
i

CERTIFICATE

This is to certify that the work contained in this dissertation entitled “Load Balancing

and Job Migration in Grid Computing” submitted in the partial fulfillment, for the

award for the degree of M. Tech. in Computer Technology and Applications at DELHI

TECHNOLOGICAL UNIVERSITY is done by MANISH GUNWAN, University

Roll No. 10/CTA/2k10 is carried out by him under my supervision. This matter

embodied in this project work has not been submitted earlier for the award of any degree

or diploma in any university/institution to the best of our knowledge and belief.

 (Mr. RAJESH KUMAR YADAV)

 Project Guide

 (Assistant Professor)

 Department of Computer Engineering

 Delhi Technological University, Delhi

ii

ACKNOWLEDGEMENT

First of all, let me thank the almighty god, my parents and my dear friends who are the

most graceful and merciful for their blessing that contributed to the successful completion

of this project.

I feel privileged to offer sincere thanks and deep sense of gratitude to Mr. RAJESH

KUMAR YADAV, project guide for expressing his confidence in me by letting me work

on a project of this magnitude and using the latest technologies and providing their

support, help & encouragement in implementing this project.

I would like to take this opportunity to express the profound sense of gratitude and respect

to all those who helped us throughout the duration of this project. DELHI

TECHNOLOGICAL UNIVERSITY, in particular has been the source of inspiration, I

acknowledge the effort of those who have contributed significantly to this project.

 MANISH GUNWAN

 (Roll No.: 10/CTA/2k10)

iii

Abstract

Grid computing is applying the resources of many computers in a network to a single problem

at the same time - usually to a scientific or technical problem that requires a great number of

computer processing cycles or access to large amounts of data. Grid computing appears to be a

promising trend because its ability to make more cost-effective use of a given amount of

computer resources, as a way to solve problems that can't be approached without an enormous

amount of computing power, and because it suggests that the resources of many computers can

be cooperatively and perhaps synergistically harnessed and managed as a collaboration toward

a common objective. Grid Computing has progressed a lot, yet, there are some areas of

concern, like resource management, resource scheduling, load balancing and security over

which, research is still in progress.

Load balancing is a great challenge in dynamic and heterogeneous environment like Grids.

Load balancing is a technique to enhance resources, utilizing parallelism, improve throughput,

and to cut response time through an appropriate distribution of the applications. The

main goal of load balancing is to provide a distributed, low cost, scheme that balances the

load across all the processors. An effective and efficient load balancing algorithm is

required to balance the load in Grid environment, which is a tedious task due to basic nature

of Grid environment.

Focus of this thesis is to analyze all the existing load balancing algorithms and to do a

comparative study. After considering all pros and cons of all the existing algorithms, a new

load balancing algorithm has been proposed based on all positive aspects of existing

algorithms.

iv

Table of Content

Certificate…………………………………………………………………...i

Acknowledgement …………………………………………………………ii

Abstract……..………………………………………………………………iii

Table of Content…………………………………………………………....iv

List of Figures…………………… …………………………………...……vi

List of Tables………………………………………………………….…...vii

Chapter 1 Introduction……………………...……… ……………………1

1.1 Evolution of Grid Computing…………………… ……………...1

1.2 Characteristics of Grid Computing………………………..……...5

1.3 Types of Grid…………………………………..…………………8

1.4 Grid Protocol Architecture…………………………..…………..10

1.5 Research Motivation…………………………..…………………11

1.6 Thesis Organization……………………….…………………….12

Chapter 2 Literature Survey...………….……………………..……..…14

2.1 Load Balancing..…...14

2.1.1 Load Balancing Category……………………………....15

2.1.2 Load Balancing Strategies……………………..……….17

2.1.3 Load Balancing Policies………………………………..22

2.2 Challenges of load balancing in Grid Computing…….………....24

 2.3 Load balancing Algorithms…………………………….…..……26

 2.3.1 Load Balancing Mechanism……………………….…...26

2.4 Conclusion………………………………………………………31

v

Chapter 3 Problem Formulation..…...32

Chapter 4 Proposed Load Balancing Algorithm ……………………….33

4.1 Factors for Initiating Load Balancing Algorithm……………….33

4.2 Comparative Analysis of Existing Load Balancing Algorithms...34

4.3 Proposed Load Balancing Algorithms…………..………………37

4.3.1 Architecture of Load Balancing System……………..…37

4.3.2 Design of Proposed Load Balancing Algorithm………..38

4.3.3 Complexity of Proposed Load Balancing Algorithm…..40

 4.4 Implementation Details…………………………………………40

 4.4.1 Technology Used…………………………….…………40

 4.4.2 Implementation of Algorithm………………………….43

 4.5 Conclusion………………………………………………………44

Chapter 5 Experiment Results…………………………………………45

Chapter 6 Conclusions and Future Scope………………………….…...49

6.1 Conclusions……………………………………………………...49

6.2 Future Scope…………………………………………………….49

References…………………………………………………………………50

vi

List of Figures

S. No. Title Page No.

Figure 1.1 General View of Distributed Computing....................................2

Figure 1.2 Evolution of Grid…………………………………………….…….......4

Figure 1.3 Grid Protocol Architecture vs. TCP/IP Protocol Architecture..11

Figure 2.1 Static Load Balancing……….……………………………………….15

Figure 2.2 Dynamic Load Balancing…………………………………………...17

Figure 2.3 Performance of S.I. v/s R.I. Strategies…….……..…...…….18

Figure 2.4 Centralized Strategies………………………………………………..20

Figure 2.5 Decentralized Strategies……………….……………………..21

Figure 4.1 System overall Architecture…………….……………………37

Figure 4.2 Implementation view of Algorithm………………………….38

Figure 4.3 Flowchart of Proposed Algorithm…………...………………39

Figure 4.4 Design of web pages………………………………….……….43

Figure 4.5 Schema of jobSubmit table……………………………………44

Figure 5.1 Main page of Load Balancing Algorithm..……………………45

Figure 5.2 Status of jobs…………….……………………………………46

Figure 5.3 Error messages…………..……………………………………47

Figure 5.4 Overloading messages…..……………………………………47

vii

List of Tables

S. No. Title Page No.

Table 1.1 Historical Background of the Grid…………………………....3

Table 4.1 Comparative study of Existing Algorithms…………….…... 36

1

Chapter 1 Introduction

Grid is emerging as a wide-scale infrastructure that promises to support resource sharing and

coordinated problem solving in dynamic and heterogeneous environment [1]. Grid computing

is focused on the ability to support computation across multiple administrative domains that

sets it apart from traditional distributed computing. Grids offer a way of using the information

technology resources optimally inside an organization involving virtualization of computing

resources [4]. Grid computing can be thought of as distributed and large-scale cluster

computing and as a form of network-distributed parallel processing.

This chapter gives an overview of all aspects of grid computing. It discusses the technologies

like distributed computing, parallel computing and various kinds of grid based services,

different topologies of the grid and benefits of a grid environment.

1.1 Evolution of Grid Computing

Distributed computing is the combination of widely spread computational machines, to solve

the large commutative problems like, weather forecasting, satellite launching and earthquake

predetermination etc. Distributed computing is another form of parallel computing where

program parts, run on different machine simultaneously, in parallel computing program

parts run simultaneously on multiple processors in the same computer. Both types of

processing requires dividing a program into parts that can run simultaneously. Distributed

programs o ft en deal with het erogeneous environments, network links of varying

latencies, and unpredictable failures in the network or the computers [3].

2

Distributed computing connects the two remotely situated machines via a program in which

it makes call to other machine taking its address space as shown in Figure1.1. There are

many nodes in distributed computing but a node in distributed environment does not know

the hardware architecture on which the recipient is running, or the platform in which

the recipient is implemented. There are many differences between local and distributed

computing like throughput, memory access, concurrency and partial failure. In all these

differences latency and memory access are well known and others are more difficult to explain

[3].

