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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Background 

 

A distributed controllers system (DCS) refers to a control system usually of a 

process plant /manufacturing system in which the different functions to the 

controllers are assigned according to the process plant requirements. Here, the 

controller elements are not central in location (like the brain) but are distributed 

throughout the system with each component sub-system controlled by one or 

more controllers. The entire system of controllers is connected by networks for 

communication and monitoring. DCS is used in the industries, to monitor and 

control distributed position equipment and process plant. A DCS typically uses 

custom designed processors as controllers and uses both proprietary 

interconnections and communications protocol for communication. Input and 

output modules form component parts of the DCS. The processor receives 

information from input modules and sends information to output modules. The 

input modules receive information from input instruments in the process (or 

field) and transmit instructions to the output instruments in the field. Computer 

buses or electrical buses connect the processor and modules through multiplexer 

or demultiplexers. Buses also connect the distributed controllers with the central 

controller and finally to the Human–machine interface (HMI) or control 

consoles. 

 

The elements of a DCS may connect directly to physical equipment such as 

switches, pumps and valves or they may work through an intermediate system 

such as a SCADA system. 
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Distributed control systems (DCSs) are dedicated systems used to control 

manufacturing processes that are continuous or batch-oriented, such as oil 

refining, petrochemicals, central station power generation, fertilizers, 

pharmaceuticals, food and beverage manufacturing, cement production, 

steelmaking, and papermaking. DCSs are connected to sensors and actuators 

and use set point control to control the flow of material through the plant. The 

most common example is a set point control loop consisting of a pressure 

sensor, controller, and control valve. Pressure or flow measurements are 

transmitted to the controller, usually through the aid of a signal conditioning 

input/output (I/O) device. When the measured variable reaches a certain point, 

the controller instructs a valve or actuation device to open or close until the 

fluidic flow process reaches the desired set point. 

 

Large oil refineries have many thousands of I/O points and employ very large 

DCSs. Processes are not limited to fluidic flow through pipes, however, and can 

also include things like paper machines and their associated quality controls , 

variable speed drives and motor control centres, cement kilns, mining 

operations, ore processing facilities, and many others. 

 

Some of the properties of DCS are: 

 Electrical power grids and electrical generation plants 

 Environmental control systems 

 Traffic signals 

 Radio signals 

 Water management systems 

 Oil refining plants 

 Metallurgical process plants 

 Chemical plants 
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 Pharmaceutical manufacturing 

 Sensor networks 

 Dry cargo and bulk oil carrier ships 

 

Existing distributed controllers system 

 1.1.1  Large-scale DCS 

Distributed control systems are computer-based control systems in which the 

main components are located in different places. These components interact 

with each other via a local area network (LAN). 

 

There are off-the-shelf DCSs designed and manufactured by Honeywell 

[Honeywell], Siemens [Siemens], and Emerson Process Management 

[Emerson], etc. Each vendor has its own method and communication protocol 

for providing the information and control. 

 

Vendors also provide the required control for modern industrial systems and 

some can provide communication links to network systems such as Control net, 

Ethernet, Device net, Profi bus, ASI bus, Foundation Fieldbus, Data 

Highway/Remote I/O, Hart Protocol, and Modbus RTU . These DCSs are 

designed for process controls in petrochemical, pulp, food, beverage, and 

mining industries. 

A typical example is Delta V Digital Automation System [Emerson] as 

illustrated in Figure 1.1. The field devices, such as sensors, valves, motors, and 

pumps, are connected with different digital communication buses like Fieldbus, 

HART, and DeviceNet. The linking devices are gateways or bridges between the 

field buses and high speed Ethernet. 
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Operator stations are Windows workstations and server-based PCs. Overall, the 

DeltaV digital automation system is a DCS based on Windows workstations and 

server-based PCs, Ethernet technology, and bus standards. 

The DeltaV suite of engineering tools handles configuration management both 

locally and remotely for all aspects of the DeltaV system and intelligent field 

devices. A global  and centralized configuration database coordinates control 

strategies, process graphics, history, events, and change management. All 

DeltaV hardware is automatically recognized as it is plugged in. The DeltaV 

operation software provides an easy-to-use environment for process operations 

and information access. 
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Figure 1.1 DeltaV architecture 

 

All operations applications are fully remotely accessible anywhere on an 

Ethernet network or via modem. The process history view provides continuous 

trend, event views and batch views to intuitively present these different types of 

historical information. By using digital plant architecture (PantWeb) and plant-

wide asset optimization software (AMS), the DeltaV provides easy access to 
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vital device information for calibration configuration, devices audit trail, and 

advanced diagnostics for predictive maintenance. 

 

Large-scale DCSs, like DeltaV, are usually used to control almost all processes 

in a big plant. 

 

1.1.2  Small-scale DCSs 

 

A small smart distributed control system is shown in Figure 1.2. The system 

includes an industrial PC, several controllers, and a communication interface 

using RS485. The PC is an operating station that is used to configure function 

blocks and monitor the process. The controller is used to sample data and 

execute control algorithms. Communication between the PC and the controllers 

is implemented in a master-slave type broadcasting on the communication 

network. The slave nodes are not allowed to transmit data without a request 

from the master, and do not directly communicate with each other. When a slave 

needs to send a message to another slave, the message has to be sent to the 

master and then the master forwards the message to the receiver. 

Marti et al. proposed an integrated approach to real-time distributed control 

systems over Field bus . A control loop is implemented in a distributed 

architecture, with three nodes: a sensor node, a controller node and an actuator 

node that communicate with each other across a fieldbus communication 

network. The sensor node periodically samples the process and sends the data to 

the controller node. 

The controller node executes a control algorithm and sends the output to the 

actuator node.  
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Figure 1.2 Small scale DCS 

 

A distributed control system is introduced in for supervising a power supply 

system of a telecommunication system. The DCS consists of a main controller, 

several distributed units, and a communication network using multi-drop RS-

485 bus with a proprietary communication protocol. The core of the supervision 

system is the main controller, which is a micro-controller based unit with 

communication ports (RS-232, RS-485) and a user interface. The RS-232 port is 

intended for higher-level supervision, typically for remote connection via 

modem or computer network. The RS-485 ports are used for communication 

between the main controller and distributed units. Each distributed unit contains 

a small micro-controller for data acquisition and control. Each unit has a unique 

address. They are connected to the bus and receive both serial communication 

and power from the bus. The main controller collects information from 

distributed units using the master-slave network and sends the messages to all 

distributed units, but only the right unit with the correct address will answer. 
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Figure 1.3 System architecture 

 

 

1.1.3  Internet-based DCS 

 

DCOM, CORBA, and Java RMI are well known middleware architectures 

based on object-oriented methodologies and have been extensively used in 

commercial and military distributed information systems. Since they support 

communication protocols that are transparent to operating systems, users can 

design and manage the whole system without paying too much attention to the 

data transmission between remote devices .  CORBA-, DCOM-, and Tspace-

based distributed control systems are designed and implemented for 

performance analysis using I/O object, control object, broadcasting service and 

event service. When using middleware as a communication bus for objects, the 

delay may be greater than the one introduced by the Fieldbus, since DCOM, 

CORBA, and Java RMI have not been designed for the physical device level but 

for integrating and linking of software components at higher levels. 
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1.2 Objective of Project 

The objective of this project is to design a distributed controllers system 

over Ethernet bus for motion control drives using 8051 micro-controller and 

AVR micro-controller, respectively. The PWM technology is employed for 

generating the pulses and direct vector control method is used for induction 

motor drive where as simple PWM method is employed for Dc motor. 

Operator console is connected to Ethernet bus for system operator 

operations. 

1.3  Scope of Project 

 

In order to achieve the objective of the project, there are several scope had 

been outlined. The scope of this project includes using Distributed   

controllers system, to control DC drive and induction drive by PWM pulse-

Width generated by using 8051 micro-controller and AVR micro-controller, 

to build hardware for the system. 

  

1.4  Outline of Thesis 

This thesis consists of VI chapters. In first chapter, it discusses about the 

objective and scope of this project. While Chapter II describes the literature 

reviews on controllers including programmable logic controller. It also 

discusses about features of the   controllers. Chapter III presents a brief on 

communication protocol, discussion of different buses and comparison of 

different buses. Chapter IV discusses about drives and their algorithm that is 

implemented in this project. Chapter V discusses about the implementation 

and testing. And in chapter VI conclusion and further scope. 
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1.5 Conclusion 

This chapter gives a brief introduction about Distributed controllers system 

(DCS) and need for DCSs. A brief status about existing Distributed control 

system has presented to show the need of DCS. Also objective of this thesis 

is brought out and brief outline of the project is presented.                                    
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CHAPTER 2 

THEORY AND LITERATURE REVIEW 
 

2.1 Introduction 

  

In this chapter a brief literature review of various controllers and associated 

areas have been discussed without exhaustive elaboration. The review includes 

the Control system, Automatic controller system, distributed control system, 

Programmable logic controller, 8051 micro-controller and AVR micro-

controller. 

 

2.2 Control system 
 

A control system is a device, or set of devices to manage, command, direct or 

regulate the behaviour of other devices or system. The control system is that 

means by which any quantity of interest in a machine, mechanism or other 

equipment is maintained or altered in accordance with a desired manner. The 

first Automatic control system, the fly-ball governor, to control the speed of 

steam engines, was invented by James Watt in 1977.   It was about hundred 

years later that Maxwell analysed the dynamics of the fly-ball governor. The 

importance of positioning heavy masses like ships and guns quickly and 

precisely was realized during the world war 1. In 1922, Minorsky worked on 

automatic controllers for steering ships and showed how stability could be 

determined from the differential equations describing the system. In 1932, 

Nyquist developed a relatively simple procedure for determining the stability of 

closed-loop system .In 1934, the servomechanism term for position control 

systems was developed. During the Decade of 1940's mathematical and 

analytical methods were developed. During the world war 2 automatic 

aeroplane pilots, gun positioning systems, radar tracking system and other 
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military equipment based on feedback control principal was developed. The 

industrial use of automatic control has tremendously increased since the world 

war 2. Modern industrial processes such as manufacture and treatment of 

chemicals and metals are now automatically controlled. 

2.3 Distributed Controllers System 

The DCS was introduced in 1975. Both Honeywell and Japanese electrical 

engineering firm Yokogawa introduced their own independently produced 

DCSs. US-based Bristol also introduced their UCS 3000 universal controller in 

1975. In 1978 Metso (known as Valmet in 1978) introduced their own DCS 

system called Damatic (latest generation named Metso DNA). In 1980, Bailey 

introduced the NETWORK 90 system. Also in 1980, Fischer & Porter Company   

introduced DCI-4000 (DCI stands for Distributed Control Instrumentation). The 

DCS largely came about due to the increased availability of microcomputers 

and the proliferation of microprocessors in the world of process control.  In the 

early 1970s Taylor Instrument Company, developed the 1010 system, Foxboro 

the FOX1 system and Bailey Controls the 1055 systems. All of these were DDC 

applications implemented within minicomputers and connected to proprietary 

Input/Output hardware. Midac Systems, of Sydney, Australia, developed an 

objected-oriented distributed direct digital control system in 1982. The central 

system ran 11 microprocessors sharing tasks and common memory and 

connected to a serial communication network of distributed controllers each 

running two Z80s. The system was installed at the University of Melbourne. 

Digital communication between distributed controllers, workstations and other 

computing elements (peer to peer access) was one of the primary advantages of 

the DCS. The traditional DCS suppliers introduced new generation DCS System 

based on the latest Communication and IEC Standards, which resulting in a 

trend of combining the traditional concepts/functionalities for PLC and DCS 

into a one for all solution—named "Process Automation System".  The current 
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next evolution step is called Collaborative Process Automation Systems. 

Distributed control systems (DCSs) are used to control manufacturing processes 

such as oil refining, petrochemicals, central station power generation, fertilizers, 

pharmaceuticals, food and beverage manufacturing, cement production, 

steelmaking, and papermaking. DCSs are connected to sensors and actuators 

and use set point control to control the flow of material through the plant.  

Application of DCSs are also in paper machines , quality controls , variable 

speed drives and motor control centres, cement kilns, mining operations, ore 

processing facilities, and many others. Modern DCSs also support neural 

networks and fuzzy application. DCSs may employ one or more workstations 

and can be configured at the workstation or by an off-line personal computer. 

Local communication is handled by a control network with transmission over 

twisted pair, coaxial, or fibre optic cable. A server and/or applications processor 

may be included in the system for extra computational, data collection, and 

reporting capability. 

Some of the advantages of DCS are as: 

1. Overall cost of the installation is lower. 

2. Interface with the process is improved. 

3. More reliable. 

4. Flexible and relatively easy to expand. 

5. Programming required to tailor the system can be done without 

 knowing a high-level programming language. 

2.4 Programmable Logic Controllers 

A programmable logic controller (PLC) or programmable controller is a digital 

computer used for automation of electromechanical processes, such as control 

of machinery on factory assembly lines, amusement rides, or light fixtures. 

