
i | P a g e

A MAJOR REPORT ON

RETRIVAL OF MOBILE DATA WITHOUT USING THE

STORAGE META-DATA

Submitted in partial fulfillment of the Requirement for the award of the degree of

MASTER OF TECHNOLOGY

(INFORMATION SYSTEMS)

Submitted by

MOHAMMED MUZZAMIL.H
(04/IS/2K10)

Under the Guidance of

Ms. RITU AGARWAL
(Asst. Professor)

Dept. of Information Technology

DEPARTMENT OF INFORMATION TECHNOLOGY

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI-110042

2010-12

ii | P a g e

CERTIFICATE

This is to certify that Mr. Mohammed Muzzamil. H (04/IS/2k10) has carried out the

major project titled ―Retrieval of mobile data without using the storage meta-data‖ as a

partial requirement for the award of Master of Technology degree in Information

Systems by Delhi Technological University.

The major project is a bonafide piece of work carried out and completed under my

supervision and guidance during the academic session 2010-2012.The matter contained

in this report has not been submitted elsewhere for the award of any other degree.

(Project Guide)

Asst. Professor

Ms. RITU AGARWAL

Department of Information Technology

Delhi Technological University

Bawana Road, Delhi-110042

iii | P a g e

ACKNOWLEDGEMENT

I express my gratitude to my major project guide Ms. Ritu Agarwal, Asst. Professor, IT

Dept., Delhi Technological University, for the valuable support and guidance he

provided in making this major project. It is my pleasure to record my sincere thanks to

my respected guide for her constructive criticism and insight without which the project

would not have shaped as it has.

I would like to thank Prof. O.P. Verma, HOD, IT Dept., Delhi Technological

University, for his useful insights and guidance towards the project. His suggestion and

advice proved very valuable throughout. I am thankful to all teaching or non-teaching

staff at D.T.U., and my fellows, who have helped or indirectly in completion of this thesis

report.

MOHAMMED MUZZAMIL. H

M.TECH (INFORMATION SYSTEM)

ROLL NO. 04/IS/2K10

iv | P a g e

ABSTRACT

Normally recovery software is using file system information to recover the data which

have been deleted. File system information are file tables, meta-data etc., So, when a disk

is formatted then all the information and the metadata will also be lost. At this scenario,

normal recovery techniques are not useless. For this comes, File carving, which is the

process of recovering files from a disk without the help of a file system information.

Even without the knowledge of the memory structure, we can carve out the data from a

formatted disk. In forensic, this is a very helpful technique in searching the hidden and

recently formatted disk contents. We already have many tools available for file carving,

like foremost, scalpel etc., File carving is most often used to recover files from the

unallocated space in a drive. Unallocated space refers to the area of the drive which is no

longer holding any file information as indicated by the file system structures like the file

table. In the case of damaged or missing file system structures; this may involve the

whole drive. While deleting a file from the disk, the will not be deleted directly from the

physical memory, the logical memory containing the information regarding the starting

address of the file is deleted or made to zero. Thus the original data in the physical

memory will be available, unless it is overwritten by another file. So we use this

technique to find the lost data in mobile devices. Mobile devices are becoming very

important mode of communication and becoming evidence for a variety of crimes. The

information like SMS, MMS, images and other data from the mobile phone are very

important to identify the criminals. So carving the data from the mobile devices will be

terribly useful for the upcoming years.

v | P a g e

CONTENTS

CERTIFICATE ... II

ACKNOWLEDGEMENT ..III

ABSTRACT ... IV

CONTENTS .. V

LIST OF FIGURES .. VIII

CHAPTER 1 INTRODUCTION OF FILE CARVING ... 1

1.1 TRADITIONAL RECOVERY TECHNIQUE ... 1

1.2 CURRENT DAY SENARIO... 2

1.3 FILE CARVING AN IMPORTANT TOOL IN FORENSIC .. 3

1.4 FILE RECOVERY VS CARVING .. 3

CHAPTER 2 EVOLUTION OF FILE CARVING ... 4

2.1 FILE SYSTEMS AND FRAGMENTATION... 4

2.2 FAT FILE SYSTEM ... 4

2.3 NTFS File System ... 7

2.4 WEAR-LEVELING ALGORITHMS IN NEXT GENERATION DEVICES ... 7

2.5 APPENDING/EDITING FILES ... 9

2.6 WEAR-LEVELING ALGORITHMS IN NEXT GENERATION DEVICES ... 9

2.7 FILE STRUCTURE-BASED CARVERS .. 9

vi | P a g e

CHAPTER 3 FILE SYSTEM ANALYSIS ... 11

3.1 FILE SYSTEM ... 11

3.2 DATA CATEGORIES .. 12

3.3 LOGICAL FILE SYSTEM ADDRESS .. 14

3.4 LOGICAL FILE SYSTEM-LEVEL SEARCHING .. 18

3.5 DATA UNIT ALLOCATION STATUS ... 19

CHAPTER 4 LITERATURE REVIEW .. 20

4.1 FORENSIC ANALYSIS OF INTERNAL MEMEORY OF MOBILE PHONES 20

4.2 CHARACTERIZING FAILURES IN MOBILE OS ... 20

4.3 FILE CARVING EVOLUTION ... 23

4.4 ANDROID FORENSICS .. 24

4.5 FORENSIC RECOVERY OF FLASH MEMORY.. 25

4.6 FRAGMENTATION .. 27

4.7 FRAGMENTED FILE RECOVERY ... 27

CHAPTER 5 MOBILE FORENSIC .. 30

5.1 MOBILE PHONE ARCHITECTURE ... 30

5.2 SOME MOBILE PHONES AND THEIR INFORMATIONS ... 31

5.3 ANDROID PHONES .. 32

5.4 SYMBIAN ... 33

CHAPTER 6 PROPOSED APPROACH .. 35

6.1 RECOVERY OF DATA WITHOUT USING STORAGE META-DATA .. 35

vii | P a g e

6.2 MOBILE PHONE MEMORY CARVING... 36

6.3 EVIDENCE IN MOBILE PHONE... 36

6.4 EVIDENCE ITEMS ... 36

6.5 STORAGE MEDIA .. 37

6.6 USAGE OF EXTERNAL MEMORY, INTERNAL MEMORY AND SIM .. 38

6.7 MEMORY CONTENT EXPERIMENTS .. 38

6.8 MEMORY REPRESENTATION IN HEX VALUES OF THE MEMORY DUMP OF MOBILE PHONE

 .. 39

CHAPTER 7 CONCLUSION AND FUTURE SCOPE ... 42

REFERENCES .. 43

viii | P a g e

LIST OF FIGURES

Figure 1.1 : The General steps of file carving ..1

Figure 2.1 : File Allocation ...5

Figure 2.2 : File Deletion ..6

Figure 3.1: Interaction between the five data categories. .. 13

Figure 3.2 : Logical file system addressing .. 14

Figure 3.3 : Allocation status of 8 data units ... 15

Figure 3.4 : Graphical Representation for viewing the data unit 10 .. 17

Figure 3.5 : Logical File System Search Look ... 18

Figure 3.6 : Allocation Bitmap .. 19

Figure 4.1 : OLE Header Structure .. 29

Figure 5.1: General architecture of mobile phone .. 31

Figure 6.1 : Hex-print of a mobile memory dump ... 39

Figure 6.2 : Content Identified as a GIF – image .. 40

Figure 6.3 : Content Identified as Contact and Calendar Item .. 41

1 | P a g e

Chapter 1 INTRODUCTION OF FILE CARVING

File carving is the technique of recovering the information from any file system which has been

corrupted or whose data has been deleted. File carving is a powerful technique for analyzing the

physical memory dumps when memory structures are unknown.

Figure 1.1 : The General steps of file carving

1.1 TRADITIONAL RECOVERY TECHNIQUE

Traditional data recovery techniques rely on file system structures like file tables to recover data

that has been deleted. This is because most file systems do not touch the physical location of the

files during deletion; they simply mark the location as being available for storing information.

File cluster Ordering

File Reassembly

File Type Recognition

File cluster Ordering

File Type Recognition

File cluster Ordering

File Type Recognition

File Reassembly

File cluster Ordering

File Type Recognition

File Reassembly

File cluster Ordering

File Type Recognition

2 | P a g e

After deletion, the entry of the file in the file table may still be present and the information

linking the clusters to the file deleted may also still be present, and as a result, such a file can be

easily recovered. Another advantage of accessing file system structures is to also be able to

identify and quickly extract existing undeleted data, therefore, only the areas in the disk that are

considered unallocated, need to be parsed. However, when the file system structures are not

present, corrupt, or have been deliberately removed, the data, while present cannot be accessed

via traditional means.

Once it became clear that traditional recovery techniques may fail on data sets, additional

techniques needed to be introduced to recover forensically important user files. Some examples

of these files are Microsoft Office documents, digital pictures, and e-mails. More often than not,

the files of importance for forensic recovery are those that are created and modified by the users.

Operating system and application files can be re - installed, however, user files not backed up

and deleted require recovery. File carving is a forensics technique that recovers files based

merely on file structure and content and without any matching file system meta-data. File

carving is most often used to recover files from the unallocated space in a drive. Unallocated

space refers to the area of the drive which is no longer holding any file information as indicated

by the file system structures like the file table. In the case of damaged or missing file system

structures. This may involve the whole drive.

1.2 CURRENT DAY SENARIO

The current day forensic department is using this forensic tool to find the criminals. Nowadays

each and every person is having his or her own personal PC and mobile phone. These, electronic

devices has become very normal in every persons‘ life. So, whenever a crime has occurred, these

devices are becoming the first line of evidences. For collecting evidence from these electronic

devices, PCs, mobile phones, CDs, floppies, and other electronic devices, we need some special

type of tools to recover data. The file carving came for this purpose, to recover the deleted or

corrupted files from the hard disk or any storage media. Pervious we can only recover the files

from the file table alone. But now we can even recover files without the help of file tables or any

other metadata.

3 | P a g e

1.3 FILE CARVING AN IMPORTANT TOOL IN FORENSIC

Data recovery is a key component of the disaster recovery, forensics, and e-discovery markets.