The main problem in distributed computing is to manage all distributed resources by central

resource manager along with managing issues related to performance, concurrency,

communication, failure handling, deadlocks and security [3].

Figure 1.1 General View of Distributed Computing [38]

3

Moreover multiple point failure and more opportunities for unauthorized attack in

distributed computing has paved way for grid computing which has thus evolved from

distributed computing.

The Term “Grid” was coined in the mid 1990s to denote a proposed grid computing

infrastructure for advanced science and engineering [15]. Back in 1965 the developers of an

operating system called Multics (an ancestor of UNIX), presented a vision of

"Computing as a Utility" - in many ways uncannily like the grid vision today. Access to the

computing resources was envisioned to be exactly like access to utility such as electricity -

something that the client connects to and pays for according to the amount of use. This led to

coining of the term “Grid” [16].

The basic idea behind the grid is sharing computing power. Now-a-days most people have

more than enough computing power on their own PC. A number of applications need more

computing power that can be offered by a single resource or organization in order to solve

them within a feasible/reasonable span of time and cost. Computational resources and using

them for solving large-scale problems. Such emerging infrastructure is called computational

grid, and led to the popularization of a field called grid computing [15]. Table 1.1 below shows

historical background of the grid.

Table 1.1 Historical Background of Grid [15]

Technology Year

Networked Operating Systems 1979-81

Distributed Operating Systems 1988-91

Heterogeneous computing 1993-94

Parallel and grid computing 1995-96

The grid 1998

4

Cluster and Intranet computing are the parents of grid computing as shown in Figure 1.2. They

came in existence, but there were many drawbacks due to which both technologies couldn’t

survive for a long time. There is collection of interconnected computers which are tightly

coupled in case of cluster computing. This computing is cost effective but communication

overhead, resource wastage and maintenance are its major drawbacks [36].

Figure 1.2 Evolution of Grid [36]

Intranet computing uses resources of a department network and management tool for

running parallel jobs. In this computing, high reliability and scalability are due to high no.

of resources used. Some drawbacks are lack of proper resource management and basic

protocols and interfaces not based on open standards and no use of resources out of the

domain of administration.

5

1.2 Characteristics of Grid Computing

In today’s complex world computers have become extremely powerful and they are

enough capable to run more complex problem, still there are many complex scientific

experiments, advanced modeling scenarios, genome matching, astronomical research, a wide

variety of simulations, complex scientific & business modeling scenarios and real- time

personal portfolio management, which require huge amount of computational resources.

To satisfy some of these aforementioned requirements, grid computing is being utilized [2].

Grid computing offers seamless access to distributed data and collaborative distributed

environments, for running computationally intensive applications. Computing power available

to any organization can thus be increased by using the idle periods of computing

resources [1].

(a) Exploiting Underutilized Resources

In most organizations, there are large amounts of underutilized computing resources. Most

desktop machines are busy less than 5 percent of the time. In some organizations, even the

server machines can often be relatively idle. Grid computing provides technique for exploiting

these underutilized resources and thus has the possibility of substantially increasing the

efficiency of resource usage.

(b) Parallel CPU Capacity

The potential for massive parallel CPU capacity [35] is one of the most attractive features of a

grid. In addition to pure scientific needs, such computing power is driving a new evolution in

industries such as the bio-medical field, financial modeling, oil exploration, motion picture

animation, and many others. The common attribute among such uses is that the applications

have been written to use algorithms that can be partitioned into independently running parts.

6

(c) Collaboration of Virtual Resources

In the past, grid computing promised this collaboration and achieved it to some extent. Grid

computing takes these capabilities to an even wider audience, while offering important

standards that enable very heterogeneous systems to work together to form the image of a

large virtual computing system offering a variety of virtual resources. The users of the grid

can be organized dynamically into a number of virtual organizations [1] each with different

policy requirements. These virtual organizations can then share their resources collectively as

a larger grid.

(d) Access to Additional Resources

In addition to CPU and storage resources, a grid can provide access to increased

quantities of other resources and to special equipment, software, licenses, and other services.

The additional resources can be provided in additional numbers and or capacity. For example,

if a user needs to increase his total bandwidth to the internet to implement a data mining

search engine, the work can be split among grid machines that have independent

connections to the internet [35].

(e) Reliability

Grid provides reliability in terms of failure at one location; the other parts of the grid are not

likely to be affected. Grid management software can automatically or manually resubmit

jobs most of the times to other machines on the grid when a failure is detected. In critical,

real-time situations, multiple copies of the important jobs can be run on different machines

throughout the grid. Their results can be checked for any kind of inconsistency, such as

computer failures, data corruption, or tampering; thus offering much more reliability [35].

7

(f) Resource Balancing

A grid federates a large number of resources contributed by individual machines into a

greater total virtual resource. For applications that are grid-enabled, the grid can offer a

resource balancing effect by scheduling grid jobs on machines with low utilization. This

feature can prove invaluable for handling occasional peak loads of activity in parts of a

larger organization [1].

(g) Heterogeneity

A grid hosts both software and hardware resources that can be extremely diverse ranging from

data, files, software components or programs to sensors, scientific instruments, display

devices, personal digital organizers, computers, super-computers and networks [17]. A grid

involves a variety of resources that are heterogeneous in nature and might span several

administrative domains across wide geographical distances. Resources are owned and

managed by different, potentially mutually suspicious organizations and individuals that

likely have different security policies and practices [18].

(h) Scalability

It is a desirable property of a system, a network or a process, which indicates its ability to

either handle growing amounts of work in a graceful manner, or to be readily enlarged. A grid

might grow from few resources to millions [19]. This raises the problem of potential

performance degradation as grid’s size increases. Consequently, applications that require a

large number of geographically located resources must be designed to be extremely latency

tolerant [20].

8

(i) Dynamicity or Adaptability

In a grid, a resource failure is the rule, not the exception. As in a grid there are numerous

resources, the probability of some resource failing is naturally very high. The resource

managers or applications must modify their behavior dynamically so as to extract the

maximum performance from the available resources and services [20].

(j) Resource Coordination

Resources in a grid must be coordinated in order to provide aggregated computing

capabilities [17].

(k) Reliable Access

A grid must assure the delivery of services under established Quality of Service (QoS)

requirements. The need for reliable service is elementary since administrators require

assurances that they will receive expected, continuous and often high levels of performance

[20].

1.3 Types of Grid

There are different types of grid, providing computational capabilities, large data sets,

infrastructure within the grid middleware and on-demand services. These are as follows:

(a) Computational Grid

Computational grid is hardware and software infrastructure that provides dependable,

consistent, pervasive, and inexpensive access to high-end computational capabilities and that

enables coordinated resource sharing within dynamic organizations consisting of individuals,

institutions, and resources. Thus computational grid is designed so that users won’t have to

worry about where scientific and engineering computations are being performed [1].

9

(b) Data Grid

In present time grid application areas are shifting from scientific computing to industry and

business applications, that’s why data grids is an enhancement of computational grids, and

have been designed to store, move and manage large data sets exploited in distributed data-

intensive applications [5]. Data Grid represents a combination of large data sets, currently

terabytes and will grow to petabytes due to geographic distribution of users, resources and

computational intensive analysis results in complex and strict performance demands that

cannot be satisfied by ordinary data infrastructure [28].

(c) Semantic Grid

Semantic Grid is supported by two key building blocks – semantic web technologies for

creating and maintaining models (ontology’s), and semantic aware services and protocols for

exchanging metadata [7]. Semantic Grid is an extension of grid and provides the

infrastructure that systematically manages the complete lifecycle of metadata. Semantic Grid

aims to provide an infrastructure within the grid middleware – providing a core set of

services and protocols to support the sharing and management of all aspects of metadata.

This will enable unanticipated reuse of grid services and resources, better support for

interoperability, and flexible grids [6].