PLCs are used in many industries and machines. Unlike general-purpose 

computers, the PLC is designed for multiple inputs and output arrangements, 

extended temperature ranges, immunity to electrical noise, and resistance to 



DISTRIBUTED CONTROLLERS SYSTEM 

 Page 13 
 

vibration and impact. Programs to control machine operation are typically 

stored in battery-backed-up or non-volatile memory. A PLC is an example of a 

hard real time system since output results must be produced in response to input 

conditions within a limited time, otherwise unintended operation will result. The 

PLC was invented in response to the needs of the American automotive 

manufacturing industry. Programmable logic controllers were initially adopted 

by the automotive industry where software revision replaced the re-wiring of 

hard-wired control panels when production models changed. Before the PLC, 

control, sequencing, and safety interlock logic for manufacturing automobiles 

was accomplished using hundreds or thousands of relays, cam timers, drum 

sequencers, and dedicated closed-loop controllers. The process for updating 

such facilities for the yearly model change-over was very time consuming and 

expensive, as electricians needed to individually rewire each and every relay. 

Digital computers, being general-purpose programmable devices, were soon 

applied to control of industrial processes. Early computers required specialist 

programmers, and stringent operating environmental control for temperature, 

cleanliness, and power quality. Using a general-purpose computer for process 

control required protecting the computer from the plant floor conditions. 

 

In 1968 GM Hydramatic (the automatic transmission division of General 

Motors) issued a request for proposal for an electronic replacement for hard-

wired relay systems. The winning proposal came from Bedford Associates of 

Bedford, Massachusetts. The first PLC, designated the 084 because it was 

Bedford Associates' eighty-fourth project, was the result. Bedford Associates 

started a new company dedicated to developing, manufacturing, selling, and 

servicing this new product: Modicon, which stood for MOdular DIgital 

CONtroller. One of the people who worked on that project was Dick Morley, 

who is considered to be the "father" of the PLC. The Modicon brand was sold in 

1977 to Gould Electronics, and later acquired by German Company AEG and 
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then by French Schneider Electric, the current owner. One of the very first 084 

models built is now on display at Modicon's headquarters in North Andover, 

Massachusetts. It was presented to Modicon by GM, when the unit was retired 

after nearly twenty years of uninterrupted service. Modicon used the 84 moniker 

at the end of its product range until the 984 made its appearance. 

 

2.5 Micro-controller

A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer 

on a single integrated circuit containing a processor core, memory, and 

programmable input/output peripherals. Program memory in the form of NOR 

flash or OTP ROM is also often included on chip, as well as a typically small 

amount of RAM. Microcontrollers are designed for embedded applications, in 

contrast to the microprocessors used in personal computers or other general 

purpose applications. 

 

Microcontrollers are used in automatically controlled products and devices, 

such as automobile engine control systems, implantable medical devices, 

remote controls, office machines, appliances, power tools, toys and other 

embedded systems. By reducing the size and cost compared to a design that 

uses a separate microprocessor, memory, and input/output devices, 

microcontrollers make it economical to digitally control even more devices and 

processes. Mixed signal microcontrollers are common, integrating analog 

components needed to control non-digital electronic systems. 

 

Some microcontrollers may use four-bit words and operate at clock rate 

frequencies as low as 4 kHz, for low power consumption (mill watts or 

microwatts). They will generally have the ability to retain functionality while 

waiting for an event such as a button press or other interrupt; power 

consumption while sleeping (CPU clock and most peripherals off) may be just 
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Nano watts, making many of them well suited for long lasting battery 

applications. 

 

The first single-chip microprocessor was the 4-bit Intel 4004 released in 1971, 

with the Intel 8008 and other more capable microprocessors becoming available 

over the next several years. However, both processors required external chips to 

implement a working system, raising total system cost, and making it 

impossible to economically computerize appliances. 

 

The engineers Gary Boone and Michael Cochran succeeded in creating the first 

microcontroller in 1971. The result of their work was the TMS 1000, which 

went commercial in 1974. It combined read-only memory, read/write memory, 

processor and clock on one chip and was targeted at embedded systems. 

Partly in response to the existence of the single-chip TMS 1000, Intel developed 

a computer system on a chip optimized for control applications, the Intel 8048, 

with commercial parts first shipping in 1977. It combined RAM and ROM on 

the same chip. This chip would find its way into over one billion PC keyboards, 

and other numerous applications. At that time Intel's President, Luke J. Valenter, 

stated that the microcontroller was one of the most successful in the company's 

history, and expanded the division's budget over 25%. 

 

Most microcontrollers at this time had two variants. One had an erasable 

EPROM program memory, which was significantly more expensive than the 

PROM variant which was only programmable once. Erasing the EPROM 

required exposure to ultraviolet light through a transparent quartz lid. One-time 

parts could be made in lower-cost opaque plastic packages.
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In 1993, the introduction of EEPROM memory allowed microcontrollers 

(beginning with the Microchip PIC16x84) to be electrically erased quickly 

without an expensive package as required for EPROM, allowing both rapid 

prototyping, and In System Programming. The same year, Atmel introduced the 

first microcontroller using Flash memory. Other companies rapidly followed 

suit, with both memory types. 

 

Cost has plummeted over time, with the cheapest 8-bit microcontrollers being 

available for under $0.25 in quantity (thousands) in 2009, and some 32-bit 

microcontrollers around $1 for similar quantities. Nowadays microcontrollers 

are cheap and readily available. 

 

2.6 8051 Micro-controller The Intel 8051 microcontroller is one of the 

most popular general purpose microcontrollers in use today. The success of 

the Intel 8051 spawned a number of clones which are collectively referred 

to as the MCS-51 family of microcontrollers, which includes chips from 

vendors such as Atmel, Philips, Infineon, and Texas Instruments.The Intel 

8051 is an 8-bit microcontroller which means that most available operations 

are limited to 8 bits. There are 3 basic "sizes" of the 8051: Short, Standard, 

and Extended. The Short and Standard chips are often available in DIP (dual 

in-line package) form, but the Extended 8051 models often have a different 

form factor, and are not "drop-in compatible". All these things are called 

8051 because they can all be programmed using 8051 assembly language, 

and they all share certain features (although the different models all have 

their own special features). 

2.6.1 Features 

1. 4 KB on chip program memory. 

2. 128 bytes on chip data memory(RAM). 
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3. 4 reg banks. 

4. 128 user defined software flags. 

5. 8-bit data bus 

6. 6-bit address bus 

7. 32 general purpose registers each of 8 bits 

8. 16 bit timers (usually 2, but may have more, or less). 

9. 3 internal and 2 external interrupts. 

10.Bit as well as byte addressable RAM area of 16 bytes. 

11.Four 8-bit ports, (short models have two 8-bit ports). 

12.16-bit program counter and data pointer. 

13.1 Microsecond instruction cycle with 12 MHz Crystal. 

8051 models may also have a number of special, model-specific features, such 

as UARTs, ADC, OpAmps, etc... 8051 chips are used in a wide variety of 

control systems, telecom applications, robotics as well as in the automotive 

industry. By some estimations, 8051 family chips make up over 50% of the 

embedded chip market 

2.7 AVR Microcontroller 

The AVR is a modified Harvard architecture 8-bit RISC single chip 

microcontroller which was developed by Atmel in 1996. The AVR was one of 

the first microcontroller families to use on-chip flash memory for program 

storage, as opposed to one-time programmable ROM, EPROM, or EEPROM 

used by other microcontrollers at the time. 

The AVR architecture was conceived by two students at the Norwegian Institute 

of Technology (NTH) Alf-Egil Bogen and Vegard Wollan.The original AVR 

MCU was developed at a local ASIC house in Trondheim, Norway called 

Nordic VLSI at the time, now Nordic Semiconductor, where Bogen and Wollan 



DISTRIBUTED CONTROLLERS SYSTEM 

 Page 18 

were working as students. It was known as a μRISC (Micro RISC) and was 

available as silicon IP/building block from Nordic VLSI. When the technology 

was sold to Atmel from Nordic VLSI, the internal architecture was further 

developed by Bogen and Wollan at Atmel Norway, a subsidiary of Atmel. The 

designers worked closely with compiler writers at IAR Systems to ensure that 

the instruction set provided for more efficient compilation of high-level 

languages. Atmel says that the name AVR is not an acronym and does not stand 

for anything in particular. The creators of the AVR give no definitive answer as 

to what the term "AVR" stands for. However, it is commonly accepted that AVR 

stands for Alf (Egil Bogen) and Vegard (Wollan)'s Risc processor. Among the 

first of the AVR line was the AT90S8515, which in a 40-pin DIP package has 

the same pin out as an 8051 microcontroller, including the external multiplexed 

address and data bus. The polarity of the RESET line was opposite (8051's 

having an active-high RESET, while the AVR has an active-low RESET) but 

other than that, the pin out was identical. The AVR is a modified Harvard 

architecture machine where program and data are stored in separate physical 

memory systems that appear in different address spaces, but having the ability 

to read data items from program memory using special instructions. 

 

2.7.1 Features of AVR 

1.Multifunction, bi-directional general-purpose I/O ports with                                                                                                                                           

configurable, built-in pull-up resistors 

2. Multiple internal oscillators, including RC oscillator without external 

parts 

3. Internal, self-programmable instruction flash memory up to 256 kB 

(384 kB on XMega) 

4. In-system programmable using serial/parallel low-voltage proprietary 

interfaces or JTAG 

5. Optional boot code section with independent lock bits for protection 
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6. Debug WIRE uses the /RESET pin as a bi-directional communication 

channel to access on-chip debug circuitry. It is present on devices 

with lower pin counts, as it only requires one pin. 

7. Internal data EEPROM up to 4 kB 

8. Internal SRAM up to 16 kB (32 kB on XMega) 

9. 8-bit and 16-bit timers 

10. PWM output (some devices have an enhanced PWM peripheral which 

includes a dead-time generator) 

11. Input capture 

12. Analog comparator 

13. 10 or 12-bit A/D converters, with multiplex of up to 16 channels 

14. 12-bit D/A converters 

15.  A variety of serial interfaces, including 

16. I²C compatible Two-Wire Interface (TWI) 

17. Serial Peripheral Interface Bus (SPI) 

18. Universal Serial Interface (USI) for two or three-wire synchronous 

data transfer 

19. Watchdog timer (WDT) 

20. Multiple power-saving sleep modes 

2.8 Conclusion     

An extensive literature review of control system, distributed controllers system 

and Microcontrollers has been presented in this chapter.  
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Chapter 3 

Communication Protocols and field 

buses 

3.1 Introduction 

 

This chapter describes the study of communication protocol , Field buses ,World 

FIP , Macro and communication protocol function and description. Therefore, 

this chapter will briefly review major industrial communication protocols and 

their most prominent features and compare them with the communication 

 

3.2 Communication protocol 

 

The communication protocol provides communication between the applications 

manager and hardware manager. It is designed to support any type of module 

and to provide real time data distribution.    

 

Distributed controls have been extensively used in factory automation and 

motion control systems for the last twenty years. Increased modularity, fault 

tolerance, expandability and significantly improved overall system flexibility 

have constantly fuelled the drive for integration of factory elements into the 

computer integrated manufacturing environment. The idea is to employ 

hierarchical control over the whole manufacturing process, and integrate all 

factory elements into a coherent control architecture, as depicted in Fig. 3-1. All 

the protocols have been specifically tailored to meet targeted system 

requirements. 
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Fig. 3.1 Industrial communications for the example of the PROFIBUS 

standard 

 

While industrial communication protocols provide distributed control and 

communications on a field level (connecting drives, PLCs, controllers, sensors, 

actuators, etc.). This would bring modular design, significant flexibility, 

hierarchical control and many other benefits on a converter control level, 

compared with industrial communications, in which hierarchical control starts 

above the converter and drive level. 

 

In factory automation, drives and converters are treated as a building block 

rather than as whole new distributed system. This means that a distributed 

control has to operate on a much faster time scale, with a few orders of 

magnitude smaller time constants. Also, synchronization becomes much more 

of a pronounced issue due to the smaller time constants. Noise susceptibility 

and noise immunity of the distributed controller arises as another important 

issue. Since the communication link is getting physically close to the electro-
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magnetic interference EMI sources (power converters), noise immunity of a 

control and communication system starts to play a key role in the system 

reliability and robustness. 

 

3.3  Network topologies 

 

The two most widely used network topologies in industrial communications are  

(i) point-to-point serial interface links and 

(ii) multi-point connection offered by the local area network (LAN). 

 

At the present time, many motor drives are connected to their steering units 

using point-to-point serial interface links (e.g. RS 232 or RS 422). This 

approach suffers from two major drawbacks. First of all, one control unit must 

drive several drives and handle communication with them simultaneously, 

which can seriously overload the main controller and limit the response time.  

 

This approach also limits the expandability of the control system. Due to low 

cost this approach feasible for many applications. 

 

LAN offer multi-point connections and are much more flexible and application 

independent. This is the reason why most of today’s control protocols are based 

on LANs. The basic requirement for LANs is that they have to be open and to 

support devices made by different manufacturers. This provides the system with 

high expandability and significant flexibility. 

