
DISTRIBUTED CONTROLLERS SYSTEM

 Page 1

CHAPTER 1

INTRODUCTION

1.1 Background

A distributed controllers system (DCS) refers to a control system usually of a

process plant /manufacturing system in which the different functions to the

controllers are assigned according to the process plant requirements. Here, the

controller elements are not central in location (like the brain) but are distributed

throughout the system with each component sub-system controlled by one or

more controllers. The entire system of controllers is connected by networks for

communication and monitoring. DCS is used in the industries, to monitor and

control distributed position equipment and process plant. A DCS typically uses

custom designed processors as controllers and uses both proprietary

interconnections and communications protocol for communication. Input and

output modules form component parts of the DCS. The processor receives

information from input modules and sends information to output modules. The

input modules receive information from input instruments in the process (or

field) and transmit instructions to the output instruments in the field. Computer

buses or electrical buses connect the processor and modules through multiplexer

or demultiplexers. Buses also connect the distributed controllers with the central

controller and finally to the Human–machine interface (HMI) or control

consoles.

The elements of a DCS may connect directly to physical equipment such as

switches, pumps and valves or they may work through an intermediate system

such as a SCADA system.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 2

Distributed control systems (DCSs) are dedicated systems used to control

manufacturing processes that are continuous or batch-oriented, such as oil

refining, petrochemicals, central station power generation, fertilizers,

pharmaceuticals, food and beverage manufacturing, cement production,

steelmaking, and papermaking. DCSs are connected to sensors and actuators

and use set point control to control the flow of material through the plant. The

most common example is a set point control loop consisting of a pressure

sensor, controller, and control valve. Pressure or flow measurements are

transmitted to the controller, usually through the aid of a signal conditioning

input/output (I/O) device. When the measured variable reaches a certain point,

the controller instructs a valve or actuation device to open or close until the

fluidic flow process reaches the desired set point.

Large oil refineries have many thousands of I/O points and employ very large

DCSs. Processes are not limited to fluidic flow through pipes, however, and can

also include things like paper machines and their associated quality controls ,

variable speed drives and motor control centres, cement kilns, mining

operations, ore processing facilities, and many others.

Some of the properties of DCS are:

 Electrical power grids and electrical generation plants

 Environmental control systems

 Traffic signals

 Radio signals

 Water management systems

 Oil refining plants

 Metallurgical process plants

 Chemical plants

DISTRIBUTED CONTROLLERS SYSTEM

 Page 3

 Pharmaceutical manufacturing

 Sensor networks

 Dry cargo and bulk oil carrier ships

Existing distributed controllers system

 1.1.1 Large-scale DCS

Distributed control systems are computer-based control systems in which the

main components are located in different places. These components interact

with each other via a local area network (LAN).

There are off-the-shelf DCSs designed and manufactured by Honeywell

[Honeywell], Siemens [Siemens], and Emerson Process Management

[Emerson], etc. Each vendor has its own method and communication protocol

for providing the information and control.

Vendors also provide the required control for modern industrial systems and

some can provide communication links to network systems such as Control net,

Ethernet, Device net, Profi bus, ASI bus, Foundation Fieldbus, Data

Highway/Remote I/O, Hart Protocol, and Modbus RTU . These DCSs are

designed for process controls in petrochemical, pulp, food, beverage, and

mining industries.

A typical example is Delta V Digital Automation System [Emerson] as

illustrated in Figure 1.1. The field devices, such as sensors, valves, motors, and

pumps, are connected with different digital communication buses like Fieldbus,

HART, and DeviceNet. The linking devices are gateways or bridges between the

field buses and high speed Ethernet.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 4

Operator stations are Windows workstations and server-based PCs. Overall, the

DeltaV digital automation system is a DCS based on Windows workstations and

server-based PCs, Ethernet technology, and bus standards.

The DeltaV suite of engineering tools handles configuration management both

locally and remotely for all aspects of the DeltaV system and intelligent field

devices. A global and centralized configuration database coordinates control

strategies, process graphics, history, events, and change management. All

DeltaV hardware is automatically recognized as it is plugged in. The DeltaV

operation software provides an easy-to-use environment for process operations

and information access.

Operator

Stations

High Speed

Ethernet

Linking Devices

Digital Buses

Field Devices

Figure 1.1 DeltaV architecture

All operations applications are fully remotely accessible anywhere on an

Ethernet network or via modem. The process history view provides continuous

trend, event views and batch views to intuitively present these different types of

historical information. By using digital plant architecture (PantWeb) and plant-

wide asset optimization software (AMS), the DeltaV provides easy access to

DISTRIBUTED CONTROLLERS SYSTEM

 Page 5

vital device information for calibration configuration, devices audit trail, and

advanced diagnostics for predictive maintenance.

Large-scale DCSs, like DeltaV, are usually used to control almost all processes

in a big plant.

1.1.2 Small-scale DCSs

A small smart distributed control system is shown in Figure 1.2. The system

includes an industrial PC, several controllers, and a communication interface

using RS485. The PC is an operating station that is used to configure function

blocks and monitor the process. The controller is used to sample data and

execute control algorithms. Communication between the PC and the controllers

is implemented in a master-slave type broadcasting on the communication

network. The slave nodes are not allowed to transmit data without a request

from the master, and do not directly communicate with each other. When a slave

needs to send a message to another slave, the message has to be sent to the

master and then the master forwards the message to the receiver.

Marti et al. proposed an integrated approach to real-time distributed control

systems over Field bus . A control loop is implemented in a distributed

architecture, with three nodes: a sensor node, a controller node and an actuator

node that communicate with each other across a fieldbus communication

network. The sensor node periodically samples the process and sends the data to

the controller node.

The controller node executes a control algorithm and sends the output to the

actuator node.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 6

Figure 1.2 Small scale DCS

A distributed control system is introduced in for supervising a power supply

system of a telecommunication system. The DCS consists of a main controller,

several distributed units, and a communication network using multi-drop RS-

485 bus with a proprietary communication protocol. The core of the supervision

system is the main controller, which is a micro-controller based unit with

communication ports (RS-232, RS-485) and a user interface. The RS-232 port is

intended for higher-level supervision, typically for remote connection via

modem or computer network. The RS-485 ports are used for communication

between the main controller and distributed units. Each distributed unit contains

a small micro-controller for data acquisition and control. Each unit has a unique

address. They are connected to the bus and receive both serial communication

and power from the bus. The main controller collects information from

distributed units using the master-slave network and sends the messages to all

distributed units, but only the right unit with the correct address will answer.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 7

Figure 1.3 System architecture

1.1.3 Internet-based DCS

DCOM, CORBA, and Java RMI are well known middleware architectures

based on object-oriented methodologies and have been extensively used in

commercial and military distributed information systems. Since they support

communication protocols that are transparent to operating systems, users can

design and manage the whole system without paying too much attention to the

data transmission between remote devices . CORBA-, DCOM-, and Tspace-

based distributed control systems are designed and implemented for

performance analysis using I/O object, control object, broadcasting service and

event service. When using middleware as a communication bus for objects, the

delay may be greater than the one introduced by the Fieldbus, since DCOM,

CORBA, and Java RMI have not been designed for the physical device level but

for integrating and linking of software components at higher levels.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 8

1.2 Objective of Project

The objective of this project is to design a distributed controllers system

over Ethernet bus for motion control drives using 8051 micro-controller and

AVR micro-controller, respectively. The PWM technology is employed for

generating the pulses and direct vector control method is used for induction

motor drive where as simple PWM method is employed for Dc motor.

Operator console is connected to Ethernet bus for system operator

operations.

1.3 Scope of Project

In order to achieve the objective of the project, there are several scope had

been outlined. The scope of this project includes using Distributed

controllers system, to control DC drive and induction drive by PWM pulse-

Width generated by using 8051 micro-controller and AVR micro-controller,

to build hardware for the system.

1.4 Outline of Thesis

This thesis consists of VI chapters. In first chapter, it discusses about the

objective and scope of this project. While Chapter II describes the literature

reviews on controllers including programmable logic controller. It also

discusses about features of the controllers. Chapter III presents a brief on

communication protocol, discussion of different buses and comparison of

different buses. Chapter IV discusses about drives and their algorithm that is

implemented in this project. Chapter V discusses about the implementation

and testing. And in chapter VI conclusion and further scope.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 9

1.5 Conclusion

This chapter gives a brief introduction about Distributed controllers system

(DCS) and need for DCSs. A brief status about existing Distributed control

system has presented to show the need of DCS. Also objective of this thesis

is brought out and brief outline of the project is presented.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 10

CHAPTER 2

THEORY AND LITERATURE REVIEW

2.1 Introduction

In this chapter a brief literature review of various controllers and associated

areas have been discussed without exhaustive elaboration. The review includes

the Control system, Automatic controller system, distributed control system,

Programmable logic controller, 8051 micro-controller and AVR micro-

controller.

2.2 Control system

A control system is a device, or set of devices to manage, command, direct or

regulate the behaviour of other devices or system. The control system is that

means by which any quantity of interest in a machine, mechanism or other

equipment is maintained or altered in accordance with a desired manner. The

first Automatic control system, the fly-ball governor, to control the speed of

steam engines, was invented by James Watt in 1977. It was about hundred

years later that Maxwell analysed the dynamics of the fly-ball governor. The

importance of positioning heavy masses like ships and guns quickly and

precisely was realized during the world war 1. In 1922, Minorsky worked on

automatic controllers for steering ships and showed how stability could be

determined from the differential equations describing the system. In 1932,

Nyquist developed a relatively simple procedure for determining the stability of

closed-loop system .In 1934, the servomechanism term for position control

systems was developed. During the Decade of 1940's mathematical and

analytical methods were developed. During the world war 2 automatic

aeroplane pilots, gun positioning systems, radar tracking system and other

DISTRIBUTED CONTROLLERS SYSTEM

 Page 11

military equipment based on feedback control principal was developed. The

industrial use of automatic control has tremendously increased since the world

war 2. Modern industrial processes such as manufacture and treatment of

chemicals and metals are now automatically controlled.

2.3 Distributed Controllers System

The DCS was introduced in 1975. Both Honeywell and Japanese electrical

engineering firm Yokogawa introduced their own independently produced

DCSs. US-based Bristol also introduced their UCS 3000 universal controller in

1975. In 1978 Metso (known as Valmet in 1978) introduced their own DCS

system called Damatic (latest generation named Metso DNA). In 1980, Bailey

introduced the NETWORK 90 system. Also in 1980, Fischer & Porter Company

introduced DCI-4000 (DCI stands for Distributed Control Instrumentation). The

DCS largely came about due to the increased availability of microcomputers

and the proliferation of microprocessors in the world of process control. In the

early 1970s Taylor Instrument Company, developed the 1010 system, Foxboro

the FOX1 system and Bailey Controls the 1055 systems. All of these were DDC

applications implemented within minicomputers and connected to proprietary

Input/Output hardware. Midac Systems, of Sydney, Australia, developed an

objected-oriented distributed direct digital control system in 1982. The central

system ran 11 microprocessors sharing tasks and common memory and

connected to a serial communication network of distributed controllers each

running two Z80s. The system was installed at the University of Melbourne.

Digital communication between distributed controllers, workstations and other

computing elements (peer to peer access) was one of the primary advantages of

the DCS. The traditional DCS suppliers introduced new generation DCS System

based on the latest Communication and IEC Standards, which resulting in a

trend of combining the traditional concepts/functionalities for PLC and DCS

into a one for all solution—named "Process Automation System". The current

DISTRIBUTED CONTROLLERS SYSTEM

 Page 12

next evolution step is called Collaborative Process Automation Systems.

Distributed control systems (DCSs) are used to control manufacturing processes

such as oil refining, petrochemicals, central station power generation, fertilizers,

pharmaceuticals, food and beverage manufacturing, cement production,

steelmaking, and papermaking. DCSs are connected to sensors and actuators

and use set point control to control the flow of material through the plant.

Application of DCSs are also in paper machines , quality controls , variable

speed drives and motor control centres, cement kilns, mining operations, ore

processing facilities, and many others. Modern DCSs also support neural

networks and fuzzy application. DCSs may employ one or more workstations

and can be configured at the workstation or by an off-line personal computer.

Local communication is handled by a control network with transmission over

twisted pair, coaxial, or fibre optic cable. A server and/or applications processor

may be included in the system for extra computational, data collection, and

reporting capability.

Some of the advantages of DCS are as:

1. Overall cost of the installation is lower.

2. Interface with the process is improved.

3. More reliable.

4. Flexible and relatively easy to expand.

5. Programming required to tailor the system can be done without

 knowing a high-level programming language.

2.4 Programmable Logic Controllers

A programmable logic controller (PLC) or programmable controller is a digital

computer used for automation of electromechanical processes, such as control

of machinery on factory assembly lines, amusement rides, or light fixtures.