(d) Knowledge Grid

Knowledge Grid is an intelligent, sustainable internet application environment that

enables people or virtual roles (mechanisms that facilitate interoperation among users,

applications, and resources) to effectively captures, publish, share, and manage explicit

knowledge resources [8]. It also provides on-demand services to support innovation,

cooperative teamwork, problem solving, and decision-making.

10

(e) Service Grid

Service Grids are created in order to realize the business potential of web services.

Service Grids represent distributed architectural component that realize an array of

service business or utilities owning and deploying specific enabling services. Services

businesses on the other hand, may either be specialized and independent businesses or

revenue centers within larger enterprises offering their specialized enabling services to other

enterprises [9].

1.4 Grid Protocol Architecture

Grid Protocol Architecture contains five layers which are shown in Figure 1.3 and described

as under [11]:

(a) Fabric Layer

This layer is common low-level interfaces to computational and data resources, storage

systems, catalogs, network resources and sensors e.g. resource descriptions, job control, file

access, etc.

(b) Connectivity Layer

Main working of this layer is to provide communication between different layers and

protocols. It exchanges messages and data streams using internet protocol stack.

(c) Resource Layer

Resource layer provide secure negotiation, initiation, monitoring, control, accounting and

payment of shared operations on individual resources. It also handles of individual resources

by using fabric layer function. It uses two classes of protocols, informational and

management protocols.

11

(e) Collective Layer

This layer implements, different type of sharing behaviors on the resources, without

placing new requirements. This helps to coordinate the multiple resources and works for

general purpose to highly application and domain specific services also. Some collective

services are directory services co-allocation, scheduling and brokering, monitoring,

diagnostics grid-enabled programming systems workload management, community

accounting and payment and software discovery.

 Figure 1.3 Grid Protocol Architecture vs. TCP/IP Protocol Architecture [36]

(d) User Layer:

This layer provides easy user interface to user so that he could use the application easily. This

uses the middleware API (application programming interface) and SDK (software

development kit) for accelerated development.

12

1.5 Research Motivation

Distributed Computing is an environment in which a group of independent and geographically

dispersed computer systems take part to solve a complex problem [13]. Key characteristic of

Grid Computing is to utilize the ideal CPU cycles and network capacities among numerous

applications; therefore number of resources available to any given application varies

irregularly over time. In this scenario load balancing plays key role for those applications which

are grid enabled. To minimize this disturbed situation (time needed to perform all tasks), the

load should be equally spread over all resources based on their processing speed. Important

goal of load balancing consists primarily to make best use of the average response time of

applications, which frequently means distribution of the load proportionally equivalent on the

whole resources of a system.

This work focuses on load balancing in a grid environment. Grid application performance is

critical in grid computing environment. So to achieve high performance we need to understand

the factors that can affect the performance of an application like load balancing, which is

one of most important factors that influence the overall performance of application. Although

load balancing methods in conventional parallel and distributed systems have been intensively

studied, they do not work in grid architectures because these two classes of environments are

radically distinct and hence this area has been chosen in this research work [37].

1.6 Thesis Organization

Chapter 2 discusses all the existing categories, strategies of algorithms along with

algorithms related to load balancing. Finally it discusses the problems found in existing load

balancing.

Chapter 3 describes the problem formulation.

13

Chapter 4 discusses the factors for initiating load balancing algorithms, comparative study

of existing load balancing algorithms, designing of proposed load balancing algorithms

and implementations details.

Chapter 5 describes the experimental results of proposed algorithm.

Chapter 6 summarizes the work presented in this thesis followed by future scope of this

work.

14

Chapter 2 Literature survey

Grid practically merges entirely distributed nodes and information systems to reach a

common goal to solve a single task. A grid can offer a resource balancing effect by scheduling

grid jobs at machines with lower utilization. An optimized scheduling and efficient load

balancing across the grid can lead to improve overall system efficiency and a lower turn-

around time for particular jobs. Load balancing is required to distribute the resource’s load

equally so that maximum resource utilization and minimum task execution time could be

possible. This is very crucial concern in distributed environment, to fairly assign jobs to

resources. This chapter provides the details about the existing load balancing algorithms.

2.1 Load Balancing

Load balancing is a technique to enhance resources, utilizing parallelism, exploiting

throughput improvisation, and to cut response time through an appropriate distribution of

the applications [14]. To minimize the decision time is one of the objectives for load

balancing which has yet not been achieved. Job migration is the only efficient way to

guarantee that submitted jobs are completed reliably and efficiently in case of process

failure, processor failure, node crash, network failure, system performance degradation,

communication delay; addition of new machines dynamically even though a resource

failure occurs which changes the distributed environment [23].

Generally, load balancing mechanisms can be broadly categorized as centralized or

decentralized, dynamic or static, and periodic or non-periodic [21]. All load balancing

methods are designed such as, to spread the load on resources equally and maximize their

utilization while minimizing the total task execution time. Selecting the optimal set of jobs

15

for transferring has a significant role on the efficiency of the load balancing method as well as

grid resource utilization. This problem has been neglected by researchers in most of previous

contributions on load balancing, either in distributed systems or in the grid environment [22].

There are different types of load balancing policies, strategies and categories which give

different results to users in different environments or under different circumstances.

Some load balancing policies, category and strategies have been discussed in subsequent

sections.

2.1.1 Load Balancing Categories

Load balancing problem has been discussed in traditional distributed systems literature for

more than two decades and various algorithms, strategies and policies have been proposed,

classified and implemented [28]. Load balancing algorithms can be classified into two

categories, static and dynamic.

(a)Static Algorithms

Static load balancing algorithms allocate tasks of a parallel program to workstations based

on either the load at the time nodes, or based on average load of workstation cluster.

 Figure 2.1 Static Load Balancing [28]

Resources

Information

Application Scheduler

Initial Knowledge about

jobs and systems

16

The decisions related to load balance are made at compile time when resource

requirements are estimated. The advantage in this sort of algorithm is the simplicity in

terms of both implementation as well as overhead, since there is no need to constantly

monitor the workstations for performance statistics [12].

However, static algorithms only work well, when there is not much variation in the load on

the workstations. Clearly, static load balancing algorithms aren’t well suited to a grid

environment, where loads may vary significantly at various times. A few static load

balancing techniques are [23]:

 Round-Robin Algorithm: tasks are passed to processes in a sequential order, when the last

process has received a task the schedule continues with the first process (a new round) [39].

 Randomized Algorithm: allocation of tasks to processes is random [40].

 Simulated Annealing or Genetic Algorithms: mixture allocation procedure including

optimization techniques [41].

Drawbacks of Static Load Balancing Algorithms:

 It is very difficult to estimate a-priori (in an accurate way) the execution time of various

parts of a program.

 Sometimes there are communication delays that vary in an uncontrollable way.

 For some problems the number of steps to reach a solution is not known in advance.

(b) Dynamic Algorithms:

According to the name dynamic load balancing algorithms takes decision at run time, and use

current or recent load information when making distribution decisions. In grid environment

with dynamic load balancing allocate/reallocate resources at runtime based on no a priori task

information, which determine when and which task has to be migrated [10].

17

Dynamic Grid Information

Resources

Information
Applications Scheduler

Initial Knowledge
about Jobs and

Systems

Figure 2.2 Dynamic Load Balancing [28]

After using effectively dynamic load balancing algorithms can provide a significant

improvement in performance over static algorithms. But this comes at the additional cost of

collecting and maintaining load information, so it is important to keep these overheads within

reasonable limits [29].

2.1.2 Load Balancing Strategies

There are three major parameters which usually define the strategy of a specific load balancing

algorithm [33]. These three parameters answer three major questions.

 Who makes the load balancing decision?

 What information is used to make the load balancing decision?

 Where the load balancing decision is made?

Some load balancing strategies are being discussed in the following section

18

.