The LAN communication protocols for real-time control applications can be 

roughly divided into field buses and specific networks. The former is the 

general purpose network devised for field-level control that can connect drives, 

PLCs, PCs, I/O modules, sensors, and actuators. They are designed to provide 
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wider flexibility and to allow for interconnection of different units at the cost of 

speed and response time. Specific networks are less flexible and are designed to 

provide link between PLCs and controllers on one side, and sensors, drives and 

actuators on the other. Those specific networks are designed to provide faster 

response time and better synchronization at the cost of reduced flexibility. 

 

3.4   Field Buses 

 

Fieldbus is an industrial network system for real-time distributed control. It is a 

way to connect instruments in a manufacturing plant. Fieldbus works on a 

network structure which typically allows daisy-chain, star, ring, branch, and tree 

network topologies. Previously, computers were connected using RS-232 (serial 

connections) by which only two devices could communicate. This would be the 

equivalent of the currently used 4-20 mA communication scheme which 

requires that each device has its own communication point at the controller 

level, while the fieldbus is the equivalent of the current LAN-type connections, 

which require only one communication point at the controller level and allow 

multiple (hundreds) of analog and digital points to be connected at the same 

time. This reduces both the length of the cable required and the number of 

cables required. Furthermore, since devices that communicate through fieldbus 

require a microprocessor, multiple points are typically provided by the same 

device. Some fieldbus devices now support control schemes such as PID control 

on the device side instead of forcing the controller to do the processing. 

There are disadvantages to using fieldbus compared to the 4-20 mA analog 

signal standard ( 4-20 mA with HART): 

 Fieldbus systems are more complex, so users need to be more extensively 

trained or more highly qualified 

 The price of fieldbus components is higher 
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 Fieldbus test devices are more complex compared to a (high-spec) 

multimeter that can be used to read and simulate analog 4-20 mA signals 

 Slightly longer reaction times with fieldbus, depending on the system 

 Device manufacturers have to offer different versions of their devices 

(e.g. sensors, actuators) due to the number of different (incompatible) 

fieldbus standards. This can add to the cost of the devices and to the 

difficulty of device selection and availability. 

 One or more fieldbus standards may predominate in future and others 

may become obsolete. This increases the investment risk when 

implementing fieldbus. 

 

3.4.1 PROFIBUS 

 

Process Field BUS is the German proposal for the open field bus standard for a 

wide range of applications in manufacturing and process automation . 

PROFIBUS is designed for both high-speed time critical applications and 

complex communication tasks. The protocol architecture is oriented to the 

reduced ISO OSI (open system interconnection) reference model in which each 

layer handles a precisely defined tasks. 

 

Layer 1 (the physical layer) defines the physical transmission characteristics.  

There are currently three transmission methods (physical profiles) available for 

PROFIBUS: 

1. RS 485 transmission for universal applications in manufacturing automation 

2. IEC 1158-2 transmission for use in process automation; and 

3. optical fibers for improved interference immunity and large network 

distances 
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In the course of further technical developments, it is intended to use commercial 

Ethernet components with 10 Mb/s and 100 Mb/s as the physical layer for 

PROFIBUS. 

 

Layer 2 (the data-link layer) defines the bus access protocol. PROFIBUS is 

designed to support two types of devices, namely master-devices and slave-

devices as shown in Fig. 3-2. Master devices determine the data communication 

on the bus. Master can send messages without an external request whenever it 

holds the bus access rights (tokens). On the other side slave devices are 

peripherals such as I/O devices, valves, drives and measuring transducers. They 

can only acknowledge received data or send messages when asked to do so by 

the master. The medium access control protocol includes the token passing 

procedure among masters. Each master (upon receiving token) takes control 

over the bus and starts communicating with slaves and other masters. 

 

After the token hold time expires the token is passed to the following master 

node which then assumes the control over the bus. This allows for the following 

system configurations: 

1. pure master-slave system, 

2. pure master-master system (token passing), and 

3. Combination of the two. 
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The actual token hold time of a master depends on the configured token rotation 

time. 

 

Layer 7 (the application layer) defines the application functions. It consists of 

two protocols, namely the DP protocol and FMS (field message service) 

protocol. DP is designed for efficient data exchange at the field level. This 

protocol is mostly used for cyclic data exchange between the automation system 

and distributed peripherals. FMS is the universal communication profile for 

demanding communication tasks. It allows object manipulation, with objects 

being variables, arrays, matrices, variable lists, program calls, subroutines and 

so on. It is divided into two sub-layers, i.e.. FMS (field bus message 

specification) and LLI (lower layer interface). The architecture of the 

PROFIBUS is shown in Fig. 3-2. 

 

3.4.2 World FIP 

Factory automation protocol is a French-Italian proposal for the field bus . It 

is designed to provide links between level zero (sensors/actuators) and level one 

(PLCs, controllers, etc.) in automation systems . World FIP is also designed 
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according to the reduced ISO/OSI reference model, meaning that all protocol 

functions are implemented within the physical data-link and 

application layer. Although World FIP protocol supports both copper wire and 

optical fiber as a transmission media, twisted pair copper cable is the one used 

most often. The data link layer provides a medium access protocol. There is 

always one station, named the bus arbitrator (distributor; see Fig. 3-3), that 

handles the communication and bus access and a number of other stations which 

respond to the arbiter polling. 

 

 

Fig. 3.3 Block diagram of World FIP medium access mechanism. 

 

Each station on the bus has several produced and consumed buffers. When the 

arbitrator inserts the question command on the bus and states the buffer address 

the station that is producer of the buffer will respond by putting the buffer value 

on the bus. The stations that are consumers of that variable will respond with 

accepting the value from the bus and storing it. Data traffic consists of time-

critical data (control variables) that are exchanged periodically and non-critical 

data such as messages. Cyclic variables always travel on time, regardless of 

other network traffic. Less time-dependent data (such as diagnostic reports), are 

sent via the message service. This is typically used for installing and setting 

applications, network supervision and diagnosis and integration with higher-
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level systems. Unlike token-passing systems, World FIP leaves no doubt about 

transmission time and regularity for cyclic data variables. Word FIP applications 

layer is divided into two distinct groups: 

 

• MPS (manufacturing periodical/a periodical services) and 

• sub MMS (subset of messaging services). 

 

The MPS application layer provides the user with local read/write services, 

remote read/write services, variable transmission/reception indications and 

information on the spatial and temporal consistency of the data. All those 

services are used for real time data distribution throughout the whole network. 

For example, the local read service provides the application layer with the 

variable from the consumed buffer that exists in the data link layer. The local 

read and write service uses the data-link layer services 

 

Those services generate no traffic on the bus since those produced and 

consumed buffers reside in the data-link layer. MMS services are used for non-

critical traffic such as system configuration, monitoring, etc. 

 

3.4.3 CAN 

The controller area network (CAN) is a field bus proposed by Bosch for 

automotive applications . It is a serial communications protocol, which 

efficiently supports distributed real-time control with a very high level of 

security. CAN follows the ISO/OSI reduced model, with bus topology, client-

server model and an original medium access method. In all protocol messages 

there are no origin/destination addresses but only an identifier. Every station 

first reads the identifier and then decides whether or not to read the rest. The 

priority field of the frame indicates the type of message transmitted and its 

priority. When a station wants to transmit the message it has to compare its 
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relative priority to the network message priority. If it is less or equally important 

it has to wait until the bus is clear. This medium access control is a multi master 

protocol with distributed priority arbitration. 

The advantage of CAN protocol is that it was developed for automotive 

applications thus being optimized from the cost point of view. Also, market 

availability of the supporting components is very good, which makes the whole 

standard widely accepted. The fact that this protocol was designed for the 

inexpensive copper wire transmission medium makes it less suitable for 

applications in which EMI noise is a significant issue. 

 

3.5 Ethernet bus 

Ethernet was developed in the late 1970's by the Xerox Corporation at their Palo 

Alto Research Centre in California. It has been estimated that over 70% of the   

worlds networks use the Ethernet protocol, so with this in mind it would seem 

only sensible to discuss how it works Ethernet uses a protocol called CSMA/CD, 

this stands for Carrier Sense, Multiple Access with Collision Detection Carrier 

Sense - When a device connected to an Ethernet network wants to send data it 

first checks to make sure it has a carrier on which to send its data (usually a piece 

of copper cable connected to a hub or another machine). 

Multiple Access - This means that all machines on the network are free to use 

the network whenever they like so long as no one else is transmitting. 

Collision Detection - A means of ensuring that when two machines start to            

transmit data simultaneously, that the resultant corrupted data is discarded, and re-

transmissions are generated at differing time intervals. 
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  3.6  Mod  bus 

Modbus is a serial communications protocol published by Modicon in 1979 for 

use with its programmable logic controllers (PLCs). Simple and robust, it has 

since become a de facto standard communication protocol, and it is now amongst 

the most commonly available means of connecting industrial electronic devices. 

The main reasons for the extensive use of Modbus in the industrial environment 

are: 

 It has been developed with industrial applications in mind 

 It is openly published and royalty-free 

 It is easy to deploy and maintain 

 It moves raw bits or words without placing many restrictions on vendors 

Modbus allows for communication between many (approximately 240) devices 

connected to the same network, for example a system that measures temperature 

and humidity and communicates the results to a computer. Modbus is often used 

to connect a supervisory computer with a remote terminal unit (RTU) in 

supervisory control and data acquisition (SCADA) systems. Many of the data 

types are named from its use in driving relays: a single-bit physical output is 

called a coil, and a single-bit physical input is called a discrete input or a contact. 

 
 

3.7. MICRO 

 

MACRO is a communication standard for distributed machine control. MACRO 

stands for a motion and control ring optical and was designed for multiple-axis 

precision motion control . MACRO uses a ring topology to allow master 

controllers to communicate with both slave nodes and other master controllers. 

A MACRO network is organized as ring architecture with multiple masters and 
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slaves connected. Communication throughout the ring is started by a pr-

designated ring-master. 

 

Fig. 3.4 MACRO ring network consists of a group of master and slave 

stations. 

Communication is always originated by a master that sends a data packet (with 

appropriate address) down the stream. The node that receives the data packets 

checks the address and if it is the same as the local address, it takes the data 

from the packet and loads the data packet with local data and sends the packet 

down the ring. If the local address is different the node just passes the data to 

the next one in the ring. A master’s ring hardware shifts all active node data 

from the master’s transmission registers across the ring to matching input 

registers of the appropriate slave node. The slave’s ring 

hardware shifts the node data that is addressed to it into a set of receiving 

registers. Data is returned to the master at the same time the data is received 

from the ring by the slave’s hardware transmission registers. 

 

3.8 Communication Protocol Functional Description 

 

The master-slave protocol insures deterministic response of the network. If an 

error occurs during transmission, corrupt data is not used. Instead, the new data 
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simply overwrite the previous data. This way the data flow is kept strictly 

predetermined. There are two basic types of information communicated through 

the control network: 

 i.  Time-critical data (exchanged in every switching cycle) and 

 ii.   Time non-critical data (transmitted only after all the critical time variables 

have been passed to all nodes). 

 

Time-critical information includes all the control variables such as: switching 

frequency information, duty cycle information and all the sensor information. 

The provision for non-critical data transfer is designed to support tasks such as 

initialization and software reconfiguration of the hardware managers. Non-

critical data transfer is allowed only after all the time critical data is exchanged.  

 

Three types of time-critical data frames: 

The control data frame, the synchronization frame and the command frame. 

The data frame consists of a command indicating the beginning of the data 

packet, the address of the node, the data field and an error check. The data 

field’s configuration depends on the particular application and type of hardware 

manager. In a ring network, each node introduces a delay in the data 

propagation path. This means that if a synchronization command is sent through 

the network, each node will receive the command with as many time delays Td 

as there are nodes between that node and the master node. The time delay Td in 

the hardware test-bed is typically around 460 ns. This means that the error in 

synchronization will generate time shifted PWM signals at the outputs, causing 

low-frequency harmonics. This problem is solved with the synchronization 

sequence. 

 

The synchronization frame starts with the synchronization command, and is 

followed by 8 bit long data blocks containing addresses of slave nodes and filler 
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fields, for which it takes Td to be transmitted and are used for propagation delay 

compensation. The first address to be transmitted is of the slave node that is last 

to receive the frame. The number of address data blocks sent equals the number 

of slave nodes on the ring, which need to be synchronized. The first field is a 

synchronization command that alerts the nodes to wait for their time to 

synchronize. Next are the address fields of the nodes being synchronized. After 

the synchronization command is passed, the node awaits its address field. When 

the address is received, the node generates the synchronization signal. Because 

all the addresses are in reverse order and time delayed for the node propagation 

delay, all the addresses will arrive at the destination nodes at almost the same 

time.  

 

3.9 Conclusion 

 

This chapter discussed a brief of communication protocols and   Field buses viz, 

Ethernet bus, Mod bus, Profi bus used to design and develop the distributed 

controllers. Ethernet bus is preferred for high throughput and faster system 

response.  Mod bus/Profi bus is preferred to connect the slow analog inputs to 

the system. 
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Chapter IV 

Methodology of motion control 

4.1 Introduction 

Motion in industries is achieved using electric motors. In order to perform at 

desired operating points dynamically, these motors are required to control by 

power electronics devices which process the input electric energy to the motor. 