Digital data recovery can consist of both software and hardware techniques. Hardware

techniques are often used to extract data from corrupted or physically damaged disks. Once the

data has been extracted, software recovery techniques are often required to order and make sense

of the data. In this article, we will be solely discussing software techniques for recovery of data

with a focus on digital forensics. We will begin by providing a quick overview of traditional data

recovery techniques and then describe the problems involved with such techniques. We then

introduce the techniques involved in file carving.

File system structures are not used during the process. File carving is a powerful technique for

recovering files and fragments of files when directory entries are corrupt or missing. The block

of data is searched block by block for residual data matching the file type-specific header and

footer values. Carving is also especially useful in criminal cases where the use of carving

techniques can recover evidence. In certain cases related to child pornography, law enforcement

agents are often able to recover more images from the suspect‘s hard disks by using carving

techniques. Another example is the hard disks and removable storage media US Navy Seals took

from Osama Bin Laden‘s campus during their raid. Forensic experts used file carving techniques

to squeeze every bit of information out of this media.

1.4 FILE RECOVERY VS CARVING

There is a big difference between file recovery techniques and carving. File recovery techniques

make use of the file system information that remains after deletion of a file. By using this

information, many files can be recovered. For this technique to work, the file system information

needs to be correct. If not, the files can‘t be recovered. If a system is formatted, the file recovery

techniques will not work either.

4 | P a g e

Chapter 2 EVOLUTION OF FILE CARVING

The file carving is the techniques to recover the files from the electronic storage media without

using the storage metadata.

2.1 FILE SYSTEMS AND FRAGMENTATION

Before describing what a file system is and how files are stored and deleted, we want to briefly

introduce the physical blocks on a disk that are used to store data. Most disks are described in

terms of data blocks called sectors and clusters. The cluster size is a function of the sector size (

1). The disk size or capacity is calculated by multiplying the cluster size by the number of

clusters (2). It is very important to note that a cluster (not a sector) represents the smallest unit

of storage that is addressable (can be written to or read). Therefore, files are typically stored in

terms of clusters and not sectors. Typical values of clusters range from 512–32,000 B. Cluster

sizes are normally multiples of 512 B.

Cluster Size = Sector Size X Sectors per Cluster. (1)

Disk Size = Cluster Size X Count. (2)

Let us consider the file systems like FAT and NTFS separately, and we will see how these file

systems work when the date is updated and deleted.

2.2 FAT FILE SYSTEM

2.2.1 FILE ALLOCATION

File allocation in FAT-32 is a two step process. First, the file is assigned to a directory/folder. If

the assigned directory/folder is the root of the drive, then the file name is stored in the root

directory entry, if not, one must parse the root directory entry to find the directory that is in the

path of the final directory to which the file is assigned to. Along with the file name, the file entry

contains the starting cluster number of the file. The starting cluster number represents the cluster

where the file‘s contents begin. In reality, additional information, including access, creation, and

modification time stamps along with long file names are also stored in the directory entry. To

retrieve the file, the file system looks at the starting cluster and then goes to the starting cluster

index in the file allocation table. The FAT can be considered to be an array of cluster numbers

5 | P a g e

pointing to the next cluster of a file. Therefore, when a file is retrieved, the file system goes to

the starting cluster index in the FAT, and gets the next cluster number for that file. This cluster in

turn can point to another cluster. This process is repeated until a cluster has the hex value ―FF‖

indicating end of file (EOF). The file system is then able to retrieve the file by reading the actual

clusters on the disk.

An example of this is creating a file called ―recovery.txt,‖ which requires five clusters to store its

contents. The file system may find that the cluster number 300 is where the file should start to be

stored. As shown in Figure 2.1, a root entry for ―recovery.txt‖ is made indicating the starting

cluster of the file shown as cluster number 300. The file system stores the remaining clusters in

cluster numbers 301, 302, 305, and 306 and makes the appropriate changes to the FAT. Note that

clusters 303 and 304 are used for storage of another file ―hello.txt.‖

Figure 2.1 : File Allocation

6 | P a g e

2.2.2 DELETION

When deleting a file, the file system does not actually go to the clusters of the file and zero them

out. Instead, all the file system does is go to the cluster links in the FAT and set them to hex

value ―00‖ that indicates that the clusters have been unallocated. The actual contents of the drive

are still present after the deletion.

Interestingly, while the FAT cluster entries for each of the clusters of the deleted file are

indicated to be unallocated, the directory entry of the file still points to the starting cluster with a

special character being used to mark that this entry represents a deleted file.

Figure 2 shows what happens to the FAT when recovery.txt is deleted. The clusters represented

by the file in the FAT are changed to zero to indicate availability, however, the actual cluster

contents of recovery.txt have not been removed as yet.

The first byte of the name is also changed in the file entry directory to represent that the file was

deleted.

Figure 2.2 : File Deletion

7 | P a g e

2.2.3 RECOVERY

Since the cluster sequence in the FAT is set to hex value ―00‖ (unallocated) on a file‘s deletion,

recovery programs have to check that the file starting cluster is not in use, and then assume that

the rest of the file is stored in sequential clusters. Once a file is deleted, there is absolutely no

way to determine the exact sequence of clusters to reconstruct the file using the file system meta-

data alone. In the example using recovery.txt, traditional file recovery programs will find the

entry for ―_ecovery.txt‖ and see that the starting cluster for the deleted file was 300. Some

recovery programs will only recover a partial file (clusters 300, 301, 302), while the smarter file

recovery programs are able to recover the whole file because they see that clusters 303 and 304

are in use by another file, and that clusters 305 and 306 are available, so they will merge the

unallocated clusters only. However, what happens if the file is broken-up into more than one

piece or there are unallocated clusters belonging to another file in between? For example, if

hello.txt and recovery.txt are deleted, then file recovery becomes much more difficult without

analyzing the contents or structure of the files.

2.3 NTFS File System

FAT-32, while an improvement over earlier versions of the FAT, does not support files of

greater than 4 GB. Another limitation is the time taken to determine the free space for the FAT

increases with an increase in the number of clusters in the system. Finally, all versions of the

FAT do not provide enhanced security features and support for meta-data. As a result, Microsoft

introduced NTFS with Windows NT in 1993, as the preferred file system for its modern

operating systems.

2.4 WEAR-LEVELING ALGORITHMS IN NEXT GENERATION DEVICES

2.4.1 FILE ALLOCATION

In NTFS, file information is stored in a B-Tree [1] , however, unlike the FAT, NTFS has a

separate structure called a bitmap (BMP) to represent the allocation status of clusters. In the

BMP file ($bitmap) representing clusters, each cluster is assigned a value of one if it belongs to

an existing file, and a zero otherwise. By parsing the BMP, NTFS is able to quickly determine

the best place to put a file in to prevent fragmentation. In addition, just as in the FAT, NTFS

stores the file cluster links.

8 | P a g e

2.4.2 DELETION

When a file is deleted, its associated clusters in the BMP are set to zero. Again, just as in the

FAT, the actual data is not deleted when deleting files. Unlike the FAT, the file cluster links are

not deleted either so if the deleted file entry is present, then the original cluster links are also still

present. This makes recovery much easier in NTFS, as the full cluster link representing the file is

still present. The clusters are simply shown as being de-allocated in the $bitmap file.

2.4.3 RECOVERY

In NTFS, file recovery is quite straightforward when the file entry is still present. This is because

the file‘s cluster numbers should also be present, and all that needs to be done is to verify that the

file‘s clusters have not been overwritten, or are not allocated to another file. In the case where

the file system is damaged or the deleted file‘s entries removed, file system meta-data cannot be

used for recovery.

2.4.4 FRAGMENTATION

As files are added, modified, and deleted, most file systems get fragmented. File fragmentation is

said to occur when a file is not stored in the correct sequence on consecutive clusters on disk. In

other words, if a file is fragmented, the sequence of clusters from the start of a file to the end of

the file will result in an incorrect reconstruction of the file. The example of ―recovery.txt‖

provided in Fig. 2.1 provides a simplified example of a fragmented file. In the figure, the

―recovery.txt‖ has been broken into two fragments. The first fragment starts at cluster 300 and

ends at cluster 302. The second fragment starts at cluster 305 and ends at cluster 306. This file is

considered to be bi-fragmented as it has only two fragments. Garfinkel showed that bi-

fragmentation (two fragments only) is the most common type of fragmentation [2] , however,

files fragmented into three or more pieces are not uncommon. Garfinkel‘s fragmentation

statistics [2] come from identifying over 350 disks containing FAT, NTFS, and Unix file system

(UFS). He shows that while fragmentation in a typical disk is low, the fragmentation rate of

forensically important files (user files) likes that of e-mail, jpeg, and Microsoft Word are high.

The fragmentation rate of jpegs was found to be 16%, Microsoft Word documents had 17%

fragmentation, audio video interleave (AVI) (movie format) had a 22% fragmentation rate, and

personal information store (PST) files (MS-Outlook) had a whopping 58% fragmentation rate.

9 | P a g e

Fragmentation typically occurs due to low disk space, appending/editing files, wear-leveling

algorithms in next generation devices, and file systems.

2.5 APPENDING/EDITING FILES

If a file is saved on disk and then additional files are also saved starting after the cluster that the

original file ended at, fragmentation may occur if the original file is then appended to (and

increases in size larger than the cluster size). Some file systems, like the Amiga Smart File

System [3], may attempt to move the whole file in such scenarios. Some other file systems like

UFS attempt to provide ―extents‖ that are attempts to pre-allocate longer chunks in anticipation

of appending [4]. Another technique, called delayed allocation, used in file systems like XFS [5]

and ZFS, reserve file system clusters but attempt to delay the physical allocation of the clusters

until the operating system forces a flushing of the contents. However, while some of these

techniques are able to reduce fragmentation, they are unable to eliminate fragmentation

completely. Constant editing, deletion, and additions of e- mails are the primary reasons why

PST files (Microsoft Outlook files) are highly fragmented (58% of pst files analyzed in the wild

[2]).

2.6 WEAR-LEVELING ALGORITHMS IN NEXT GENERATION DEVICES

SSDs currently utilize proprietary wear-leveling algorithms to store data on the disk [6] in order

to enhance its lifetime. Wear leveling is an algorithm by which the controller in the storage

device remaps logical block addresses to different physical block addresses. If the controller gets

damaged or corrupted, then any data extracted will be inherently fragmented, with no easy way

of determining the correct sequence of clusters to recover files.