PLCs are used in many industries and machines. Unlike general-purpose

computers, the PLC is designed for multiple inputs and output arrangements,

extended temperature ranges, immunity to electrical noise, and resistance to

DISTRIBUTED CONTROLLERS SYSTEM

 Page 13

vibration and impact. Programs to control machine operation are typically

stored in battery-backed-up or non-volatile memory. A PLC is an example of a

hard real time system since output results must be produced in response to input

conditions within a limited time, otherwise unintended operation will result. The

PLC was invented in response to the needs of the American automotive

manufacturing industry. Programmable logic controllers were initially adopted

by the automotive industry where software revision replaced the re-wiring of

hard-wired control panels when production models changed. Before the PLC,

control, sequencing, and safety interlock logic for manufacturing automobiles

was accomplished using hundreds or thousands of relays, cam timers, drum

sequencers, and dedicated closed-loop controllers. The process for updating

such facilities for the yearly model change-over was very time consuming and

expensive, as electricians needed to individually rewire each and every relay.

Digital computers, being general-purpose programmable devices, were soon

applied to control of industrial processes. Early computers required specialist

programmers, and stringent operating environmental control for temperature,

cleanliness, and power quality. Using a general-purpose computer for process

control required protecting the computer from the plant floor conditions.

In 1968 GM Hydramatic (the automatic transmission division of General

Motors) issued a request for proposal for an electronic replacement for hard-

wired relay systems. The winning proposal came from Bedford Associates of

Bedford, Massachusetts. The first PLC, designated the 084 because it was

Bedford Associates' eighty-fourth project, was the result. Bedford Associates

started a new company dedicated to developing, manufacturing, selling, and

servicing this new product: Modicon, which stood for MOdular DIgital

CONtroller. One of the people who worked on that project was Dick Morley,

who is considered to be the "father" of the PLC. The Modicon brand was sold in

1977 to Gould Electronics, and later acquired by German Company AEG and

DISTRIBUTED CONTROLLERS SYSTEM

 Page 14

then by French Schneider Electric, the current owner. One of the very first 084

models built is now on display at Modicon's headquarters in North Andover,

Massachusetts. It was presented to Modicon by GM, when the unit was retired

after nearly twenty years of uninterrupted service. Modicon used the 84 moniker

at the end of its product range until the 984 made its appearance.

2.5 Micro-controller

A microcontroller (sometimes abbreviated µC, uC or MCU) is a small computer

on a single integrated circuit containing a processor core, memory, and

programmable input/output peripherals. Program memory in the form of NOR

flash or OTP ROM is also often included on chip, as well as a typically small

amount of RAM. Microcontrollers are designed for embedded applications, in

contrast to the microprocessors used in personal computers or other general

purpose applications.

Microcontrollers are used in automatically controlled products and devices,

such as automobile engine control systems, implantable medical devices,

remote controls, office machines, appliances, power tools, toys and other

embedded systems. By reducing the size and cost compared to a design that

uses a separate microprocessor, memory, and input/output devices,

microcontrollers make it economical to digitally control even more devices and

processes. Mixed signal microcontrollers are common, integrating analog

components needed to control non-digital electronic systems.

Some microcontrollers may use four-bit words and operate at clock rate

frequencies as low as 4 kHz, for low power consumption (mill watts or

microwatts). They will generally have the ability to retain functionality while

waiting for an event such as a button press or other interrupt; power

consumption while sleeping (CPU clock and most peripherals off) may be just

DISTRIBUTED CONTROLLERS SYSTEM

 Page 15

Nano watts, making many of them well suited for long lasting battery

applications.

The first single-chip microprocessor was the 4-bit Intel 4004 released in 1971,

with the Intel 8008 and other more capable microprocessors becoming available

over the next several years. However, both processors required external chips to

implement a working system, raising total system cost, and making it

impossible to economically computerize appliances.

The engineers Gary Boone and Michael Cochran succeeded in creating the first

microcontroller in 1971. The result of their work was the TMS 1000, which

went commercial in 1974. It combined read-only memory, read/write memory,

processor and clock on one chip and was targeted at embedded systems.

Partly in response to the existence of the single-chip TMS 1000, Intel developed

a computer system on a chip optimized for control applications, the Intel 8048,

with commercial parts first shipping in 1977. It combined RAM and ROM on

the same chip. This chip would find its way into over one billion PC keyboards,

and other numerous applications. At that time Intel's President, Luke J. Valenter,

stated that the microcontroller was one of the most successful in the company's

history, and expanded the division's budget over 25%.

Most microcontrollers at this time had two variants. One had an erasable

EPROM program memory, which was significantly more expensive than the

PROM variant which was only programmable once. Erasing the EPROM

required exposure to ultraviolet light through a transparent quartz lid. One-time

parts could be made in lower-cost opaque plastic packages.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 16

In 1993, the introduction of EEPROM memory allowed microcontrollers

(beginning with the Microchip PIC16x84) to be electrically erased quickly

without an expensive package as required for EPROM, allowing both rapid

prototyping, and In System Programming. The same year, Atmel introduced the

first microcontroller using Flash memory. Other companies rapidly followed

suit, with both memory types.

Cost has plummeted over time, with the cheapest 8-bit microcontrollers being

available for under $0.25 in quantity (thousands) in 2009, and some 32-bit

microcontrollers around $1 for similar quantities. Nowadays microcontrollers

are cheap and readily available.

2.6 8051 Micro-controller The Intel 8051 microcontroller is one of the

most popular general purpose microcontrollers in use today. The success of

the Intel 8051 spawned a number of clones which are collectively referred

to as the MCS-51 family of microcontrollers, which includes chips from

vendors such as Atmel, Philips, Infineon, and Texas Instruments.The Intel

8051 is an 8-bit microcontroller which means that most available operations

are limited to 8 bits. There are 3 basic "sizes" of the 8051: Short, Standard,

and Extended. The Short and Standard chips are often available in DIP (dual

in-line package) form, but the Extended 8051 models often have a different

form factor, and are not "drop-in compatible". All these things are called

8051 because they can all be programmed using 8051 assembly language,

and they all share certain features (although the different models all have

their own special features).

2.6.1 Features

1. 4 KB on chip program memory.

2. 128 bytes on chip data memory(RAM).

DISTRIBUTED CONTROLLERS SYSTEM

 Page 17

3. 4 reg banks.

4. 128 user defined software flags.

5. 8-bit data bus

6. 6-bit address bus

7. 32 general purpose registers each of 8 bits

8. 16 bit timers (usually 2, but may have more, or less).

9. 3 internal and 2 external interrupts.

10.Bit as well as byte addressable RAM area of 16 bytes.

11.Four 8-bit ports, (short models have two 8-bit ports).

12.16-bit program counter and data pointer.

13.1 Microsecond instruction cycle with 12 MHz Crystal.

8051 models may also have a number of special, model-specific features, such

as UARTs, ADC, OpAmps, etc... 8051 chips are used in a wide variety of

control systems, telecom applications, robotics as well as in the automotive

industry. By some estimations, 8051 family chips make up over 50% of the

embedded chip market

2.7 AVR Microcontroller

The AVR is a modified Harvard architecture 8-bit RISC single chip

microcontroller which was developed by Atmel in 1996. The AVR was one of

the first microcontroller families to use on-chip flash memory for program

storage, as opposed to one-time programmable ROM, EPROM, or EEPROM

used by other microcontrollers at the time.

The AVR architecture was conceived by two students at the Norwegian Institute

of Technology (NTH) Alf-Egil Bogen and Vegard Wollan.The original AVR

MCU was developed at a local ASIC house in Trondheim, Norway called

Nordic VLSI at the time, now Nordic Semiconductor, where Bogen and Wollan

DISTRIBUTED CONTROLLERS SYSTEM

 Page 18

were working as students. It was known as a μRISC (Micro RISC) and was

available as silicon IP/building block from Nordic VLSI. When the technology

was sold to Atmel from Nordic VLSI, the internal architecture was further

developed by Bogen and Wollan at Atmel Norway, a subsidiary of Atmel. The

designers worked closely with compiler writers at IAR Systems to ensure that

the instruction set provided for more efficient compilation of high-level

languages. Atmel says that the name AVR is not an acronym and does not stand

for anything in particular. The creators of the AVR give no definitive answer as

to what the term "AVR" stands for. However, it is commonly accepted that AVR

stands for Alf (Egil Bogen) and Vegard (Wollan)'s Risc processor. Among the

first of the AVR line was the AT90S8515, which in a 40-pin DIP package has

the same pin out as an 8051 microcontroller, including the external multiplexed

address and data bus. The polarity of the RESET line was opposite (8051's

having an active-high RESET, while the AVR has an active-low RESET) but

other than that, the pin out was identical. The AVR is a modified Harvard

architecture machine where program and data are stored in separate physical

memory systems that appear in different address spaces, but having the ability

to read data items from program memory using special instructions.

2.7.1 Features of AVR

1.Multifunction, bi-directional general-purpose I/O ports with

configurable, built-in pull-up resistors

2. Multiple internal oscillators, including RC oscillator without external

parts

3. Internal, self-programmable instruction flash memory up to 256 kB

(384 kB on XMega)

4. In-system programmable using serial/parallel low-voltage proprietary

interfaces or JTAG

5. Optional boot code section with independent lock bits for protection

DISTRIBUTED CONTROLLERS SYSTEM

 Page 19

6. Debug WIRE uses the /RESET pin as a bi-directional communication

channel to access on-chip debug circuitry. It is present on devices

with lower pin counts, as it only requires one pin.

7. Internal data EEPROM up to 4 kB

8. Internal SRAM up to 16 kB (32 kB on XMega)

9. 8-bit and 16-bit timers

10. PWM output (some devices have an enhanced PWM peripheral which

includes a dead-time generator)

11. Input capture

12. Analog comparator

13. 10 or 12-bit A/D converters, with multiplex of up to 16 channels

14. 12-bit D/A converters

15. A variety of serial interfaces, including

16. I²C compatible Two-Wire Interface (TWI)

17. Serial Peripheral Interface Bus (SPI)

18. Universal Serial Interface (USI) for two or three-wire synchronous

data transfer

19. Watchdog timer (WDT)

20. Multiple power-saving sleep modes

2.8 Conclusion

An extensive literature review of control system, distributed controllers system

and Microcontrollers has been presented in this chapter.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 20

Chapter 3

Communication Protocols and field

buses

3.1 Introduction

This chapter describes the study of communication protocol , Field buses ,World

FIP , Macro and communication protocol function and description. Therefore,

this chapter will briefly review major industrial communication protocols and

their most prominent features and compare them with the communication

3.2 Communication protocol

The communication protocol provides communication between the applications

manager and hardware manager. It is designed to support any type of module

and to provide real time data distribution.

Distributed controls have been extensively used in factory automation and

motion control systems for the last twenty years. Increased modularity, fault

tolerance, expandability and significantly improved overall system flexibility

have constantly fuelled the drive for integration of factory elements into the

computer integrated manufacturing environment. The idea is to employ

hierarchical control over the whole manufacturing process, and integrate all

factory elements into a coherent control architecture, as depicted in Fig. 3-1. All

the protocols have been specifically tailored to meet targeted system

requirements.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 21

Fig. 3.1 Industrial communications for the example of the PROFIBUS

standard

While industrial communication protocols provide distributed control and

communications on a field level (connecting drives, PLCs, controllers, sensors,

actuators, etc.). This would bring modular design, significant flexibility,

hierarchical control and many other benefits on a converter control level,

compared with industrial communications, in which hierarchical control starts

above the converter and drive level.

In factory automation, drives and converters are treated as a building block

rather than as whole new distributed system. This means that a distributed

control has to operate on a much faster time scale, with a few orders of

magnitude smaller time constants. Also, synchronization becomes much more

of a pronounced issue due to the smaller time constants. Noise susceptibility

and noise immunity of the distributed controller arises as another important

issue. Since the communication link is getting physically close to the electro-

DISTRIBUTED CONTROLLERS SYSTEM

 Page 22

magnetic interference EMI sources (power converters), noise immunity of a

control and communication system starts to play a key role in the system

reliability and robustness.

3.3 Network topologies

The two most widely used network topologies in industrial communications are

(i) point-to-point serial interface links and

(ii) multi-point connection offered by the local area network (LAN).

At the present time, many motor drives are connected to their steering units

using point-to-point serial interface links (e.g. RS 232 or RS 422). This

approach suffers from two major drawbacks. First of all, one control unit must

drive several drives and handle communication with them simultaneously,

which can seriously overload the main controller and limit the response time.

This approach also limits the expandability of the control system. Due to low

cost this approach feasible for many applications.

LAN offer multi-point connections and are much more flexible and application

independent. This is the reason why most of today’s control protocols are based

on LANs. The basic requirement for LANs is that they have to be open and to

support devices made by different manufacturers. This provides the system with

high expandability and significant flexibility.

The LAN communication protocols for real-time control applications can be

roughly divided into field buses and specific networks. The former is the

general purpose network devised for field-level control that can connect drives,

PLCs, PCs, I/O modules, sensors, and actuators. They are designed to provide

DISTRIBUTED CONTROLLERS SYSTEM

 Page 23

wider flexibility and to allow for interconnection of different units at the cost of

speed and response time. Specific networks are less flexible and are designed to

provide link between PLCs and controllers on one side, and sensors, drives and

actuators on the other. Those specific networks are designed to provide faster

response time and better synchronization at the cost of reduced flexibility.