Such controlled motor is called electric drive. Electrical drives play an 

important role in the field of energy efficiency. Modern power electronic drives 

provide good opportunities to efficiently control the energy flows. These drives 

can be classified in two category, (i) DC drives, and (ii) AC drives. In this 

project , DC drive is controlled by 8051micro controller while ac induction 

motor drive is controlled by direct vector control method. This chapter describes 

the algorithm for DC  machine drive and AC induction motor drives. Since 

these drives consume major electric energy and are commonly in use, the same 

has been considered for the developing the distributed controllers system. Some 

of the advantages of drives are as follows: 

Smoother operation 

Acceleration control 

Different operating speed for each process recipe 

Compensate for changing process variables 

Allow slow operation for setup purposes 

Adjust the rate of production 

Allow accurate positioning 

Control torque or tension 

Allow catching of spinning load (e.g., column of water) after outage. 
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4.2 DC drives 

DC drives are DC motor speed control systems. Since the speed of a DC motor 

is directly proportional to armature voltage and inversely proportional to motor 

flux (which is a function of field current), either armature voltage or field 

current can be used to control speed. In DC, torque is controlled using the 

armature current and field current.  

 

4.2.1 Algorithm for DC drive control 

Figure 4.1 shows a model of separately excited DC motor. When a separately 

excited motor is excited by a field current of If and an armature current of Ia   

flows in the circuit, the motor develops a back EMF and a torque to balance the 

load torque at a particular speed. The field current If is independent of a 

separately excited motor is independent of the armature current Ia. Any change 

in the armature current has no effect on the field current. The If is normally 

much less than the Ia. The relationship of the field and armature are shown in 

Equation. 

 

 

Figure 4.1 Equivalent circuit of separately excited DC motor  
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Instantaneous field current: 

v f =R f i f +L f

d i f

d t         (4.1) 

where  Rf  and  Lf  are the field resistor and inductor respectively. 

Instantaneous Armature Current 

 
va=Ra i a+La

d i a

d t
+eg

      (4.2)  

where Ra  and  La  are the armature resistor and inductor respectively. 

The motor back EMF which is also known as speed voltage is expressed as  

eg=k v w i f           (4.3) 

The torque developed by the motor is 

                      Td  =   ktifia       (4.4) 

where  kv  is the back emf constant and kt is  motor torque constant (in V/A-

rad/s) and w is the motor speed (rad/s). 

In the armature controlled DC motor, the field current is kept constant, so that 

eqn. 4.4 can be written as 

                        Td = kTia 

For normal operation, the developed torque must be equal to the load torque 

plus the friction and inertia, i.e.: 

T d ¿ J
d w

d t
+T

L

+B
w                          (4.5) 

 

The developed power  Pd = Td w                 

where B = viscous friction constant (N.m/rad/s)  

TL = load torque (N.m)  

J = inertia of the motor (kg.m
2
)  

 

Under steady-state operations, a time derivative is zero. Assuming the motor is 

not saturated.  
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For field circuit,    

V f =I f R f        (4.6)  

The back EMF is given by:  

E g=Kv w I f        (4.7) 

The armature circuit,    

 V a=I a Ra+Eg=I a+Kv w I f     (4.7) 

Thus, the motor speed can be easily derived:  

w=(V a− I a Ra )/KvIf     (4.8) 

If the field current is kept constant, the speed motor speed depends on the 

supply voltage, armature current and hot resistance of armature. This algorithm 

has used in dc drive control with 8051 micro controller in next chapter. It is 

assumed that armature reaction in the motor and the voltage drops in the 

brushes have neglected. 

V(S)                                                                          ῼ(s)                        Q(s) 

 

                 Vb(s)  

                  
Fig. 4.2 Block dia. Of DC drive 

 

4.3 Algorithm for AC drive: 

 
There are many methods for controlling induction motor drive. In this project 

direct or feedback vector control method is used . Hence the algorithm of the 

same is presented in this section. First induction model is presented, then direct 

vector control algorithm is developed. 

The vector control technique, which is also known as field – oriented control, 

allows a squirrel-cage induction motor to be driven with high dynamic 

performance. This technique decouples the two components of stator current: 

one providing the air-gap flux and the other producing  the torque. It provides 

independent control of flux and torque. The stator currents are converted to a 

1/Ra    Kt 

 
  1/Js+F 

   Kv 

1/s 
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fictitious synchronously rotating reference frame aligned with the flux vector 

and are transformed back to the stator frame before feeding back to the 

machine. The two components are d-axis ids analogous to armature current, and 

q-axis iqs analogous to the field current. Thus induction motor can be modelled 

most simply using two quadrature currents rather than the familiar three phase 

currents actually applied to the motor. These two currents called direct (Id) and 

quadrature (Iq) are responsible for producing flux and torque respectively in the 

motor. By definition, the Iq  current is in phase with the stator flux, and Id is at 

right angles. Of course, the actual voltages applied to the motor and the 

resulting currents are in the familiar three-phase system. The move between a 

stationary reference frame and a reference frame, which is rotating synchronous 

with the stator flux, becomes then the problem.  This leads to the second 

fundamental idea behind vector control 

In the indirect vector control method, the rotor field angle and thus the unit 

vectors are indirectly obtained by summation of the rotor speed and slip 

frequency. 

4.3.1 Direct and Quadrature-Axis Transformation 

The vector control technique uses the dynamic equivalent circuit of the 

induction motor. There are at least three fluxes (rotor, air gap and stator) and 

three currents or mmfs ( in stator, rotor, and magnetizing) in an induction motor. 

For fast dynamic response, the interactions between currents, fluxes and speed, 

must be taken into account in obtaining the dynamic model of the motor and 

determining appropriate control strategies. 

All fluxes rotate at synchronous speed. The three-phase currents create mmfs 

(stator and rotor), which also rotate at synchronous speed. Vector control aligns 

axes of an mmf and flux orthogonally at all times. It is easier to align the stator 

current mmf orthogonally to the rotor flux. 

A symmetrical three phase induction machine with stationary reference frame 

(as-bs-cs) variables into two phase stationary reference frame (d
s
-q

s
) variable 
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and then transform these to synchronously rotating reference frame (d
e
-q

e
) and 

vice versa. Assume that the d
s
-q

s
 axes are oriented at ø angle. The voltage Vds

s
 

and Vqs
s
 can be resolved into as-bs-cs components and can be represented in 

the matrix form as  

[
𝑉𝑎𝑠 
𝑉𝑏𝑠
𝑉𝑐𝑠

]=          [ 
𝐶𝑜𝑠∅                       𝑆𝑖𝑛∅                    1
𝐶𝑜𝑠(∅ − 120)     𝑆𝑖𝑛(∅ − 120)     1

𝐶𝑜𝑠(∅ + 120)      𝑆𝑖𝑛(∅ + 120)      1  
] [

𝑉𝑞𝑠𝑠 

𝑉𝑑𝑠𝑠

𝑉𝑜𝑠𝑠

]   (4.9) 

 

The corresponding inverse relation is  

 

[
𝑉𝑞𝑠𝑠 

𝑉𝑑𝑠𝑠

𝑉𝑜𝑠𝑠

]=2/3[  
𝐶𝑜𝑠 (∅ )         𝐶𝑜𝑠 (∅ − 120 )        𝑆𝑖𝑛(∅ − 120)

𝑆𝑖𝑛(∅)            𝐶𝑜𝑠(∅ + 120)         𝑆𝑖𝑛(∅ + 120)
0.5                               0.5                            0.5 

] [
𝑉𝑎𝑠 
𝑉𝑏𝑠
𝑉𝑐𝑠

](4.10) 

 

Where Vos
s
 is added  the zero sequence component ,which may or may not be 

present. we have considered voltage as the variable the current and flux linkage 

can be transformed by similar equations .when d
e
 –q

e
 axes rotating 

synchronously which rotate as synchronous speed we with respect to the d
s
-q

s
 

axes and the angle 𝜃𝑒 =we t the two phase d
s
-q

s
  windings are transformed into 

the hypothetical winding mounted on the d
e
-q

e
 axes.the voltage on the d

s
-q

s
 axes 

can be converted (or resolved ) into the d
e
-q

e
 frame as follows  

 
Vqs =Vqss cosøe-vdss    sinøe            (4.11) 

Vds =Vqss  sinøe+_vdse cosøe            (4.12) 

 

Again resolving the rotating frame parameters into a stationary frame, the 

relations are  

       Vqss = Vqs cosøe  +  vds    sinøe                      (4.13) 

Vdss = - Vqs  sinøe + vds cosøe          (4.14) 

 

In synchronously rotating reference frame for the two phase machine we need to 

represent both ds-qs and dr-qr circuits and their variables in a synchronously 

rotating de-qe frame .we can write the following stator circuits equation 
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    Vqss =Rsiqss + 
𝑑

𝑑𝑡
 Ψqss          (4.15) 

    Vdss =Rsidss + 
𝑑

𝑑𝑡
 Ψdss          (4.16) 

 

where
 
Ψqs

s
 and Ψds

s
 are q axis and d axis stator flux linkages respectively when 

these equations are converted to d
e
-q

e
 frame the following equations can be 

written 

Vqs =Rsiqs + 
𝑑

𝑑𝑡
 Ψqs +weΨds          (4.17) 

     Vds =Rsids + 
𝑑

𝑑𝑡
 Ψds - weΨqs            (4.18) 

 

Where all the variables are in rotating form , the last term in equations can be 

defined as speed emf due to rotations of that axes that is when we = 0 the 

equations revert to stationary form .The flux linkage in the d
e
 and q

e
 axes induce 

emf in the q
e
 and d

e
 axes respectively, with π/2 lead angle . 

If the rotor is not moving, that is, wr = 0 the rotor equations for a doubly fed 

wound rotor machine will be similar to equations   

Vqr =Rriqr + 
𝑑

𝑑𝑡
 Ψqr +weΨdr          (4.19) 

Vdr =Rridr + 
𝑑

𝑑𝑡
 Ψdr - weΨqr          (4.20) 

 

Where all the variables and parameters are referred to the stator .Since the rotor 

actually moves at speed wr the d-q axes fixed on the rotor move at a speed we-wr 

 equations should be modified as  

Vqr =Rriqr + 
𝑑

𝑑𝑡
 Ψqr +(we-wr)Ψdr         (4.21) 

Vdr =Rridr + 
𝑑

𝑑𝑡
 Ψdr – (we –wr) Ψqr        (4.22) 

The flux linkage expression in terms of the currents can be written as follows 

Ψqs = Llsiqs +Lm(iqs+iqr)                                   (4.23) 

 Ψqr= Llriqr +Lm(iqs+iqr)                      (4.24) 

Ψqm = Lm(iqs+iqr)                   (4.25) 
Ψds= Llsids +Lm(ids+idr)                (4.26) 

Ψdr= Llridr +Lm(ids+idr)               (4.27) 
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Ψdm= Lm(ids+idr)                  (4.28) 

 

Combining the above expressions with equations the electrical transient model 

in the terms of voltage and currents can be given in matrix form as  

 

[
 
 
 
𝑉𝑞𝑠 

𝑉𝑑𝑠

𝑉𝑞𝑟

𝑉𝑞𝑟 ]
 
 
 

  =[

𝑅𝑠 + 𝑆𝐿𝑚 𝜔𝑒𝐿𝑠 𝑆𝐿𝑚      𝜔𝑒𝐿𝑚

−𝜔𝑒𝐿𝑠 𝑅𝑠 + 𝑆𝐿𝑠 −𝜔𝑒𝐿𝑚 𝑆𝐿𝑚

𝑆𝐿𝑚  (𝜔𝑒 − 𝜔𝑟)𝐿𝑚 𝑅𝑟 + 𝑆𝐿𝑟 (𝜔𝑒 − 𝜔𝑟)𝐿𝑟

−(𝜔𝑒 − 𝜔𝑟)𝐿𝑚 𝑆𝐿𝑚 −(𝜔𝑒 − 𝜔𝑟)𝐿𝑟 𝑅𝑟 + 𝑆𝐿𝑟

]  

[
 
 
 
 
𝑖𝑞𝑠 

𝑖𝑑𝑠

𝑖𝑞𝑟

𝑖𝑞𝑟 ]
 
 
 
 

  (4.29)     
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Fig 4.9: Axis of rotation for various quantities. 