2.7FILE STRUCTURE-BASED CARVERS

File carving was born due to the problems inherent with recovery from file system meta-data

alone. File carving does not use the file system information directly to recover files. Instead, it

uses knowledge of the structure of files. More advanced carvers not only use knowledge of the

structure of files but also use the contents of individual files to recover data.

 Given a digital storage device, a file carver may or may not recognize the file system being

used, and it may or may not trust the information in the file system to be accurate. As a result, it

is up to the carver to determine the ―unallocated‖ clusters in the disk to carve from. This may

10 | P a g e

involve all clusters in the disk. To reduce the amount of a disk to recover from, a number of

forensic applications are able to identify a large number of files that are common to operating

systems and applications based on their MD5 Hash and keywords. Both Encase and Forensic

Toolkit (FTK), the two leading commercial disk forensic software providers, provide this option

to quickly eliminate common and well-known files. The first generation of file carvers used

―magic numbers,‖ or to be more precise, byte sequences at prescribed offsets to identify and

recover files. File carving techniques were first used for files that contain a ―header‖ and

―footer.‖ A header identifies the starting bytes of a file and the footer identifies the ending bytes

of the file. Headers are used by some operating systems to determine which application to open a

file with. In regard to jpegs, starting clusters must begin with the hex sequence FFD8, and footer

is a cluster containing the hex sequence FFD9. A file carver relying on structure alone will

attempt to merge and return all unallocated clusters between the header and footer.

There are many file types that may not contain footers but instead contain other information like

the file size. An example of this is the Windows BMP file that contains the size of the file in

bytes. Again, traditional file carvers would recover files by identifying the header and then

merging as many unallocated sequential clusters following the header as required to equal the

file size.

Foremost [7], developed by the United States Air Force Office of Special Investigations, was one

of the first file carvers that implemented sequential header to footer carving and also

implemented carving based on a header and the size of the file. Golden et al. [8] then proposed

Scalpel, which was built on the foremost engine, but greatly improved its performance and

memory usage. The problem with the first generation of file structure-based carvers was that

they simply extract data between a known header and footer (or ending point determined by

size), with the assumption being that the file is not fragmented and there is no missing

information between the header and the footer. As a result, these file carvers frequently provide

results that have ―garbage‖ in the middle. From the image, it can be seen that a large number of

clusters were decoded that did not belong to the image before the decoding completely failed.

The image belongs to the DFRWS 2006 [9] file carving challenge, which does not contain any

file system meta-data. The DFRWS challenge test-sets [9], [10] were specifically created to test

and stimulate research in the area of fragmented file carving.

11 | P a g e

Chapter 3 FILE SYSTEM ANALYSIS

File system analysis examines data in a volume (i.e., a partition or disk) and interprets them as a

file system. There are many end results from this process, but examples include listing the files

in a directory, recovering deleted content, and viewing the contents of a sector. Recall that

analyzing the contents of a file is application-level analysis and is not covered in this book. In

this chapter, we look at the general design of file systems and different analysis techniques. This

chapter approaches the topic in an abstract fashion and is not limited to how a specific tool

analyzes a file system. Instead, we discuss the analysis in general terms. The remaining nine

chapters discuss how specific file systems are designed and what is unique about them with

respect to digital investigations.

3.1 FILE SYSTEM

The motivation behind a file system is fairly simple: computers need a method for the longterm

storage and retrieval of data. File systems provide a mechanism for users to store data in a

hierarchy of files and directories. A file system consists of structural and user data that are

organized such that the computer knows where to find them. In most cases, the file system is

independent from any specific computer.

For an analogy, consider a series of filing cabinets in a doctor's office. The fictitious National

Association of Medical Record Filing Procedures (NAMRFP) could specify that all patient

records must be organized into filing cabinets and sorted by the last name of the patient. The tag

that is used to identify the record must be typed in English and have the last name followed by

the first name. Any person trained in this procedure would be able to file and retrieve patient

records at an office that uses the procedure. It doesn't matter if the office has 100 patients and

one filing cabinet or 100,000 patients and 25 filing cabinets. All that matters is that the person

recognizes what a filing cabinet is, knows how to open it, and knows how to read and create the

tags. If that person visited an office that used the National Association of Medial Record

Stacking Procedures method where all records were stacked in a corner, his filing cabinet

training would be useless and he would not be able to find the needed records.

12 | P a g e

File systems are similar to these record-storing procedures. File systems have specific procedures

and structures that can be used to store one file on a floppy disk or tens of thousands of files in a

storage array. Each file system instance has a unique size, but its underlying structure allows any

computer that supports the type of file system to process it. Some data needs internal structure

and organization inside the file. This is not unlike physical documents needing structure in the

form of sections and chapters. The internal structure of a file is application dependent and

outside the scope of this book. This book is concerned about the procedures and techniques

needed to obtain the data inside of a file or the data that are not allocated to any file.

3.2 DATA CATEGORIES

As we examine each of the different file system types in this part of the book, it will be useful to

have a basic reference model so that the different file systems can be more easily compared.

Having such a reference model also makes it easier to determine where your evidence may be

located. For example, a reference model makes it easier to compare the difference between FAT

and Ext3 file systems. For this basic model, we will use five categories: file system, content,

metadata, file name, and application. All data in a file system belong to one of the categories

based on the role they play in the file system. We will use these categories throughout this book

when describing file systems, although some file systems, namely FAT, cannot be applied to this

model as easily as others can. The tools in The Sleuth Kit (TSK) are based on these same

categories.

The file system category contains the general file system information. All file systems have a

general structure to them, but each instance of a file system is unique because it has a unique size

and can be tuned for performance. Data in the file system category may tell you where to find

certain data structures and how big a data unit is. You can think of data in this category as a map

for this specific file system. The content category contains the data that comprise the actual

content of a file, which is the reason we have file systems in the first place. Most of the data in a

file system belong to this category, and it is typically organized into a collection of standard-

sized containers. Each file system assigns a different name to the containers, such as clusters and

blocks, and I will use the general term data units until we discuss specific file systems.

The metadata category contains the data that describe a file; they are data that describe data. This

category contains information, such as where the file content is stored, how big the file is, the

13 | P a g e

times and dates when the file was last read from or written to, and access control information.

Note that this category does not contain the content of the file, and it may not contain the name

of the file. Examples of data structures in this category include FAT directory entries, NTFS

Master File Table (MFT) entries, and UFS and Ext3 inode structures.

Figure 3.1: Interaction between the five data categories.

The file name category, or human interface category, contains the data that assign a name to each

file. In most file systems, these data are located in the contents of a directory and are a list of file

names with the corresponding metadata address. The file name category is similar to a host name

in a network. Network devices communicate with each other using IP addresses, which are

difficult for people to remember. When a user enters the host name of a remote computer, the

local computer must translate the name to an IP address before communication can start.

The application category contains data that provide special features. These data are not needed

during the process of reading or writing a file and, in many cases, do not need to be included in

the file system specification. These data are included in the specification because it may be more

efficient to implement them in the file system instead of in a normal file. Examples of data in this

category include user quota statistics and file system journals. These data can be useful during an

14 | P a g e

investigation, but because they are not needed to write and read a file, they could be more easily

forged than other data.

3.3 LOGICAL FILE SYSTEM ADDRESS

A sector can have multiple addresses, each from a different perspective. In our discussion of

Acquisition techniques, we saw that every sector has an address relative to the start of the storage

media, which is its physical address. Volume systems create volumes and assign logical volume

addresses that are relative to the start of the volume.

File systems use the logical volume addresses but also assign logical file system addresses

because they group consecutive sectors to form a data unit. In most file systems, every sector in

the volume is assigned a logical file system address. An example of a file system that does not

assign a logical file system address to every sector is FAT.

Figure 3.2 shows a volume with 17 sectors and their logical volume addresses. Below them are

the logical file system addresses. This fictitious file system created data units that were each two

sectors, and the file system did not assign addresses until sector 4. This very small file system

ends in sector 15, and sector 16 is volume slack.

Figure 3.2 : Logical file system addressing

3.3.1 ALLOCATION STRATEGY

An OS can use different strategies for allocating data units. Typically, an OS allocates

consecutive data units, but that is not always possible. When a file does not have consecutive

data units, it is called fragmented.

15 | P a g e

A first available strategy searches for an available data unit starting with the first data unit in the

file system. After a data unit has been allocated using the first available strategy and a second

data unit is needed, the search starts again at the beginning of the file system. This type of

strategy can easily produce fragmented files because the file is not allocated as a whole. For

example, consider a theater that uses a first available strategy to assign seats. If a group of four

wanted tickets to a show, the box office would start with the front row and scan for available

seats. They may get all four seats together or two people may get seats in front and the other two

in the back. If someone returns a ticket while the search is underway, the third person may end

up getting a seat closer to the front than the first two people did. In the example shown in Figure

8.3, data unit 1 would be allocated next using a first available strategy. An OS that uses first

available overwrites deleted data at the beginning of the file system more quickly than other

algorithms will. Therefore, if you encounter a system using this algorithm, you will probably

have better luck recovering deleted content from the end of the file system.

Figure 3.3 : Allocation status of 8 data units

A similar strategy is next available, which starts its search with the data unit that was most

recently allocated instead of at the beginning. For example, if data unit 3 in Figure 3.3 is

allocated, the next search starts at data unit 4 instead of 0. In our theater example, we would start

the search from the last seat that was sold instead of starting in the front row. With this

algorithm, if a ticket at the front of the theater was returned while the search was underway, it

would not be sold until the search reached the last seat. This algorithm is more balanced for data

recovery because the data units at the beginning of the file system are not reallocated until the

data units at the end have been reallocated.

16 | P a g e

Another strategy is best fit, which searches for consecutive data units that fit the needed amount

of data. This works well if it is known how many data units a file will need, but when a file

increases in size, the new data units will likely be allocated somewhere else and the file can still

become fragmented. If the algorithm cannot find a location for all the data, a first or next

available strategy may be used. This is the algorithm that typically occurs when assigning seats

in a theater. The empty seats are scanned until enough free consecutive seats can be found for the

group. In our Figure 8.3 example, if we had a two-data unit file, it would be allocated to data

units 4 and 5 and not split up between 1 and 4.