3.4 Field Buses

Fieldbus is an industrial network system for real-time distributed control. It is a

way to connect instruments in a manufacturing plant. Fieldbus works on a

network structure which typically allows daisy-chain, star, ring, branch, and tree

network topologies. Previously, computers were connected using RS-232 (serial

connections) by which only two devices could communicate. This would be the

equivalent of the currently used 4-20 mA communication scheme which

requires that each device has its own communication point at the controller

level, while the fieldbus is the equivalent of the current LAN-type connections,

which require only one communication point at the controller level and allow

multiple (hundreds) of analog and digital points to be connected at the same

time. This reduces both the length of the cable required and the number of

cables required. Furthermore, since devices that communicate through fieldbus

require a microprocessor, multiple points are typically provided by the same

device. Some fieldbus devices now support control schemes such as PID control

on the device side instead of forcing the controller to do the processing.

There are disadvantages to using fieldbus compared to the 4-20 mA analog

signal standard (4-20 mA with HART):

 Fieldbus systems are more complex, so users need to be more extensively

trained or more highly qualified

 The price of fieldbus components is higher

DISTRIBUTED CONTROLLERS SYSTEM

 Page 24

 Fieldbus test devices are more complex compared to a (high-spec)

multimeter that can be used to read and simulate analog 4-20 mA signals

 Slightly longer reaction times with fieldbus, depending on the system

 Device manufacturers have to offer different versions of their devices

(e.g. sensors, actuators) due to the number of different (incompatible)

fieldbus standards. This can add to the cost of the devices and to the

difficulty of device selection and availability.

 One or more fieldbus standards may predominate in future and others

may become obsolete. This increases the investment risk when

implementing fieldbus.

3.4.1 PROFIBUS

Process Field BUS is the German proposal for the open field bus standard for a

wide range of applications in manufacturing and process automation .

PROFIBUS is designed for both high-speed time critical applications and

complex communication tasks. The protocol architecture is oriented to the

reduced ISO OSI (open system interconnection) reference model in which each

layer handles a precisely defined tasks.

Layer 1 (the physical layer) defines the physical transmission characteristics.

There are currently three transmission methods (physical profiles) available for

PROFIBUS:

1. RS 485 transmission for universal applications in manufacturing automation

2. IEC 1158-2 transmission for use in process automation; and

3. optical fibers for improved interference immunity and large network

distances

DISTRIBUTED CONTROLLERS SYSTEM

 Page 25

In the course of further technical developments, it is intended to use commercial

Ethernet components with 10 Mb/s and 100 Mb/s as the physical layer for

PROFIBUS.

Layer 2 (the data-link layer) defines the bus access protocol. PROFIBUS is

designed to support two types of devices, namely master-devices and slave-

devices as shown in Fig. 3-2. Master devices determine the data communication

on the bus. Master can send messages without an external request whenever it

holds the bus access rights (tokens). On the other side slave devices are

peripherals such as I/O devices, valves, drives and measuring transducers. They

can only acknowledge received data or send messages when asked to do so by

the master. The medium access control protocol includes the token passing

procedure among masters. Each master (upon receiving token) takes control

over the bus and starts communicating with slaves and other masters.

After the token hold time expires the token is passed to the following master

node which then assumes the control over the bus. This allows for the following

system configurations:

1. pure master-slave system,

2. pure master-master system (token passing), and

3. Combination of the two.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 26

The actual token hold time of a master depends on the configured token rotation

time.

Layer 7 (the application layer) defines the application functions. It consists of

two protocols, namely the DP protocol and FMS (field message service)

protocol. DP is designed for efficient data exchange at the field level. This

protocol is mostly used for cyclic data exchange between the automation system

and distributed peripherals. FMS is the universal communication profile for

demanding communication tasks. It allows object manipulation, with objects

being variables, arrays, matrices, variable lists, program calls, subroutines and

so on. It is divided into two sub-layers, i.e.. FMS (field bus message

specification) and LLI (lower layer interface). The architecture of the

PROFIBUS is shown in Fig. 3-2.

3.4.2 World FIP

Factory automation protocol is a French-Italian proposal for the field bus . It

is designed to provide links between level zero (sensors/actuators) and level one

(PLCs, controllers, etc.) in automation systems . World FIP is also designed

DISTRIBUTED CONTROLLERS SYSTEM

 Page 27

according to the reduced ISO/OSI reference model, meaning that all protocol

functions are implemented within the physical data-link and

application layer. Although World FIP protocol supports both copper wire and

optical fiber as a transmission media, twisted pair copper cable is the one used

most often. The data link layer provides a medium access protocol. There is

always one station, named the bus arbitrator (distributor; see Fig. 3-3), that

handles the communication and bus access and a number of other stations which

respond to the arbiter polling.

Fig. 3.3 Block diagram of World FIP medium access mechanism.

Each station on the bus has several produced and consumed buffers. When the

arbitrator inserts the question command on the bus and states the buffer address

the station that is producer of the buffer will respond by putting the buffer value

on the bus. The stations that are consumers of that variable will respond with

accepting the value from the bus and storing it. Data traffic consists of time-

critical data (control variables) that are exchanged periodically and non-critical

data such as messages. Cyclic variables always travel on time, regardless of

other network traffic. Less time-dependent data (such as diagnostic reports), are

sent via the message service. This is typically used for installing and setting

applications, network supervision and diagnosis and integration with higher-

DISTRIBUTED CONTROLLERS SYSTEM

 Page 28

level systems. Unlike token-passing systems, World FIP leaves no doubt about

transmission time and regularity for cyclic data variables. Word FIP applications

layer is divided into two distinct groups:

• MPS (manufacturing periodical/a periodical services) and

• sub MMS (subset of messaging services).

The MPS application layer provides the user with local read/write services,

remote read/write services, variable transmission/reception indications and

information on the spatial and temporal consistency of the data. All those

services are used for real time data distribution throughout the whole network.

For example, the local read service provides the application layer with the

variable from the consumed buffer that exists in the data link layer. The local

read and write service uses the data-link layer services

Those services generate no traffic on the bus since those produced and

consumed buffers reside in the data-link layer. MMS services are used for non-

critical traffic such as system configuration, monitoring, etc.

3.4.3 CAN

The controller area network (CAN) is a field bus proposed by Bosch for

automotive applications . It is a serial communications protocol, which

efficiently supports distributed real-time control with a very high level of

security. CAN follows the ISO/OSI reduced model, with bus topology, client-

server model and an original medium access method. In all protocol messages

there are no origin/destination addresses but only an identifier. Every station

first reads the identifier and then decides whether or not to read the rest. The

priority field of the frame indicates the type of message transmitted and its

priority. When a station wants to transmit the message it has to compare its

DISTRIBUTED CONTROLLERS SYSTEM

 Page 29

relative priority to the network message priority. If it is less or equally important

it has to wait until the bus is clear. This medium access control is a multi master

protocol with distributed priority arbitration.

The advantage of CAN protocol is that it was developed for automotive

applications thus being optimized from the cost point of view. Also, market

availability of the supporting components is very good, which makes the whole

standard widely accepted. The fact that this protocol was designed for the

inexpensive copper wire transmission medium makes it less suitable for

applications in which EMI noise is a significant issue.

3.5 Ethernet bus

Ethernet was developed in the late 1970's by the Xerox Corporation at their Palo

Alto Research Centre in California. It has been estimated that over 70% of the

worlds networks use the Ethernet protocol, so with this in mind it would seem

only sensible to discuss how it works Ethernet uses a protocol called CSMA/CD,

this stands for Carrier Sense, Multiple Access with Collision Detection Carrier

Sense - When a device connected to an Ethernet network wants to send data it

first checks to make sure it has a carrier on which to send its data (usually a piece

of copper cable connected to a hub or another machine).

Multiple Access - This means that all machines on the network are free to use

the network whenever they like so long as no one else is transmitting.

Collision Detection - A means of ensuring that when two machines start to

transmit data simultaneously, that the resultant corrupted data is discarded, and re-

transmissions are generated at differing time intervals.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 30

 3.6 Mod bus

Modbus is a serial communications protocol published by Modicon in 1979 for

use with its programmable logic controllers (PLCs). Simple and robust, it has

since become a de facto standard communication protocol, and it is now amongst

the most commonly available means of connecting industrial electronic devices.

The main reasons for the extensive use of Modbus in the industrial environment

are:

 It has been developed with industrial applications in mind

 It is openly published and royalty-free

 It is easy to deploy and maintain

 It moves raw bits or words without placing many restrictions on vendors

Modbus allows for communication between many (approximately 240) devices

connected to the same network, for example a system that measures temperature

and humidity and communicates the results to a computer. Modbus is often used

to connect a supervisory computer with a remote terminal unit (RTU) in

supervisory control and data acquisition (SCADA) systems. Many of the data

types are named from its use in driving relays: a single-bit physical output is

called a coil, and a single-bit physical input is called a discrete input or a contact.

3.7. MICRO

MACRO is a communication standard for distributed machine control. MACRO

stands for a motion and control ring optical and was designed for multiple-axis

precision motion control . MACRO uses a ring topology to allow master

controllers to communicate with both slave nodes and other master controllers.

A MACRO network is organized as ring architecture with multiple masters and

DISTRIBUTED CONTROLLERS SYSTEM

 Page 31

slaves connected. Communication throughout the ring is started by a pr-

designated ring-master.

Fig. 3.4 MACRO ring network consists of a group of master and slave

stations.

Communication is always originated by a master that sends a data packet (with

appropriate address) down the stream. The node that receives the data packets

checks the address and if it is the same as the local address, it takes the data

from the packet and loads the data packet with local data and sends the packet

down the ring. If the local address is different the node just passes the data to

the next one in the ring. A master’s ring hardware shifts all active node data

from the master’s transmission registers across the ring to matching input

registers of the appropriate slave node. The slave’s ring

hardware shifts the node data that is addressed to it into a set of receiving

registers. Data is returned to the master at the same time the data is received

from the ring by the slave’s hardware transmission registers.

3.8 Communication Protocol Functional Description

The master-slave protocol insures deterministic response of the network. If an

error occurs during transmission, corrupt data is not used. Instead, the new data

DISTRIBUTED CONTROLLERS SYSTEM

 Page 32

simply overwrite the previous data. This way the data flow is kept strictly

predetermined. There are two basic types of information communicated through

the control network:

 i. Time-critical data (exchanged in every switching cycle) and

 ii. Time non-critical data (transmitted only after all the critical time variables

have been passed to all nodes).

Time-critical information includes all the control variables such as: switching

frequency information, duty cycle information and all the sensor information.

The provision for non-critical data transfer is designed to support tasks such as

initialization and software reconfiguration of the hardware managers. Non-

critical data transfer is allowed only after all the time critical data is exchanged.

Three types of time-critical data frames:

The control data frame, the synchronization frame and the command frame.

The data frame consists of a command indicating the beginning of the data

packet, the address of the node, the data field and an error check. The data

field’s configuration depends on the particular application and type of hardware

manager. In a ring network, each node introduces a delay in the data

propagation path. This means that if a synchronization command is sent through

the network, each node will receive the command with as many time delays Td

as there are nodes between that node and the master node. The time delay Td in

the hardware test-bed is typically around 460 ns. This means that the error in

synchronization will generate time shifted PWM signals at the outputs, causing

low-frequency harmonics. This problem is solved with the synchronization

sequence.

The synchronization frame starts with the synchronization command, and is

followed by 8 bit long data blocks containing addresses of slave nodes and filler

DISTRIBUTED CONTROLLERS SYSTEM

 Page 33

fields, for which it takes Td to be transmitted and are used for propagation delay

compensation. The first address to be transmitted is of the slave node that is last

to receive the frame. The number of address data blocks sent equals the number

of slave nodes on the ring, which need to be synchronized. The first field is a

synchronization command that alerts the nodes to wait for their time to

synchronize. Next are the address fields of the nodes being synchronized. After

the synchronization command is passed, the node awaits its address field. When

the address is received, the node generates the synchronization signal. Because

all the addresses are in reverse order and time delayed for the node propagation

delay, all the addresses will arrive at the destination nodes at almost the same

time.

3.9 Conclusion

This chapter discussed a brief of communication protocols and Field buses viz,

Ethernet bus, Mod bus, Profi bus used to design and develop the distributed

controllers. Ethernet bus is preferred for high throughput and faster system

response. Mod bus/Profi bus is preferred to connect the slow analog inputs to

the system.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 34

Chapter IV

Methodology of motion control

4.1 Introduction

Motion in industries is achieved using electric motors. In order to perform at

desired operating points dynamically, these motors are required to control by

power electronics devices which process the input electric energy to the motor.

Such controlled motor is called electric drive. Electrical drives play an

important role in the field of energy efficiency. Modern power electronic drives

provide good opportunities to efficiently control the energy flows. These drives

can be classified in two category, (i) DC drives, and (ii) AC drives. In this

project , DC drive is controlled by 8051micro controller while ac induction

motor drive is controlled by direct vector control method. This chapter describes

the algorithm for DC machine drive and AC induction motor drives. Since

these drives consume major electric energy and are commonly in use, the same

has been considered for the developing the distributed controllers system. Some

of the advantages of drives are as follows:

Smoother operation

Acceleration control

Different operating speed for each process recipe

Compensate for changing process variables

Allow slow operation for setup purposes

Adjust the rate of production

Allow accurate positioning

Control torque or tension

Allow catching of spinning load (e.g., column of water) after outage.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 35

4.2 DC drives

DC drives are DC motor speed control systems. Since the speed of a DC motor

is directly proportional to armature voltage and inversely proportional to motor

flux (which is a function of field current), either armature voltage or field

current can be used to control speed. In DC, torque is controlled using the

armature current and field current.

