so as to achieve, for instance, a 99 % 

confidence level in deciding whether the given

Figure  5.2  (a)  Query (b)  Target  with  detection  (c)  Two  significance  tests  (d)  Non-maxima 
suppression

 values are in the extreme (right) tails of the distribution. This approach is based on the 

assumption that in the target image, most of patches do not contain the object of interest, 

and  therefore,  the  few  matches  will  result  in  values  which  are  in  the  tails  of  the 

distributions of ƒ(ρi). After the two significance tests with τo, τ are performed, we employ 

the idea of non-maxima suppression for the final detection. We take the region with the 
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highest  ƒ(ρi) value and eliminate the possibility that any other object is detected within 

some radius of the center of that region again.  This enables us to avoid multiple false 

detections of nearby objects already detected. Then we iterate this process until the local 

maximum value falls  below the threshold  τ.  Fig. 5.  shows the graphical illustration of 

significance tests and the non-maxima suppression idea. 
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Chapter 6

Methodology

For video indexing it is necessary that we first segment the video in frames for 

which the LARK algorithm could be used to work upon. Here we assume a new object 

appears in a new frame which causes an abrupt change in pixel values which is usually the 

case with a random videos. An abrupt change in video can be detected using histogram 

intersection. 

Here we take the example of a Tank that we will try to identify in the video and 

will be used as a query here in the process. Our methodology involves the following steps 

as shown in the figure.

6.1 Histogram intersection

A histogram difference  value  HDi (difference  between  ith  and (i+1)th  frame is 

computed using normalized histogram intersection as follows:

HDi=1−(1 /3n)×[Σ j=1
n min (F rj

i , F rj
i+1
)+Σ j=1

n min (F gj
i , F gj

i+1
)+Σ j=1

n min(Fbj
i ,F bj

i+1
)]   (6.1)

where n is the number of pixels in the frame, and Frj
i is the number of jth bin of the red 

plane of the ith frame. Similar terms are defined for green and blue planes. This measure 

ensures that frame which are nearly similar,  HDi turns out to be close to zero, while for 

dissimilar frame HDi is closer to one.

Once  we  have  obtained  the  frame  using  histogram intersection  we  can  use  the  local 

adaptive regression kernel to identify the image in the frame. We apply this method on the 

whole frame sequence so that we can identify the frame break in video and could match 

the frame for possible relevance with the query object.
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Fig

Figure 6.1 System Overview

6.2 Locally Adaptive Kernel Regression

In kernel  regression,  we made use of spatial  differences to  weigh the input  values.  In 

locally-adaptive kernel regression, we not only make use of spatial differences, but also the 

difference in data (pixel gradients). In particular, in steering kernel regression, this is done 

by setting the smoothing matrix Hi to be 

H i=hC i
1/2 (6.2)

where h is a global smoothing parameter and Ci is the covariance matrix at the ith pixel, 
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An estimate of this covariance matrix can be obtained using the following formula:

              C i=[Σ x jϵw i
f x (x j) f x (x j) Σ x jϵw i

f x (x j) f y( x j)

Σx j ϵw i
f y ( x j) f x ( x j) Σx j ϵw i

f y ( x j) f y (x j)] (6.3)

where  fx   and  fy  are  the derivatives  along the  x and y directions,  and wi is  a  window 

surrounding the pixel. If we choose our kernel function to be a Gaussian kernel, then the 

local steering kernel (LSK) at a pixel xi will now be given by:

K ( x i− x; H i)=
√det (C i)

2πh
2 exp(−( x i−x )T C i( xi−x )

2h
2 ) (6.4)

Because the smoothing matrix is now a function of the local pixel data (represented by the 

covariance matrix), this has the effect of spreading the kernel along local edges. Figure 6.2 

shows how a Gaussian kernel adapts to the image data inside the red box.

Figure 6.2 Steering Kernel

Object Detection Using Local Steering Kernels Local steering kernels represent the local 

structures in images, and give us a measure of local pixel similarities. Given a query image 

Q, target image T, overall threshold τ0, and a window size P2, the generic object detection 

algorithm involves the following: 

First, the LSKs for the (grayscale) target and query images must be computed. Let 

these be denoted by KQ(xi - x; Hi ) and KQ
T(xi - x; Hi ), where the subscripts Q and T denote 

the LSKs for  the query and target,  respectively,  and the superscript  j denotes  that  the 

kernels were computed for the jth patch in T that is the same size as Q. Now, the LSKs are 

too dense to use as effective descriptors, and so the next step would be to reduce the 

dimensionality of these vectors. Before this, however, we first need to normalize our data. 
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Normalization of KQ(xi - x; Hi ) and KQ
T(xi - x; Hi ) is given by the following formulas