Each OS can choose an allocation strategy for a file system. Some file systems specify what

strategy should be used, but there is no way to enforce it. You should test an implementation of

the file system before assuming that it uses the strategy in the specification. In addition to testing

the operating system to determine its allocation strategy, you should also consider the application

that creates the content. For example, when updating an existing file some applications open the

original file, update it, and save the new data over the original data. Another application might

make a second copy of the original file, update the second copy, and then rename the copy so it

overwrites the original. In this case, the file is located in new data units because it is part of a

new file. This behavior should not be confused with the allocation strategy of the OS because the

OS did not force new data units to be allocated.

3.3.2 DAMAGED DATA UNITS

Many file systems have the ability to mark a data unit as damaged. This was needed with older

hard disks that did not have the capability to handle errors. The operating system would detect

that a data unit was bad and mark it as such so that it would not be allocated to a file. Now,

modern hard disks can detect a bad sector and replace it with a spare, so the file system

functionality is not needed.

It is easy to hide data using the file system functionality, if it exists. Many consistency checking

tools will not verify a data unit that the file system reports as being damaged is actually

damaged. Therefore, a user could manually add a data unit to the damaged list and place data in

it. Most acquisition tools report bad sectors, so that report can be compared the damaged list to

identify sectors that may have been manually added to hide data.

17 | P a g e

3.3.3 ANALYSING TECHNIQUES

Now that we have looked at the basic concepts of data in the content category, we will look at

how to analyze the data. This section covers different analysis techniques that can be used when

searching for evidence.

3.3.4 DATA UNIT VIEWING

Data unit viewing is a technique used when the investigator knows the address where evidence

may be located, such as one allocated to a specific file or one that has special meaning. For

example, in many FAT32 file systems, sector 3 is not used by the file system and is all zeros, but

data could be hidden there, and viewing the contents of sector 3 shows the investigator if there

are non-zero data.

The theory behind this type of analysis is simple. The investigator enters the logical file system

address of the data unit and a tool calculates the byte or sector address of the data unit. The tool

then seeks to that location and reads the data. For example, consider a file system where data unit

0 starts at byte offset 0 and each data unit is 2,048 bytes. The byte offset of data unit 10 is 20,480

bytes, which we can see in Figure 3.4.

Figure 3.4 : Graphical Representation for viewing the data unit 10

There are many tools, such as hex editors and investigation tools, which perform this function. In

TSK, the dcat tool allows you to view a specific data unit and displays it in raw or hexadecimal

format.

18 | P a g e

3.4 LOGICAL FILE SYSTEM-LEVEL SEARCHING

In the previous technique, we knew where evidence could be, but we may not have known what

the evidence would be. In this technique, we know what content the evidence should have, but

we do not know where it is. A logical file system search looks in each data unit for a specific

phrase or value. For example, you may want to search for the phrase "forensics" or a specific file

header value. We can see this in Figure 3.5 where we are looking at each data unit for the string

"forensics."

Figure 3.5 : Logical File System Search Look

This search technique has historically been called a physical search because it used the physical

ordering of the sectors, but I do not feel this is accurate. This was accurate when a single disk

was being analyzed, but this is not true for systems that use disk spanning and RAID. For those

systems, the order of the sectors is not the physical order, and a more precise name should be

used.

Unfortunately, files do not always allocate consecutive data units, and if the value you are

searching for is located in two non-consecutive data units of a fragmented file, a logical file

system search will not find it. We will see in the "Logical File Searching" section that a logical

file search will find this value. Many forensic tools offer the capability to do both logical volume

and logical file searches. To determine what search techniques your analysis tool uses, you can

use some of the keyword search test images at the Digital Forensic Tool Testing (DFTT) site

[Carrier 2004] that I maintain.

If we return to the theater analogy from the "Allocation Strategies" section, we may want to

search for a specific family. A logical file system search of the theater for the family would start

in the front row and examine each group of four consecutive people. If the family did not have

consecutive seats, this search would fail. The search could be repeated by searching for only one

19 | P a g e

person in the family, but that would probably result in many false hits from people who look

similar.

3.5 DATA UNIT ALLOCATION STATUS

If we do not know the exact location of the evidence, but we know that it is unallocated, we can

focus our attention there. Some tools can extract all unallocated data units from the file system

image to a separate file, and others can restrict their analysis to only the unallocated areas. If you

extract only the unallocated data, the output will be a collection of raw data with no file system

structure, so you cannot use it in any file system analysis tools.

We can see this in Figure 3.6 where the bitmap for the first 12 data units are shown. A bitmap is

a data structure that has a bit for each data unit. If the bit is 1, the data unit is allocated, and if it

is 0, it is not. If we were going to extract the unallocated data units, we would extract units 2, 6,

7, and 11.

Figure 3.6 : Allocation Bitmap

Many digital forensic analysis tools allow you extract the unallocated space of a file system,

although the definition of unallocated space may vary. I have observed that some tools consider

any data not allocated to a file to be unallocated data, including the data in the file system and

metadata categories. Alternatively, some tools recover deleted files and consider the data units of

the deleted files to be allocated, even though they are technically unallocated.

20 | P a g e

Chapter 4 LITERATURE REVIEW

Mobile file carving is a new and currently growing area in the forensic science. Lots of studies

are going on in this field. Some the literatures used for the study of this mobile forensic are

summarized below,

4.1 FORENSIC ANALYSIS OF INTERNAL MEMEORY OF MOBILE PHONES

Mobile phones have become a very important tool for personal communication. It is therefore of

great importance that forensic investigators have possibilities to extract evidence items from

mobile phones. Modern mobile phones store evidence items on SIM-cards as well as internal

memories. With the advent of modern functionality, such as camera and multimedia messaging,

more and more of these items are stored in internal memory. Proper forensic examination of such

memories, including recovery of deleted items, has not been possible until now.

It has been shown that a logical analysis of a memory dump can be conducted in order to

enumerate evidence items present on the phone, including items that have been deleted. The

existence of embedded memory managers in mobile phones was discovered. Memory manager‘s

reorganization of memory can result in the overwriting of deleted evidence items. Therefore, the

current practice of analyzing mobile phone internal memory through phone operating system

should be reconsidered.

When mobile phones are seized, they must immediately be shut off. Any SIM card or external

flash memory is removed and analyzed separately with a forensic analysis solution. The internal

memory of the phone is imaged and analyzed using a method that has yet to be defined. Further

research should be conducted in order to determine more practical methods for reading mobile

phone internal memory, and enumerate evidence items found therein.

4.2 CHARACTERIZING FAILURES IN MOBILE OS

As smart phones grow in popularity, manufacturers are in a race to pack an increasingly rich set

of features into these tiny devices. This brings additional complexity in the system software that

has to fit within the constraints of the devices (chiefly memory, stable storage, and power

consumption) and hence, new bugs are revealed. How this evolution of smartphones impacts

21 | P a g e

their reliability is a question that has been largely unexplored till now. With the release of open

source OSes for hand-held devices, such as, Android (open sourced in October 2008) and

Symbian (open sourced in February 2010), we are now in a position to explore the above

question. In this paper, we analyze the reported cases of failures of Android and Symbian based

on bug reports posted by third party developers and end users and documentation of bug fixes

from Android developers. First, based on developer reports, our study looks into the

manifestation of failures in different modules of Android and their characteristics, such as, their

transience in time. Next, we analyze similar properties of Symbian bugs based on failure reports.

Our study indicates that Development tools, Web browsers, and Multimedia applications are

most error-prone in both these systems. We further analyze bug fixes for Android and

categorized the different types of code modifications required for the fixes. The analysis shows

that 78% of errors required minor code changes, with the largest share of these coming from

modifications to attribute values and conditions. Our final analysis focuses on the relation

between customizability, code complexity, and reliability in Android and Symbian. We find that

despite high cyclomatic complexity, the bug densities in Android and Symbian are surprisingly

low. However, the support for customizability does impact the reliability of mobile OSes and

there are cautionary tales for their further development.

Our work is a step toward the failure characterization of an OS for mobile phones. We presented

a measurement based failure analysis of two operating systems—Android and Symbian—by

studying publicly available bug databases. The key findings are: (1) Most of the bugs (more than

90%) in both these platforms are permanent in nature, suggesting that the codebases are not yet

mature. (2) The Kernel layer in both the platforms are sufficiently robust, however, much effort

is needed to improve the Middleware (Application Framework and Libraries in Android). (3)

Development tools, Web, Multimedia, and Build failures are most prevalent in both the

platforms. This suggests the necessity for a better mobile application development tools and need

for caution in using third-party libraries. (4) Android offers a great degree of customizability in

both the build and the execution processes. This customizability comes at a cost for a significant

fraction of bugs—between 11% and 50% (assuming all of Modify settings, Add/modify cond,

Preprocess changes, and Major changes are due to customizability). At present, the percentage of

build errors is also high in Symbian (38.6%). (5) According to our analysis, a significant

minority of the bugs in Android (22%) needed major code changes. Among various types of

22 | P a g e

code modifications, fixing variable assignments and control flow update (adding if-else clause)

are most widespread.

Our study also highlights the significant contributions of Android and Symbian in the field of

mobile OS development. Both these platforms have established well-defined and well-

maintained open mechanisms for reporting and dealing with bugs, without which a study like

ours would not have been possible. This level of transparency is a pioneering and creditable

effort in the smartphone world.

Our future work will focus on analyzing the propagation of errors among various layers, more

specifically, between the Middleware and the applications. We also want to more fully explore

the relationship between customizability, complexity, and reliability in a mobile operating

system.

4.2.1 RELATED WORKS OF CHARACTERIZING FAILURES

Reliability literature over the years contains the results of many research efforts directed at

analyzing bug reports for popular operating systems [18], [20], [21], [22]. In one of the early

works on OS reliability, Sullivan et al. [18] analyzed defects of the MVS operating system based

on empirical failure records documented by field IBM staff. This work categorized defects as

overlay (errors that corrupt memory) and regular (those that do not corrupt memory). The

frequency and effects of both types of errors were analyzed.