4.2.1 Algorithm for DC drive control

Figure 4.1 shows a model of separately excited DC motor. When a separately

excited motor is excited by a field current of If and an armature current of Ia

flows in the circuit, the motor develops a back EMF and a torque to balance the

load torque at a particular speed. The field current If is independent of a

separately excited motor is independent of the armature current Ia. Any change

in the armature current has no effect on the field current. The If is normally

much less than the Ia. The relationship of the field and armature are shown in

Equation.

Figure 4.1 Equivalent circuit of separately excited DC motor

DISTRIBUTED CONTROLLERS SYSTEM

 Page 36

Instantaneous field current:

v f =R f i f +L f

d i f

d t (4.1)

where Rf and Lf are the field resistor and inductor respectively.

Instantaneous Armature Current

va=Ra i a+La

d i a

d t
+eg

 (4.2)

where Ra and La are the armature resistor and inductor respectively.

The motor back EMF which is also known as speed voltage is expressed as

eg=k v w i f (4.3)

The torque developed by the motor is

 Td = ktifia (4.4)

where kv is the back emf constant and kt is motor torque constant (in V/A-

rad/s) and w is the motor speed (rad/s).

In the armature controlled DC motor, the field current is kept constant, so that

eqn. 4.4 can be written as

 Td = kTia

For normal operation, the developed torque must be equal to the load torque

plus the friction and inertia, i.e.:

T d ¿ J
d w

d t
+T

L

+B
w (4.5)

The developed power Pd = Td w

where B = viscous friction constant (N.m/rad/s)

TL = load torque (N.m)

J = inertia of the motor (kg.m
2
)

Under steady-state operations, a time derivative is zero. Assuming the motor is

not saturated.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 37

For field circuit,

V f =I f R f (4.6)

The back EMF is given by:

E g=Kv w I f (4.7)

The armature circuit,

 V a=I a Ra+Eg=I a+Kv w I f (4.7)

Thus, the motor speed can be easily derived:

w=(V a− I a Ra)/KvIf (4.8)

If the field current is kept constant, the speed motor speed depends on the

supply voltage, armature current and hot resistance of armature. This algorithm

has used in dc drive control with 8051 micro controller in next chapter. It is

assumed that armature reaction in the motor and the voltage drops in the

brushes have neglected.

V(S) ῼ(s) Q(s)

 Vb(s)

Fig. 4.2 Block dia. Of DC drive

4.3 Algorithm for AC drive:

There are many methods for controlling induction motor drive. In this project

direct or feedback vector control method is used . Hence the algorithm of the

same is presented in this section. First induction model is presented, then direct

vector control algorithm is developed.

The vector control technique, which is also known as field – oriented control,

allows a squirrel-cage induction motor to be driven with high dynamic

performance. This technique decouples the two components of stator current:

one providing the air-gap flux and the other producing the torque. It provides

independent control of flux and torque. The stator currents are converted to a

1/Ra Kt

 1/Js+F

 Kv

1/s

DISTRIBUTED CONTROLLERS SYSTEM

 Page 38

fictitious synchronously rotating reference frame aligned with the flux vector

and are transformed back to the stator frame before feeding back to the

machine. The two components are d-axis ids analogous to armature current, and

q-axis iqs analogous to the field current. Thus induction motor can be modelled

most simply using two quadrature currents rather than the familiar three phase

currents actually applied to the motor. These two currents called direct (Id) and

quadrature (Iq) are responsible for producing flux and torque respectively in the

motor. By definition, the Iq current is in phase with the stator flux, and Id is at

right angles. Of course, the actual voltages applied to the motor and the

resulting currents are in the familiar three-phase system. The move between a

stationary reference frame and a reference frame, which is rotating synchronous

with the stator flux, becomes then the problem. This leads to the second

fundamental idea behind vector control

In the indirect vector control method, the rotor field angle and thus the unit

vectors are indirectly obtained by summation of the rotor speed and slip

frequency.

4.3.1 Direct and Quadrature-Axis Transformation

The vector control technique uses the dynamic equivalent circuit of the

induction motor. There are at least three fluxes (rotor, air gap and stator) and

three currents or mmfs (in stator, rotor, and magnetizing) in an induction motor.

For fast dynamic response, the interactions between currents, fluxes and speed,

must be taken into account in obtaining the dynamic model of the motor and

determining appropriate control strategies.

All fluxes rotate at synchronous speed. The three-phase currents create mmfs

(stator and rotor), which also rotate at synchronous speed. Vector control aligns

axes of an mmf and flux orthogonally at all times. It is easier to align the stator

current mmf orthogonally to the rotor flux.

A symmetrical three phase induction machine with stationary reference frame

(as-bs-cs) variables into two phase stationary reference frame (d
s
-q

s
) variable

DISTRIBUTED CONTROLLERS SYSTEM

 Page 39

and then transform these to synchronously rotating reference frame (d
e
-q

e
) and

vice versa. Assume that the d
s
-q

s
 axes are oriented at ø angle. The voltage Vds

s

and Vqs
s
 can be resolved into as-bs-cs components and can be represented in

the matrix form as

[
𝑉𝑎𝑠
𝑉𝑏𝑠
𝑉𝑐𝑠

]= [
𝐶𝑜𝑠∅ 𝑆𝑖𝑛∅ 1
𝐶𝑜𝑠(∅ − 120) 𝑆𝑖𝑛(∅ − 120) 1

𝐶𝑜𝑠(∅ + 120) 𝑆𝑖𝑛(∅ + 120) 1
] [

𝑉𝑞𝑠𝑠

𝑉𝑑𝑠𝑠

𝑉𝑜𝑠𝑠

] (4.9)

The corresponding inverse relation is

[
𝑉𝑞𝑠𝑠

𝑉𝑑𝑠𝑠

𝑉𝑜𝑠𝑠

]=2/3[
𝐶𝑜𝑠 (∅) 𝐶𝑜𝑠 (∅ − 120) 𝑆𝑖𝑛(∅ − 120)

𝑆𝑖𝑛(∅) 𝐶𝑜𝑠(∅ + 120) 𝑆𝑖𝑛(∅ + 120)
0.5 0.5 0.5

] [
𝑉𝑎𝑠
𝑉𝑏𝑠
𝑉𝑐𝑠

](4.10)

Where Vos
s
 is added the zero sequence component ,which may or may not be

present. we have considered voltage as the variable the current and flux linkage

can be transformed by similar equations .when d
e
 –q

e
 axes rotating

synchronously which rotate as synchronous speed we with respect to the d
s
-q

s

axes and the angle 𝜃𝑒 =we t the two phase d
s
-q

s
 windings are transformed into

the hypothetical winding mounted on the d
e
-q

e
 axes.the voltage on the d

s
-q

s
 axes

can be converted (or resolved) into the d
e
-q

e
 frame as follows

Vqs =Vqss cosøe-vdss sinøe (4.11)

Vds =Vqss sinøe+_vdse cosøe (4.12)

Again resolving the rotating frame parameters into a stationary frame, the

relations are

 Vqss = Vqs cosøe + vds sinøe (4.13)

Vdss = - Vqs sinøe + vds cosøe (4.14)

In synchronously rotating reference frame for the two phase machine we need to

represent both ds-qs and dr-qr circuits and their variables in a synchronously

rotating de-qe frame .we can write the following stator circuits equation

DISTRIBUTED CONTROLLERS SYSTEM

 Page 40

 Vqss =Rsiqss +
𝑑

𝑑𝑡
 Ψqss (4.15)

 Vdss =Rsidss +
𝑑

𝑑𝑡
 Ψdss (4.16)

where

Ψqs

s
 and Ψds

s
 are q axis and d axis stator flux linkages respectively when

these equations are converted to d
e
-q

e
 frame the following equations can be

written

Vqs =Rsiqs +
𝑑

𝑑𝑡
 Ψqs +weΨds (4.17)

 Vds =Rsids +
𝑑

𝑑𝑡
 Ψds - weΨqs (4.18)

Where all the variables are in rotating form , the last term in equations can be

defined as speed emf due to rotations of that axes that is when we = 0 the

equations revert to stationary form .The flux linkage in the d
e
 and q

e
 axes induce

emf in the q
e
 and d

e
 axes respectively, with π/2 lead angle .

If the rotor is not moving, that is, wr = 0 the rotor equations for a doubly fed

wound rotor machine will be similar to equations

Vqr =Rriqr +
𝑑

𝑑𝑡
 Ψqr +weΨdr (4.19)

Vdr =Rridr +
𝑑

𝑑𝑡
 Ψdr - weΨqr (4.20)

Where all the variables and parameters are referred to the stator .Since the rotor

actually moves at speed wr the d-q axes fixed on the rotor move at a speed we-wr

 equations should be modified as

Vqr =Rriqr +
𝑑

𝑑𝑡
 Ψqr +(we-wr)Ψdr (4.21)

Vdr =Rridr +
𝑑

𝑑𝑡
 Ψdr – (we –wr) Ψqr (4.22)

The flux linkage expression in terms of the currents can be written as follows

Ψqs = Llsiqs +Lm(iqs+iqr) (4.23)

 Ψqr= Llriqr +Lm(iqs+iqr) (4.24)

Ψqm = Lm(iqs+iqr) (4.25)
Ψds= Llsids +Lm(ids+idr) (4.26)

Ψdr= Llridr +Lm(ids+idr) (4.27)

DISTRIBUTED CONTROLLERS SYSTEM

 Page 41

Ψdm= Lm(ids+idr) (4.28)

Combining the above expressions with equations the electrical transient model

in the terms of voltage and currents can be given in matrix form as

[

𝑉𝑞𝑠

𝑉𝑑𝑠

𝑉𝑞𝑟

𝑉𝑞𝑟]

 =[

𝑅𝑠 + 𝑆𝐿𝑚 𝜔𝑒𝐿𝑠 𝑆𝐿𝑚 𝜔𝑒𝐿𝑚

−𝜔𝑒𝐿𝑠 𝑅𝑠 + 𝑆𝐿𝑠 −𝜔𝑒𝐿𝑚 𝑆𝐿𝑚

𝑆𝐿𝑚 (𝜔𝑒 − 𝜔𝑟)𝐿𝑚 𝑅𝑟 + 𝑆𝐿𝑟 (𝜔𝑒 − 𝜔𝑟)𝐿𝑟

−(𝜔𝑒 − 𝜔𝑟)𝐿𝑚 𝑆𝐿𝑚 −(𝜔𝑒 − 𝜔𝑟)𝐿𝑟 𝑅𝑟 + 𝑆𝐿𝑟

]

[

𝑖𝑞𝑠

𝑖𝑑𝑠

𝑖𝑞𝑟

𝑖𝑞𝑟]

 (4.29)

 Ωs

 Is iqs d axis

 Ids

 Xὰr axis

 θs
 ᵟ θsl

 θr

 ὰ…….ὰs axis

Fig 4.9: Axis of rotation for various quantities.

Where ωs is the speed of reference frame (or synchronous speed), ωm is rotor

speed and

 Ls = Lls + Lm, Lr = Llr + Lm (4.30)

Subscripts l and m stand for leakage and magnetizing, respectively . The

dynamic equivalent circuits of the motor in this reference frame are shown in

figure:

ѱ𝑞𝑠 = 𝐿𝑙𝑠𝑖𝑞𝑠 + 𝐿𝑚(𝑖𝑞𝑠 + 𝑖𝑞𝑟) = 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑚𝑖𝑞𝑟 (4.31)

ѱ𝑑𝑠 = 𝐿𝑙𝑠𝑖𝑑𝑠 + 𝐿𝑚(𝑖𝑑𝑠 + 𝑖𝑑𝑟) = 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑚𝑖𝑑𝑟 (4.32)

DISTRIBUTED CONTROLLERS SYSTEM

 Page 42

ѱˆ𝑠 = √ѱ𝑞𝑠
2 + ѱ𝑑𝑠

2 (4.33)

The rotor flux linkages are given by

ѱ𝑞𝑟 = 𝐿𝑙𝑟𝑖𝑞𝑟 + 𝐿𝑚(𝑖𝑞𝑟 + 𝑖𝑞𝑟) = 𝐿𝑟𝑖𝑞𝑟 + 𝐿𝑚𝑖𝑞𝑟 (4.34)

ѱ𝑑𝑟 = 𝐿𝑙𝑟𝑖𝑑𝑟 + 𝐿𝑚(𝑖𝑑𝑟 + 𝑖𝑑𝑟) = 𝐿𝑟𝑖𝑑𝑟 + 𝐿𝑚𝑖𝑑𝑟 (4.35)

ѱˆ𝑟 = √ѱ𝑞𝑟
2 + ѱ𝑑𝑟

2 (4.36)

The air gap flux linkages are given by

ѱ𝑚𝑞 = 𝐿𝑚(𝑖𝑞𝑠 + 𝑖𝑞𝑟) (4.37)