W Q(x i−x)=
Kq (x i−x ; H i)

Σl=1
P2

K Q( xl−x ; H l)
(6.5)

W T
j
( x i−x )=

KT
j
( xi−x ; H i)

Σl=1
P 2

KT
j
(x l−x ; H l)

(6.6)

Let WQ and Wj
T denote the collection of normalized LSKs for all the xi’s in the query, and 

all  the  xi’s in  the  jth patch  in  the  target,  respectively.  After  normalization,  Principal 

Component Analysis (PCA) can then be used to reduce the dimensionality. Applying PCA 

to WQ and extracting the top d eigenimages gives us the collection of eigenimages, FQ, and 

the projection space  AQ that was used to obtain these eigenimages. We then project  Wj
T 

onto AQ to obtain FT, which is a a collection of eigenimages for the target that are in the 

same space as that of the query. 

With these reduced descriptors, we can now compute the similarity between two 

patches. For this, the Cosine Similarity measure is used. The similarity of the jth patch in 

the target to the query is given by 

ρ j=〈
FQ

∥FQ∥
,

F Q

∥F Q∥
〉 (6.7)

From this measure, we generate the resemblance map by calculating the resemblance

f (ρ j)=
ρ j

2

1−ρ j
2 (6.8)

for all patches in the target. Finally, significance tests and non-maximum suppression are 

applied  to  find  the  objects.  First,  the  resemblance  map  is  thresholded  by the  overall 

threshold τ0 (ideally set to 0.99), to determine if there are any objects present in the target. 

If  no values  are  above  τ0,  then  no objects  are  present.  Then,  the  resemblance  map is 

thresholded by a second threshold, τ, which is extracted from the PDF of ƒ(ρj ) and is set 

so that only 1% of the resemblance values are above it. This gives a 99% confidence level 

in  the  produced data.  The last  step is  to  apply non-maximum suppression to  find  the 
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locations of the objects.

We determine the result of the video for abrupt changes in frames by histogram 

intersection and we see from the figure (3), that it shows the number of the frame at  

which the change is happening, which we captured and applied to LARK.

We have summarized the above procedure in the form of a pseudo-code which 

shows the step by step procedure to find out the steering kernel and then detection of the 

object.

Algorithm 5.1- Pseudo-code for the non-parametric object detection algorithm

Q : Query image, T : Target image, τo : Overall threshold, α : Confidence level, P2: Size 

of local steering kernel (LSK) window.

Step 1: Histogram intersection

Apply the histogram intersection and find the videoshot in the movie.

Step 1: Feature representation

1) Construct WQ, WT which are a collection of normalized LSK associated with Q, T.

2) Apply PCA to WQ and obtain projection space AQ from its top d eigenvectors.

3) Project WQ and WT onto AQ to construct FQ and FT.

Step 2: Compute Matrix Cosine Similarity

for every target patch Ti , where i  [0, · · · , ∈ M − 1] do

ρ i = 〈
F Q

∥F Q∥F

,
FQ

∥F Q∥F

〉 F  and  compute  resemblance  map  (RM): 

f (ρ i)=
ρi

2

1−ρi
2

.end for

Then, find max ƒ(ρi).

Stage3: Significance tests and Non-maxima suppression
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1) If max ƒ(ρi) > τo, go on to the next test. Otherwise, there is no object of interest in T.

2) Threshold RM by τ which is set to achieve 99 % confidence level (α = 0.99) from the 

empirical PDF of ƒ(ρi).

3) Apply non-maxima suppression to RM until the local maximum value is below τ.
Table 5.1: Pseudo-code for training free videoshot object detection
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Chapter 7

Simulation and Results

7.1 Result

We take an image of a 'Tank' as query and try to detect the tank in the video which 

consist of tanks trials mixed with other images so that we could test our algorithm if it 

works or not. Figure 7.1 shows the tank query image, and figure 7.2 shows the output of 

the histogram intersection graphically which shows that at which frame there is an abrupt 

change in the video. Images of videoshot frames that are arranged in an image matrix form 

in figure 7.3.

  (a)    (b)        
     Figure 7.1 Query image

Figure 7.2:  Histogram instersection graphical output showing the frame at which abrupt change 
occurs.

These  detected  shots  are  the  input  to  the  system  for  steering  kernel  matrix 

calculation.  Once  these  steering  kernel  matrix  is  obtained  then  by  going  along  the 

algorithm 6.1 we capture the object in these shots and validate our results. Result of above 

system is  again  shown in  the  image matrix  form in  figure  7.3 which  shows the  tank 

detected in each frame.
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Figure 7.3:  Tanks detected in the system in the frames.