 

Where  ωs  is the speed of reference frame (or synchronous speed), ωm  is rotor 

speed and 

  Ls   =   Lls   +   Lm, Lr   =   Llr   +   Lm    (4.30) 

Subscripts l and m stand for leakage and magnetizing, respectively . The 

dynamic equivalent circuits of the motor in this reference frame are shown in  

figure: 

 

ѱ𝑞𝑠 = 𝐿𝑙𝑠𝑖𝑞𝑠 + 𝐿𝑚(𝑖𝑞𝑠 + 𝑖𝑞𝑟) = 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑚𝑖𝑞𝑟     (4.31) 

 
ѱ𝑑𝑠 = 𝐿𝑙𝑠𝑖𝑑𝑠 + 𝐿𝑚(𝑖𝑑𝑠 + 𝑖𝑑𝑟) = 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑚𝑖𝑑𝑟     (4.32) 
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ѱˆ𝑠 = √ѱ𝑞𝑠
2 + ѱ𝑑𝑠

2         (4.33) 

 

The rotor flux linkages are given by 

ѱ𝑞𝑟 = 𝐿𝑙𝑟𝑖𝑞𝑟 + 𝐿𝑚(𝑖𝑞𝑟 + 𝑖𝑞𝑟) = 𝐿𝑟𝑖𝑞𝑟 + 𝐿𝑚𝑖𝑞𝑟              (4.34) 
 

ѱ𝑑𝑟 = 𝐿𝑙𝑟𝑖𝑑𝑟 + 𝐿𝑚(𝑖𝑑𝑟 + 𝑖𝑑𝑟) = 𝐿𝑟𝑖𝑑𝑟 + 𝐿𝑚𝑖𝑑𝑟     (4.35) 
 

ѱˆ𝑟 = √ѱ𝑞𝑟
2 + ѱ𝑑𝑟

2         (4.36) 

 

The air gap flux linkages are given by 

 

ѱ𝑚𝑞 = 𝐿𝑚(𝑖𝑞𝑠 + 𝑖𝑞𝑟)             (4.37) 

            
Ѱ𝑚𝑑 = 𝐿𝑚(𝑖𝑑𝑠 + 𝑖𝑑𝑟)        (4.38) 
 

ѱˆ𝑚 = √ѱ𝑚𝑞𝑠
2 + ѱ𝑚𝑑𝑠

2         (4.39) 

 

Therefore the torque developed by the motor is given by 

𝑇𝑑 =
3

2
𝑝(ѱ𝑑𝑠𝑖𝑞𝑠 − ѱ𝑞𝑠𝑖𝑑𝑠)                (4.40) 

Where p is the number of poles. From matrix equation (4.29) as given 
above the rotor voltages in d- and q- axis as   

   

𝑣𝑞𝑟 = 0 = 𝐿𝑚

𝑑𝑖𝑞𝑠

𝑑𝑡
+ (𝑤𝑠 − 𝑤𝑚)𝐿𝑚𝑖𝑑𝑠 + (𝑅𝑟 + 𝐿𝑟)

𝑑𝑖𝑞𝑟

𝑑𝑡
(𝑤𝑒 − 𝑤𝑟)𝐿𝑟𝑖𝑑𝑟 

 

𝑣𝑑𝑟 = 0 = 𝐿𝑚

𝑑𝑖𝑑𝑠

𝑑𝑡
+ (𝑤𝑠 − 𝑤𝑚)𝐿𝑚𝑖𝑞𝑠 + (𝑅𝑟 + 𝐿𝑟)

𝑑𝑖𝑑𝑟

𝑑𝑡
(𝑤𝑒 − 𝑤𝑟)𝐿𝑟𝑖𝑞𝑟 

Which, after substituting  Ψ𝑞𝑟  from eqn. (4.34)  and  Ψ𝑑𝑟  from  eqn. (4.35) , 

give 

𝑑Ψ𝑞𝑟

𝑑𝑡
+ (𝑅𝑟𝑖𝑞𝑟) + (𝑤𝑒 − 𝑤𝑚)Ψ𝑑𝑟 = 0               (4.41) 

𝑑Ψ𝑑𝑟

𝑑𝑡
+ (𝑅𝑟𝑖𝑑𝑟) + (𝑤𝑒 − 𝑤𝑚)Ψ𝑞𝑟 = 0                                                     (4.42) 

Solving for 𝑖𝑞𝑟 from Eqn. (4.34) and 𝑖𝑑𝑟   from Eqn .(4.35) , gives 

𝑖𝑞𝑟 =
1

𝐿𝑟
Ψ𝑞𝑟 − 

𝐿𝑚

𝐿𝑟
𝑖𝑞𝑠                 (4.43) 
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𝑖𝑑𝑟 =
1

𝐿𝑟
Ψ𝑑𝑟 − 

𝐿𝑚

𝐿𝑟
𝑖𝑑𝑠                            (4.44) 

Substituting rotor currents 𝑖𝑞𝑟 and 𝑖𝑑𝑟 into Eqn . (4.41) and Eqn . (4.42) ,we get 

𝑑Ψ𝑞𝑟

𝑑𝑡
+

𝐿𝑟

𝑅𝑟
 Ψ𝑞𝑟 −

𝐿𝑚

𝐿𝑟
𝑅𝑟𝑖𝑞𝑠 + (𝑤𝑠 − 𝑤𝑚)Ψ𝑑𝑟 = 0                     (4.45) 

 
𝑑Ψ𝑞𝑟

𝑑𝑡
+

𝐿𝑟

𝑅𝑟
 Ψ𝑞𝑟 −

𝐿𝑚

𝐿𝑟
𝑅𝑟𝑖𝑞𝑠 + (𝑤𝑠 − 𝑤𝑚)Ψ𝑑𝑟 = 0             (4.46) 

 
To eliminate transients in the rotor flux and the coupling between the two axes, 

the following conditions must be satisfied 

Ψ𝑞𝑟 = 0 𝑎𝑛𝑑 Ψ𝑟 = √Ψ 𝑑𝑟
2 + Ψ 𝑞𝑟

2 = Ψ𝑑𝑟               (4.47) 

Also, the rotor flux should remain constant so that 

𝑑Ψ𝑑𝑟

𝑑𝑡
= 𝑑

Ψ𝑞𝑟

𝑑𝑡
= 0                     (4.48) 

With conditions in Eqn. (4.47) and Eqn. (4.48), the rotor flux Ψ𝑟 is aligned on 

the d
e
 axis and we get 

𝑤𝑠 − 𝑤𝑚 = 𝑤𝑠𝑙  =
𝐿𝑚𝑅𝑟

Ψ𝑟𝐿𝑟
 𝑖𝑞𝑠                       (4.49) 

 
𝐿𝑟

𝑅𝑟
 
𝑑Ψ𝑟

𝑑𝑡
+ Ψ𝑟  = 𝐿𝑚𝑖𝑑𝑠                         (4.50) 

Substituting the expressions for 𝑖𝑞𝑟 from Eqn. (4.43) into Eqn. (4.34) and 𝑖𝑑𝑟 

from Eqn. (4.44) into Eqn. (4.35) , we get 

Ψ𝑞𝑠 = (𝐿𝑠 −
𝐿 𝑚
2

𝐿𝑟
)𝑖𝑞𝑠 +

𝐿𝑚

𝐿𝑟
Ψ𝑞𝑟                        (4.51) 

Ψ𝑑𝑠 = (𝐿𝑠 − 𝐿 𝑀
2 )𝑖𝑑𝑠 +

𝐿𝑚

𝐿𝑟
Ψ𝑑𝑟                             (4.52) 

 
Substituting above equations (4.51) and (4.52) into Eqn. (4.40) gives the 

developed torque as  

 

𝑇𝑑 =
3𝑝

2
 
𝐿𝑚

𝐿𝑟
 (Ψ𝑑𝑟𝑖𝑞𝑠 − Ψ𝑞𝑟𝑖𝑞𝑠) =

3𝑝

2
 
𝐿𝑚

𝐿𝑟
 Ψ𝑟𝑖𝑞𝑠                     (4.53) 

If the rotor flux Ψ𝑟, remains constant, becomes 

 
Ψ𝑟 = 𝐿𝑚𝑖𝑑𝑠                     (4.54) 

 
Which indicates that the rotor flux is directly proportional to current 𝑖𝑑𝑠. Thus 

𝑇𝑑 becomes 
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𝑇𝑑 =
3𝑝

2
 
𝐿𝑚

2

𝐿𝑟
𝑖𝑑𝑠𝑖𝑞𝑠 = 𝐾𝑚𝑖𝑑𝑠𝑖𝑞𝑠                  (4.55) 

 

where 𝐾𝑚 =
3𝑝𝐿𝑚

2

2𝐿𝑟
 

 

 
 

 

Fig 4.6: Block dia. of indirect vector control method 

 

 

Fig 4.7: Block dia. Of direct vector control method 
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4.3.2 Direct torque control 

The most modern technique is direct torque and stator flux vector control 

method (DTC). It has been realised in an industrial way by ABB, by using the 

theoretical background proposed by Blashke and Depenbrock during 1971-

1985. This solution is based both on field oriented control (FOC) as well as on 

the direct self-control theory. 

Direct torque control (DTC) is an induction motor control technique that has 

been successful because it explicitly considers the inverter stage and uses few 

machine parameters, while being more robust to parameter uncertainty than 

field-oriented control (FOC). The formal derivation of DTC based on singular 

perturbation and nonlinear control tools. The derivation elaborates an explicit 

relationship between DTC performance and machine characteristics; low-

leakage machines are expected to perform better under DTC. It is shown that 

DTC is a special case of a sliding-mode controller based on the multiple time-

scale properties of the induction machine. The known troublesome machine 

operating regimes are predicted and justified. Explicit conditions to guarantee 

stability are presented. DTC is shown to be a suboptimal controller because it 

uses more control effort than is required for flux regulation. Finally, 

compensation strategies that extend DTC are discussed. The derivation does not 

require space vector concepts thus, it is established that the traditional link 

between DTC and space vectors is not fundamental. 

 

Starting with a few basics in a variable speed drive the basic function is to 

control the flow of energy from the mains to a process via the shaft of a motor. 

Two physical quantities describe the state of the shaft: torque and speed. 

Controlling the flow of energy depends on controlling these 15 quantities. In 

practice either one of them is controlled and we speak of "torque control" or 

"speed control". When a variable speed drive operates in torque control mode 

the speed is determined by the load. Torque is a function of the actual current 
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and actual flux in the machine. Likewise when operated in speed control the 

torque is determined by the load. Variable speed drives are used in all industries 

to control precisely the speed of electric motors driving loads ranging from 

pumps and fans to complex drives on paper machines rolling mills cranes and 

similar drives. 

 

The idea is that motor flux and torque are used as primary control variables 

which is contrary to the way in which traditional AC drives control input 

frequency and voltage, but is in principle similar to what is done with a DC 

drive, where it is much more straightforward to achieve. In contrast, traditional 

PWM and flux vector drives use output voltage and output frequency as the 

primary control variables but these need to be pulse width modulated before 

being applied to the motor. This modulator stage adds to the signal processing 

time and therefore limits the level of torque and speed response time possible 

from the PWM drive. 

 

In contrast, by controlling motor torque directly, DTC provides dynamic speed 

accuracy equivalent to closed loop AC and DC systems and torque response 

times that are 10 times faster. It is also claimed that the DTC does not generate 

noise like that produced by conventional PWM AC drives. And the wider 

spectrum of noise means that amplitudes are lower which helps to control EMI 

and RFI emissions. The basic structure of direct torque and stator flux vector 

control is Presented in Fig 4.8. 
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Fig. 4.8: Basic structure of direct torque and stator flux vector control  

 

In DTC field orientation is achieved without feedback using advanced motor 

theory to calculate the motor torque directly and stator flux without using a 

modulator or a requirement for a tacho generator or position encoder to feed 

back the speed or position of the motor shaft. Both parameters are obtained 

instead from the motor itself. DTC's configuration also relies on two key 

developments - the latest high-speed signal processing technology and a highly 

advanced motor model precisely simulating the actual motor within the 

controller. A DSP (digital signal processor) is used together with ASIC hardware 

to determine the switching logic of the inverter. 

 

The motor model is programmed with information about the motor, which 

enables it to determine parameters including stator resistance, mutual 

inductance saturation coefficients and motor inertia. The model also 

encompasses temperature compensation, which is essential for good 

static speed accuracy without encoder. 
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In normal operation, measurements of the two motor phase currents and the 

drive DC link voltage, together with information about the switching state of the 

inverter are fed into the motor model . The motor model then outputs control 

signals, which are accurate estimates of the actual motor torque and actual stator 

flux. All control signals are transmitted via optical links for high speed. In this 

way, the semiconductor switching devices of the inverter are supplied with an 

optimum switching pattern for reaching or maintaining an accurate motor 

torque. Also, both shaft speed and electrical frequency are calculated within the 

motor model. There is no need to feedback any shaft speed or position with 

tachometers or encoders to meet the demands of 95% of industrial applications. 

However, there will always be some special applications where even greater 

speed accuracy will be needed and when the use of an encoder improves the 

accuracy of speed control in DTC. But even then, the encoder does not need to 

be as costly or as accurate as the one used in traditional flux vector drives, as 

DTC only has to know the error in speed, not the rotor position. 

The drive will have a torque response time typically better than 5ms. This 

compares with response for both flux vector PWM drives and DC drives fitted 

with encoders. The newer sensor less flux vector drives now being launched by 

other drives manufacturers have a torque response measured in hundreds of 

milliseconds. 