Chou et al. , in [4], presented their finding on OS errors by compiler attachments, which checks

code for certain types of bugs, and counts bug density. The work discovered the correlation of

different types of bugs with directories, function size, and file age. Our work looks into similar

problem with different scope: instead of compiler attachments, our research is based on the

developers‘ view and how bugs are fixed. In [22], the authors highlight the failure characteristics

of BlueGene/L supercomputer by correlating data obtained from event loggers. Applying similar

concept of failure event loggers, Cinque et al. [23] performed one of the few pieces of work that

focuses on mobile OS reliability. In this work, the authors attached fault event loggers to a set of

25 Symbian OS based mobile phones to record failure events and panics (kernel-generated

warnings for Symbian). Through this, the authors unveiled characteristics of the panics (burst,

etc.) and the relation between panics and user-visible failures. However, since Symbian was not

23 | P a g e

open-sourced at the time of this analysis, their research was limited to the manifestation of

failures. Our paper extends the scope beyond these findings by classifying failures according to

their root causes in the source code (for Android). We also present an analysis on customizability

and complexity of a mobile OS (Android) which is distinct from previous work. Our work is also

comparable to the failure modes catalog for wireless applications presented by Jha et al. [24]. In

this work, the authors created a catalog for risk based testing of wireless applications based on

observed and predicted failures. Our work also tries to estimate the likelihood of failure at

different segments of a mobile OS which can be used for risk analysis. Comparing to this catalog

[24], most of the bugs observed in our analysis were found under the category ―Product

Elements‖ which deals with mobile middleware, platform, synchronization, memory

management etc.

4.3 FILE CARVING EVOLUTION

Year by year, the number of computers and other digital devices being used is increasing. The

recent Pew Research Center Globalization Review [25] showed that 26 of the 36 countries

surveyed had increased their computer usage. This increase is occurring simultaneously with an

increase in usage of other digital devices, such as cell phones. In fact, in the United States alone

81% of the population now owns a cell phone, which is a 20% increase compared to 2002. Some

countries, including Russia, have shown upwards of a 50% increase in cell phone ownership.

Computers are now one of many devices where digital data is stored. Devices such as cell

phones, music players, and digital cameras all now have some form of internal storage or else

allow data to be stored to external devices like flash cards, memory sticks, and solid-state

devices (SSDs). With this huge increase in digital data storage, the need to recover data due to

human error, device malfunction, or deliberate sabotage has also increased.

 Data recovery is a key component of the disaster recovery, forensics, and e-discovery markets.

Digital data recovery can consist of both software and hardware techniques. Hardware

techniques are often used to extract data from corrupted or physically damaged disks. Once the

data has been extracted, software recovery techniques are often required to order and make sense

of the data. In this article, we will be solely discussing software techniques for recovery of data

with a focus on digital forensics. We will begin by providing a quick overview of traditional data

24 | P a g e

recovery techniques and then describe the problems involved with such techniques. We then

introduce the techniques involved in file carving.

Evolutions of file carving and described in detail the techniques that are now being used to

recover files without using any file system meta-data information. We have shown the benefits

and problems that exist with current techniques. In the future, SSDs will become much more

prevalent. SSDs will incorporate wear-leveling, which results in files being moved around so as

to not allow some clusters to be written to more than others. This is done because after a certain

amount of writes a cluster will fail and, therefore, the SSD controller will attempt to spread the

write load across all clusters in the disk. As a result, SSDs will be naturally fragmented, and

should the disk controller fail the clusters on the disk will require file carving techniques to

recover. There is a lot of research yet to be done in this area for data recovery. Finally, while Pal

et. al‘s techniques are useful for recovering text and images, new weighting techniques need to

be created for video, audio, executable and other file formats, thus allowing the recovery to

extend to those formats.

4.4 ANDROID FORENSICS

It is hardly appropriate to call the devices many use to receive the occasional phone call a

telephone any more. The capability of these devices is growing, as is the number of people

utilizing them. By the end of 2009, 46.3% of mobile phones in use in the United States were

reported to be smart phones (AdMob, 2010).

With the increased availability of these powerful devices, there is also a potential increase for

criminals to use this technology as well. Criminals could use smart phones for a number of

activities such as committing fraud over e-mail, harassment through text messages, trafficking of

child pornography, communications related to narcotics, etc. The data stored on smart phones

could be extremely useful to analysts through the course of an investigation. Indeed, mobile

devices are already showing themselves to have a large volume of probative information that is

linked to an individual with just basic call history, contact, and text message data; smart phones

contain even more useful information, such as e-mail, browser history, and chat logs. Mobile

devices probably have more probative information that can be linked to an individual per byte

examined than most computers -- and this data is harder to acquire in a forensically proper

fashion.

25 | P a g e

Part of the problem lies in the plethora of cell phones available today and a general lack of

hardware, software, and/or interface standardization within the industry. These differences range

from the media on which data is stored and the file system to the operating system and the

effectiveness of certain tools. Even different model cell phones made by the same manufacture

may require different data cables and software to access the phone's information.

The good news is there are numerous people in the field working on making smart phone

forensics easier. Already there is material available on how to conduct an examination on

Blackberry phones and a growing number of resources about the iPhone. However, there is a

new smart phone OS on the market named Android and it will likely gain in appeal and market

share over the next year. While Android initially launched with only one phone on T-Mobile,

phones are now available on Sprint, Verizon and AT&T as well.

4.4.1 ANDROID OS

Android is an operating system (OS) developed by the Open Handset Alliance (OHA). The

Alliance is a coalition of more than 50 mobile technology companies ranging from handset

manufactures and service providers to semiconductor manufacturers and software developers,

including Acer, ARM, Google, eBay, HTC, Intel, LG Electronics, Qualcomm, Sprint, and T-

Mobile. The stated goal of the OHA is to "accelerate innovation in mobile and offer consumers a

richer, less expensive, and better mobile experience"

Android has a large community of developers writing applications that extend the functionality

of the devices. Developers write primarily in a customized version of Java. Apps can be

downloaded from third-party sites or through online stores such as Google lay (formerly Android

Market), the app store run by Google. In October 2011, there were more than 500,000 apps

available for Android, and the estimated number of applications downloaded from the Android

Market as of December 2011 exceeded 10 billion.

4.5 FORENSIC RECOVERY OF FLASH MEMORY

Evolution in consumer electronics has caused an exponential growth in the amount of mobile

digital data. The majority of mobile phones nowadays has a build in camera and is able to record,

store, play and forward picture, audio, and video data. Some countries probably have more

26 | P a g e

memory sticks than inhabitants. A lot of this data is related to human behavior and might become

subject of a forensic investigation.

Flash memory is currently the most dominant non-volatile solid-state storage technology in

consumer electronic products. An increasing number of embedded systems use high level file

systems comparable to the file systems used on personal computers. Current forensic tools for

examination of embedded systems like mobile phones or PDAs mostly perform logical data

acquisition. With logical data acquisition it‘s often not possible to recover all data from a storage

medium. Deleted data for example, but sometimes also other data which is not directly relevant

from a user standpoint, cannot be acquired and potentially interesting information might be

missed. For this reason data acquisition is wanted at the lowest layer where evidence can be

expected. For hard disk based storage media it‘s common to copy all bytes from the original

storage device to a destination storage device and then do the analysis on this copy. The same

procedure is desired for embedded systems with solid-state storage media.

In this forensic analysis of flash memory we suggest a low level approach for the forensic

examination of flash memory. The most important technology basics of flash memories are

explained. And describes three low-level data acquisition methods for flash memories, first with

so called flasher tools, then by usage of an access port commonly used for testing and debugging

and finally with a semi-invasive method where the flash memory chips are physically removed

from the printed circuit board.

4.5.1 FLASH MEMORY

Flash memory is a type of non-volatile memory that can be electrically erased and

reprogrammed. Flash memory comes in two flavors, NOR1 flash and NAND2 flash, named after

the basic logical structures of these chips. Contrary to NAND flash, NOR flash can be read byte

by byte in constant time which is the reason why it is often used when the primary goal of the

flash memory is to hold and execute firmware3, while parts of NOR flash that are not occupied

by firmware can be used for user data storage. Most mobile media, like USB flash disks, or

multimedia centred devices like digital camera‘s and camera phones, use NAND flash memory

to create compact mobile data storage. This chapter explains the basics of flash technology first

27 | P a g e

on the physical level and then from a logical perspective. An introduction to NAND flash

memory can be found in [49], more in depth information can be found in [53].

4.6 FRAGMENTATION

Modern operating systems try to write files without fragmentation because these files are faster

to write and to read. But there are three conditions under which an operating system must write a

file with two or more fragments:

1. There is no contiguous region of sectors on the media large enough to hold the file without

fragmentation. This is likely if a drive has been in use a long time, is filled to near capacity, and

as had many files added and deleted in more-or-less random order over time.

2. If data is appended to an existing file, there may not be sufficient unallocated sectors at the

end of the file to accommodate the new data. In this case, some file systems may relocate the

original file, but mostly, they will simply write the appended data to another location.

3. The file system itself may not support writing files of a certain size in a contiguous manner.

Or example, the Unix file system (UFS) will fragment files that are long or have bytes at the end

of the file that will not fit into an even number of sectors.

Simon Garfinkel2 researched fragmentation statistics by investigating 350 disks containing NTFS,

FAT, and UFS. He showed that the fragmentation rate of user files (email, JPEG, Microsoft

Word, and Microsoft Excel) is high. Microsoft Word‘s fragmentation rate was found to be 17

percent; for JPEG files, it was 16 percent; and for Microsoft Outlook‘s PST files, it was 58

percent. For carving fragmented files that have no beginning or a common string, we use

advanced carving techniques based on file structure. An example of many techniques that can be

used is ―file structure carving.‖ File structure carving makes use of recognizable structures

outside the header and footer signatures. In the example of the JPEG-layout (Figure 1), not only

are the header and footer values used, but also the identifier strings and size to search block by

block for JPEG files.

4.7 FRAGMENTED FILE RECOVERY

Reassembly of file fragments in the absence of file table information is a challenging problem in

Digital Forensics and File Recovery. In literature we find file type specific solutions to this

28 | P a g e

problem. In this paper we investigate a generalized solution that can be applied to every type of

file. We present a technique to reassemble any type of fragmented file without using file table

information. We have also presented time and space complexities of the algorithms in O-

notation. In this technique each file on the disk is a Doubly Linked List with clusters as its nodes.

We indicate some sections of Operating System that needs to be modified.

An Operating System divides a disk into two sections namely System Area and Data Area. The

System Area holds data structures to implement File System and Data Area holds data of files.