Ѱ𝑚𝑑 = 𝐿𝑚(𝑖𝑑𝑠 + 𝑖𝑑𝑟) (4.38)

ѱˆ𝑚 = √ѱ𝑚𝑞𝑠
2 + ѱ𝑚𝑑𝑠

2 (4.39)

Therefore the torque developed by the motor is given by

𝑇𝑑 =
3

2
𝑝(ѱ𝑑𝑠𝑖𝑞𝑠 − ѱ𝑞𝑠𝑖𝑑𝑠) (4.40)

Where p is the number of poles. From matrix equation (4.29) as given
above the rotor voltages in d- and q- axis as

𝑣𝑞𝑟 = 0 = 𝐿𝑚

𝑑𝑖𝑞𝑠

𝑑𝑡
+ (𝑤𝑠 − 𝑤𝑚)𝐿𝑚𝑖𝑑𝑠 + (𝑅𝑟 + 𝐿𝑟)

𝑑𝑖𝑞𝑟

𝑑𝑡
(𝑤𝑒 − 𝑤𝑟)𝐿𝑟𝑖𝑑𝑟

𝑣𝑑𝑟 = 0 = 𝐿𝑚

𝑑𝑖𝑑𝑠

𝑑𝑡
+ (𝑤𝑠 − 𝑤𝑚)𝐿𝑚𝑖𝑞𝑠 + (𝑅𝑟 + 𝐿𝑟)

𝑑𝑖𝑑𝑟

𝑑𝑡
(𝑤𝑒 − 𝑤𝑟)𝐿𝑟𝑖𝑞𝑟

Which, after substituting Ψ𝑞𝑟 from eqn. (4.34) and Ψ𝑑𝑟 from eqn. (4.35) ,

give

𝑑Ψ𝑞𝑟

𝑑𝑡
+ (𝑅𝑟𝑖𝑞𝑟) + (𝑤𝑒 − 𝑤𝑚)Ψ𝑑𝑟 = 0 (4.41)

𝑑Ψ𝑑𝑟

𝑑𝑡
+ (𝑅𝑟𝑖𝑑𝑟) + (𝑤𝑒 − 𝑤𝑚)Ψ𝑞𝑟 = 0 (4.42)

Solving for 𝑖𝑞𝑟 from Eqn. (4.34) and 𝑖𝑑𝑟 from Eqn .(4.35) , gives

𝑖𝑞𝑟 =
1

𝐿𝑟
Ψ𝑞𝑟 −

𝐿𝑚

𝐿𝑟
𝑖𝑞𝑠 (4.43)

DISTRIBUTED CONTROLLERS SYSTEM

 Page 43

𝑖𝑑𝑟 =
1

𝐿𝑟
Ψ𝑑𝑟 −

𝐿𝑚

𝐿𝑟
𝑖𝑑𝑠 (4.44)

Substituting rotor currents 𝑖𝑞𝑟 and 𝑖𝑑𝑟 into Eqn . (4.41) and Eqn . (4.42) ,we get

𝑑Ψ𝑞𝑟

𝑑𝑡
+

𝐿𝑟

𝑅𝑟
 Ψ𝑞𝑟 −

𝐿𝑚

𝐿𝑟
𝑅𝑟𝑖𝑞𝑠 + (𝑤𝑠 − 𝑤𝑚)Ψ𝑑𝑟 = 0 (4.45)

𝑑Ψ𝑞𝑟

𝑑𝑡
+

𝐿𝑟

𝑅𝑟
 Ψ𝑞𝑟 −

𝐿𝑚

𝐿𝑟
𝑅𝑟𝑖𝑞𝑠 + (𝑤𝑠 − 𝑤𝑚)Ψ𝑑𝑟 = 0 (4.46)

To eliminate transients in the rotor flux and the coupling between the two axes,

the following conditions must be satisfied

Ψ𝑞𝑟 = 0 𝑎𝑛𝑑 Ψ𝑟 = √Ψ 𝑑𝑟
2 + Ψ 𝑞𝑟

2 = Ψ𝑑𝑟 (4.47)

Also, the rotor flux should remain constant so that

𝑑Ψ𝑑𝑟

𝑑𝑡
= 𝑑

Ψ𝑞𝑟

𝑑𝑡
= 0 (4.48)

With conditions in Eqn. (4.47) and Eqn. (4.48), the rotor flux Ψ𝑟 is aligned on

the d
e
 axis and we get

𝑤𝑠 − 𝑤𝑚 = 𝑤𝑠𝑙 =
𝐿𝑚𝑅𝑟

Ψ𝑟𝐿𝑟
 𝑖𝑞𝑠 (4.49)

𝐿𝑟

𝑅𝑟

𝑑Ψ𝑟

𝑑𝑡
+ Ψ𝑟 = 𝐿𝑚𝑖𝑑𝑠 (4.50)

Substituting the expressions for 𝑖𝑞𝑟 from Eqn. (4.43) into Eqn. (4.34) and 𝑖𝑑𝑟

from Eqn. (4.44) into Eqn. (4.35) , we get

Ψ𝑞𝑠 = (𝐿𝑠 −
𝐿 𝑚
2

𝐿𝑟
)𝑖𝑞𝑠 +

𝐿𝑚

𝐿𝑟
Ψ𝑞𝑟 (4.51)

Ψ𝑑𝑠 = (𝐿𝑠 − 𝐿 𝑀
2)𝑖𝑑𝑠 +

𝐿𝑚

𝐿𝑟
Ψ𝑑𝑟 (4.52)

Substituting above equations (4.51) and (4.52) into Eqn. (4.40) gives the

developed torque as

𝑇𝑑 =
3𝑝

2

𝐿𝑚

𝐿𝑟
 (Ψ𝑑𝑟𝑖𝑞𝑠 − Ψ𝑞𝑟𝑖𝑞𝑠) =

3𝑝

2

𝐿𝑚

𝐿𝑟
 Ψ𝑟𝑖𝑞𝑠 (4.53)

If the rotor flux Ψ𝑟, remains constant, becomes

Ψ𝑟 = 𝐿𝑚𝑖𝑑𝑠 (4.54)

Which indicates that the rotor flux is directly proportional to current 𝑖𝑑𝑠. Thus

𝑇𝑑 becomes

DISTRIBUTED CONTROLLERS SYSTEM

 Page 44

𝑇𝑑 =
3𝑝

2

𝐿𝑚

2

𝐿𝑟
𝑖𝑑𝑠𝑖𝑞𝑠 = 𝐾𝑚𝑖𝑑𝑠𝑖𝑞𝑠 (4.55)

where 𝐾𝑚 =
3𝑝𝐿𝑚

2

2𝐿𝑟

Fig 4.6: Block dia. of indirect vector control method

Fig 4.7: Block dia. Of direct vector control method

DISTRIBUTED CONTROLLERS SYSTEM

 Page 45

4.3.2 Direct torque control

The most modern technique is direct torque and stator flux vector control

method (DTC). It has been realised in an industrial way by ABB, by using the

theoretical background proposed by Blashke and Depenbrock during 1971-

1985. This solution is based both on field oriented control (FOC) as well as on

the direct self-control theory.

Direct torque control (DTC) is an induction motor control technique that has

been successful because it explicitly considers the inverter stage and uses few

machine parameters, while being more robust to parameter uncertainty than

field-oriented control (FOC). The formal derivation of DTC based on singular

perturbation and nonlinear control tools. The derivation elaborates an explicit

relationship between DTC performance and machine characteristics; low-

leakage machines are expected to perform better under DTC. It is shown that

DTC is a special case of a sliding-mode controller based on the multiple time-

scale properties of the induction machine. The known troublesome machine

operating regimes are predicted and justified. Explicit conditions to guarantee

stability are presented. DTC is shown to be a suboptimal controller because it

uses more control effort than is required for flux regulation. Finally,

compensation strategies that extend DTC are discussed. The derivation does not

require space vector concepts thus, it is established that the traditional link

between DTC and space vectors is not fundamental.

Starting with a few basics in a variable speed drive the basic function is to

control the flow of energy from the mains to a process via the shaft of a motor.

Two physical quantities describe the state of the shaft: torque and speed.

Controlling the flow of energy depends on controlling these 15 quantities. In

practice either one of them is controlled and we speak of "torque control" or

"speed control". When a variable speed drive operates in torque control mode

the speed is determined by the load. Torque is a function of the actual current

DISTRIBUTED CONTROLLERS SYSTEM

 Page 46

and actual flux in the machine. Likewise when operated in speed control the

torque is determined by the load. Variable speed drives are used in all industries

to control precisely the speed of electric motors driving loads ranging from

pumps and fans to complex drives on paper machines rolling mills cranes and

similar drives.

The idea is that motor flux and torque are used as primary control variables

which is contrary to the way in which traditional AC drives control input

frequency and voltage, but is in principle similar to what is done with a DC

drive, where it is much more straightforward to achieve. In contrast, traditional

PWM and flux vector drives use output voltage and output frequency as the

primary control variables but these need to be pulse width modulated before

being applied to the motor. This modulator stage adds to the signal processing

time and therefore limits the level of torque and speed response time possible

from the PWM drive.

In contrast, by controlling motor torque directly, DTC provides dynamic speed

accuracy equivalent to closed loop AC and DC systems and torque response

times that are 10 times faster. It is also claimed that the DTC does not generate

noise like that produced by conventional PWM AC drives. And the wider

spectrum of noise means that amplitudes are lower which helps to control EMI

and RFI emissions. The basic structure of direct torque and stator flux vector

control is Presented in Fig 4.8.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 47

Fig. 4.8: Basic structure of direct torque and stator flux vector control

In DTC field orientation is achieved without feedback using advanced motor

theory to calculate the motor torque directly and stator flux without using a

modulator or a requirement for a tacho generator or position encoder to feed

back the speed or position of the motor shaft. Both parameters are obtained

instead from the motor itself. DTC's configuration also relies on two key

developments - the latest high-speed signal processing technology and a highly

advanced motor model precisely simulating the actual motor within the

controller. A DSP (digital signal processor) is used together with ASIC hardware

to determine the switching logic of the inverter.

The motor model is programmed with information about the motor, which

enables it to determine parameters including stator resistance, mutual

inductance saturation coefficients and motor inertia. The model also

encompasses temperature compensation, which is essential for good

static speed accuracy without encoder.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 48

In normal operation, measurements of the two motor phase currents and the

drive DC link voltage, together with information about the switching state of the

inverter are fed into the motor model . The motor model then outputs control

signals, which are accurate estimates of the actual motor torque and actual stator

flux. All control signals are transmitted via optical links for high speed. In this

way, the semiconductor switching devices of the inverter are supplied with an

optimum switching pattern for reaching or maintaining an accurate motor

torque. Also, both shaft speed and electrical frequency are calculated within the

motor model. There is no need to feedback any shaft speed or position with

tachometers or encoders to meet the demands of 95% of industrial applications.

However, there will always be some special applications where even greater

speed accuracy will be needed and when the use of an encoder improves the

accuracy of speed control in DTC. But even then, the encoder does not need to

be as costly or as accurate as the one used in traditional flux vector drives, as

DTC only has to know the error in speed, not the rotor position.

The drive will have a torque response time typically better than 5ms. This

compares with response for both flux vector PWM drives and DC drives fitted

with encoders. The newer sensor less flux vector drives now being launched by

other drives manufacturers have a torque response measured in hundreds of

milliseconds.

DTC also provides exceptional torque control linearity. For the first time with

an open loop AC drive, torque control can be obtained at low frequencies,

including zero speed, where the nominal torque step can be increased in less

than 1ms. The dynamic speed accuracy of DTC drives is better than any open

loop AC drives and comparable to DC drives, which use feedback.

DTC brings other special functions, not previously available with AC drives,

including automatic starting in all motor electromagnetic and mechanical states.

There is no need for additional parameter adjustments, such as torque boost or

starting mode selection, such as flying start. DTC control automatically adapts

DISTRIBUTED CONTROLLERS SYSTEM

 Page 49

itself to the required condition. In addition, based on exact and rapid control of

the drive intermediate DC link voltage, DTC can withstand sudden load

transients caused by the process, without any overvoltage or overcurrent trip.

4.4 Conclusion

This chapter discussed method used for controlling DC and induction drive. For

controlling DC drive, armature voltage control method is used, where torque is

developed by varying armature voltage. And for induction motor drive direct

vector control method is used.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 50

Chapter V

Implementation and testing

5.1 Introduction

The block diagram of Distributed controllers system of project is given below.

In this project DC drive and Induction drive are controlled by two different

Micro-controllers, 8051Microcontroller and AVR Microcontroller. In order to

create distributed architecture the controllers connected to data highway

bus(ether net bus). The technical specifications of the micro controller is also

presented.

Fig 5.1: Block Diagram of DCSs.

Information Network

TCP/IP

Gateway

Profibus-FMS

Computer

8051Microcontroller

AVR Microcontroller

Profibus DP

DC Drive

Field Level

Cell Level

Induction Motor Drive

Host

Computer

DISTRIBUTED CONTROLLERS SYSTEM

 Page 51

5.2 8051 Microcontroller

The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer

with 8K bytes of Flash programmable and erasable read only memory

(PEROM). The device is manufactured using Atmel’s high-density nonvolatile

memory technology and is compatible with the industry-standard 80C51 and

80C52 instruction set and pin out.