DTC also provides exceptional torque control linearity. For the first time with 

an open loop AC drive, torque control can be obtained at low frequencies, 

including zero speed, where the nominal torque step can be increased in less 

than 1ms. The dynamic speed accuracy of DTC drives is better than any open 

loop AC drives and comparable to DC drives, which use feedback. 

DTC brings other special functions, not previously available with AC drives, 

including automatic starting in all motor electromagnetic and mechanical states.  

There is no need for additional parameter adjustments, such as torque boost or 

starting mode selection, such as flying start. DTC control automatically adapts 
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itself to the required condition. In addition, based on exact and rapid control of 

the drive intermediate DC link voltage, DTC can withstand sudden load 

transients caused by the process, without any overvoltage or overcurrent trip. 

4.4 Conclusion  

This chapter discussed method used for controlling DC and induction drive. For 

controlling DC drive, armature voltage control method is used, where torque is 

developed by varying armature voltage. And for induction motor drive direct 

vector control method is used. 
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Chapter V 

Implementation and testing 
 

5.1 Introduction 

 
The block diagram of Distributed controllers system of project is given below. 

In this project DC drive and Induction drive are controlled by two different 

Micro-controllers, 8051Microcontroller and AVR Microcontroller.  In order to 

create distributed architecture the controllers connected to data highway 

bus(ether net bus). The technical specifications of the micro controller is also 

presented. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1: Block Diagram of DCSs. 
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5.2 8051 Microcontroller 

The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer 

with 8K bytes of Flash programmable and erasable read only memory 

(PEROM). The device is manufactured using Atmel’s high-density nonvolatile 

memory technology and is compatible with the industry-standard 80C51 and 

80C52 instruction set and pin out. 

The on-chip Flash allows the program memory to be reprogrammed in-system 

or by a conventional non-volatile memory programmer. By combining a 

versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a 

powerful microcomputer which provides a highly-flexible and cost-effective 

solution to many embedded control applications. 

 

5.2.1 Pin configuration & Descriptions 

           

                    
 
                  Fig. 5.2 Pin configuration of 8051 
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Pin-out description 
 

Basic Pins 

PIN 9: PIN 9 is the reset pin which is used to reset the microcontroller’s 

internal registers and ports upon starting up. (Pin should be held high for 2 

machine cycles).  A logic one on this pin disables the microcontroller and clears 

the contents of most registers. In other words, the positive voltage on this pin 

resets the microcontroller. By applying logic zero to this pin, the program starts 

execution from the beginning. 

PINS 18 & 19: The 8051 has a built-in oscillator amplifier hence we need to 

only connect a crystal at these pins to provide clock pulses to the circuit. 

PINS 40 and 20: Pins 40 and 20 are VCC and ground respectively. The 8051 

chip needs +5V 500mA to function properly, although there are lower powered 

versions like the Atmel 2051 which is a scaled down version of the 8051 which 

runs on +3V. 

PINS 29, 30 & 31:  This chip contains a built-in flash memory. In order to 

program this we need to supply a voltage of +12V at pin 31. If external memory 

is connected then PIN 31, also called EA/VPP, should be connected to ground to 

indicate the presence of external memory. PIN 30 is called ALE (address latch 

enable), which is used when multiple memory chips are connected to the 

controller and only one of them needs to be selected. PIN 29 is called PSEN. 

This is "program store enable". In order to use the external memory it is 

required to provide the low voltage (0) on both PSEN and EA pins. 

There are 4 8-bit ports: P0, P1, P2 and P3. 

PORT P1 (Pins 1 to 8): The port P1 is a general purpose input/output port 

which can be used for a variety of interfacing tasks. The other ports P0, P2 and 

P3 have dual roles or additional functions associated with them based upon the 

context of their usage. The port 1 output buffers can sink/source four TTL 
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inputs. When 1s are written to portn1 pins are pulled high by the internal pull-

ups and can be used as inputs. 

PORT P3 (Pins 10 to 17): PORT P3 acts as a normal IO port, but Port P3 has 

additional functions such as, serial transmit and receive pins, 2 external 

interrupt pins, 2 external counter inputs, read and write pins for memory access.  

Pin 10: RXD Serial asynchronous communication input or Serial synchronous 

communication output. 

Pin 11: TXD Serial asynchronous communication output or Serial synchronous 

communication clock output. 

Pin 14: T0 Counter 0 clock input. 

Pin 15: T1 Counter 1 clock input. 

Pin 16: WR Write to external (additional) RAM. 

Pin 17: RD Read from external RAM. 

PORT P2 (pins 21 to 28): PORT P2 can also be used as a general purpose 8 bit 

port when no external memory is present, but if external memory access is 

required then PORT P2 will act as an address bus in conjunction with PORT P0 

to access external memory. PORT P2 acts as A8-A15, as can be seen from above 

figure. 

PORT P0 (pins 32 to 39) PORT P0 can be used as a general purpose 8 bit port 

when no external memory is present, but if external memory access is required 

then PORT P0 acts as a multiplexed address and data bus that can be used to 

access external memory in conjunction with PORT P2. P0 acts as AD0-AD7.  

PORT P10: asynchronous communication input or Serial synchronous 

communication output. Oscillator Circuits The 8051 requires an external 

oscillator circuit. The oscillator circuit usually runs around 12MHz, although 

the 8051 (depending on which specific model) is capable of running at a 

maximum of 40MHz. Each machine cycle in the 8051 is 12 clock cycles, giving 

an effective cycle rate at 1MHz (for a 12MHz clock) to 3.33MHz (for 
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 the maximum 40MHz clock). The oscillator circuit generates the clock pulses 

so that all internal operations are synchronized. 

 

5.2.2 Internal Architecture of 8051 Microcontroller 

        
Fig. 5.3: Block dia. of 8051 Microcontroller 
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Data and Program Memory  

 
The 8051 Microcontroller can be programmed in PL/M, 8051 Assembly, C and 

a number of other high-level languages. Many compilers even have support for 

compiling C++ for an 8051. 

Program memory in the 8051 is read-only, while the data memory is considered 

to be read/write accessible. When stored on EEPROM or Flash, the program 

memory can be rewritten when the microcontroller is in the special programmer 

circuit. 

Program Start Address 

 
The 8051 starts executing program instructions from address 0000 in the 

program memory. The A register is located in the SFR memory location 0xE0. 

The A register works in a similar fashion to the AX register of x86 processors. 

The A register is called the accumulator, and by default it receives the result of 

all arithmetic operations. 

Special Function Register 

The Special Function Register (SFR) is the upper area of addressable memory, 

from address 0x80 to 0xFF. A, B, PSW, DPTR are called SFR. This area of 

memory cannot be used for data or program storage, but is instead a series of 

memory-mapped ports and registers. All port input and output can therefore be 

performed by memory mov operations on specified addresses in the SFR. Also, 

different status registers are mapped into the SFR, for use in checking the status 

of the 8051, and changing some operational parameters of the 8051. 

General Purpose Registers 

The 8051 has 4 selectable banks of 8 addressable 8-bit registers, R0 to R7. This 

means that there are essentially 32 available general purpose registers, although 

only 8 (one bank) can be directly accessed at a time. To access the other banks, 

we need to change the current bank number in the flag status register. 
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A and B Registers, The  A register is located in the SFR memory location 0xE0. 

The A register works in a similar fashion to the AX register of x86 processors. 

The A register is called the accumulator, and by default it receives the result of 

all arithmetic operations. The B register is used in a similar manner, except that 

it can receive the extended answers from the multiply and divide operations. 

When not being used for multiplication and Division, the B register is available 

as an extra general-purpose register. 

 

5.3 AVR Microcontroller 

 

ATmega16 is an 8-bit high performance microcontroller of Atmel’s Mega AVR 

family with low power consumption. Atmega16 is based on enhanced RISC 

(Reduced Instruction Set Computing) architecture with 131 powerful 

instructions. Most of the instructions execute in one machine cycle. Atmega16 

can work on a maximum frequency of 16MHz. ATmega16 has 16 KB 

programmable flash memory, static RAM of 1 KB and EEPROM of 512 Bytes. 

The endurance cycle of flash memory and EEPROM is 10,000 and 100,000, 

respectively. ATmega16 is a 40 pin microcontroller. There are 32 I/O 

(input/output) lines which are divided into four 8-bit ports designated as 

PORTA, PORTB, PORTC and PORTD. ATmega16 has various in-built 

peripherals like USART, ADC, Analog Comparator, SPI, JTAG etc. Each I/O 

pin has an alternative task related to in-built peripherals. 

 

  

http://www.engineersgarage.com/articles/avr-microcontroller
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/serial-communication-atmega16-usart
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/adc-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/analog-comparator-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/spi-serial-peripheral-interface-tutorial-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/disable-jtag-port
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5.3.1 Internal architecture of AVR Microcontroller  

 

Fig 5.4 Block Diagram of AVR Microcontroller 
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5.3.2 Pin Configuration and description 

           
  

Fig. 5.5 Pin configuration of AVR Microcontroller     

Pin out description 

VCC: Digital supply voltage. (+5V) 

GND: Ground. (0 V) Note there are 2 ground Pins. 

Port A (PA7 - PA0) Port A serves as the analog inputs to the A/D Converter. Port 

A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not 

used. When pins PA0 to PA7 are used as inputs and are externally pulled low, 

they will source current if the internal pull-up resistors are activated. The Port A 

pins are tri-stated when a reset condition becomes active, even if the clock is not 

running. 
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Port B (PB7 - PB0) Port B is an 8-bit bi-directional I/O port with internal pull-

up resistors (selected for each bit). Port B also serves the functions of various 

special features of the ATmega16 as listed on page 58 of datasheet. 

Port C (PC7 - PC0) Port C is an 8-bit bi-directional I/O port with internal pull-

up resistors (selected for each bit). Port C also serves the functions of the JTAG 

interface and other special features of the ATmega16 as listed on page 61 of 

datasheet. If the JTAG interface is enabled, the pull-up resistors on pins PC5 

(TDI), PC3 (TMS) and PC2 (TCK) will be activated even if a reset occurs. 

Port D (PD7 - PD0) Port D is an 8-bit bi-directional I/O port with internal pull-

up resistors (selected for each bit). Port D also serves the functions of various 

special features of the ATmega16 as listed on page 63 of datasheet. 

RESET: Reset Input. A low level on this pin for longer than the minimum pulse 

length will generate a reset, even if the clock is not running 

XTAL1: External oscillator pin 1 

XTAL2: External oscillator pin 2 

AVCC: AVCC is the supply voltage pin for Port A and the A/D Converter. It 

should be externally connected to VCC, even if the ADC is not used. If the ADC 

is used, it should be connected to VCC through a low-pass filter. AREF: AREF 

is the analog reference pin for the A/D Converter. 

 

5.4 AVR Studio 4 Integrated Development Environment 

 

AVR Studio is the Integrated Development Environment for developing 8-bit 

AVR applications in Windows NT/2000/XP/Vista/7 environments. ―An 

integrated development environment (IDE) also known as integrated design 

environment or integrated debugging environment is a software application that 

provides comprehensive facilities to computer programmers for software 

development. An IDE normally consists of: 
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 a source code editor, 

 a compiler and/or an interpreter,  

 build automation tools,  

 a debugger. 

 

AVR Studio 4 is a free IDE developed by ATMEL for writing and debugging 

AVR applications provides a complete set of features including debugger 

supporting run control including source and instruction-level stepping and 

breakpoints; registers, memory and I/O views; and target configuration and 

management as well as full programming support for standalone programmers.  

To develop applications in C language is need the AVR-GCC- C compiler for 

AVR microcontrollers. ―WinAVRTM (pronounced "whenever") is a suite of 

executable, open source software development tools for the Atmel AVR series 

of RISC microprocessors hosted on the Windows platform. It includes the GNU 

GCC compiler for C and C++.‖ 

AVR Studio 4 features: 

 

 Integrated Development Environment  

 Integrated Simulator  

 Integrated Assembler  

 Write, Compile and Debug  

 Fully Symbolic Source-level Debugger  

 Configurable Memory Views (SRAM/EEPROM/Flash/Registers and I/O)  

 Extensive Program Flow Control Options  

 Unlimited Number of Break Points  

 Trace Buffer and Trigger Control  

 Online HTML Help  

 Variable Watch/Edit Window with Drag-and-Drop Function  

 Simulator Port Activity Logging and Pin Input Stimuli  
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 File Parser Support: COFF/UBROF6/UBROF8 and Hex Files  

 Language support: C, Pascal, BASIC, and Assembly  

 

5.5 Distributed microcontroller System Application: 

To demonstrate the utility of distributed microcontroller DC drive and induction 

motor drive are connected with 8051 microcontroller and AVR microcontroller 

respectively. The control software protocol are developed based on algorithm of 

chapter IV. The fig. 5.1 shows the distributed microcontroller application and 

architecture. The software protocol coding is presented in annexure I. The 

software protocol is developed in c language on computer system and 

downloaded to 8051 microcontroller. For induction motor drive software 

protocol is developed in AVR studio. The experiment are found satisfactory and 

in working mode for DC drive and induction motor drive both. 