7.2 Limitation

Since the above procedure is training free in which we detect the object on the 

basis of only one query so system has an inherited problem of not being able to detect the 

same object in case the object is tilted or oriented. For example an image of figure 7.1 is 

unable to detect the tank as in figure 7.4. The solution for this problem is to use chained 

query image  generation[16]  which  take  all  the  positive  images  that  query 1  failed  to 

classify in first training set, and use these to generate a second query image. This second 

query will now have information that contains more details that the first query, since it is 

averaging over a smaller subset of images. These two queries are then used to perform 

classification on Training Set.

As we see from the simple example of above procedure in which we use two query 

images  of  tanks  and for  target  we take  a  single  image which contains  many tanks in 

different  poses.  By running  the  first  query in  the  system we  see  that  the  system has 

detected  the  tanks  in  the  target  image  but  there  are  many  tanks  which  are  still  left 

undetected. On the second iteration of the system, the system uses the second query image 

to work on the target image and detects most of the rest of the tanks as we can see in the 

figure 7.4. 
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(a)        (b)

Figure 7.4:  Chained query image generation (a) shows the detection using the image of figure  
7.1(a) and 7.4(b) shows the detection using the image of figure 7.1(b)

7.3 Conclusions

In this  thesis,  we studied  a  non-parametric  kernel  regression  (KR),  proposed a 

novel and powerful training-free non-parametric object detection framework by employing 

local steering kernels (LSKs) which well capture underlying data structure, and by using 

the “Matrix Cosine Similarity” (MCS) measure. The proposed method can automatically 

detect in the target the presence, the number, also the location of objects. We applied the 

proposed approach for indexing the data from a random video. The experimental results of 

both simulated and real data showed that the proposed method was effective in indexing 

the contents of video without any prior knowledge of data to be indexed. 

However the success of the indexing is limited to the type of data present in the 

video itself. An object is successfully indexed when it occupy a small portion the frame, 

because this helps in identifying the underlying feature of the target object which could be 

matched against the matrix kernel of query. In case the object occupies the larger portion 

of the frame then the reliability of the algorithm decreases, but it still  tries to find the 

closest match for the query input.
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The  proposed  method  does  not  require  any  prior  knowledge  (learning)  about 

actions being sought; and does not require any segmentation or pre-processing step of the 

target.
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Appendix A

Equivalent Kernels

Study of (1.33) shows that  XTKX is an (N + 1) × (N + 1) block matrix, with the 

following structure:

X T KX=[
a11 a12 a13 ⋯

a21 a22 a23 ⋯

a31 a32 a33 ⋯
⋮ ⋮ ⋮ ⋱

] (A.1)

where alm is an l × m matrix for the 2-D case. The block elements of (A.1) for orders up to 

N = 2 are as follows: 

a11=∑
i=1

P

K H (x i− x) , (A.2)

a12=a21
T =∑

i=1

P

(x i− x)T K H (xi−x) , (A.3)

a22=∑
i=1

P

(x1−x )(x1− x)T K H (x1− x) , (A.4)

a13=a31
T
=∑

i=1

P

vechT {(x1− x)(x1− x)T }K H ( x1−x) , (A.5)

a23=a32
T =∑

i=1

P

(x1−x )vechT {( x1−x)( x1−x )T }K H (x1−x ) , (A.6)

a33=∑
i=1

P

( x1−x )vech {( x1−x)( x1−x )T }vechT {(x1− x)(x1− x)T }K H ( x1−x) , (A.7)
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With the above shorthand notations, the equivalent kernel functions Wi(·) in (1.35) for up 

to N = 2 are given by

W i(K , H , N=0, xi−x )=
K H ( xi−x )

a11

(A.8)

W i(K , H , N=0, xi−x )=
{1−a12 a22

−1( xi−x )}K H (xi−x)

a11−a12a22
−1 a21

(A.9)

W i(K , H , N=0, xi−x )=
[1−A12 a22

−1
( xi−x )−A13 A33

−1 vech {( x1−x )( x1−x )T }]K H (x i− x)

a11−a12 a22
−1 a21−A13 A33

−1a31

with 

A12=a12−a13 a33
−1 a32, A22=a22−a23 a33

−1 a32,

A13=a13−a13 a22
−1 a23, A22=a22−a32 a22

−1 a23, (A.10)
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Appendix B

Local Gradient Estimation

In this appendix, we formulate the estimation of the direct gradient β1 of the second 

order kernel regressor (N = 2). Note that direct gradient estimation is useful not only for 

the iterative steering kernel  regression,  but  also for  many diverse applications  such as 

estimating motion via gradient-based methods (e.g., optical flow) and dominant orientation 

estimation. In the solution of the optimization of kernel regression (1.32), the second and 

third element of b give the estimate of local gradient:

