A Major Project Report

On

FREQUENCY SYNTHESIZING USING PHASE LOCK LOOP FOR HIGH FREQUENCY APPLICATIONS

Submitted in Partial fulfilment of the requirement

For the award of the degree of

MASTER OF TECHNOLOGY

In

(VLSI & Embedded Systems)

Submitted by

KEDAS LAXMI DEEPAK

DTU/M.Tech/160

Under the Guidance of

Rajesh Rohilla. Associate. Professor

DEPARTMENT OF ELECTRONICS & COMMUNIATION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY BAWANA ROAD, DELHI- 110042 July 2012

i

DECLARATION BY THE CANDIDATE

July 2012

Date: _____

I hereby declare that the work presented in this dissertation entitled "FREQUENCY SYNTHESIZING USING PHASE LOCK LOOP FOR HIGH FREQUENCY APPLICATIONS" has been carried out by me under the guidance of Mr. Rajesh Rohilla, Associate Professor, Department of Electronics & Communication Engineering, Delhi Technological University, Delhi and hereby submitted for the partial fulfillment for the award of degree of Master of Technology in VLSI & Embedded Systems at Electronics & Communication Department, Delhi Technological University, Delhi.

I further undertake that the work embodied in this major project has not been submitted for the award of any other degree elsewhere.

KEDAS LAXMI DEEPAK

DTU/M.Tech/160 M.Tech (VLSI &Embedded Systems)

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my knowledge and belief.

Mr. Rajesh Rohilla Associate Professor Electronics & Communication Department Delhi Technological University, Delhi-42

Dated:------

ACKNOWLEDGEMENTS

At this point I would like to thank the people that helped me producing this dissertation. First, I thank **Dr. Rajiv Kapoor** Head of Department (Electronics and Communication Engineering, DTU), and **Mr. Rajesh Rohilla**, project advisor for giving me the opportunity to write this dissertation and supporting me along the way. Next, I would like to say thanks to all my seniors and friends for their goodwill and support that helped me a lot in successful completion of this dissertation.

KEDAS LAXMI DEEPAK

DTU/M.Tech/160 M.Tech (VLSI &Embedded Systems)

ABSTRACT

Increase in demand for affordable high performance communication devices, particularly in mobile systems, is the driving force behind the development of high speed, low cost and low-power circuits in CMOS technology. This is mainly due to the fact that CMOS process facilitates the integration of analog and digital circuits on the same chip. A major technique to reduce the power consumption in a CMOS chip is the use of low swing signalling. Integrated phase locked loops(PLL's) are the versatile components in many communication and control applications.

PLL's are the integral part of many communication and computing applications.. The designed PLL operates from a single 1.5 Volts supply and its frequency range of operation is upto 1.8 giga hertz. The phase locked loop each individual components such as Phase frequency detector, charge pump, loop filter, Voltage control oscillator and divider is designed for frequency synthesizing. The PLL is designed and simulated in a 130 nano metres standard CMOS technology

CONTENTS

1. Introduction

1.1 Motivation	1
1.2 Aims and Goals	2
1.3 Thesis Organization	3
2. Phase Locked Loop Fundamentals	5
2.1 Basic introduction to PLL	5
2.2 Phase frequency detector	7
2.2.1 Phase Detector	7
2.2.2 Phase frequency detector	10
2.2.3 Dead Zone	15
2.3 Charge pump	17
2.3.1 Charge pump architectures	
2.3.2 Non Ideal Effects in Charge Pump	21
2.3.3 Single Ended and Differential Charge Pumps	
2.4 Loop Filter	25
 2.5 Voltage Controlled Oscillator 2.5.1 Barkhausen criteria 2.5.2 parameters of VCOs performance 2.5.3 LC-Oscillators 2.5.4 Ring Oscillators 	
2.5.4 Differnetial Ring Oscillators	
2.6 PLL-based Frequency Synthesizer	
2.6.1 Integer-N PLL Frequency Synthesizers	
2.6.2 Fractional-N PLL Frequency Synthesizers	
2.6.3 Divider Architecture and Hierarchy	
3. Methodology and tools used	40
4. Design and Implementation	41
4.1 Design of Phase frequency Detector	42
4.1.1 PFD schematic design	

	4.1.2 Symbol of PFD	49
	4.1.3 Simulation results	50
4.2 Design o	f charge pump	52
	4.2.1 Charge Pump schematic design	
	4.2.2 Symbol of CP	
	4.2.3 Simulation results	
4.3 Loop Fil	ter Design	63
	4.3.1 Loop Filter schematic design	65
	4.3.2 Symbol of loop Filter	65
	4.3.3 Simulation results	67
4.4 Design o	f Low Power Low Frequency VCO	69
	4.4.1 VCO schematic design	72
	4.4.2 Symbol of VCO	72
	4.4.3 Simulation results	74
4.5 Design o	f frequency divider	76
4.5.1	Frequency divider schematic design	
4.5.2	Symbol of Frequency divider	
4.5.3	Simulation results	79
5 Conclusion	ns and Future Work	80
References .		