When a new file is created, Operating System allocates required number of clusters for it. The set

of allocated clusters need not form contiguous area on disk. That is file‘s data may be

fragmented. The list of clusters for a given file is stored in a suitable data structure in a File

System. For example, in a FAT File System, the list is stored in a data structure called File

Allocation Table (FAT).

When a file is deleted the clusters of a file are marked as free but data of the file is available on

disk as long as the clusters are not allocated to another file. And when a used disk is formatted

for reuse the data structures in System Area are initialized but the data of old files is available on

disk as long as the clusters are not allocated to new files.

Sometimes files are accidentally deleted. In these cases files content is available on disk in

fragmented form but the information of reassembling these files is missing. The disk is in initial

state just after formatting a new disk. In this state the disk has no files. When user starts creating

files on it, it moves to ‗Fully Recoverable State‘.

 While the disk is in this state, if file(s) is/are deleted or disk is formatted or more files are

created without overwriting clusters, then it remains in this state as long as used clusters are

overwritten. When used clusters are overwritten, then it moves to ‗Partially recoverable State‘. It

remains in this state as long as disk is not physically damaged.

29 | P a g e

Figure 4.1 : OLE Header Structure

When forensic analyst needs to examine disk content, he cannot rely on what is presented by the

Operating System using the data structures of File System. File recovery software do not rely on

what is presented by the Operating System using the data structures of File System. We need to

have techniques for reassembling fragments of files. Reassembling file fragments in the absence

of file table information is called File Carving.Techniques of reassembling image files of type bit

map are explored in [54], document files in [55] and image files of type JPEG in [56] and [57].

File type specific techniques suffer from drawbacks. For every future file type new techniques

need to be developed. Moreover every existing file type should be treated separately.

30 | P a g e

Chapter 5 MOBILE FORENSIC

Mobile phones have become a very important tool for personal communication. It is therefore of

great importance that forensic investigators have possibilities to extract evidence items from

mobile phones. Modern mobile phones store evidence items on SIM-cards as well as internal

memories. With the advent of modern functionality, such as camera and multimedia messaging,

more and more of these items are stored in internal memory. Proper forensic examination of such

memories, including recovery of deleted items, has not been possible until now.

It is clear that mobile phones contain information that may have value as evidence in

investigations. The mobile phone has become the modern person‘s primary tool for personal

communication, and therefore frequently contains information about a person‘s activities.

Obtaining information on such activities is often a primary goal in an investigation. Analyzing

the content of a mobile phone is therefore an invaluable tool for the forensic investigator.

5.1 MOBILE PHONE ARCHITECTURE

In order to fully understand how forensic analysis of mobile phone systems can be conducted, it

is important to understand how mobile phones are built. The system architecture of a mobile can

generally be viewed as the architecture on.

The central unit of the phone is the CPU. The CPU controls the communication circuits of the

phone, in addition to control the communication with the user. For intermediary storage, the

CPU uses a RAM. RAM is used for all intermediary storage during communication and user

interaction. The RAM can be implemented as a separate integrated circuit or it can be integrated

with the CPU in a single integrated circuit.

The phone also needs a secondary non-volatile storage (shown as secondary storage on the

figure). This is needed for storage of all data pertaining to user and communication that needs to

persist during a power failure. Secondary storage can be implemented in various ways. The most

common implementation today on mobile phones is a separate flash memory integrated circuit

on the system board. In addition to these elements, the CPU has communication with the SIM,

31 | P a g e

and optionally other external storage media. It is also common to have a special unit to control

the usage of power in a mobile phone.

 BUS

Figure 5.1: General architecture of mobile phone

One should note the similarity of the architecture of a mobile phone with that of a computer.

Where computers normally use a hard drive for secondary storage, a mobile phone uses flash

memory. Otherwise the mobile phone architecture is like a computer. In this essence, it is not

unfair to say that the mobile phone is a computer. The difference in secondary storage is

however very important for forensic investigators.

5.2 SOME MOBILE PHONES AND THEIR INFORMATIONS

5.2.1 NOKIA

Some of the models 3200, 3410, 3510i, 5110, 6110, 6150, 6210, 6230, 6310i and 6610 were

analyzed. The following behavior was observed on the analyzed Nokia phones: Text messages

are stored on the SIM. When the SIM is full (max 20-30 messages), the phone uses internal

memory (up to 150 messages common on most models). Older models store only incoming

messages, but newer models store both outgoing and incoming, but only incoming is stored on

SIM. With Nokia phones, deleted messages on SIM can be recovered. Contacts can be stored on

SIM or internal memory, and the user can select which memory to use. Older Nokia phones

cannot store contacts in internal memory.

CPU

RAM

Flash

32 | P a g e

The analyzed Nokia phones use internal memory for all other data such as calendar events, caller

logs, pictures etc. The call log file on the SIM is not used by Nokia. If the SIM is changed, the

phone will delete the caller logs, but all other data will remain. Only one of the analyzed Nokia

phones (the 6230) had external flash memory. This could be used as additional storage for

pictures and sound files. Text messages cannot be stored on the external card. Multimedia

messages will implicitly be stored in internal memory, but may be moved to external memory by

the user.

5.2.2 SONY ERICSSON

The models A2618s, GH688, R380s, S868, T68, T68i, T610 and T630 were analyzed. For the

analyzed Sony Ericsson phones, it was observed that text messages are stored on internal

memory until it is full, and only then will the phone start to use the SIM. As a consequence, SIM

cards will in most cases contain nothing when they have been used in Sony Ericsson phones. For

phones with external memory cards, it is similar to Nokia only possible to copy pictures and

sounds to these, and only at the user‘s explicit request.

5.2.3 SIEMENS

The models A60, C25, C60, C62, M55 and M65 were analyzed. The analyzed Siemens phones

use SIM as primary storage for text messages and log of outgoing calls. When the SIM memory

is full, internal memory is used. For contacts, the user can choose whether to use internal or SIM

memory, but internal memory is the default. None of the Siemens phones deleted items when

switching the SIM card. No Siemens phone with external memory was analyzed.

5.3 ANDROID PHONES

The Android platform is a software stack for mobile devices that consists of an operating system,

middleware and key applications [16]. Android offers many features covering the areas of

application development, Internet, media, and connectivity. These features include Application

framework, Dalvik virtual machine, Integrated browser, Optimized graphics, SQLite for

structured data storage, Media support for common audio, video, and still image formats, GSM

Telephony, Bluetooth, EDGE, 3G, and WiFi, Camera, GPS, Compass, and a rich Development

environment. The Android platform primarily consists of five layers:

33 | P a g e

5.3.1APPLICATIONS

This includes a set of core applications that come with the Android distribution like Email Client,

Messaging application, Contacts application, Calendar, Map browser, Web browser etc.

5.3.2 APPLICATION FRAMEWORK

This layer has been designed to facilitate the reuse of components in Android. With the help of

Application Framework elements (such as, Intents, Content Providers, Views, and Managers) in

Android, developers can build their applications to execute on Android Kernel and inter-operate

among themselves and with existing applications.

5.3.3 LIBRARIES

Libraries include System C library, Surface Manager, 2D and 3D graphics engine, Media

Codecs, the SQL database Sqlite and the web browser engine LibWebCore.

5.3.4 ANDROID RUNTIME

The Android runtime consists of two components.

 A set of Core libraries which provides most of the functionality available in Java.

 The Dalvik virtual machine which operates like a translator between the application side

and the operating system. Every Android application runs in its own process, with its own

instance of the Dalvik virtual machine.

5.3.5 LINUX KERNEL

Android uses a modified version of Linux 2.6 for core system services such as Memory

Management, Process Management, Network Stack, Driver Model and Security. For more

information on the Android platform and a schematic of the Android architecture the readers are

referred to [16].

5.4 SYMBIAN

Symbian OS, currently being used by several leading mobile phone manufacturers, account for

46.9% of global smart phone sales, making it the world‘s most popular mobile operating system

[7]. It is a lightweight operating system designed for mobile devices and smart phones, with

34 | P a g e

associated libraries, user interface, frameworks and reference implementations of common tools,

originally developed by Symbian Ltd [14].

3 design principles: (i) Real time processing, (ii) Resource limitation, and (iii) Integrity and

security of user data. To best follow these principles, Symbian uses a hard real-time,

multithreaded microkernel, and has a request-and-callback approach to services. Symbian‘s

system model is segmented into 3 main layers [15]:

5.4.1 OS LAYER

Includes the hardware adaptation layer (HAL) that abstracts all higher layers from actual

hardware and the Kernel including physical and logical device drivers. It also provides

programmable interface for hardware and OS through frameworks, libraries and utilities etc. and

higher level OS services for communications, networking, graphics, multimedia and so on.

5.4.2 MIDDLEWARE LAYER

Provides services (independent of hardware, applications or user interface) to applications and

other higher-level programs. Services can be specific application technology such as messaging

and multimedia, or generic to the device such as web services, security, device management, IP

services and so on.

5.4.3 APPLICATION LAYER

Contains all the Symbian provided applications, such as multimedia applications, telephony and

IP applications etc. Symbian is optimized for low-power battery-based devices and ROM-based

systems. Here, all programming is event-based, and the CPU is switched into a low power mode

when applications are not directly dealing with an event. Similarly, the Symbian approach to

threads and processes is driven by reducing memory and power overheads. Readers are referred

to [15] for further details on the Symbian architecture.

35 | P a g e

Chapter 6 PROPOSED APPROACH

File carving is very important in the forensic science for finding the proofs and details left over

in the devices which we got at the time of the crime scene. Based on the definition of file

carving, it is the process of recovering the data from a hard disk or a storage media even after the

file or data which had been deleted or corrupted or damaged during some process. This recovery

is done without using the storage meta-data, like file tables.

Now a days the usage of the mobile phones have been increased, each and every one is having a

mobile phone with them, so, the possibility of the becoming a proof of crime scene for these

mobile devices become more. Here comes the mobile forensics. After the mobile phones, PDAs

or tablets retrieved from the crime locations they are sent to the forensic labs for examination.

The data from these devices can be recovered by this mobile carving technique.