∇ ẑ (x )=β̂1=[e2
T

e3
T ](X T KX )

−1X T Ky (B.1)

where e2 and e3 are column vectors with the second and third elements equal to one, and 

the  rest  equal  to  zero.  Using  the  notations  of  (A.3)-(A.7)  in  Appendix  A,  the  local 

quadratic gradient estimator is expressed as

∇ ẑ (x )=∑
i=1

P

Β
−1[−B21 B11

−1
+(x i− x)−B23 B33

−1 vech {( xi−x )( x i−x )T }]K H (x i−x) y i , (B.2)

where

B11=a11−a13 a33
−1 a31 , B21=a21−a22 a33

−1 a31,

B23=a23−a21a11
−1 a13 , B33=a33−a31 a11

−1 a13,

Β=a22−B21 B11
−1 a12−B23 B33−1 a32. (B.3)

62



References

1. Hideyuki  Tamura,  Shunji  Mori,  Takashi  Yamawaki,  “Textural  Features 

Corresponding  to  Visual  Perception,”  IEEE  transactions  on  System  Man  and 

Cybernatics, vol. 8, issue 6, pages 460-473.

2. Tushabe,  F.;  M.H.F.  Wilkinson  (2008).  "Content-based  Image  Retrieval  Using 

Combined  2D Attribute  Pattern  Spectra".  Springer  Lecture  Notes  in  Computer  

Science. 

3. Dr Kekre H.B, Mishra D, (2011), Content Based Image Retrieval using Density 

Distribution and Mean of Binary Patterns of Walsh Transformed Color Images, Vol 

3, No 2. 

4. Dr Kekre. H.B, Thepade S.D., Maloo A., (2010), CBIR Feature Vector Dimension 

Reduction  with  Eigenvectors  of  Covariance  Matrix  using  Row,  Column  and 

Diagonal  Mean  Sequences,  Vol  (3)-12,  published  in  International  Journal 

ofComputer Applications (0975 – 8887).

5. Dr  Kekre  H.B,  Mishra  D,  (2010),  Performance  Comparison  of  Four,  Eight  & 

Twelve Walsh Transform Sectors Feature.

6. Hae Jong Seo, Peyman Milanfar, "Training-Free, Generic Object Detec-tion Using 

Locally Adaptive Regression Kernels," IEEE Transactions on Pattern Analysis and 

Machine  Intelligence,  vol.  32,  no.  9,  pp.  1688-1704,  Aug.  2010, 

doi:10.1109/TPAMI.2009.153.

7. R. S. Jadon, Santanu Chaudhury, K. K. Biswas, “A fuzzy theoretic approach for 

video segmentation using syntactic features,”Elsevier Pattern Recognition Letters 

22 (2001) 1359 -1369.

8. H. Takeda, S. Farsiu, and P. Milanfar, “Kernel Regression for Image Processing 

and Reconstruction,” IEEE Transactions on Image Processing, vol. 16, no. 2, pp. 

63



349-366, Feb. 2007.

9. “Deblurring  using  regularized  locally-adaptive  kernel  regression,”  IEEE 

Transactions on Image Processing, vol. 17, pp. 550–563, April 2008.

10. M. P. Wand and M. C. Jones, Kernel Smoothing, ser. Monographs on Statistics and 

Applied Probability. London; New York: Chapman and Hall, 1995.

11. M.  G.  Schimek,  Smoothing  and  Regression  -Approaches,  Computation,  and 

Application-,  ser.  Wiley Series  in  Probability  and Statistics.  New York:  Wiley-

Interscience, 2000.

12.  I. Jolli®e. Principal Component Analysis. Springer-Verlag, New York, 1986.

13. T. Cox and M. Cox. Multidimensional Scaling. Chapman Hall, Boca Raton, 2nd 

edition, 2001. 

14. A. HyvÄarinen. Survey on independent  component  analysis.  Neural  Computing 

Surveys, 2:94-128, 1999.

15. H. Hotelling. Analysis of a complex of statistical variables into components. J. Of 

Educational Psychology, 24:417-441, 1933.

16. Arthur Louis Alaniz II, Christina Marianne G. Mantaring, “Using Local Steering 

Kernels to Detect People in Videos”.

64


	1. Hideyuki Tamura, Shunji Mori, Takashi Yamawaki, “Textural Features Corresponding to Visual Perception,” IEEE transactions on System Man and Cybernatics, vol. 8, issue 6, pages 460-473.