5.6 Conclusion 

In this chapter Subsystem viz 8051 microcontroller and AVR microcontroller 

are described, including their internal features. The distributed control model for 

DC drive and induction motor drive has been developed and implemented. 
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Chapter VI 

Conclusion and further scope 
 

The aim of project was to design distributed controllers system, in which DC 

drive and induction drive are controlled.  For designing of distributed 

controllers system Ethernet bus is used for communication system.  

Because Ethernet bus is preferred for high throughput and faster system 

response. While the MOD bus / Profi bus is preferred to connect the Slow 

anolog inputs to the system. For that, armature control method is used for DC 

drive and direct vector control method is used for induction motor drive, 8051 

microcontroller is for controlling DC drive and AVR microcontroller is used for 

controlling induction motor drive. And finally experiments are found 

satisfactory and in working mode for DC drive and induction motor drive both. 

 The further scope of this project is that it can be implemented for larger 

systems. Internal algorithm for such is Fuggy logic, neural network as such can 

be developed. This can also be used for PLC. 
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Annexure-I 

Coding of 8051 microcontroller 

#include<reg51.h> 
#include <string.h> 
sbit rs = P3^1;     // rs pin of LCD 
sbit en = P3^0;     // en pin of LCD 
sbit rw = P3^2;     // rw pin of LCD 
sbit b = P0^7;     // busy flag  
sbit led1=P2^0;     // run indicator 
sbit led2=P2^1;     // stop indicator 
sbit led3=P2^2;     // clockwise direction 
indicator 
sbit led4=P2^3;     // anticlockwise direction 
indicator 
sbit PWM=P2^4;     // PWM output 
sbit RL1=P2^5;     // relay 1 pin 
sbit RL2=P2^6;     // relay 2 pin 
 
unsigned int x=10;    // ontime  
unsigned int y=10;    // offtime 
unsigned int m=0;    // mode 
unsigned int d=0;    // direction 
unsigned int t=100;    // time 
unsigned int r=0;    // run flag 
 
void start(void);    // function initilization 
void mode(void); 
void direction(void); 
void incspeed(void); 
void decspeed(void); 
void inctime(void); 
void dectime(void); 
void time(unsigned int); 
void delay(unsigned int); 
void keydly(void); 
void busy(void); 
 
void writecmd(unsigned char a)  // send command to LCD 
  { 
 busy();       // check busy 
flag 
 rs = 0;       // select command 
register 
 rw = 0;       // write enable 
 P0 = a;       // send byte to 
LCD 
 en = 1;       // apply strobe 
pulse 
 en = 0; 
  } 
void writedata(unsigned char b)  // send data to LCD 
  { 
 busy();       // check busy 
flag 
 rs = 1;       // select data 
register 
 rw = 0;       // write enable 
 P0 = b;       // write enable
  
 en = 1;       // send byte to 
LCD 
 en = 0;       // apply strobe 
pulse       
  } 
void busy()       // check busy flag of 
LCD 
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  { 
 en = 0;       // disable 
display 
 P0 = 0xFF;      // P0 as input 
 rs = 0;       // select command 
register 
 rw = 1;       // read enable 
 while(b==1)      // if busy bit is 1 
 { 
  en=0;       // remain withine 
loop 
  en=1; 
 } 
 en=0;        
  } 
void writestr(unsigned char *s)  // send string message to LCD 
 { 
 unsigned char l,i; 
 l = strlen(s);     // get length of string 
 for(i=0;i<l;i++)      
 { 
  writedata(*s);    // till the length of 
string  
  s++;      // send characters one 
by one 
 } 
 } 
void start()      // start rotating motor 
  { 
   if(m==0)      // for m=0 start 
continuous mode 
   { 
    RL1=0;      // switch on RL1 
  r=1;      // set run flag 
    P1=0xFF;     // send all 1's to P1 
  while(P1==0xFF)    // till no key is 
pressed 
      { 
   led1=1;     // indication on 
run LED 
   PWM=1;     // send high 
logic to PWM pin 
   delay(x);    // on time delay 
   PWM=0;     // now send low 
logic to PWM 
   delay(y);    // off time delay 
      } 
  } 
  else if(m==1)    // for m=1 start 
reversible mode 
    { 
     r=1;     // set run flag 
   P1=0xFF;    // send all 1's to P1 
   while(P1==0xFF)   // till no key is 
pressed 
     { 
       
    led1=1;    // run LED=1 
    led3=1; 
    led4=0; 
    PWM=1;    // send high on 
PWM pin 
    RL2=1;    // select one 
direction 
    RL1=0;      // switch on RL1 
    time(t);   // wait for desired 
time 
    RL1=1;    // switch off RL1 
    led1=0;    // run LED=0; 
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    time(20);   // wait for 1 sec 
    led1=1;    // again run 
LED=1 
    led3=0; 
    led4=1; 
    RL2=0;    // select other 
direction 
    RL1=0;    // switch on RL1
    
    time(t);   // wait for desire time 
    RL1=1;    // switch off RL1 
    led1=0;    // run LED=0 
    time(20);   // wait for 1 sec 
      } 
     PWM=0; 
       
   } 
    else if(m==2)    // for m=2 start 
jogging mode 
      { 
    r=1;    // reset run flag 
    P1=0xFF;    // send all 1's 
to P1 
   while(P1==0xFF)   // till no key is 
pressed 
     { 
      led1=1;  
    PWM=1;    // send high on 
PWM pin 
    RL1=0;    // switch on RL1 
    time(t);   // wait for 1 sec 
    RL1=1;    // switch off RL1 
    PWM=0;    // send low on 
PWM pin  
    led1=0;  
    time(20); 
     }  
      
   }  
  } 
void direction()     // alter the direction 
  { 
 keydly();      // key debounce delay 
 d++;       // increment count 
 if((d%2)==0)     // check for even or 
odd 
   { 
  led3=1;      // indicate on 
LEDs 
  led4=0; 
  RL2=1;      // switch ON / 
OFF RL2 
   } 
 else 
   { 
  led3=0; 
  led4=1; 
  RL2=0; 
   } 
  } 
 void mode()        // change 
mode of rotation 
   { 
    keydly();        // key 
debounce delay 
 writecmd(0x80);       // display 
message on first line first column 
 m++;         // 
increment count  
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 if(m==3) m=0;       // if it is 
3 reset it 
 if(m==0) 
   { writestr("mode:continuous "); // otherwise display mode 
   time(15); 
   } 
 else if(m==1)  
    {writestr("mode:reversible "); 
    time(15); 
 } 
 else if(m==2)  
 {writestr("mode:jogging    ");  
 time(15);   
   } 
   } 
 void decspeed()         // 
increase speed  
   { 
     int z;      
  keydly();        
 // key debounce 
  writecmd(0xC0);       
 // select second line on LCD 
  if(y<14)         
 // if not max pulse width 
      { 
     x--; 
     y++;        
 // increase it convert it in to          
   z=y-5+0x30;       
 // 1 to 10 scale and ASCII 
   writestr("speed: ");     // 
diaplay speed on LCD 
   writedata(z); 
   writestr("       "); 
    } 
    else if(y==14) writestr("min speed: 9  "); // if max 
width display message  
 } 
void incspeed()         
  // increase speed  
   { 
     int w;  
  keydly();    
  writecmd(0xC0);       
  // key debounce       
  
  if(y>6)         
  // if not minimum width 
      { 
     x++; 
     y-- ;        
  // decrease it       
   w=y-5+0x30;       
  // do same as above   
   writestr("speed: "); 
   writedata(w); 
   writestr("       "); 
    } 
   else if(y==6) writestr("max speed: 1  ");  // if 
min width display message       
 } 
void inctime()         
  // increase time  
  { 
   int p;    
 keydly();         
  // key debounce delay 
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 writecmd(0xC0);        
   
 if(t<180)         
  // if not max time  
   { 
  t+=20;        
   // increase it by 1 sec   
  p=t/20; 
  p=p+0x30;        
  // convert it in to ASCII   
  writestr("time: ");      
  // display it 
  writedata(p); 
  writestr(" sec    "); 
   } 
 else if(t==180) writestr("max time: 9 sec");  // if max 
time display message   
  } 
void dectime()         
  // decrease time 
  { 
   int q;       
 keydly();         
  // key debounce delay 
 writecmd(0xC0); 
 if(t>20)          
  // if not min time  
   { 
  t-=20;        
   // decrease it     
   q=t/20; 
   q=q+0x30;        
  // do same as above   
   writestr("time: "); 
   writedata(q); 
   writestr(" sec    "); 
   } 
 else if(t==20) writestr("min time: 1 sec");   // if 
min time display message   
  } 
void keydly()      // key debounce delay 
  { 
 int a,b; 
 for(a=0;a<50;a++) 
   for(b=0;b<1000;b++); 
  } 
void time(unsigned int c)   // change time in seconds 
 { 
 int k; 
 TL1 = 0xAF;      // use timer 1 
 TH1 = 0x3C;      // to generate 50 ms 
delay 
 TR1 = 1;      // start timer 
 for(k=0;k<=c;k++)    // rotate loop in multiples 
of 20 
   { 
  while(TF1==0);    // wait till timer 
overflow 
  TF1 = 0;     // reset the flag 
  TL1 = 0xAF;     // reload it 
  TH1 = 0x3C; 
   } 
 TR1 = 0;      // stop timer 
  } 
void delay(unsigned int c1)   // change time in micro 
seconds 
 { 
 int a; 
 TH0=0x9B;      // select timer 0  
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 TL0=0x9B;      // to generate 100 
micro second delay 
 TR0=1;       // start timer
        
 for(a=0;a<c1;a++)    // rotate loop between 5 to 
15 
   { 
  while(TF0==0);    // wait until timer 
overflow 
  TF0=0;      // reset the flag 
   } 
 TR0=0;       // stop timer  
  } 
 
void main() 
  { 
 TMOD=0x12;      // timer1 in 16 bit 
timer, timer 0 in 8 bit auto reload mode  
 P2=0xE0;      // LEDs off, relays OFF 
 P0=0x00;      // P0, P3 output ports 
 P3=0x00; 
 writecmd(0x3C);     // initilize LCD 
 writecmd(0x0E);  
 writecmd(0x01);  
 writecmd(0x84);     // display message 
    writestr("DC Motor");   // DC motor controller in 
 writecmd(0xC3);     // center of LCD 
 writestr("Controller");  
agin:P1=0xFF;      // P1 as input port 
 while(P1==0xFF);    // wait until any key press 
loop:switch(P1) 
   { 
  case 0xFE:     // for first key  
   keydly();    // key debounce 
   writecmd(0x01); 
   writestr("motor start"); 
   time(50);      // wait for 
2.5 sec 
   writecmd(0x80);  
      writestr("mode:continuous "); // display current mode and 
speed 
   writecmd(0xC0); 
   writestr("speed: 5       ");  
   led1=1;     // Run LED ON 
   led2=0;     // stop LED OFF 
   led3=1;     // clockwise 
direction ON 
   led4=0;     // anticlockwise 
direction OFF 
   start();    // sart rotating motor 
   break; 
  case 0xFD:     // for second key 
   keydly();    // key debounce 
   r=0;     // run flag reset 
   writecmd(0x01);    
   writestr("motor stop"); // display message 
   led1=0;     // Run OFF 
   led2=1;     // stop LED ON 
   led3=0;     // clockwise 
direction OFF 
   led4=0;     // anticlockwise 
direction OFF 
   PWM=0;     // low logic to 
PWM pin 
   RL1=1;     // relay1 off 
   break; 
  case 0xFB:     // for third key 
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   mode();     // select mode
      
   if(r==1) start();  // jump to start if run flag 
is set 
   break; 
  case 0xF7:     // for fourth key 
  
   direction();   // change direction
    
   if(r==1) start();  // jump to start if run flag 
is set 
   break; 
  case 0xEF:     // for fifth key 
   
   incspeed();    // increase speed 
   if(r==1) start();  // jump to start if run flag 
is set 
   break; 
  case 0xDF:     // for sixth key 
   
   decspeed();    // decrease speed 
  
   if(r==1) start();  // jump to start if run flag 
is set 
   break; 
  case 0xBF:     // for seventh key
   
   inctime();    // increase time 
   if(r==1) start();  // jump to start if run flag is 
set 
   break; 
  case 0x7F:     // for eigth key   
   dectime();    // decrease time  
  
   if(r==1) start();  // jump to start if run flag is 
set 
   break; 
    } 
 if(r==1) goto loop;    // if run flag is set jump 
of key detect 
 else goto agin;     // if not jump to again 
  } 

Annexure-II 

 
coding of AVR microcontroller 
 
Below is presented the main code of embedded application. Other files: USART.c, PI.c, and 
TIMERS.c are included in appendix.  
 