The on-chip Flash allows the program memory to be reprogrammed in-system

or by a conventional non-volatile memory programmer. By combining a

versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a

powerful microcomputer which provides a highly-flexible and cost-effective

solution to many embedded control applications.

5.2.1 Pin configuration & Descriptions

 Fig. 5.2 Pin configuration of 8051

DISTRIBUTED CONTROLLERS SYSTEM

 Page 52

Pin-out description

Basic Pins

PIN 9: PIN 9 is the reset pin which is used to reset the microcontroller’s

internal registers and ports upon starting up. (Pin should be held high for 2

machine cycles). A logic one on this pin disables the microcontroller and clears

the contents of most registers. In other words, the positive voltage on this pin

resets the microcontroller. By applying logic zero to this pin, the program starts

execution from the beginning.

PINS 18 & 19: The 8051 has a built-in oscillator amplifier hence we need to

only connect a crystal at these pins to provide clock pulses to the circuit.

PINS 40 and 20: Pins 40 and 20 are VCC and ground respectively. The 8051

chip needs +5V 500mA to function properly, although there are lower powered

versions like the Atmel 2051 which is a scaled down version of the 8051 which

runs on +3V.

PINS 29, 30 & 31: This chip contains a built-in flash memory. In order to

program this we need to supply a voltage of +12V at pin 31. If external memory

is connected then PIN 31, also called EA/VPP, should be connected to ground to

indicate the presence of external memory. PIN 30 is called ALE (address latch

enable), which is used when multiple memory chips are connected to the

controller and only one of them needs to be selected. PIN 29 is called PSEN.

This is "program store enable". In order to use the external memory it is

required to provide the low voltage (0) on both PSEN and EA pins.

There are 4 8-bit ports: P0, P1, P2 and P3.

PORT P1 (Pins 1 to 8): The port P1 is a general purpose input/output port

which can be used for a variety of interfacing tasks. The other ports P0, P2 and

P3 have dual roles or additional functions associated with them based upon the

context of their usage. The port 1 output buffers can sink/source four TTL

DISTRIBUTED CONTROLLERS SYSTEM

 Page 53

inputs. When 1s are written to portn1 pins are pulled high by the internal pull-

ups and can be used as inputs.

PORT P3 (Pins 10 to 17): PORT P3 acts as a normal IO port, but Port P3 has

additional functions such as, serial transmit and receive pins, 2 external

interrupt pins, 2 external counter inputs, read and write pins for memory access.

Pin 10: RXD Serial asynchronous communication input or Serial synchronous

communication output.

Pin 11: TXD Serial asynchronous communication output or Serial synchronous

communication clock output.

Pin 14: T0 Counter 0 clock input.

Pin 15: T1 Counter 1 clock input.

Pin 16: WR Write to external (additional) RAM.

Pin 17: RD Read from external RAM.

PORT P2 (pins 21 to 28): PORT P2 can also be used as a general purpose 8 bit

port when no external memory is present, but if external memory access is

required then PORT P2 will act as an address bus in conjunction with PORT P0

to access external memory. PORT P2 acts as A8-A15, as can be seen from above

figure.

PORT P0 (pins 32 to 39) PORT P0 can be used as a general purpose 8 bit port

when no external memory is present, but if external memory access is required

then PORT P0 acts as a multiplexed address and data bus that can be used to

access external memory in conjunction with PORT P2. P0 acts as AD0-AD7.

PORT P10: asynchronous communication input or Serial synchronous

communication output. Oscillator Circuits The 8051 requires an external

oscillator circuit. The oscillator circuit usually runs around 12MHz, although

the 8051 (depending on which specific model) is capable of running at a

maximum of 40MHz. Each machine cycle in the 8051 is 12 clock cycles, giving

an effective cycle rate at 1MHz (for a 12MHz clock) to 3.33MHz (for

DISTRIBUTED CONTROLLERS SYSTEM

 Page 54

 the maximum 40MHz clock). The oscillator circuit generates the clock pulses

so that all internal operations are synchronized.

5.2.2 Internal Architecture of 8051 Microcontroller

Fig. 5.3: Block dia. of 8051 Microcontroller

DISTRIBUTED CONTROLLERS SYSTEM

 Page 55

Data and Program Memory

The 8051 Microcontroller can be programmed in PL/M, 8051 Assembly, C and

a number of other high-level languages. Many compilers even have support for

compiling C++ for an 8051.

Program memory in the 8051 is read-only, while the data memory is considered

to be read/write accessible. When stored on EEPROM or Flash, the program

memory can be rewritten when the microcontroller is in the special programmer

circuit.

Program Start Address

The 8051 starts executing program instructions from address 0000 in the

program memory. The A register is located in the SFR memory location 0xE0.

The A register works in a similar fashion to the AX register of x86 processors.

The A register is called the accumulator, and by default it receives the result of

all arithmetic operations.

Special Function Register

The Special Function Register (SFR) is the upper area of addressable memory,

from address 0x80 to 0xFF. A, B, PSW, DPTR are called SFR. This area of

memory cannot be used for data or program storage, but is instead a series of

memory-mapped ports and registers. All port input and output can therefore be

performed by memory mov operations on specified addresses in the SFR. Also,

different status registers are mapped into the SFR, for use in checking the status

of the 8051, and changing some operational parameters of the 8051.

General Purpose Registers

The 8051 has 4 selectable banks of 8 addressable 8-bit registers, R0 to R7. This

means that there are essentially 32 available general purpose registers, although

only 8 (one bank) can be directly accessed at a time. To access the other banks,

we need to change the current bank number in the flag status register.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 56

A and B Registers, The A register is located in the SFR memory location 0xE0.

The A register works in a similar fashion to the AX register of x86 processors.

The A register is called the accumulator, and by default it receives the result of

all arithmetic operations. The B register is used in a similar manner, except that

it can receive the extended answers from the multiply and divide operations.

When not being used for multiplication and Division, the B register is available

as an extra general-purpose register.

5.3 AVR Microcontroller

ATmega16 is an 8-bit high performance microcontroller of Atmel’s Mega AVR

family with low power consumption. Atmega16 is based on enhanced RISC

(Reduced Instruction Set Computing) architecture with 131 powerful

instructions. Most of the instructions execute in one machine cycle. Atmega16

can work on a maximum frequency of 16MHz. ATmega16 has 16 KB

programmable flash memory, static RAM of 1 KB and EEPROM of 512 Bytes.

The endurance cycle of flash memory and EEPROM is 10,000 and 100,000,

respectively. ATmega16 is a 40 pin microcontroller. There are 32 I/O

(input/output) lines which are divided into four 8-bit ports designated as

PORTA, PORTB, PORTC and PORTD. ATmega16 has various in-built

peripherals like USART, ADC, Analog Comparator, SPI, JTAG etc. Each I/O

pin has an alternative task related to in-built peripherals.

http://www.engineersgarage.com/articles/avr-microcontroller
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/serial-communication-atmega16-usart
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/adc-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/analog-comparator-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/spi-serial-peripheral-interface-tutorial-circuit
http://www.engineersgarage.com/embedded/avr-microcontroller-projects/disable-jtag-port

DISTRIBUTED CONTROLLERS SYSTEM

 Page 57

5.3.1 Internal architecture of AVR Microcontroller

Fig 5.4 Block Diagram of AVR Microcontroller

DISTRIBUTED CONTROLLERS SYSTEM

 Page 58

5.3.2 Pin Configuration and description

Fig. 5.5 Pin configuration of AVR Microcontroller

Pin out description

VCC: Digital supply voltage. (+5V)

GND: Ground. (0 V) Note there are 2 ground Pins.

Port A (PA7 - PA0) Port A serves as the analog inputs to the A/D Converter. Port

A also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not

used. When pins PA0 to PA7 are used as inputs and are externally pulled low,

they will source current if the internal pull-up resistors are activated. The Port A

pins are tri-stated when a reset condition becomes active, even if the clock is not

running.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 59

Port B (PB7 - PB0) Port B is an 8-bit bi-directional I/O port with internal pull-

up resistors (selected for each bit). Port B also serves the functions of various

special features of the ATmega16 as listed on page 58 of datasheet.

Port C (PC7 - PC0) Port C is an 8-bit bi-directional I/O port with internal pull-

up resistors (selected for each bit). Port C also serves the functions of the JTAG

interface and other special features of the ATmega16 as listed on page 61 of

datasheet. If the JTAG interface is enabled, the pull-up resistors on pins PC5

(TDI), PC3 (TMS) and PC2 (TCK) will be activated even if a reset occurs.

Port D (PD7 - PD0) Port D is an 8-bit bi-directional I/O port with internal pull-

up resistors (selected for each bit). Port D also serves the functions of various

special features of the ATmega16 as listed on page 63 of datasheet.

RESET: Reset Input. A low level on this pin for longer than the minimum pulse

length will generate a reset, even if the clock is not running

XTAL1: External oscillator pin 1

XTAL2: External oscillator pin 2

AVCC: AVCC is the supply voltage pin for Port A and the A/D Converter. It

should be externally connected to VCC, even if the ADC is not used. If the ADC

is used, it should be connected to VCC through a low-pass filter. AREF: AREF

is the analog reference pin for the A/D Converter.

5.4 AVR Studio 4 Integrated Development Environment

AVR Studio is the Integrated Development Environment for developing 8-bit

AVR applications in Windows NT/2000/XP/Vista/7 environments. ―An

integrated development environment (IDE) also known as integrated design

environment or integrated debugging environment is a software application that

provides comprehensive facilities to computer programmers for software

development. An IDE normally consists of:

DISTRIBUTED CONTROLLERS SYSTEM

 Page 60

 a source code editor,

 a compiler and/or an interpreter,

 build automation tools,

 a debugger.

AVR Studio 4 is a free IDE developed by ATMEL for writing and debugging

AVR applications provides a complete set of features including debugger

supporting run control including source and instruction-level stepping and

breakpoints; registers, memory and I/O views; and target configuration and

management as well as full programming support for standalone programmers.

To develop applications in C language is need the AVR-GCC- C compiler for

AVR microcontrollers. ―WinAVRTM (pronounced "whenever") is a suite of

executable, open source software development tools for the Atmel AVR series

of RISC microprocessors hosted on the Windows platform. It includes the GNU

GCC compiler for C and C++.‖

AVR Studio 4 features:

 Integrated Development Environment

 Integrated Simulator

 Integrated Assembler

 Write, Compile and Debug

 Fully Symbolic Source-level Debugger

 Configurable Memory Views (SRAM/EEPROM/Flash/Registers and I/O)

 Extensive Program Flow Control Options

 Unlimited Number of Break Points

 Trace Buffer and Trigger Control

 Online HTML Help

 Variable Watch/Edit Window with Drag-and-Drop Function

 Simulator Port Activity Logging and Pin Input Stimuli

DISTRIBUTED CONTROLLERS SYSTEM

 Page 61

 File Parser Support: COFF/UBROF6/UBROF8 and Hex Files

 Language support: C, Pascal, BASIC, and Assembly

5.5 Distributed microcontroller System Application:

To demonstrate the utility of distributed microcontroller DC drive and induction

motor drive are connected with 8051 microcontroller and AVR microcontroller

respectively. The control software protocol are developed based on algorithm of

chapter IV. The fig. 5.1 shows the distributed microcontroller application and

architecture. The software protocol coding is presented in annexure I. The

software protocol is developed in c language on computer system and

downloaded to 8051 microcontroller. For induction motor drive software

protocol is developed in AVR studio. The experiment are found satisfactory and

in working mode for DC drive and induction motor drive both.

5.6 Conclusion

In this chapter Subsystem viz 8051 microcontroller and AVR microcontroller

are described, including their internal features. The distributed control model for

DC drive and induction motor drive has been developed and implemented.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 62

Chapter VI

Conclusion and further scope

The aim of project was to design distributed controllers system, in which DC

drive and induction drive are controlled. For designing of distributed

controllers system Ethernet bus is used for communication system.

Because Ethernet bus is preferred for high throughput and faster system

response. While the MOD bus / Profi bus is preferred to connect the Slow

anolog inputs to the system. For that, armature control method is used for DC

drive and direct vector control method is used for induction motor drive, 8051

microcontroller is for controlling DC drive and AVR microcontroller is used for

controlling induction motor drive. And finally experiments are found

satisfactory and in working mode for DC drive and induction motor drive both.

 The further scope of this project is that it can be implemented for larger

systems. Internal algorithm for such is Fuggy logic, neural network as such can

be developed. This can also be used for PLC.

DISTRIBUTED CONTROLLERS SYSTEM

 Page 63

References

1.Electro-Craft Corporation. DC Motors, Speed Controls, Servo Systems. Pergamon
Press,1977.
2.Kim, J.-M. and Sul, S.-K. (1997). Speed control of interior permanent magnet synchronous

motor drive for the flux weakening operation. IEEE Trans. Ind. Ap 33(1):43–48.

3.Mohan, N., Undeland, T. M., and Robbins, W. B. (1995). Power Electronics - Converters,

Applications and Design. John Wiley & Sons, 2nd edition.