(a)Sender-Initiated v/s. Receiver-Initiated Strategies:

In sender-initiated policies, congested nodes attempt to move work to lightly-loaded

nodes. In receiver-init iated policies, lightly-loaded nodes look for heavily-loaded nodes from

which work may be received [29]. Figure-3.4 shows the relative performance of a sender-

initiated and receiver-initiated load balancing algorithm. As can be seen, both the sender-

initiated and receiver-initiated policies perform substantially better than a system which has

no load sharing.

 Figure 2.3 Performance of Sender-Initiated v/s Receiver-Initiated Strategies [29]

The sender-initiated policy performing better than the receiver-initiated policy at low to

moderate system loads. Reasons are that at these loads, the probability of finding a lightly-

loaded node is higher than that of finding a heavily-loaded node.

Similarly, at high system loads, the receiver initiated policy performs better since it is much

easier to find a heavily-loaded node. As a result, adaptive policies have been proposed

19

which behave like sender-initiated policies at low to moderate system loads, while at high

system loads they behave like receiver-initiated policies.

(b) Global v/s. Local Strategies:

Global or local policies answer the question of what information will be used to make a load

balancing decision in global policies. The load balancer uses the performance profiles of all

available workstations. In local policies, workstations are partitioned into different groups.

The benefit in a local scheme is that performance profile information is only exchanged within

the group. The choice of a global or local policy depends upon the behavior of an application,

which will exhibit. For global schemes, balanced load convergence is faster compared to a

local scheme since all workstations are considered at the same time [29].

Local and global scheme fall under the distributed scheme whereas centralized works under

the global scheme. In local strategy every node uses the local information of neighbor

node to balance the node load. Main motive of this strategy is to reduce the remote

communication overhead without using much information as global strategy. In global strategy

more and more information is required to take appropriate decision according to load

distributed there, that’s why scalability is low in global case [34]. However, this requires

additional communication and synchronization between the various workstations; local

schemes minimize this extra overhead but reduced synchronization between workstations

is also a downfall of the local schemes, if the various groups exhibit major differences in

performance. If one group has processors with poor performance (high load), and another

group has very fast processors (little or no load), the later will finish quite early while the

former group is overloaded.

20

(c) Centralized v/s. De-centralized Strategies

A load balancing strategy is categorized as either centralized or distributed, both these define

where load balancing decisions are made [30]. In a centralized scheme, algorithm is located on

one master workstation node and all decisions are made there.

Basic features of centralized approach are:

 There is master node which holds collection of tasks and knows what have to do with

particular task

 Select the node according to task

After execution it takes another task.

 Figure 2.4 Centralized Strategies [30]

Master

Node

Executer

node

Executer

node

Executer

node

21

For centralized schemes, the reliance on one central point of balancing control could limit

future scalability. Additionally, the central scheme also requires an “all-to-one” exchange of

profile information from workstations to the balancer as well as a “one-to-all”

exchange of distribution instructions from the balancer to the workstations. The

distributed scheme helps, to solve the scalability problems, but at the expense of an “all- to-

all” broadcast of profile information between workstations. However, the distributed scheme

avoids the “one-to-all” distribution exchange since the distribution decisions are made on

each workstation [31].

In a de-centralized scheme, the load balancer is replicated on all workstations. There are

different algorithms used in de-centralized scheme for job selection. These algorithms are

round- robin algorithm, random polling algorithm etc [32].

 M N

E N
E N

E N E N

Figure 2.5 Decentralized Strategies (E N executer node, M N master node) [32]

22

(d) Co-operative v/s Non co-operative

In case of co-operative strategy node at which load is being balanced by other node, should

co-operate the other node. If it doesn’t do that it would be non co-operative strategy. In

this it takes its own decision to balance the load [34].

(e) Adaptive vs. Non-adaptive

In adaptive system, it considers the predetermined decision, past and current system

information affected by the previous decision and changed environment and parameters. In non

adaptive environment parameters used in scheme remain same regardless to system past

behavior [34].

(f) One time assignment vs. Dynamic Reassignment

In one time assignment job are assigned to resource only one time and not migrated to other

node whether it is completed or not. But in dynamic reassignment job are migrated

among the different node until it completed. Disadvantages of dynamic reassignment are that

job may be incomplete in such migrating process [34].

1.3 Load Balancing Policies

Load balancing algorithms can be based on many policies; some important policies are

defined below [30].

 Information policy: This policy specifies what workload information should be collected,

when it is to be collected and from where.

 Triggering policy: This policy determines the appropriate period to start a load balancing

operation.

23

 Resource type policy: This policy classifies a resource as server or receiver of tasks

according to its availability status.

 Location policy: This policy uses the results of the resource type policy to find a suitable

partner for a server or receiver.

 Selection policy: This policy defines the tasks that should be migrated from

overloaded resources (source) to most idle resources (receiver).

The main objective of load balancing methods is to speed up the execution of

applications on resources whose workload varies at run time in unpredictable way. Hence

it is significant to define metrics to measure the resource workload. Every dynamic load

balancing method must estimate the timely workload information of each resource [32].

This is the key information in a load balancing system where responses are given to

following questions

 How to measure resource workload?

 What criteria are retaining to define this workload?

 How to avoid the negative effects of resources dynamicity on the workload?

 How to take into account the resources heterogeneity in order to obtain an instantaneous

average workload representative of the system?

Success of a load balancing algorithm depends upon stability of the number of messages

(small overhead), support environment, low cost update of the workload, and short mean

response time which is a significant measurement for a user. It is also essential to measure

the communication cost induced by a load balancing operation, but to achieve all these,

anyone would have to face great challenge in grid environment [31].

24

2.2 Challenges of Load Balancing in Grid Computing

There are many challenges related to load balancing in grid environment. Some are

discussed further:

(a) Resource Heterogeneity

There are two types of resources in computational grid, first one are network resources and

second one are computational resources in which heterogeneity exists. In networks resources

it may be in terms of bandwidth and used network protocols. In case of computational

resource there may be different hardware, architecture, no. of resources, physical memory

size, CPU speed and so on. Heterogeneity results in differing capability of processing, which

is the main cause for load balancing in heterogeneous environment [1].

(b) Site Autonomy

Grid with their distributed ownership and cross-domain organization gives a different type of

problem in grid environment. As a direct result of distributed ownership, resource owners

take management decision regarding local resources, often based on local information

and local requirements. If the whole system would be shared there, then security of the

system may leak. An application from the unauthorized user can’t be run on any system. To

efficiently manage the resources available in grid systems to meet the needs of an ever-

changing and diverse user community, an automated, agile, and adaptive dynamic control

system with grid-wide perspective is needed [3].

(c) Dynamic Behavior

In grid environment, there are more and more problems due to the heterogeneity of resources.

Any time any resource may be available and can be unavailable due to machine failure

25

or connection problems. This dynamic behavior always gives headache to the user of grid

environment [3].

(d) Resource Non-Dedication

Due to non dedication of resource, resource may join the many grid systems

simultaneously. A contention arises there when requests from many users come there. So due

to resource non dedication resource usage contention is the major issue in grid environment.

(e) Application Diversity

In grid environment there is different types of users having different type of applications and

has different requirements. For example some applications may have set of dependent

jobs, other may have independent jobs, and on other side some application requires

sequential execution. Keeping all aspects of jobs in mind, designing a general purpose load

balancing system is extremely difficult [34].

(f) Resource Selection and Computation Data Separation

Resource selection in grid environment is difficult due to large no. of resources, which are

dynamically being joining grid and some are leaving the grid due to machine failure or

connection problem. That’s why the cost data staging is high in grid environment, compare

to traditional systems. Data staging cost is most prominent obstacle in grid environment or

a main problem for designing the efficient and most effective load balancing system in

grid environment [34].

26

2.3 Load Balancing Algorithms

2.3.1 Load Balancing Mechanism

There are some load balancing algorithms like virtual machine migration, node reconfiguration by

user level thread migration, robin-hood an active objects migration mechanism for intranet, load based

graph method and data consolidation. All there are discussed further in details.

