List of Figures

Figure NamePage 2	No.
Fig 1.1: The anatomy of the Brachial Artery in Human Beings	4
Fig 3.1: 2D schematic of modeled blood vessel geometry and boundary	
conditions	28
Fig 3.2: Geometry after joining the Co-ordinates	30
Fig 3.3: Face creation in the geometry	31
Fig 3.4: Zone creation in the geometry	31
Fig 3.5: Geometry after meshing in four quadrants	32
Fig 3.6: Geometry after meshing	32
Fig 4.1: Contours of Static pressure (a) and Vectors of the velocity distribution (b)	
across the length of brachial artery. 40)-41
Fig 4.2: xy plot of Static Pressure in case1	42
Fig 4.3: xy plot of Static Pressure in case 1 at outlet1 and 2	42
Fig 4.4: Curve length of velocity magnitude at inlet in case1	43
Fig 4.5: Curve length of velocity magnitude at outlet1 in case 1	43
Fig 4.6: Curve length of velocity magnitude at outlet 2 in case 1	44
Fig 4.7: (a) Static Pressure contours of the case2, (b) xy plot of the Static Pressure	45
Fig 4.8: xy plot of Static Pressure at inlet in case 2	46
Fig 4.9: xy plot of Static Pressure at outlets in case 2	47
Fig 4.10: Contours (a), (b) of Static Pressure and Velocity change respectively in	
the normal individuals of Systemic Lupus Erythematosus	48

Fig 4.11: Pressure contours (a),(b),(c) at inlet ,bifurcation and outlet respectively	
for the SLE condition	49
Fig 4.12: xy plot of Static pressure in SLE condition	49
Fig 4.13: Vectors of Velocity magnitude (a, b, c, d) of SLE at inlet, bifurcation	
and outlet 1,2 respectively	50
Fig 4.14: xy plot of Static Pressure (a), (b) at inlet in normal and SLE patient	52
Fig 4.16: xy plot of Static pressure (a), (b) at outlets of normal and SLE patients	53
Fig 4.17: Static Pressure contours (a),(b),(c) at inlet ,bifurcation and outlet	
respectively for Glomerulonephritis patient	54-55
Fig 4.18: xy plot of Static Pressure in Glomerulonephritis condition	55
Fig 4.19: Vectors of Velocity magnitude (a, b, c, d) of patient at inlet,	
bifurcation, outlet1, 2 respectively	56
Fig 4.20: xy plot of Static Pressure at inlet in case 5	58
Fig 4.21: xy plot of Static Pressure at outlets in case 5	58
Fig 4.22: Contours of Static Pressure (a),(b),(c) at inlet ,bifurcation and	
outlet respectively for Rheumatoid Arthritis patients	59-60
Fig 4.23: Vectors of velocity magnitude (a, b, c, d) of Rheumatoid Arthritis	
patients at inlet, bifurcation, outlet1,2 respectively	60-61
Fig 4.24: xy plot of static pressure in Rheumatoid arthritis patients with	
extra articular diseases	61
Fig 4.25: xy plot of Static Pressure at inlet of case 6	63
Fig 4.26: xy plot of Static Pressure at outlet in case 6	63

List of Tables

Table Name	Page No.
Table 3.1: Geometry and Boundary conditions	29
Table 3.2: Coordinates of the geometry	29
Table 3.4: Boundary conditions for Systemic Lupus Erythematosus	36
Table 3.5: Boundary conditions for Glomerulonephritis	37
Table 3.6: Boundary conditions for Rheumatoid Arthritis	39
Table 4.1: Mass Weighted Average Surface integrals of flow were shown	41
Table 4.2: Mass Weighted Average surface integrals of flow	46
Table 4.3: Mass Weighted Average Surface integrals of flow in case3	47
Table 4.3: Mass Weighted Average Surface integrals of the case under	
study i.e. Systemic Lupus Erythematosus	51
Table 4.4: Mass Weighted Average surface integrals of the case under	
study i.e. Glomerulonephritis	57
Table 4.5: Mass Weighted Average surface integrals of Rheumatoid Arthritis	62

Abstract

Immune complexes are clusters of interlocking antigens and antibodies. Under normal conditions immune complexes are rapidly removed from the bloodstream by macrophages in the spleen and Kupffer cells in the liver. In some circumstances, however, immune complexes continue to circulate. Eventually they become trapped in the tissues of the kidneys, lung, skin, joints, or blood vessels. There they cause inflammation and tissue damage. Immune complexes work their damage in many diseases. Frequently, immune complexes develop in autoimmune disease, where the continuous production of autoantibodies overloads the immune complex removal system. Using the presently available techniques autoimmune disease is detected at a very advanced stage where treatment becomes impossible.

The flow characters of immune complexes were studied using CFD software which showed the particles flow was in laminar flow. Numerical methods have emerged as an important tool to research on bioengineering topics, which involve Computational Fluids Dynamics (CFD) analysis by FLUENT software. The initial model for importing into the FLUENT was done using the GAMBIT software. Thus all the relevant data like velocity, density, friction loss, particle motion etc. were graphically obtained from the software and the results was analyzed.

Further there is no prognosis method available at the onset of the autoimmune disease. With the help of CFD and using its applications in blood flow simulation the change in blood pressure during the onset of the autoimmune disease was determined. Hence by using a drop of blood to assess the immune complex load and change in pressure values with the available concentration of immune complexes can be detected. Further risk of the onset of coronary complications of autoimmune diseases can be predicted in a completely non invasive method.

Aim and Objectives

- 1. To construct the 2D arterial geometry in GAMBIT including one branching of artery into arteriole.
- 2. To Standardize Parameters of flow dynamics using FLUENT simulating normal arterial flow in Brachial Artery.
- 3. To study change in pressure due to circulating immune complexes and the resulting systolic/diastolic pressure characteristics useful for diagnostics.
- 4. Diagnosis and Prognosis of circulating immune complex in Autoimmune Diseases.