LIST OF FIGURES

2.1.1: Basic block diagram of PLL	
2.1.2 Representation of individual block of Phase locked loop6	
2.2.1: Phase detector characteristics	
2.2.2: Shifted characteristics of phase detector	
2.2.3: General model of phase detector	
2.2.4: Exclusive OR gate as phase detector	
2.2.5: Addition of frequency detection to increase	
the acquisition range11	
2.2.6: Conceptual operation of PFD12	
2.2.7: Traditional PFD design12	
2.2.8: State diagram of phase frequency detector	
2.2.9: Input-output characteristic of the three-state PFD14	
2.210: Dead zone representation by waveforms15	
2.2.11: Phase error Vs output voltage a) No dead zone16	
2.2.11: Phase error Vs output voltage a) No dead zone	
b) Presence of dead zone	
b) Presence of dead zone	
 b) Presence of dead zone	
 b) Presence of dead zone	
 b) Presence of dead zone	
 b) Presence of dead zone	

2.4.1(a) First order low pass filter	б
(b) Loop gain characteristic of simple charge-pump PLL	5
(c) addition of zero	5
2.4.2: Addition of zero to charge-pump PLL	7
2.4.3: Addition of C2 to reduce ripple on the control voltage	3
2.5.1 a)Representation of VCO	9
b)Transfer characteristics of voltage control oscillator	9
2.5.2: General model of VCO)
2.5.3: Oscillator feedback model (a) Negative feedback model	
2.5.4: a) Resonator tank circuit 33 b) LC oscillator model 33	
2.5.5: Ring oscillators	ł
2.5.6: Differential Ring oscillators	5
2.6.1: Integer synthesizer architecture	5
2.6.2: Fractional-N frequency synthesizer architecture	7
2.6.3: Multi-modulus Divider architecture	3
3.1: Analog IC design flow and Cadence tools involved40	0
4.1: PLL based frequency synthesizer	L
4.1.1: Traditional Phase frequency detector	2
4.1.2: The schematic design of the D flip-flop	3
4.1.3: Virtuoso schematic design of D-flipflop4.	3
4.1.4: Schematic of NOR gate	5
4.1.5: Virtuoso schematic of the Traditional PFD45	5
4.1.6: Traditional PFD test	5
4.1.7: Waveform when reference signal is in lead with feedback signal40	6

4.1.8: Observation of delay from the wave form which is of order $2ns$	47
4.1.9: Waveform when reference signal is in same phase with feedback signal	47
4.1.10: Schematic of the modified PFD structure	48
4.1.11: Testing the modified PFD structure	49
4.1.12: Waveform when reference signal is in lead with feedback signal under the modified PFD structure	49
4.1.13: Waveform when reference signal is in lag with feedback signal under the modified PFD structure	50
4.1.14: Waveform when reference signal is in same phase with feedback signal under modified feedback signal	50
4.1.15: Reduction in the delay of the signal under the modified PFD structure	51
4.2.1: Schematic of charge pump	52
4.2.2: Virtuoso Schematic view of the charge pump	54
4.2.3: Schematic and symbolic representation of UP circuit	55
4.2.4: Transient response of the Up circuitry	56
4.2.5: Schematic and symbolic representation of the down circuit	57
4.2.6: Transient response of the Down circuitry	58
4.2.7: Appending the up and down circuits to the charge pump Inorder to provide the positive and negative pulse for the circuitry	59
4.2.8: Appending the above functionality block to the Phase Frequency detector	60
4.2.9: Output of Charge Pump for reference frequency leading Frequency divider output	61
4.2.10: Output of Charge Pump for reference frequency lagging frequency divider output	62
4.3.1: Schematic and symbolic representation of loop filter	65

4.3.2: Appending loop filter Block to main circuitry	66
4.3.3: Resultant waveform after appending the loop filter with Phase lead	67
4.3.4: Resultant waveform after appending the loop filter with Phase lag	s68
4.4.1: Schematic of current source stage	70
4.4.2: Schematic of NAND gate	70
4.4.3: Schematic of inverter gate	71
4.4.4: Complete Block implementation of the VCO	72
4.4.5: Transient response of the VCO with setup signal	73
4.4.6: Transient response of the VCO by varying the setup signal	74
4.5.1: Schematic design of the frequency Divider-by-4	77
4.5.2: Symbolic representation of the Divider-by-4	77
4.5.3: Testing the frequency divider-by-4	78
4.5.4: Transient response Output waveform of the divider	78
4.5.5: Cascaded symbolic representation of the divider-by-8	79
4.5.6: Transient response Output waveform of the resultant cascaded representation of Divide-by-8	79