(a)Virtual Machine Migration (Live Migration)

In virtual machine migration snapshots of machine are sent to other machine that’s why it is called the

virtual machine migration. There are two methods for virtual machine migration. First one is live

migration and second one is regular migration [24]. In live migration, running domain between the

different host machines is migrated without stopping the job. In between it stops job and gathers all

required data then resumes. But this happens only in same layer-2 network and IP subnet. In regular

migration generally stop the job then migrated.

An important aspect of this mechanism is to make the run-time job migration with non- dedicated shared

resources in dynamic grid environment. Virtual machine migration provides high isolation, security

and customization environment in which administrator privileges the user to execute the work. EtherIP

and IP tunneling are required while migrating in this mechanism. This algorithm redistributes the

load coming to any particular node, which may be the old connected node or newly added node for that

load.

(b) Node Reconfiguration by User Level Thread Migration

This mechanism makes application workload migrate from source node to destination node, and then let

source node depart from original computing environment .There are two mechanism for this, first one is

node reconfiguration by user-level thread migration and another one is node reconfiguration by

27

kernel level thread migration. Node reconfiguration by user level thread migration has been

discussed in this survey.

There are two implementation methods of node reconfiguration. One is synchronous method and

the other is asynchronous method. In synchronous method, all nodes are paused during

reconfiguration. On the other hand, in asynchronous method all nodes continue to work

simultaneously with reconfiguration. Synchronous method may make performance down even

though it is easier to design. Alternatively, better performance can be obtained by asynchronous

method as long as more attention paid to correctly maintain the order of node reconfiguration

messages [24].

Information regarding redistribution of workload and how to add/delete nodes is present in the

implementation of node reconfiguration mechanism. With the help of user level thread migration,

which is already supported by the thread package workload, is redistributed here. Same as

virtual machine migration, node reconfiguration mechanism also needs to transfer in memory states

from source node to destination node.

(c) Check-Pointing Approach

Checkpoint is defined as a designated place in a program at which normal processing is interrupted

specifically to preserve the status information necessary to allow resumption of processing at a later

time. By periodically invoking the check pointing process, one can save the status of a program at

regular intervals. If there is a failure one may restart computation from the last checkpoint thereby

avoiding repeating the computation from the beginning. The process of resuming computation by

rolling back to a saved state is called rollback recovery [25].

There are three types of check pointing implementations, kernel-level, user-level and

application-level. These implementations differ in level of transparency, efficiency and

28

mechanism used to initiate checkpoint and restart. In kernel level check pointing user does

not have to change the application at all so least efficient, because system does not have the

knowledge about the application. Developer achieves user level check pointing, and he puts

or implements some set of procedures that handle check pointing and restart. Developer

knows all about the application that’s why this approach is more efficient. The developer

itself achieves application-level check pointing. This approach is the most efficient,

because developer has detailed knowledge about application.

This is very useful in case of preemption and migration and is used in making fault tolerant

systems. Most common benefits of the check pointing technology are the high level of

fault tolerance offered by the applications that can be check pointed. Besides it used to

recover from failures, playback debugging distributed programs, migrating processes

in a multiprocessor system, software rejuvenation and optimistic simulation. Check-

pointing balances the load of processors in a distributed system; processes are moved from

heavily loaded processors to lightly loaded ones. Check pointing process periodically

provides the information necessary to move it from one processor to another.

(d) Robin Hood: An Active Objects Load Balancing Mechanism for Intranet

Robin-hood algorithms present a new totally non-centralized solution, multicast channel to

communicate, and synchronize the processors and proactive tools to migrate jobs between

them. Proactive techniques are very useful and provide the mobility and security in uniform

framework. This work focuses on dynamic load balancing. Main objective of this algorithm

is to improve the decision time in non-centralized environment. In this mechanism two

basic things have been considered, first one to know about the local load and second one to

transfer the load from high dense node to the less loaded node. This uses the non-centralized

29

architecture and non-broadcasting of the balance of each node to reduce the overload in network.

This is totally non-centralized load balancing mechanism, using the proactive library for the

migration of jobs, and a multicast channel for node coordination [14].

(e) Load Graph Based Transfer Method

Load based graph method is based on network graph where each node is represented with its load,

whereas load can be the number of users, average queue length or the memory utilization. It uses

analytic model and single load determination policy throughout the system and load is determined

on the basis of memory utilization and average queue length. This algorithm is based on three-

layered structure. Top layer is load balancing layer which takes care of token generation, taking

decision about task transfer, middle one is called monitoring layer and acts as an interface between

top and middle and monitors load changes and third one called communication layer which take

care of actual task transfer.

Here token is generated on the basis of outgoing and incoming edges and initialized on the basis of

some specific value HWM & LWM (Highest Water Mark, Lowest Water Mark). Specific values are

decided on the basis of load value of neighbors. Nodes having load value greater than HWM and are

local maxima or nodes having load value less than LWM and are the local minima, can initiate

token [26].

Maximum message transfer per node, if N is number of nodes and X is maximum message transfer

per node Total message transfer =NX

And transfer of task will occur only if there would be proper load difference between the

nodes would be as La - Lb > M where M is the required load difference for the task

transfer.

Token will be generated if following conditions will be satisfied

30

(1.) For nth node (Load) n > L where L is maximum Load where load balancing is not

required.

(2.) (Load) n > ∑ sum of load of all nodes

If both conditions are satisfied then the token is generated in more than sixty percent of the

cases where load imbalance exists token finds out the proper node for the task transfer which

improves the system performance. In this algorithm along with the task transfer among the

neighboring nodes with the token transfer method care is taken to avoid the starvation of

those nodes for which neighbors are not suitable for the task transfer [26]. The major

parameter, network-partitioning issues along with inter-cluster and intra- cluster transfers for

decision-making of load balancing for the transfer is considered here. There are some job

migration algorithms and strategies in this section which will show how these algorithms

works and which procedure these follow.

(f) Data Consolidation: A Task Scheduling and Data Migration Technique for Grid

Network generally grid contains all the heterogeneous and homogeneous geographically

distributed computing and storage resources which may belong to different user or

domain but are shared among users by establishing global management. When anybody uses

the data on large scale within the grid that is called the data grid like in life sciences, high-

energy physics and astrophysics, where large amounts of data are created, processed and stored

in a distributed manner [27].

But in above applications network communication delays occur and it considerably

increase task completion time that’s why collaboration of task scheduling and data

management is essential for increasing performance in such an environment [27].In this

31

algorithm data replication technique is considered here which provides fast access and

reliability by reducing the scheduling of task and data management. This is the main

Optimization technique; provide fast data access and reliability. In this, data are scattered

throughout the Grid network so that anyone could get it easily and efficiently.

Data consolidation (DC) is the combine name of task scheduling and data migration which

have been taken here. This applies only to the data intensive applications that need many

replicas of data for their execution and if DC is performed efficiently, important benefits

can be obtained in terms of task delay, network load and other performance parameters of

interest. DC can be considered as the dual of the data replication problem, where from one

site the data are scattered to many repository sites. Through this dual relationship we will

show that DC can also provide, by reversing the procedure, data replication services.

2.4 Conclusion

This chapter discusses all the existing load balancing algorithms, working under different

strategies, policies and categories. Both static and dynamic algorithms give different

performance resu lt s in customized environment. Static algorithms always give the constant

performance but dynamic algorithms are preferred over static due to heterogeneous

and dynamic environment. Next chapter, chapter 3 discusses the problem formulation.

32

Chapter 3 Problem Formulation

Grid computing permits selection and addition of large collections of organizationally

distributed heterogeneous resources for solving large-amount of data and compute intensive

problems. Load of resources varies because of dynamic environment of grid and it makes load

balancing one of the major concern in case of grid environment. This chapter presents detailed

description of thesis problem and analysis of the gaps in existing research works.