6.1 RECOVERY OF DATA WITHOUT USING STORAGE META-DATA

File system structures are not used during the process. File carving is a powerful technique for

recovering files and fragments of files when directory entries are corrupt or missing. The block

of data is searched block by block for residual data matching the file type-specific header and

footer values. Carving is also especially useful in criminal cases where the use of carving

techniques can recover evidence. In certain cases related to child pornography, law enforcement

agents are often able to recover more images from the suspect‘s hard disks by using carving

techniques. Another example is the hard disks and removable storage media US Navy Seals took

from Osama Bin Laden‘s campus during their raid. Forensic experts used file carving techniques

to squeeze every bit of information out of this media.

As long as data is not overwritten or wiped, deleted data on all storage devices can be restored

using carving techniques, including multifunctional devices and even mobile phones. Depending

on the conditions, it is even possible to restore data from formatted disks. With the exhaustive

measures of drives since 2006, there is a big chance that the data is not overwritten. For example,

let‘s say you have a two-terabyte drive, and you delete a document from that drive. The disk

space reserved for that document will be marked ―available,‖ but it could really take a long time

before this address space on the disk is overwritten. There were forensic cases where we

36 | P a g e

discovered files stored on the disk years ago. In this paper, the basic techniques of file carving

tools like Foremost and Photorec, are explained for recovering data from several media types.

6.2 MOBILE PHONE MEMORY CARVING

Recovery of data from mobile phones is different from the recovery from the computer and

laptops. Here we need to recover the messages sent, both text messages and multimedia

messages. The images, videos, notes, calendar items, contacts and call history. And another thing

to be noted here is we have a different file system using flash memory for storing. So file carving

will be more suitable for the recovery of data from the mobile phone devices.

6.3 EVIDENCE IN MOBILE PHONE

Mobile phones are digital media. In principle, this means that mobile phones have the same

evidentiary possibilities as other digital media, such as hard drives. For example it is, as will be

explored in this paper, possible to extract deleted information from a mobile phone, in the same

way it is possible on a hard drive. However, mobile phones also suffer from the same evidentiary

problems as other digital media. As with a computer, the content of a mobile phone is fragile and

can easily be deleted and overwritten. Mobile phones should therefore be handled with great care

and insight, just as any other digital media.

6.4 EVIDENCE ITEMS

A long range of evidence items can be found in modern mobile phones. A few is listed in [11]. In

addition to the evidence related to the phone system itself, modern phones have other evidence

items that should be mentioned:

- Images

- Sounds

- Multimedia messages

- WAP/web browser history

- Email

- Calendar items

- Contacts

Last but not least, the importance of SMS text messages should not be underestimated. The Short

Message Service is very widely used, and messages are stored on the sending and receiving

37 | P a g e

mobile phone. The ability to recover deleted text messages would have great value in many

investigations. The investigation of possibilities to recover deleted text messages has been the

main motivation for this research.

6.5 STORAGE MEDIA

With the advent of digital mobile telephone systems, such as GSM, a need for local digital

storage emerged. In the GSM system, the single most popular digital mobile phone system, the

SIM (Subscriber Identity Module) was specified as storage medium and implemented as a smart

card that fits inside the phone. The SIM contains subscriber information and secret encryption

keys necessary for the communication. It also implements storage space for contacts and text

messages. As described in [11] and [12], the SIM can be soundly forensically analyzed. It is also

possible to recover some deleted data from the SIM (deleted text messages on from some phone

models). The SIM architecture is also used in 3G systems (USIM).

However, since the late 1990s, mobile phone manufacturers began to use mobile phone internal

memory in addition to the SIM for storage of information items. The SIM has a rigorous

specification allowing only for certain types of information to be stored. It does not provide a

single continuous memory that can be utilized for any purpose. As the manufacturers wanted to

implement new functions where storage on SIM was not available, mobile phones were

gradually equipped with internal memory for storage of items such as missed and received calls,

calendar events, text messages, contacts and other items.

The first models used a serial EEPROM chip for this purpose. With the growth of memory

demand, it gradually became more common to implement internal memory on flash memory,

either as a flash chip dedicated for information item storage, or as an area on the flash memory

chip storing the phone system software. More recently, with the advent of telephones with

cameras and MP3 players, it has also become common to add possibilities for external flash

memory in mobile telephones. External memory can be added by inserting a memory card such

as SD, MMC, CF or similar. Sound forensic analysis of external memory cards can be

accomplished by using existing computer based forensic tools such as [13], [14] and [15].

38 | P a g e

6.6 USAGE OF EXTERNAL MEMORY, INTERNAL MEMORY AND SIM

In order to understand the value of analyzing mobile phone internal memory, one must

understand where the different information items in mobile phones are stored. In order to

understand this properly, a range of mobile phones with SIM, internal storage, and to a certain

extent external flash storage was analyzed to determine what information items are stored on the

different media types. The phones were examined by sending and receiving text messages,

taking pictures, store contacts and calendar events, exchanging SIM cards and external memory

cards, and observe the behaviour. The results indicate that each manufacturer is consistent in the

way data is handled, but the variation between manufacturers is significant. The results are

summarized in the following, grouped on each manufacturer.

6.7MEMORY CONTENT EXPERIMENTS

The focus of this research has been to identify if deleted items can be recovered by analyzing

memory dumps and in particular if deleted text messages can be recovered. Several experiments

were done to find out if deleted text messages can be recovered. The experiments were

conducted by successively reading out internal memory after committing changes to the system

using the phone operating system. The limitations of the memory reading methods made it

difficult to do such experiments on more than a few tests. Another difficulty was the lack of a

software tool to do identification and interpretation of messages inside memory dumps. The

implementation of such a tool was beyond the scope of this project.

Several interesting observations were done:

Text messages were still in flash memory after they had been deleted in the operating system. It

was found that images, MMS, calendar items and contacts were also in memory after they had

been deleted. Contrary from what is possible on SIM-cards it is therefore possible to recover

deleted items of this type from internal memory.

Copies of items from previously used SIM-cards were found in some occasions. During the

analysis of successive memory dumps from the same device, another very important property

was discovered. During the search for deleted text messages it was found that memory areas

found in one memory dump was moved to quite another area on the following dump. This is

most likely due to the existence of a Memory Manager that dynamically reallocates memory

39 | P a g e

during phone usage in order to ensure optimal memory organization and utilization at all times

during phone usage. Although not particularly surprising, the existence of such memory

managers do have ramifications for the forensic handling of mobile phones.

6.8 MEMORY REPRESENTATION IN HEX VALUES OF THE MEMORY DUMP OF

MOBILE PHONE

The below figures will show the hex values of the memory dump of the mobile taken for the file

carving.

Figure 6.1 : Hex-print of a mobile memory dump

40 | P a g e

Figure 6.2 : Content Identified as a GIF – image

The above figure 5.2 is showing the hex values of the GIF image from the memory dump of the

mobile phone taken. The memory block 00745B00 is showing the name of the GIF image as

―BlueDesk.gif‖.

41 | P a g e

Figure 6.3 : Content Identified as Contact and Calendar Item

42 | P a g e

Chapter 7 CONCLUSION AND FUTURE SCOPE

Cell phones are becoming even more sophisticated and able. Both law enforcement and the

private sector need to invest time and money into learning about new operating systems and

developing new forensic methods. The technique for carving of the data from the mobile devices

will be very useful to forensic department. In recent years, information criminal cases are

mushrooming than ever, personal information leakage and Bot Network are no news anymore.

As a result, besides users‘ daily prevention, how forensic examiners can help acquire information

from victims‘ phones after harm happens becomes the most important issue now. This technique

will help in the carving of the mobile data, with the help of the smartest recovery method, it will

be very useful tool in the forensic. The techniques that are now being used to recover files

without using any file system meta-data information.

In future the smart phones and more rich application oriented mobile phone OSes will be

available in the market and carving will be done on the OS like adroid, symbian etc., These OSes

are like the miniature form of the computer OS with certain functions reduced and made suitable

for the small memory of the mobile phones. So the carving will be done based on the changes

made. While Android forensics is still in its infancy, steps are being made to meet the new

technology. CelleBrite (2010), Paraben (2008), and .XRY (Micro Systemation, 2008) all

currently offer some type of Android solution and more tools will be adding support as Android

gains in popularity. Android is not just for phones either; it can be used on computers, kitchen

appliances, and military applications (Spencer, 2009). Expect to begin seeing it everywhere. The

number of Android phones will be continuously increasing as more manufactures adopt the

budding OS. As it stands now, Android sales, by some estimates, will overtake iPhone sales

within the next two to three years (Lomas, 2009). While Android is powerful, complex, has

multiple firmware implementations and some with manufactures making custom UIs, the

standardization will make mobile forensics simpler in the long run. Indeed, as the market for

Android continues to grow, learning how to forensically acquire information from these devices

becomes essential for mobile device examiners.

43 | P a g e

REFERENCES

[1] B. Carrier , File System Forensic Analysis . Boston, MA: Pearson Education , Addison-

Wesley Professional, 2005 .

[2] S. Garfinkel , ― Carving contiguous and fragmented files with fast object validation‖, in Proc.

2007 Digital Forensics Research Workshop (DFRWS) , Pittsburgh , PA , Aug. 2007, pp.4S:2–12.

[3] Amiga Smart Filesystem [Online]. Available: http://www.xs4all.nl/ hjohn/SFS

[4] L.W. McVoy and S.R. Kleiman , ― Extent-like performance from a UNIX file system‖, in

Proc. USENIX, Winter ’91 , Dallas , TX , 1991 , pp. 33 – 43 .

[5] A. Sweeney , D. Doucette , W. Hu , C. Anderson , M. Nishimoto, and G .Peck, ― Scalability

in the XFS file system‖, in Proc. USENIX 1996 Annu. Tech. Conf. , San Diego , CA , 1996, pp.

1–14 .

[6] STORAGEsearch.com. Data Recovery from Flash SSDs? [Online].

Available: http://www.storagesearch.com/recovery.html

[7] Foremost 1.53 [Online]. Available: http://foremost.sourceforge.net

[8] G. G. Richard , III and V. Roussev , ― Scalpel: A frugal, high performance file carver‖, in

Proc. 2005 Digital Forensics Research Workshop (DFRWS) , New Orleans , LA , Aug. 2005.