#include <avr/io.h>  

#include <stdlib.h>  

#include <stdbool.h> 

#include <avr/interrupt.h>  

#include "USART.c"  

#include "PI.c"  

#include "TIMERS.c"  

#define F_CPU 8000000UL  

//regulation  

const char cEncoderResolution=62; //resolution of encoder's rotary disc  

volatile int i=0;  

volatile int iMotorNumber=0;  

volatile char cNumberOfIterations=2;  

volatile char cSamplesOfSpeed[10];  

volatile char cScalingFactor;  

//motors speed & voltage  
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volatile int iPresetRPM[2];  

volatile char cActualSpeed[2];  

volatile int iActualRPM[2];  

volatile int iSaturation[2];  

//flags  

volatile bool bFlagRegulation=false;  

volatile bool bFlagPidIsOn=true;  

volatile bool bFlagToSend=false;  

volatile bool bFlagTransmit=true;  

volatile bool bFlagReadyToSplit=false;  

volatile bool bFlagSendInfo=false;  

//transmission  

volatile char cReceivedBuffer[11];  

volatile char cReadChars=0;  

volatile int iSumOfSpeed=0;  

volatile char cDelay=0;  

volatile char cTransmitionDelay=5;  

//statistics  

volatile unsigned long int iFramesError=0;  

volatile unsigned long int iFramesRecived=0;  

volatile unsigned long int iFramesTransmitted=0;  

volatile unsigned long int iWorkTime=0;  

//------------------------------------------------------TIMER speed regulation is 

enabled  

ISR(TIMER2_COMP_vect){//this interrupt is triggered after an appropriate time 

interval  

cli();  

if(bFlagTransmit==true){  

if(cDelay>cTransmitionDelay){ //delaying transmission of cTransmitionDelay time 

intervals  

bFlagToSend=true; //enabled transmission  

cDelay=0;  

}  

if(i>cNumberOfIterations){  

cActualSpeed[iMotorNumber]=(char)(iSumOfSpeed/(float)(i+1)); //computing mean value 

of the speed for i iterations  

iActualRPM[iMotorNumber]=(int)cScalingFactor*cActualSpeed[iMotorNumber]; //scaling 

the speed mean value to RPM  

bFlagRegulation=true; //enabled speed regulation  

i=0;  

iSumOfSpeed=0;  

}  

else{  

cSamplesOfSpeed[i]=TCNT0; //inserting to an array values of speed in iteration  

iSumOfSpeed+=TCNT0; //summing speed values  

TCNT0 = 0x00; //counter reset  

i++;  

}  
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}  

cDelay++;  

iWorkTime++;  

sei();  

}  

//------------------------------------------------------TIMER  

//------------------------------------------------------USART RX  

ISR(USART_RXC_vect){//this interrupt is triggered when USART receive character  

//cli();  

char c=UDR; //obtaining character from the USART  

char cSumBuffor[3]={0,0,0};  

int iChSumRead=0;  

int iChSumCalc=0;  

if(c==13){ //13 is ascii code of EOF(end of line)  

for(int n=cReadChars-3;n<cReadChars;n++) cSumBuffor[n-

cReadChars+3]=cReceivedBuffer[n]; //retrieve checksum from received data  

iChSumRead=atoi(cSumBuffor);  

for(int n=0;n<cReadChars-4;n++) iChSumCalc+=(int)cReceivedBuffer[n]; //calculating 

checksum of received packet  

if(iChSumRead==iChSumCalc){ //corrected frame  

bFlagReadyToSplit=true; //enabled string processing  

iFramesRecived++;  

iChSumCalc=0;  

}  

else{ //corrupted frame  

iFramesError++;  

cReadChars=0;  

iChSumCalc=0;  

for(int n=0;n<sizeof(cReceivedBuffer);n++) cReceivedBuffer[n]=0; //reset of receive 

buffer  

}  

}  

else{ //if character is not EOF, add it to the receive buffer  

cReceivedBuffer[cReadChars]=c;  

cReadChars++;  

}  

if(cReadChars>sizeof(cReceivedBuffer)) cReadChars=0;  

//sei();  

}  

//------------------------------------------------------USART RX  

void Regulation(void){  

int iPI=0;  

switch(iMotorNumber){ //choose number of regulated motor  

case 0:  

Timer0_init(); //start count pulses  

if(bFlagPidIsOn==true){  

if(iPresetRPM[0]==0) OCR1A=0; //if motor speed is 0, stop motor without regulator  

else{  

iPI=PI(i,(char)(iPresetRPM[0]/(float)cScalingFactor),cActualSpeed[0],cSamplesOfSpee

d); //obtain corrected value of PWM duty cycle to fulfill preset speed  

if(OCR1A+iPI>1023) OCR1A=1023;  

else OCR1A+=iPI;  

}  

}  

Timer0_stop(); //stop count pulses  

iMotorNumber=1;  

PORTD |= (1<<PORTD7); //change input signal for the multiplexer, OC0 count pulses 

for motor1  
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case 1:  

Timer0_init(); //start count pulses  

if(bFlagPidIsOn==true){  

if(iPresetRPM[1]==0) OCR1B=0; //if motor speed is 0, stop motor without regulator  

else{  

iPI=PI(i,(char)(iPresetRPM[1]/(float)cScalingFactor),cActualSpeed[1],cSamplesOfSpee

d); //obtain corrected value of PWM duty cycle to fulfill preset speed  

if(OCR1B+iPI>1023) OCR1B=1023;  

else OCR1B+=iPI;  

}  

}  

Timer0_stop(); //stop count pulses  

iMotorNumber=0;  

PORTD &= ~(1<<PORTD7); //change input signal for the multiplexer, OC0 count pulses 

for motor0  

break;  

}  

}  

void SplitString(void){  

bFlagTransmit=true;  

char cBuffor[4]={0,0,0,0};  

switch(cReceivedBuffer[0]){ //obtain kind of speed regulation  

case 'V' : //voltage regulation (open-loop control system)  

bFlagPidIsOn=false; //disable PI regulator  

for(int n=0;n<5;n++) cBuffor[n]=cReceivedBuffer[n+3];  

switch(cReceivedBuffer[1]){ //obtain motor number  

case '0': //motor 0  

switch(cReceivedBuffer[2]){ //obtain motor direction  

case 'R': //right  

PORTD &= ~(1<<PORTD2); //change direction  

OCR1A=atoi(cBuffor); //obtain value of supply voltage  

break;  

case 'L': //left  

PORTD |= (1<<PORTD2); //change direction  

OCR1A=atoi(cBuffor); //obtain value of supply voltage  

break;  

}  

break;  

case '1': //motor 1  

switch(cReceivedBuffer[2]){ //obtain motor direction  

case 'R': //right  

PORTD &= ~(1<<PORTD3); //change direction  

OCR1B=atoi(cBuffor); //obtain value of supply voltage  

break; 
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case 'L': //left  

PORTD |= (1<<PORTD3); //change direction  

OCR1B=atoi(cBuffor); //obtain value of supply voltage  

break;  

}  

break;  

}  

break;  

case 'S' : //speed regulation (close-loop control system)  

for(int n=0;n<5;n++) cBuffor[n]=cReceivedBuffer[n+3];  

switch(cReceivedBuffer[1]){ //obtain motor number  

case '0': //motor 0  

switch(cReceivedBuffer[2]){ //obtain motor direction  

case 'R':  

PORTD &= ~(1<<PORTD2); //change direction  

iPresetRPM[0]=atoi(cBuffor); //obtain value of preset speed  

break;  

case 'L':  

PORTD |= (1<<PORTD2); //change direction  

iPresetRPM[0]=atoi(cBuffor); //obtain value of preset speed  

break;  

}  

break;  

case '1': //motor 1  

switch(cReceivedBuffer[2]){ //obtain motor direction  

case 'R':  

PORTD &= ~(1<<PORTD3);//change direction  

iPresetRPM[1]=atoi(cBuffor); //obtain value of preset speed  

break;  

case 'L':  

PORTD |= (1<<PORTD3);//change direction  

iPresetRPM[1]=atoi(cBuffor); //obtain value of preset speed  

break;  

}  

break;  

}  

bFlagPidIsOn=true;//enable PI regulator  

break;  

case 'C' : //enable/disable communication  

if((atoi(cReceivedBuffer))==1) ( 



DISTRIBUTED CONTROLLERS SYSTEM 

 Page 75 

bFlagTransmit=true;  

iFramesRecived=0;  

iFramesError=0;  

iFramesTransmitted=0;  

}  

if((atoi(cReceivedBuffer))==0){  

bFlagTransmit=false;  

}  

break; 

case 'P' : //obtain value of proportional gain  

fKp=atoi(cReceivedBuffer)/(float)100;  

break;  

case 'I' : //obtain value of integration gain  

fKi=atoi(cReceivedBuffer)/(float)100000;  

break;  

case 'T' : //obtain value of the integration time interval  

cNumberOfIterations=(char)atoi(cReceivedBuffer);  

break;  

case 'G' : //send statistical informations  

bFlagSendInfo=true;  

break;  

case 'F' : //ramka odpowiedziala za odebranie informacji o częstotliwośći nadawania  

cBuffor[0]=cReceivedBuffer[1];  

cBuffor[1]=cReceivedBuffer[2];  

cTransmitionDelay=(char)atoi(cBuffor);  

bFlagTransmit=true;  

break;  

}  

cReadChars=0;  

for(int n=0;n<sizeof(cReceivedBuffer);n++) cReceivedBuffer[n]=0;//reset buffor  

}  

void SendSpeedVoltage(int iSendNumber){  

char cStringToSend[13];  

iSaturation[0]=(int)100*((OCR1A)/(float)(1023));//obliczanie aktualnego wypełnienia 

PWM dla silnika0  

iSaturation[1]=(int)100*((OCR1B)/(float)(1023));//obliczanie aktualnego wypełnienia 

PWM dla silnika1  

sprintf(cStringToSend,"SV%d%4.d,%3.d",iSendNumber,iActualRPM[iSendNumber],iSaturati

on[iSendNumber]);  

sprintf(cStringToSend,"%s,%d\r\n",cStringToSend,USART_checkSum(cStringToSend));  

iFramesTransmitted+=USART_sendString(cStringToSend);  

}  

void SendInformation(void){  

//preparing statistical information to send to supervisor application  

char cLine[36];  

sprintf(cLine,"I%6.lu",iFramesRecived);  

sprintf(cLine,"%s,%6.lu",cLine,iFramesTransmitted);  

sprintf(cLine,"%s,%4.d",cLine,iFramesError);  

sprintf(cLine,"%s,%6.u",cLine,(int)(iWorkTime/(float)cTimeInterval));  

sprintf(cLine,"%s,%6.d\r\n",cLine,USART_checkSum(cLine));  

iFramesTransmitted+=USART_sendString(cLine); 
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}  

int main (void){  

//PINS ROLE AND CONFIGURATION:  

//OC0- PORTB-0-pulses counter from encoders  

//RX- PORTD-0  

//TX- PORTD-1  

//DIR0 PORTD-2-switching the demultiplexer, switching PWM signals for L293D, 

changing the direction of motor 0 rotation  

//DIR1 PORTD-3-switching the demultiplexer, switching PWM signals for L293D, 

changing the direction of motor 1 rotation  

//OC1A- PORTD-4-PWM channel A, controlling signal for the motor 0  

//OC1B- PORTD-5-PWM channel A, controlling signal for the motor 1  

// PORTD-6  

//EncoderPORTD-7-switching the multiplexer, switching input signals for the Timer 0 

input (OC0)  

//ports configuration  

DDRD = 0xFF;  

PORTD = 0xFF;  

DDRB = 0xFE;  

int iSendMotorNumber=0;  

cScalingFactor=(char)(60*cTimeInterval/(float)cEncoderResolution);  

iPresetRPM[0]=iPresetRPM[1]=0;  

char cStringToSend[13];  

char cInformationDelay=0;  

USART_init(19200,8); //initialize serial communication  

Timer0_init(); //counting pulses  

Timer1_init(8); //generating the PWM signals  

Timer2_init(); //generating constant time periods  

sei();  

while(1){//---------------------------------------------------------------INFINITE 

LOOP  

if(bFlagRegulation==true){  

Regulation(); //enable PI regulator  

bFlagRegulation=false;  

}  

if(bFlagToSend==true){  

//preparing information about motors speed and supply voltage  

iSaturation[0]=(int)100*((OCR1A)/(float)(1023)); //computing the actual percent 

value of duty cycle PWM signal for the motor 0  

iSaturation[1]=(int)100*((OCR1B)/(float)(1023)); //computing the actual percent 

value of duty cycle PWM signal for the motor 1  

sprintf(cStringToSend,"SV%d%4.d,%3.d",(int)iSendMotorNumber,iActualRPM[iSendMotorNu

mber],iSaturation[iSendMotorNumber]);  

sprintf(cStringToSend,"%s,%d\r\n",cStringToSend,USART_checkSum(cStringToSend));  

iFramesTransmitted+=USART_sendString(cStringToSend); //send infomation about 

speed&volate  

bFlagToSend=false;  

cInformationDelay++;  

if(cInformationDelay==20) bFlagSendInfo=true; //send statistical informations  

if(iSendMotorNumber==0) iSendMotorNumber=1; //switch motor number 