Problem Statement

In grid infrastructure, the shared resources are constantly changing in nature, which in turn

affects application performance. Resource management and Job migration are two essential

features provided at the service level of the grid environment. To improve the throughput of

these environments, effective and efficient load balancing algorithms are important. The

focus of this study is to consider factors for minimizing the response time which can affect

the performance of the grid application.

The main objectives of this thesis are:

1. To analyze the factors due to which Load balancing is required in grid environment.

2. A comparative study of existing load balancing algorithms.

3. To propose and design a load balancing algorithm for grid environment.

Next chapter presents the factors for initiating load balancing algorithms, comparative study

of existing load balancing algorithms and proposed load balancing algorithm.

33

Chapter 4 Proposed Load Balancing Algorithm

Load balancing is defined as the feasible allocation/de-allocation of the work to highly required

resources to which it suits and to minimize decision time to initiate the load balancing

algorithm. This chapter discusses the factors for initiating load balancing algorithms,

comparative study of existing load balancing algorithms and design of proposed load balancing

algorithm.

4.1 Factors for Initiating Load Balancing Algorithm

There are some decision making factors, like arrival and completion of job, arrival and

withdrawing of resources, on occurrence of which the load balancing algorithm initiates. Other

factors are machine failure and node overloading which have surfaced from literature

survey. These factors can be summarized as:

(a) Arrival of any new job: Whenever any new job arrives to scheduler, it demands for a

resource which initiates load balancing algorithms.

(b) Completion of execution of any job: Whenever any new job gets complete, it leaves

resources and they are reassigned to another job.

(c) Arrival of any new resource: Whenever any idle resource comes to systems resource pool

then it is assigned to some job considering its requirement.

(d) Withdrawal of any existing resource: Withdrawing of any resource increases the

computation overhead over remaining resources.

34

(e) Machine failure at any node: Failure of any machine increases the overhead of

remaining resources that initiate load balancing algorithms.

(f) Node become overloaded: Whenever any node becomes overloaded due to any reason then

load balancing algorithms starts and manages the stopped job of the overloaded node.

4.2 Comparative Analysis of Existing Load Balancing Algorithms

In this section comparative study of load balancing algorithms (already mentioned in

literature survey) has been done on the basis of some parameters like, scalability,

security, throughput, migration time, efficiency, fault tolerance, overload rejection,

resource utilization, forecasting accuracy and stability etc.

 Node reconfiguration mechanism makes application workload migrate from source node to

destination node, and then let source node depart from original computing environment.

There are two implementation fashions of node reconfiguration, first one is synchronous

method and the other is asynchronous method. Best performance can be obtained by

maintaining the order of node reconfiguration messages [24].

 In Virtual machine migration snapshots of machine are sent to other machine by using two

migration method, live migration and regular migration. An important aspect of this

mechanism is to make the run-time job migration with non-dedicated shared resources in

dynamic grid environment and also provides high isolation, and security [24].

 Robin Hood algorithm is totally non-centralized mechanism, using the proactive library for

the migration of jobs, and a multicast channel for node coordination. It improves the

35

decision time in non-centralized environment and uses the non- centralized architecture

and non-broadcasting of the balance of each node to reduce the overload in network [14].

 Load based graph method is based on network graph where each node is

represented with its load, whereas load can be the number of users, average queue length or

the memory utilization. It uses analytic model and single load determination policy

throughout the system and load is determined on the basis of memory utilization and average

queue length. The major parameter, network- partitioning issues along with inter-cluster

and intra-cluster transfers for decision- making of load balancing for the transfer is considered

here [26].

 In Data Consolidation algorithms data replication technique is considered here which

provide fast access and reliability by reducing the scheduling of task and data management.

This is the main optimization technique; provide fast data access and reliability. Data

consolidation (DC) is the combine name of task scheduling and data migration. DC can be

considered as the dual of the data replication problem, where from one site the data are

scattered to many repository sites. Through this dual relationship we will show that DC

can also provide, by reversing the procedure, data replication services [27]. Table-4.1

shows the comparative study of all the existing algorithms described above:

36

Table 4.1 Comparative study of existing algorithms

 Algorithms

 Parameters

Node

Reconfiguration

by User level

Thread

Migration

Virtual

Machine

Migration

(live

migration)

Robin Hood:

An active

Object Load

Balancing

Mechanism

Load Graph

Based

Transfer

Method

Data

Consolidation

Efficiency Medium Good Not good Good Medium

Overload

Rejection

No No No Yes No

Stability Less Less Large Large Large

Scalability High High Not good Medium High

Throughput Low High for small

jobs

Medium Low Medium

Resource

Utilization

Less Less Less High High

Performance High

performance in

intra cluster

scenario

High

performance

in inter cluster

scenario

Based on

percentage

loading at

node

High High due to

data

replication

The above comparative study shows that all the characteristics all that fulfilled by any

single load balancing algorithm as this is very difficult to achieve. Parameters like

performance, throughput, resource utilization and efficiency are mandatory and therefore

should be considered always while developing dynamic load balancing algorithms. In the

Proposed algorithm discussed in next section, the parameters have been considered to a large

extent for a grid environment.

37

4.3 Proposed Load Balancing Algorithm

Proposed load balancing algorithm is developed considering main characteristics like

performance, throughput, and resource utilization.

4.3.1 Architecture of Load Balancing System

This section discusses about the architecture of load balancing algorithm-imposed system.

Figure 4.1 presents a pictorial view of the system. Monitor server uses monitoring tool to

gather information about all the connected nodes. This resource information is managed,

processed and updated to a database. This information is accessed through web pages and is

presented to the users. The web pages can be accessed from any nodes at the same network.

Node

A

Node

B

Node

C

Monitor Server

(resource info. and job

request)

Resource Selection and

Allocation Module

Load Balancing

Module

Figure 4.1 System Overall Architecture

 Web pages are created and hosted on local network using Apache HTTP server to provide the

resources information to users, any system on local network running.

38

Apache HTTP server can access these web pages. This is shown in figure:

 Figure 4.2 Implementation View of Algorithm

4.3.2 Design of Proposed Load Balancing Algorithm

This section discusses pseudo code and flowchart of the proposed load balancing

algorithm. Proposed algorithm for load balancing is given below:

Node C

Node A

Web Pages

Node B Monitor Node or

Server Node

Begin

(Initiating activity happens)

(Load balancing start)

Monitoring info. And job request (n resources & n jobs)

Create job queue

If (job request not matched with resources)

 Job goes to main queue

Else

 Assigned job to resources

If (Machine failure)

 Job goes to main queue with check –pointed data

Else

 Job completed

End

39

Start

Monitoring info and job

request (n job & n

resources)

Job

matched

No

 Yes

Job Assigned

Failure

Machine

Yes

No

Executing job

End

Figure 4.3 Flowchart of Proposed Algorithm

41

4.3.3 Complexity of Proposed Load Balancing Algorithm

Complexity is a measure of the performance of an algorithm in term of CPU time and

memory usage. In this case computational complexity has been considered as this

algorithm is for grid environment.

Computational Complexity: To measure computational complexity computation number

should be known.

By Big-O notation

Above proposed algorithm have equation like this

N
3
+N

2
+N+C, where C is constant

According to Big-O notation

f (n) = O (N
3
) + O (N

3
) + O (N) + O (C) ,C is constant f (n) = O (N

3
)

Another formula to find out complexity of algorithm

Complexity = No. Of closed loop = 3;

Another formula to find out Complexity of algorithm Complexity = No. of decision making

statements + 1; Complexity = 2 +1 =3;

4.4 Implementation Details

This section discusses about the implementation details of the load balancing algorithm

based system. Fedora Core 8 is used as operating system in implementation.

4.4.1 Technologies Used

To implement the proposed load balancing algorithm, an application has been developed,

which is executed in simulated grid environment. To develop application J2EE and

MySQL database server is used to maintain the monitoring data. The website is designed

using PHP and hosted on local network using apache HTTP server.