[9] B. Carrier , V. Wietse , and C. Eoghan , File Carving Challenge 2006 [Online]. Available:

http://www.dfrws.org/2006/challenge

[10] B. Carrier , V. Wietse , and C. Eoghan , File Carving Challenge 2007 [Online]. Available:

http://www.dfrws.org/2007/challenge

[11] S. Willassen, Forensics and the GSM mobile telephone system, International Journal on

Digital Evidence 2003:2:1

[12] R. Knijff, Embedded Systems Analysis, Handbook of Computer Crime Investigation,

Academic Press, 2002

44 | P a g e

[13] Win-Hex, Software Package, Commercial. Available: http://www.winhex.com/

[14] EnCase, Software Package, Commercial. Available: http://www.encase.com/

[15] The Sleuthkit, Software Package, Open Source. Available: http://www.sleuthkit.org/

[16] What is Android? http://developer.android.com/guide/ basics/what-is-android.html

[17] Svein Y. Willassen, Norwegian University of Science and Technology, ―Forensic analysis

of mobile phone internal memory‖

[18] M.Sullivan and R.Chillarege, ―Software Defects and their Impact on System Availability -

A Study of Field Failures in Operating Systems,‖ In Proc. of 21st International Symposium on

Fault- Tolerant Computing (FTCS), P. 2–9, 1991.

[19] S.Chandra and P.M.Chen. ―Whither Generic Recovery from Application Faults? A Fault

Study using Open-Source Software,‖ In Proc. Of the 30th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), 2000, P. 97–106, 25-28 June 2000.

[20] A.Chou, J.Yang, B.Chelf, S.Hallem, and D.Engler. ―An Empirical Study of Operating

Systems Errors,‖ In Proc. of 18th ACM Symposium on Operating Systems Principles (SOSP), P.

73–88, 2001

[21] W.Gu, Z.Kalbarczyk, R.K.Iyer, and Z.Yang. ―Characterization of Linux Kernel Behavior

under Errors,‖ In Proc. of International Conference on Dependable Systems and Networks

(DSN), 2003, P. 459–468, 22-25 June 2003.

[22] Y.Liang, Y.Zhang, M.Jetta, A.Sivasubramaniam, and R.Sahoo. ―Blue- Gene/L Failure

Analysis and Prediction Models,‖ In Proc. of International Conference on Dependable Systems

and Networks (DSN), 2006, P. 425–434, 25-28 June 2006.

[23] M.Cinque, D.Cotroneo, Z.Kalbarczyk, and R.Iyer. ―How do Mobile Phones Fail? A Failure

Data Analysis of Symbian OS Smart Phones,‖ In Proc. of International Conference on

Dependable Systems and Networks (DSN), 2007, P. 585–594, 25-28 June 2007.

[24] A.Jha and C.Kaner, ―Bugs in the brave new unwired world,‖ Pacific Northwest Software

Quality Conference, Portland, OR, October 2003.

45 | P a g e

[25] Pew Global Attitudes Project [Online]. Available: http://pewglobal.org/reports/pdf/258.pdf

[26] A. Pal and N. Memon , ― Automated reassembly of file fragmented images using greedy

algorithms ,‖ IEEE Trans. Image Processing , vol. 15, no. 2, pp. 385 – 393 , Feb. 2006 .

[27] A. Pal , K. Shanmugasundaram , and N. Memon , ― Reassembling image fragments ,‖ in

Proc. ICASSP, Hong Kong , Apr . 2003, vol. 4, pp . IV–732-5.

[28] A . Pal , T. Sencar , and N . Memon , ― Detecting file fragmentation point using sequential

hypothesis testing ,‖ Digit. Investig. , to be published.

[29] G. G. Richard , III and V. Roussev , ― Scalpel: A frugal, high performance file carver ,‖ in

Proc. 2005 Digital Forensics Research Workshop (DFRWS) , New Orleans , LA , Aug. 2005

[30] K. Shanmugasundaram and N . Memon , ― Automatic reassembly of document fragments

via data compression ,‖ presented at the 2nd Digital Forensics Research Workshop , Syracuse ,

NY, July 2002.

[31] K. Wang , S. Stolfo , ― Anomalous payload-based network intrusion detection ,‖ in Recent

Advances in Intrusion Detection , (Lecture Notes in Computer Science) , vol. 3224 . New York:

Springer-Verlag , 2004 , pp. 203 – 222

[32] W.J. Li , K. Wang , S. Stolfo , and B . Herzog , ― Fileprints: Identifying file types by n-gram

analysis ,‖ in Proc. 6th IEEE Systems, Man and Cybernetics Information Assurance Workshop ,

2005 , pp. 64 – 67.

[33] M. McDaniel and M. Heydari, ― Content based file type detection algorithms ,‖ in Proc.

36th Annu. Hawaii Int. Conf. System Sciences (HICSS’03)—Track 9 , IEEE Computer Society ,

Washington , D.C. , 2003, p. 332.1.

[34] M. Karresand and N. Shahmehri , ― Oscar file type identification of binary data in disk

clusters and RAM pages ,‖ in Proc . IFIP Security and Privacy in Dynamic Environments , vol.

201 , 2006, pp. 413 – 424 .

[35] M. Karresand and N . Shahmehri , ―F ile type identification of data fragments by their

binary structure ,‖ in Proc. IEEE Information Assurance Workshop , June 2006 , pp. 140 – 147 .

46 | P a g e

[36] Cor J. Veenman , ― Statistical disk cluster classification for file carving ,‖ in Proc. IEEE 3rd

Int. Symp. Information Assurance and Security , Manchester , U.K. , 2007, pp. 393–398 .

[37] STORAGEsearch.com. Data Recovery from Flash SSDs? [Online]. Available:

http://www.storagesearch.com/recovery.html

[38] A. Wald , Sequential Analysis . New York : Dover , 1947 .

[39] Manning, C. (2002, September 20). YAFFS The NAND-specific flash file system.

Retrieved December 21, 2009, from http://www.yaffs.net/yaffs-nand-specific-flash-file-

systemintroductory-article

[40] Micro Systemation. (2008, July 1). .XRY system. Micro Systemation Web site. Retrieved

December 21, 2009, from http://www.msab.com/en/mobile-forensic-products/XRY-Mobile-

Version-Forensic-Software/

[41] Miller, R. (2009, June 25). HTC's Sense UI not coming to any "Google" branded phones.

engadget Web site. Retrieved December 21, 2009, from http://www.engadget.com/2009

/06/25/htcs-sense-ui-notcoming- to-any-google-branded-phones/

[42] Open Handset Alliance (OHA). (2009). Open handset alliance home page. Retrieved

December 21, 2009, from http://www.openhandsetalliance.com

[43] Paraben Corp. (2008). Paraben's Device Seizure - Cell phone forensic software. Paraben

Forensic Tools Web site. Retrieved December 21, 2009, from http://www.paraben-

forensics.com/cell_models.html.

[44] Purdy, K. (2009, August 21). Five great reasons to root your Android phone. lifehacker Web

site. Retrieved December 21, 2009, from http://lifehacker.com/5342237/five-great-reasons-to-

root-yourandroid- phone.

[45] Spencer, S. (2009, July 24). Android appliances on the horizon. PocketGamer.biz Web site.

Retrieved December 21, 2009, from http://www.pocketgamer.biz/r/PG.Biz/Android

/news.asp?c=14567

47 | P a g e

[46] TalkForensics. (2009, September 27). Andrew Hoog of viaForensics talks about Android

forensics [Audio Podcast]. Retrieved December 21, 2009, from

http://www.blogtalkradio.com/show.aspx?userurl=TalkForensics&year=2009&month=09&day=

27&url=Andrew-Hoog-of-viaForensicstalks-about-Android-forensics

[47] The Unlockr.com. (2009, November 7). How to: Root your Sprint HTC Hero. Retrieved

December 21, 2009, from http://theunlockr.com/2009/11/07/how-to-root-your-cdma-htc-

herosprint- verizon/

[48] ZenThought. (2009). ASRoot2 software. ZenThought.org Web site. Retrieved December 21,

2009, from http://zenthought.org/tmp/asroot2

[49] Samsung Electronics, ―APPLICATION NOTE for NAND Flash Memory‖, rev, 2, 1999.

[Online]. Available: http://www.samsung.com/Products/Semiconductor/Memory/appnote/app

nand.pdf. [Accessed: November 29, 2006].

[50] Sandisk, ―Sandisk flash memory cards - wear leveling‖, October 2003. [Online]. Available:

www.sandisk.com/Assets/File/OEM/WhitePapersAndBrochures/RSMC/WPaperWearLevelv1.0.

pdf. [Accessed: November 29, 2006].

[51] M-Systems, ―TrueFFS wear-leveling Mechanism‖, Technical note (TN-Doc-017). [Online].

Available:www.m-systems.com/NR/rdonlyres/FCC7D817-38A5-4D80-8471-

7DA793EA255/0/TN017TrueFFSWearLevelingMechanism.pdf. [Accessed: November 29,

2006].

[52] HDDGURU, ―ATA/ATAPI Command Set‖, [Online]. Available:

http://hddguru.com/content/en/documentation/2006.01.27-ATA-ATAPI-8-rev2b/. [Accessed:

November 29, 2006].

[53] Samsung Electronics, ―Smartmedia Format Introduction (Software Considerations)‖, 1999.

[Online]. Available: www.win.tue.nl/_aeb/linux/smartmedia/SmartMedia Format.pdf

[54] Automated reassembly of file fragmented images using greedy algorithms by Nasir Memon,

Member, IEEE and Anandabrata Pal.

48 | P a g e

[55] Automatic Reassembly of Document Fragments via Context Based Statistical Models by

Kulesh Shanmugasundaram kulesh@isis.poly.edu Nasir Memon memon@poly.edu Department

of Computer and Information Science Polytechnic University Brooklyn, NY 11201.

[56] Automated reassembly of fragmented images Anandabrata Pal, Kulesh Shanmugasundaram,

Nasir Memon Computer Science Department, Polytechnic University, Brooklyn, NY 110201.

[57] Carving contiguous and fragmented files with fast object validation Simson L. Garfinkela,b

a Naval Postgraduate School, Monterey, CA, USA bCenter for research on Computation and

Society, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA,

USA

[58] Identification and recovery of JPEG files with missing fragments Husrev T. Sencar*, Nasir

Memon TOBB University of Economics and Technology, Computer Engineering Department,

Sogutozu Cad. No: 43, Ankara 06560, Turkey