4.Khambadkon, A. M. & Holtz, J. (1991). Vector-controlled induction motor drive with a

self-commissioning scheme, IEEE Transactions on Industrial Electronics, vol. 38, no. 5,

(March 1991), pp. 322-327, ISSN 0278-0046

5. Bose, B.K. 1986. "Power Electronics and Drives", Prentice-Hall, Englewood Cliffs,

NewJersey

6. ―WorldFIP Basics,‖ http://www.worldfip.org.

7. ―Profibus Technical Description,‖ http://www.profibus.com, September 1999.

8. ―MACRO: Motion And Control Ring Optical,‖ http://www.macro.org, May 1998.

9. V. Vlatkovic and D. Borojevic, ―Digital-Signal-Processor-Based Control of

Three-Phase Space Vector Modulated Converters,‖ IEEE Transactions on

Industrial Electronics, June 1994, Vol. 41, No. 3, pp. 326-332.

10. E. Bassi, F. Benzi, L. Lusetti, G.S. Buja, ―Communication Protocols for Electrical

Drives,‖ IEEE IECON Proceedings, 1995, Vol. 2, pp.706-711.

11. A. Crane and T. J. McCoy, ―Electromagnetic Compatibility Design for a 19 MW

PWM Motor Drive.‖

12. R. Lewis, ―Design of distributed control systems in the next millennium‖,

Computing & Control Engineering Journal, Volume: 8 Issue: 4, August 1997.

13. Goktas F., Distributed Control of Systems over Communication Networks‖, Ph.D

Thesis, University of Pennsylvania, 2000

14. Chesney C., Which Bus Architecture Is Best for You? EE:-Evaluation Engineering, V

37 N9 1998

15.Slemon, G.R. 1989. "Modelling of Induction Machines for Electric Drives", in IEEE

Trans.Ind. Appl., Vol. 25, No. 6, pp. 1126-1131

16. Slemon, G.R. 1994. "Electrical Machines for Variable-Frequency", in Proceedings of the

IEEE, Vol. 82, No. 8, pp.1123-1138

17. Slemon, G.R. 1989. "Modelling of Induction Machines for Electric Drives", in IEEE

Trans. Ind. Appl., Vol. 25, No. 6, pp. 1126-1131

18. Wikipedia - The free Encyclopaedia http://en.wikipedia.org/wiki/Modbus.
19. Wikipedia - The free Encyclopaedia http://en.wikipedia.org/wiki/Fieldbus

20. Wikipedia - The free Encyclopaedia http://en.wikipedia.org/wiki/Ethernetbus

21.Muhammad H .Rashid6. "Power Electronics ckt ,Devices, and Application", III edition,

Pearson education, 2006.

22. Mazidi, Mazidi ,Mckinlay, IInd edition, Pearson education, 2006.

23. Electro-Craft Corporation. DC Motors, Speed Controls, Servo Systems.
Pergamon Press,1977.
24. P.C. Krause. Analysis of electric machinery. McGraw Hill, 1986.

http://en.wikipedia.org/wiki/Modbus
http://en.wikipedia.org/wiki/Modbus
http://en.wikipedia.org/wiki/Modbus

DISTRIBUTED CONTROLLERS SYSTEM

 Page 64

Annexure-I

Coding of 8051 microcontroller

#include<reg51.h>
#include <string.h>
sbit rs = P3^1; // rs pin of LCD
sbit en = P3^0; // en pin of LCD
sbit rw = P3^2; // rw pin of LCD
sbit b = P0^7; // busy flag
sbit led1=P2^0; // run indicator
sbit led2=P2^1; // stop indicator
sbit led3=P2^2; // clockwise direction
indicator
sbit led4=P2^3; // anticlockwise direction
indicator
sbit PWM=P2^4; // PWM output
sbit RL1=P2^5; // relay 1 pin
sbit RL2=P2^6; // relay 2 pin

unsigned int x=10; // ontime
unsigned int y=10; // offtime
unsigned int m=0; // mode
unsigned int d=0; // direction
unsigned int t=100; // time
unsigned int r=0; // run flag

void start(void); // function initilization
void mode(void);
void direction(void);
void incspeed(void);
void decspeed(void);
void inctime(void);
void dectime(void);
void time(unsigned int);
void delay(unsigned int);
void keydly(void);
void busy(void);

void writecmd(unsigned char a) // send command to LCD
 {
 busy(); // check busy
flag
 rs = 0; // select command
register
 rw = 0; // write enable
 P0 = a; // send byte to
LCD
 en = 1; // apply strobe
pulse
 en = 0;
 }
void writedata(unsigned char b) // send data to LCD
 {
 busy(); // check busy
flag
 rs = 1; // select data
register
 rw = 0; // write enable
 P0 = b; // write enable

 en = 1; // send byte to
LCD
 en = 0; // apply strobe
pulse
 }
void busy() // check busy flag of
LCD

DISTRIBUTED CONTROLLERS SYSTEM

 Page 65

 {
 en = 0; // disable
display
 P0 = 0xFF; // P0 as input
 rs = 0; // select command
register
 rw = 1; // read enable
 while(b==1) // if busy bit is 1
 {
 en=0; // remain withine
loop
 en=1;
 }
 en=0;
 }
void writestr(unsigned char *s) // send string message to LCD
 {
 unsigned char l,i;
 l = strlen(s); // get length of string
 for(i=0;i<l;i++)
 {
 writedata(*s); // till the length of
string
 s++; // send characters one
by one
 }
 }
void start() // start rotating motor
 {
 if(m==0) // for m=0 start
continuous mode
 {
 RL1=0; // switch on RL1
 r=1; // set run flag
 P1=0xFF; // send all 1's to P1
 while(P1==0xFF) // till no key is
pressed
 {
 led1=1; // indication on
run LED
 PWM=1; // send high
logic to PWM pin
 delay(x); // on time delay
 PWM=0; // now send low
logic to PWM
 delay(y); // off time delay
 }
 }
 else if(m==1) // for m=1 start
reversible mode
 {
 r=1; // set run flag
 P1=0xFF; // send all 1's to P1
 while(P1==0xFF) // till no key is
pressed
 {

 led1=1; // run LED=1
 led3=1;
 led4=0;
 PWM=1; // send high on
PWM pin
 RL2=1; // select one
direction
 RL1=0; // switch on RL1
 time(t); // wait for desired
time
 RL1=1; // switch off RL1
 led1=0; // run LED=0;

DISTRIBUTED CONTROLLERS SYSTEM

 Page 66

 time(20); // wait for 1 sec
 led1=1; // again run
LED=1
 led3=0;
 led4=1;
 RL2=0; // select other
direction
 RL1=0; // switch on RL1

 time(t); // wait for desire time
 RL1=1; // switch off RL1
 led1=0; // run LED=0
 time(20); // wait for 1 sec
 }
 PWM=0;

 }
 else if(m==2) // for m=2 start
jogging mode
 {
 r=1; // reset run flag
 P1=0xFF; // send all 1's
to P1
 while(P1==0xFF) // till no key is
pressed
 {
 led1=1;
 PWM=1; // send high on
PWM pin
 RL1=0; // switch on RL1
 time(t); // wait for 1 sec
 RL1=1; // switch off RL1
 PWM=0; // send low on
PWM pin
 led1=0;
 time(20);
 }

 }
 }
void direction() // alter the direction
 {
 keydly(); // key debounce delay
 d++; // increment count
 if((d%2)==0) // check for even or
odd
 {
 led3=1; // indicate on
LEDs
 led4=0;
 RL2=1; // switch ON /
OFF RL2
 }
 else
 {
 led3=0;
 led4=1;
 RL2=0;
 }
 }
 void mode() // change
mode of rotation
 {
 keydly(); // key
debounce delay
 writecmd(0x80); // display
message on first line first column
 m++; //
increment count

DISTRIBUTED CONTROLLERS SYSTEM

 Page 67

 if(m==3) m=0; // if it is
3 reset it
 if(m==0)
 { writestr("mode:continuous "); // otherwise display mode
 time(15);
 }
 else if(m==1)
 {writestr("mode:reversible ");
 time(15);
 }
 else if(m==2)
 {writestr("mode:jogging ");
 time(15);
 }
 }
 void decspeed() //
increase speed
 {
 int z;
 keydly();
 // key debounce
 writecmd(0xC0);
 // select second line on LCD
 if(y<14)
 // if not max pulse width
 {
 x--;
 y++;
 // increase it convert it in to
 z=y-5+0x30;
 // 1 to 10 scale and ASCII
 writestr("speed: "); //
diaplay speed on LCD
 writedata(z);
 writestr(" ");
 }
 else if(y==14) writestr("min speed: 9 "); // if max
width display message
 }
void incspeed()
 // increase speed
 {
 int w;
 keydly();
 writecmd(0xC0);
 // key debounce

 if(y>6)
 // if not minimum width
 {
 x++;
 y-- ;
 // decrease it
 w=y-5+0x30;
 // do same as above
 writestr("speed: ");
 writedata(w);
 writestr(" ");
 }
 else if(y==6) writestr("max speed: 1 "); // if
min width display message
 }
void inctime()
 // increase time
 {
 int p;
 keydly();
 // key debounce delay

DISTRIBUTED CONTROLLERS SYSTEM

 Page 68

 writecmd(0xC0);

 if(t<180)
 // if not max time
 {
 t+=20;
 // increase it by 1 sec
 p=t/20;
 p=p+0x30;
 // convert it in to ASCII
 writestr("time: ");
 // display it
 writedata(p);
 writestr(" sec ");
 }
 else if(t==180) writestr("max time: 9 sec"); // if max
time display message
 }
void dectime()
 // decrease time
 {
 int q;
 keydly();
 // key debounce delay
 writecmd(0xC0);
 if(t>20)
 // if not min time
 {
 t-=20;
 // decrease it
 q=t/20;
 q=q+0x30;
 // do same as above
 writestr("time: ");
 writedata(q);
 writestr(" sec ");
 }
 else if(t==20) writestr("min time: 1 sec"); // if
min time display message
 }
void keydly() // key debounce delay
 {
 int a,b;
 for(a=0;a<50;a++)
 for(b=0;b<1000;b++);
 }
void time(unsigned int c) // change time in seconds
 {
 int k;
 TL1 = 0xAF; // use timer 1
 TH1 = 0x3C; // to generate 50 ms
delay
 TR1 = 1; // start timer
 for(k=0;k<=c;k++) // rotate loop in multiples
of 20
 {
 while(TF1==0); // wait till timer
overflow
 TF1 = 0; // reset the flag
 TL1 = 0xAF; // reload it
 TH1 = 0x3C;
 }
 TR1 = 0; // stop timer
 }
void delay(unsigned int c1) // change time in micro
seconds
 {
 int a;
 TH0=0x9B; // select timer 0

DISTRIBUTED CONTROLLERS SYSTEM

 Page 69

 TL0=0x9B; // to generate 100
micro second delay
 TR0=1; // start timer

 for(a=0;a<c1;a++) // rotate loop between 5 to
15
 {
 while(TF0==0); // wait until timer
overflow
 TF0=0; // reset the flag
 }
 TR0=0; // stop timer
 }

void main()
 {
 TMOD=0x12; // timer1 in 16 bit
timer, timer 0 in 8 bit auto reload mode
 P2=0xE0; // LEDs off, relays OFF
 P0=0x00; // P0, P3 output ports
 P3=0x00;
 writecmd(0x3C); // initilize LCD
 writecmd(0x0E);
 writecmd(0x01);
 writecmd(0x84); // display message
 writestr("DC Motor"); // DC motor controller in
 writecmd(0xC3); // center of LCD
 writestr("Controller");
agin:P1=0xFF; // P1 as input port
 while(P1==0xFF); // wait until any key press
loop:switch(P1)
 {
 case 0xFE: // for first key
 keydly(); // key debounce
 writecmd(0x01);
 writestr("motor start");
 time(50); // wait for
2.5 sec
 writecmd(0x80);
 writestr("mode:continuous "); // display current mode and
speed
 writecmd(0xC0);
 writestr("speed: 5 ");
 led1=1; // Run LED ON
 led2=0; // stop LED OFF
 led3=1; // clockwise
direction ON
 led4=0; // anticlockwise
direction OFF
 start(); // sart rotating motor
 break;
 case 0xFD: // for second key
 keydly(); // key debounce
 r=0; // run flag reset
 writecmd(0x01);
 writestr("motor stop"); // display message
 led1=0; // Run OFF
 led2=1; // stop LED ON
 led3=0; // clockwise
direction OFF
 led4=0; // anticlockwise
direction OFF
 PWM=0; // low logic to
PWM pin
 RL1=1; // relay1 off
 break;
 case 0xFB: // for third key

DISTRIBUTED CONTROLLERS SYSTEM

 Page 70

 mode(); // select mode

 if(r==1) start(); // jump to start if run flag
is set
 break;
 case 0xF7: // for fourth key

 direction(); // change direction

 if(r==1) start(); // jump to start if run flag
is set
 break;
 case 0xEF: // for fifth key

 incspeed(); // increase speed
 if(r==1) start(); // jump to start if run flag
is set
 break;
 case 0xDF: // for sixth key

 decspeed(); // decrease speed

 if(r==1) start(); // jump to start if run flag
is set
 break;
 case 0xBF: // for seventh key

 inctime(); // increase time
 if(r==1) start(); // jump to start if run flag is
set
 break;
 case 0x7F: // for eigth key
 dectime(); // decrease time

 if(r==1) start(); // jump to start if run flag is
set
 break;
 }
 if(r==1) goto loop; // if run flag is set jump
of key detect
 else goto agin; // if not jump to again
 }

Annexure-II

coding of AVR microcontroller

Below is presented the main code of embedded application. Other files: USART.c, PI.c, and
TIMERS.c are included in appendix.