42

(a) Globus Toolkit

Globus Toolkit 4.2.1 is used to create grid for deploying and testing the proposed

monitoring system. Globus Toolkit is developed and provided by Globus Alliance. Globus

Toolkit includes software and libraries for resource monitoring, resource management, data

management, communication, fault detection, security and portability.

GT4 uses Web services mechanism heavily to provide flexible, extensible, and widely

adopted XML-based mechanisms for describing, discovering, and invoking network

services. Globus Toolkit is open source, well documented and mailing-list is available for

users query.

(b) Java

Java language offers several features that facilitate with easiness the development and

deployment of a software environment for grid computing. As grid is network based

Java’s network based features are very useful to develop grid application. Java’s

network-centric approach and its built-in support for mobile code enable the distribution of

computational tasks to different computer platforms. Java is an object oriented programming

language. Java is used to manage the local information data of the server. A Java based

platform potentially allows every computer in the Internet to be exploited for distributed,

large scale computations; while at the same time the maintenance costs for the platform are

minimal therefore Java has been used.

d) MySQL

MySQL is used as the backend. MySQL is multithreaded, multi-user, SQL database

management system. MySQL is the most used open source database. MySQL has

43

become preferred choice for web based development for its speed, reliability and ease of

use and hence MySQL is used in the implementation.

MySQL is the most popular open source database software, with its superior speed,

reliability, and ease of use, MySQL has become the preferred choice for all because it

eliminates the major problems associated with downtime, maintenance and administration

for modern, online applications. MySQL is a key part of LAMP (Linux, Apache, MySQL,

PHP / Perl / Python), the fast-growing open source enterprise software stack. More and

more companies are using LAMP as an alternative to expensive proprietary software

stacks because of its lower cost and freedom from platform lock-in.

(e) PHP

PHP, which stands for "PHP: Hypertext Preprocessor" is a widely-used Open Source

general-purpose scripting language that is especially suited for web development and can

be embedded into HTML. Its syntax draws upon C, Java, and Perl, and is easy to learn.

The main goal of the language is to allow web developers to write dynamically generated

web pages quickly, but anyone can do much more with PHP.

(f) Apache HTTP server

Apache HTTP server is used to process and host the PHP web pages. Apache HTTP

server takes PHP codes as input and creates web pages as output. Apache is open source

and available for variety of operating systems. Apache has been used for hosting web

pages on local network using Virtual Host function.

The combination of Apache HTTP server, MySQL, and PHP with Linux operating

system creates a software bundle named LAMP. This software bundle is very popular

44

among developers because of its low acquisition cost and ubiquity of its components and

hence has been used.

4.4.2 Implementation of Algorithm

PHP has been used to create web pages through which users can search idle nodes. The

web pages are used to monitor the nodes after submitting jobs to find out overloading.

Three web pages have been designed.

 Figure 4.4 Design of Web Pages

These are searchnode.php, search.php and submitjob.php. Search node. php provides a form

to search nodes compatible with jobs requirement. Search.php provides list of

compatible nodes. If no compatible node found, then it generates an error message.

Submitjob.php updates database table which maintain job-node relation. Searchnode.php

and submitjob.php also provides monitoring data of nodes where jobs are executing. The

Update Database Table

Search Node

Monitoring Data of

Nodes

Search Result

45

implementation of algorithm has been shown with the help of this flowchart shown in

above Figure 4.4.

The schema of jobSubmit table of mysql database is shown in Figure 4.5. This table has

been used to track which job is submitted to which node and help to monitor the node

respect to job also.

 Figure 4.5 Schema of job Submit Table

4.5 Conclusion

This chapter discusses factors to initiate load balancing algorithms, comparative study of

algorithms, used technologies and design and workflow of proposed algorithm. Next

chapter discusses test results of proposed algorithm.

46

Chapter 5 Experimental Results

This chapter discusses results of implemented algorithm in grid environment.

5.1 Test Results

Figure 5.1 shows the main page. Users can search nodes according to CPU speed, idle

CPU and free memory required by job. This page also provides monitoring data of all the

connected nodes. The monitoring is shown per job and reflects, if any overloading found

there. If the current idle CPU and free memory is less than that required by the job, it

shows overloading depict in Figure 5.4.

Figure 5.1 Main Page of Load Balancing Algorithm

47

Figure 5.2 shows the search results. It shows all the matched available nodes. It shows the IP

address , host name ,CPU speed, CPU idle, total memory, free memory and load average. It

also shows whether the globus toolkit is running or not. It also provides the hyperlink to

jobSubmit.php.

 Figure 5.2 Status of Jobs

If no node is available with respect to search criteria than an error is shown as depicted

in Figure 5.3. jobSubmit.php gets the required free memory ,idle CPU required by job

and the IP address of the selected node from the search.php page. Then it updates the

48

jobSubmit table of mysql database. This table is required to monitor the jobs status against

nodes. This page redirects to the main page.

Figure 5.4 depicts a scenario where the available idle CPU and/or free memory is less than

required by the job and the main page shows it by an overloading error. In this scenario two

jobs are running at node. One job is running and other is showing overloading because one

job using resources according to requirement but another one require more than 30 % CPU

idle, that’s why overloading is shown.

 Figure 5.3 Error Messages

49

 Figure 5.4 Overloading Message

5.2 Conclusion

This chapter shows the experimental results of proposed algorithm in different

situations or modes. All the results best fit to expectation. Next chapter discusses the

conclusion and future scope.

50

Chapter 6 Conclusion and Future Scope

This chapter discusses the conclusions of the work presented in this thesis. The chapter

ends with a discussion of the future direction which this work will take.

6.1 Conclusions

The work presented in this thesis describes multiple aspects of grid computing and

introduces numerous concepts which illustrates its grand capabilities. Grid Computing is

definitely a promising tendency to solve high demanding applications and its related

problems. Main objective o f the grid environment i s to achieve high performance.

Dynamic nature and complexity of Grid make load balancing very complex and vulnerable

to faults. To maintain entire load of nodes is very hard due to dynamic nature of resources

in a Grid environment. There are a number of factors, which can affect the grid application

performance like load balancing, heterogeneity of resources and resource sharing in the

Grid environment.

This thesis focuses on load balancing and presents factors due to which load

balancing is initiated, compares existing load balancing algorithms and finally

proposes an efficient load balancing algorithm for Grid environment.

6.2 Future Scope

This thesis work can further be extended by:

1. Migration of check-pointed jobs which would be restarted from last checkpoint.

2. Migration of jobs via grid-ftp instead of command-line.

3. Design and Testing of load balancing algorithm in a Multi-middleware scenario.

51

References

[1] Foster, I., Kesselman, C. and Tuecke, S. “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations” International Journal of High Performance

Computing applications, Vol. 15, No. 3, pp. 200-222, 2001.

[2] Klein rock, L. “MEMO on Grid Computing”, University of California, Los Angeles,

1969.

[3] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam Kendall, “A Note on Distributed

Computing”, Sun Microsystems Laboratories 2550 Garcia Avenue Mountain View,

CA 94043.

[4] David De Roure and others, “The Semantic Grid: Past, Present and Future”,

Proceedings of the 2nd Annual European Semantic Web Conference

(ESWC2005), Volume 93, Issue 3, 2005.

[5] Ann Chervenak and others, “The Data Grid: Towards an Architecture for the

Distributed Management and Analysis of Large Scientific Data Sets”, Journal of

Network and Computer Applications, 2001.

[6] Lord, P.Alper, P.Wroe, C. and Goble, C., “Feta: A lightweight Architecture

for User Oriented Semantic Service Discovery”, In Proceedings of The Semantic

Web: Research and Applications: Second European Semantic Web Conference

(ESWC 2005), Heraklion, Crete.

[7] Li, L. and Horrocks, I, “A Software Framework for Matchmaking Based on

Semantic Web Technology”, In Proceedings of the 12th international conference

on World Wide Web (WWW’03), Budapest, Hungary, May 2003.