#include <avr/io.h>

#include <stdlib.h>

#include <stdbool.h>

#include <avr/interrupt.h>

#include "USART.c"

#include "PI.c"

#include "TIMERS.c"

#define F_CPU 8000000UL

//regulation

const char cEncoderResolution=62; //resolution of encoder's rotary disc

volatile int i=0;

volatile int iMotorNumber=0;

volatile char cNumberOfIterations=2;

volatile char cSamplesOfSpeed[10];

volatile char cScalingFactor;

//motors speed & voltage

DISTRIBUTED CONTROLLERS SYSTEM

 Page 71

volatile int iPresetRPM[2];

volatile char cActualSpeed[2];

volatile int iActualRPM[2];

volatile int iSaturation[2];

//flags

volatile bool bFlagRegulation=false;

volatile bool bFlagPidIsOn=true;

volatile bool bFlagToSend=false;

volatile bool bFlagTransmit=true;

volatile bool bFlagReadyToSplit=false;

volatile bool bFlagSendInfo=false;

//transmission

volatile char cReceivedBuffer[11];

volatile char cReadChars=0;

volatile int iSumOfSpeed=0;

volatile char cDelay=0;

volatile char cTransmitionDelay=5;

//statistics

volatile unsigned long int iFramesError=0;

volatile unsigned long int iFramesRecived=0;

volatile unsigned long int iFramesTransmitted=0;

volatile unsigned long int iWorkTime=0;

//--TIMER speed regulation is

enabled

ISR(TIMER2_COMP_vect){//this interrupt is triggered after an appropriate time

interval

cli();

if(bFlagTransmit==true){

if(cDelay>cTransmitionDelay){ //delaying transmission of cTransmitionDelay time

intervals

bFlagToSend=true; //enabled transmission

cDelay=0;

}

if(i>cNumberOfIterations){

cActualSpeed[iMotorNumber]=(char)(iSumOfSpeed/(float)(i+1)); //computing mean value

of the speed for i iterations

iActualRPM[iMotorNumber]=(int)cScalingFactor*cActualSpeed[iMotorNumber]; //scaling

the speed mean value to RPM

bFlagRegulation=true; //enabled speed regulation

i=0;

iSumOfSpeed=0;

}

else{

cSamplesOfSpeed[i]=TCNT0; //inserting to an array values of speed in iteration

iSumOfSpeed+=TCNT0; //summing speed values

TCNT0 = 0x00; //counter reset

i++;

}

DISTRIBUTED CONTROLLERS SYSTEM

 Page 72

}

cDelay++;

iWorkTime++;

sei();

}

//--TIMER

//--USART RX

ISR(USART_RXC_vect){//this interrupt is triggered when USART receive character

//cli();

char c=UDR; //obtaining character from the USART

char cSumBuffor[3]={0,0,0};

int iChSumRead=0;

int iChSumCalc=0;

if(c==13){ //13 is ascii code of EOF(end of line)

for(int n=cReadChars-3;n<cReadChars;n++) cSumBuffor[n-

cReadChars+3]=cReceivedBuffer[n]; //retrieve checksum from received data

iChSumRead=atoi(cSumBuffor);

for(int n=0;n<cReadChars-4;n++) iChSumCalc+=(int)cReceivedBuffer[n]; //calculating

checksum of received packet

if(iChSumRead==iChSumCalc){ //corrected frame

bFlagReadyToSplit=true; //enabled string processing

iFramesRecived++;

iChSumCalc=0;

}

else{ //corrupted frame

iFramesError++;

cReadChars=0;

iChSumCalc=0;

for(int n=0;n<sizeof(cReceivedBuffer);n++) cReceivedBuffer[n]=0; //reset of receive

buffer

}

}

else{ //if character is not EOF, add it to the receive buffer

cReceivedBuffer[cReadChars]=c;

cReadChars++;

}

if(cReadChars>sizeof(cReceivedBuffer)) cReadChars=0;

//sei();

}

//--USART RX

void Regulation(void){

int iPI=0;

switch(iMotorNumber){ //choose number of regulated motor

case 0:

Timer0_init(); //start count pulses

if(bFlagPidIsOn==true){

if(iPresetRPM[0]==0) OCR1A=0; //if motor speed is 0, stop motor without regulator

else{

iPI=PI(i,(char)(iPresetRPM[0]/(float)cScalingFactor),cActualSpeed[0],cSamplesOfSpee

d); //obtain corrected value of PWM duty cycle to fulfill preset speed

if(OCR1A+iPI>1023) OCR1A=1023;

else OCR1A+=iPI;

}

}

Timer0_stop(); //stop count pulses

iMotorNumber=1;

PORTD |= (1<<PORTD7); //change input signal for the multiplexer, OC0 count pulses

for motor1

DISTRIBUTED CONTROLLERS SYSTEM

 Page 73

case 1:

Timer0_init(); //start count pulses

if(bFlagPidIsOn==true){

if(iPresetRPM[1]==0) OCR1B=0; //if motor speed is 0, stop motor without regulator

else{

iPI=PI(i,(char)(iPresetRPM[1]/(float)cScalingFactor),cActualSpeed[1],cSamplesOfSpee

d); //obtain corrected value of PWM duty cycle to fulfill preset speed

if(OCR1B+iPI>1023) OCR1B=1023;

else OCR1B+=iPI;

}

}

Timer0_stop(); //stop count pulses

iMotorNumber=0;

PORTD &= ~(1<<PORTD7); //change input signal for the multiplexer, OC0 count pulses

for motor0

break;

}

}

void SplitString(void){

bFlagTransmit=true;

char cBuffor[4]={0,0,0,0};

switch(cReceivedBuffer[0]){ //obtain kind of speed regulation

case 'V' : //voltage regulation (open-loop control system)

bFlagPidIsOn=false; //disable PI regulator

for(int n=0;n<5;n++) cBuffor[n]=cReceivedBuffer[n+3];

switch(cReceivedBuffer[1]){ //obtain motor number

case '0': //motor 0

switch(cReceivedBuffer[2]){ //obtain motor direction

case 'R': //right

PORTD &= ~(1<<PORTD2); //change direction

OCR1A=atoi(cBuffor); //obtain value of supply voltage

break;

case 'L': //left

PORTD |= (1<<PORTD2); //change direction

OCR1A=atoi(cBuffor); //obtain value of supply voltage

break;

}

break;

case '1': //motor 1

switch(cReceivedBuffer[2]){ //obtain motor direction

case 'R': //right

PORTD &= ~(1<<PORTD3); //change direction

OCR1B=atoi(cBuffor); //obtain value of supply voltage

break;

DISTRIBUTED CONTROLLERS SYSTEM

 Page 74

case 'L': //left

PORTD |= (1<<PORTD3); //change direction

OCR1B=atoi(cBuffor); //obtain value of supply voltage

break;

}

break;

}

break;

case 'S' : //speed regulation (close-loop control system)

for(int n=0;n<5;n++) cBuffor[n]=cReceivedBuffer[n+3];

switch(cReceivedBuffer[1]){ //obtain motor number

case '0': //motor 0

switch(cReceivedBuffer[2]){ //obtain motor direction

case 'R':

PORTD &= ~(1<<PORTD2); //change direction

iPresetRPM[0]=atoi(cBuffor); //obtain value of preset speed

break;

case 'L':

PORTD |= (1<<PORTD2); //change direction

iPresetRPM[0]=atoi(cBuffor); //obtain value of preset speed

break;

}

break;

case '1': //motor 1

switch(cReceivedBuffer[2]){ //obtain motor direction

case 'R':

PORTD &= ~(1<<PORTD3);//change direction

iPresetRPM[1]=atoi(cBuffor); //obtain value of preset speed

break;

case 'L':

PORTD |= (1<<PORTD3);//change direction

iPresetRPM[1]=atoi(cBuffor); //obtain value of preset speed

break;

}

break;

}

bFlagPidIsOn=true;//enable PI regulator

break;

case 'C' : //enable/disable communication

if((atoi(cReceivedBuffer))==1) (

DISTRIBUTED CONTROLLERS SYSTEM

 Page 75

bFlagTransmit=true;

iFramesRecived=0;

iFramesError=0;

iFramesTransmitted=0;

}

if((atoi(cReceivedBuffer))==0){

bFlagTransmit=false;

}

break;

case 'P' : //obtain value of proportional gain

fKp=atoi(cReceivedBuffer)/(float)100;

break;

case 'I' : //obtain value of integration gain

fKi=atoi(cReceivedBuffer)/(float)100000;

break;

case 'T' : //obtain value of the integration time interval

cNumberOfIterations=(char)atoi(cReceivedBuffer);

break;

case 'G' : //send statistical informations

bFlagSendInfo=true;

break;

case 'F' : //ramka odpowiedziala za odebranie informacji o częstotliwośći nadawania

cBuffor[0]=cReceivedBuffer[1];

cBuffor[1]=cReceivedBuffer[2];

cTransmitionDelay=(char)atoi(cBuffor);

bFlagTransmit=true;

break;

}

cReadChars=0;

for(int n=0;n<sizeof(cReceivedBuffer);n++) cReceivedBuffer[n]=0;//reset buffor

}

void SendSpeedVoltage(int iSendNumber){

char cStringToSend[13];

iSaturation[0]=(int)100*((OCR1A)/(float)(1023));//obliczanie aktualnego wypełnienia

PWM dla silnika0

iSaturation[1]=(int)100*((OCR1B)/(float)(1023));//obliczanie aktualnego wypełnienia

PWM dla silnika1

sprintf(cStringToSend,"SV%d%4.d,%3.d",iSendNumber,iActualRPM[iSendNumber],iSaturati

on[iSendNumber]);

sprintf(cStringToSend,"%s,%d\r\n",cStringToSend,USART_checkSum(cStringToSend));

iFramesTransmitted+=USART_sendString(cStringToSend);

}

void SendInformation(void){

//preparing statistical information to send to supervisor application

char cLine[36];

sprintf(cLine,"I%6.lu",iFramesRecived);

sprintf(cLine,"%s,%6.lu",cLine,iFramesTransmitted);

sprintf(cLine,"%s,%4.d",cLine,iFramesError);

sprintf(cLine,"%s,%6.u",cLine,(int)(iWorkTime/(float)cTimeInterval));

sprintf(cLine,"%s,%6.d\r\n",cLine,USART_checkSum(cLine));

iFramesTransmitted+=USART_sendString(cLine);

DISTRIBUTED CONTROLLERS SYSTEM

 Page 76

}

int main (void){

//PINS ROLE AND CONFIGURATION:

//OC0- PORTB-0-pulses counter from encoders

//RX- PORTD-0

//TX- PORTD-1

//DIR0 PORTD-2-switching the demultiplexer, switching PWM signals for L293D,

changing the direction of motor 0 rotation

//DIR1 PORTD-3-switching the demultiplexer, switching PWM signals for L293D,

changing the direction of motor 1 rotation

//OC1A- PORTD-4-PWM channel A, controlling signal for the motor 0

//OC1B- PORTD-5-PWM channel A, controlling signal for the motor 1

// PORTD-6

//EncoderPORTD-7-switching the multiplexer, switching input signals for the Timer 0

input (OC0)

//ports configuration

DDRD = 0xFF;

PORTD = 0xFF;

DDRB = 0xFE;

int iSendMotorNumber=0;

cScalingFactor=(char)(60*cTimeInterval/(float)cEncoderResolution);

iPresetRPM[0]=iPresetRPM[1]=0;

char cStringToSend[13];

char cInformationDelay=0;

USART_init(19200,8); //initialize serial communication

Timer0_init(); //counting pulses

Timer1_init(8); //generating the PWM signals

Timer2_init(); //generating constant time periods

sei();

while(1){//---INFINITE

LOOP

if(bFlagRegulation==true){

Regulation(); //enable PI regulator

bFlagRegulation=false;

}

if(bFlagToSend==true){

//preparing information about motors speed and supply voltage

iSaturation[0]=(int)100*((OCR1A)/(float)(1023)); //computing the actual percent

value of duty cycle PWM signal for the motor 0

iSaturation[1]=(int)100*((OCR1B)/(float)(1023)); //computing the actual percent

value of duty cycle PWM signal for the motor 1

sprintf(cStringToSend,"SV%d%4.d,%3.d",(int)iSendMotorNumber,iActualRPM[iSendMotorNu

mber],iSaturation[iSendMotorNumber]);

sprintf(cStringToSend,"%s,%d\r\n",cStringToSend,USART_checkSum(cStringToSend));

iFramesTransmitted+=USART_sendString(cStringToSend); //send infomation about

speed&volate

bFlagToSend=false;

cInformationDelay++;

if(cInformationDelay==20) bFlagSendInfo=true; //send statistical informations

if(iSendMotorNumber==0) iSendMotorNumber=1; //switch motor number