52

[8] Hai Zhuge “Special Section: Semantic Grid and Knowledge Grid” 17 July 2006;

accepted 20 July 2006.

[9] John Hagel, III and John Seely Brown, “Service Grids: The Missing Link in Web

Services”, A Working Paper,http://www.johnhagel.com/paper_servicegrid.pdf, 2002

(accessed: 18 September 2005).

[10] Rafael A. Moreno “Job Scheduling and Resource Management

 Techniques in Dynamic Grid Environments”.

[11] Daniel Adler “Grid Computing in Science” Georg-August Universidad Gottingen

Institute for Informatics Software Engineering for Distributed Systems Group 08.

November 2007.

[12] Yuan-Jin Wen; Sheng-De Wang Department of Electrical Engineering, Division of

Computer Science, National Taiwan University, Taipei, Taiwan “Minimizing

Migration on Grid Environments: An Experience on Sun Grid Engine” Journal

of Information Technology and Applications vol. 1 No. 4 March, 2007, pp. 297-30.

[13] Dazhang Gu, Lin Yang, Lonnie R. Welch “A Predictive Decentralized Load

Balancing Approach” Center for Intelligent, Distributed and Dependable

Systems, School of Electrical Engineering & Computer Science ,Ohio University.

[14] Javier Bustos Jimenez, Robin Hood “An Active Objects Load

 Balancing Mechanism for Intranet”.

[15] Ian Foster, Carl Kesselman, and Steve Tuecke, “The Anatomy of the Grid: Enabling

Scalable Virtual Organizations”, International Journal of High-performance

Computing Applications, 15 (3), pp: 200-222,2001.

[16] History of Grid available at http://gridcafe.web.cern.

http://www.johnhagel.com/paper_servicegrid.pdf,
http://gridcafe.web.cern/

53

[17] Miguel L. Bote-Lorenzo, Yannis A. Dimitriadis, and Eduardo G´omez- S´anchez,

“Grid Characteristics and Uses: a Grid Definition” Postproc. ofthe First European

Across Grids Conference (ACG’03), Springer- Verlag LNCS 2970, pp. 291-298,

Santiago de Compostela, Spain, Feb.2004.

[18] Global Grid Forum, http://www.ggf.org.

[19] Lichen Zhang, “Scheduling Algorithm for Real-Time Applications in Grid

Environment”, 2002 IEEE SMC TP1K5.

[20] Thilo Kielmann, Vrije Universiteit, Amsterdam, “Scalability in Grid”.PPT Core

GRID, Bridging Global Computing with Grid (BIGG), Sophia Antipolis, France,

Nov. 29,2006.

[21] Y.Lan, T.Yu, A Dynamic Central Scheduler Load-Balancing Mechanism”,Proc.14th

IEEE Conf.on Computers and Communication, Tokyo, Japan, pp.734-740,1995

[22] S.Rips “Load Balancing Support for Grid-enabled Applications” NIC Series, Vol.

33, ISBN 3-00- 017352-8, pp. 97-104, 2006.

[23] Belabbas Yagoubi and Yahya Slimani, “Dynamic Load Balancing Strategy for

Grid Computing” Proceedings of World Academy of Science, Engineering and

Technology Volume 13 May 2006 ISSN 1307-6884.

[24] Po-Cheng Chen,Cheng-I Lin,Sheng-Wei Huang,Jyh- Biau Chang, Ce- Kuen

Shieh,Tyng-Yeu Liang, “A Performance Study of Virtual Machine Migration vs

Thread Migration for Grid Systems”.

[25] S Kalaiselvi Supercomputer Education and Research Centre (SERC), Indian

Institute of Science, Bangalore V Rajaraman Jawaharlal Nehru Centre for

Advanced Scientific Research, Indian Institute of Science Campus, Bangalore “A

http://www.ggf.org/

54

Survey of Check-Pointing Algorithms for Parallel and Distributed Computers” vol.

25,Par 5,October 2000, pp.489±510.

[26] Parag Kulkarni & Indranil Sengupta Department of Computer Science & Engg.

Indian Institute of Technology, Kharagpur, “Load Balancing With Multiple Token

Policy” ICTA’07, April 12-14, Hammamet, Tunisia.

[27] P. Kokkinos, K. Christodoulopoulos, A. Kretsis, and E. Varvarigos Department of

Computer Engineering and Informatics, University of Patras, Greece and Research

Academic Computer Technology Institute, Patras, Greece, “Data Consolidation: A

Task Scheduling and Data Migration Technique for Grid Networks” Eighth

IEEE International Symposium on Cluster Computing and the Grid.

[28] Srikumar Venugopal, Rajkumar Buyya and Ramamohanarao Kotagiri “A Taxonomy

of Data Grids for Distributed Data Sharing, Management and Processing” Grid

Computing and Distributed Systems Laboratory, Department of Computer Science

and Software Engineering, The University of Melbourne, Australia Email:fsrikumar,

raj, raog@cs.mu.oz.au.

[29] Shahzad Malik, “Dynamic Load Balancing in a Network of Workstations”,

95.515F Research Report, November 29, 2000.

[30] Kai Lu, Riky Subrata and Albert Y. Zomaya, Networks & Systems Lab, School

of Information Technologies, University of Sydney “An Efficient Load Balancing

Algorithm for Heterogeneous Grid Systems Considering Desirability of Grid Sites”.

[31] Guy Bernard,& Michel Simatic “A Decentralized and Efficient Algorithm for

Load Sharing in Networks of Workstations”.

mailto:Email:fsrikumar,
mailto:raog@cs.mu.oz.au

55

[32] Manish Arora and Sajal K. Das and Rupak Biswas “A Decentralized Scheduling

and Load Balancing Algorithms for Heterogeneous Environment”.

[33] Gregor von laszewaski, Ian Foster, Argonne National Laboratory, “Designing

Grid Based Problem Solving Environments”, www- unix.mcs.anl.gov/

~laszewsk/papers/cogpse-final.pdf.

[34] Belabbas Yagoubi, Hadj Tayab Lillia and Halima Si Moussa Department of

Computer Science, University of Oran Algeria “Load Balancing in Grid

Computing”Asian Journal of Information Technology 5 (10):1095-1103,2006.

[35] Ferreira, L., Bieberstein, N., Berstis, V., Armstrong, J., “Introduction to Grid

Computing with Globus,” Redbook, IBM Corp.,

http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf.

 [36] María S. Pérez “Grid Computing: A Ten Years Look Back”,Facultad de

 Informática Universidad Politécnica de Madrid mperez@fi.upm.es.

[37] B. Yagoubi , Department of Computer Science, Faculty of Sciences, University of

Oran and Y. Slimani , Department of Computer Science, Faculty of Sciences of

Tunis, “Task Load Balancing Strategy for Grid Computing”.

[38] http://images.google.co.in/images.

 [39] Jorge R. Ramos Vernon Rego, Department of Computer Sciences Purdue

University West Lafayette, IN 47907, U.S.A., Janche Sang, Department of

Computer and Info. Science Cleveland State University Cleveland, OH 44139,

U.S.A “An Improved Computational Algorithm for Round-Robin Service”

Proceedings of the 2003 Winter Simulation Conference.

http://www.redbooks.ibm.com/redbooks/pdfs/sg246895.pdf
mailto:mperez@fi.upm.es
http://images.google.co.in/image

[40] Panos M. Pardalos, L.Pitsoulis1, T. Mavridou, and Mauricio G.C. Resende, “Parallel

Search for Combinatorial Optimization: Genetic Algorithms, Simulated Annealing,

Tabu Search and GRASP” Center for Applied Optimization and Department of

Industrial and Systems Engineering, University of Florida,USA AT&T Bell

Laboratories, USA.

[41] Mathias Noack “Comparative Evaluation of Process Migration Algorithms” Dresden

University of Technology Operating Systems Group 21st July 2003.

