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1 Introduction 

1.1 preamble 

Plates are widely used in many engineering structures such as aircraft wings, ships, buildings, 

and offshore structures. Most plated structures, although quite capable of carrying tensile 

loadings, are poor in resisting compressive forces. Usually, the buckling phenomena observed in 

compressed plates take place rather suddenly and may lead to catastrophic structural failure. 

Therefore it is important to know the buckling capacities of the plates in order to avoid 

premature failure. The first significant treatment of plate buckling occurred in the 1800s. Based 

on Kirchhoff assumptions, the stability equation of rectangular plates was derived by 

Navier(1822). Since then, investigations on the buckling of plates with all sorts of shapes, 

boundary and loading conditions have been reported in standard texts (e.g. Timoshenko and Gere 

1961). Research on the buckling of plates may be categorized under buckling and postbuckling. 

In the buckling research, it is assumed that the critical load remains below the elastic limit of the 

plate material. However, in practical problems the plate may be stressed beyond the elastic limit 

before buckling occurs. Therefore, post buckling is introduced for practical uses.  

 Studies on buckling analysis of plates under non-linear compressive loads have been very 

few. Plate problems are often idealizations of portions of a much larger overall stiffened or built-

up structure-an aircraft wing or a ship or a multistoried building, for instance, and hence the 

loads that cause buckling are those exerted by the adjoining free –body on the plate; thus, 

uniform loading is an exception rather than the rule because the elastic forces between the free 

bodies depend on their relative stiffness. It is necessary to analyse plates subjected to various 

types of simple, assumed edge load distributions so as to understand their qualitative and 

quantitative influence on the buckling and postbuckling behavior.  

The onset of “bifurcation buckling” is predicted by means of an eigen value analysis. At the 

buckling load, or bifurcation point on the load-deflection path, the deformations begin to grow in 

a new pattern, which is quite different from the pre buckling pattern. Failure, or unbounded 

growth of this new direction mode, occurs if the post bifurcation load-deflection curve has a 

negative slope and the applied load is independent of the deformation amplitude.  

The postbuckled deflection curves of an axially compressed flat plate, with and without 

initial geometric imperfections are shown in Figs. 1.1. The curves in the figures indicate that the 

postbuckled equilibrium paths for flat plate are shown. It can be seen that Fig.1.1 the presence of 
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initial geometric imperfection wo destroy the trivial equilibrium path, and we have now a family 

of stable equilibrium curves corresponding to different values of wo 
that round off  the  

bifurcation of the perfect system.  

 

 

Fig .1.1 postbuckled deflection curves showing bifurcation points under uniaxial compression of 
perfect and Imperfect plate  

 

 

 
 

       Bifurcation point 
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1.2 Objective  

The objective of the present study is to investigate the buckling and postbuckling of thin plates 

and to obtain accurate analytical results using multi-term Galerkin’s method for a wide range of 

loading and structural parameters.  

 

1.3 Scope of the studies : 

1.3.1 Loading condition 

 

Fig.  1.3.1 Plate is subjected to uniformly distributed load 

1.3.2 Different boundary condition 

1.3.3  Isotropic  plate 

1.3.4 Plate with imperfection 

 

1.4 Contribution 

It is  observed  from  the  literature  that,  a  large  volume  of  research  work (Timoshenko 

and Gere, 1963); exists in the area of buckling, postbuckling, of isotropic plates. In this 

work, the governing partial differential equations for plate by va r io us  variational principle. 

The critical buckling loads and postbuckilng are evaluated for isotropic plates subjected to 

uniform in-plane loadings considering different boundary conditions. Postbuckling equilibrium 
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paths of simply supported isotropic plates subjected to uniform in-plane compressive edge 

loads and lateral loads are traced. It i s    observed   from the   above   discussion   that   

buckling and postbuckling of isotropic plates. The detailed review of literature in this field 

along with the critical discussion is presented in the next chapter based on which objective 

and scope of the present investigation is identified. 
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2 Literature Review  

In the following, a literature review on the bucking of rectangular plates is presented to provide 

the background information for the present investigation. The review focuses on homogenous, 

isotropic, thin plates. 

2.1 Buckling of rectangular plates 

This part is concerned with the research done for the buckling of rectangular plates under various 

in-plane loads and boundary conditions for the plate edges. Navier (1822) derived the basic 

stability equation for rectangular plates under lateral load by including the twisting action. The 

inclusion of the ‘twisting’ term is very important because the resistance of the plate to twisting 

can considerably reduce deflections under lateral load. Saint-Venant (1883) modified the 

equation by including axial edge forces and shearing forces. The modified equation formed the 

basis for much of the work on plate stability of plates with various loads and boundary equation 

of equilibrium. More recently, Reddy (1999) applied the Rayleigh-Ritz approximation to solve 

the CCCC plates under shear forces.  

Batdorf and Stein (1947) evaluated the buckling problem under combined shear and compression 

combinations for simply supported plates by adopting the deflection function in the form of 

infinite series. Batdorf and Houbolt (1946) gave a solution to the equation of equilibrium for 

infinitely long plates with restrained edges under shear and uniform transverse compression. 

Johnson and Buchert (1951) used the energy method to explore the buckling behavior of 

rectangular plates with compression edge simply supported or elastically restrained, tension edge 

simply supported. Researchers who are interested in this field of research may refer to Bulson 

(1970), in which many research papers were cited. More recently, Kang and Leissa (2001) 

presented exact solutions for the buckling of rectangular plates having two opposite, simply 

supported edges subjected to linearly varying normal stresses causing pure in-plane moments, 

the other two edges being free. 

Farvre (1948) is probably the first researcher to work out approximate buckling solutions of 

rectangular plates under self weight and uniform in-plane compressive forces. However, he 

treated only plates with all four edges simply supported. Wang and Sussman(1967) solved the 

same problem using the Rayleigh-Ritz method and concluded that the average stress in the plate 

at buckling is less than that for a plate with uniform compression at buckling. Both Favre (1948) 

and Wang and Sussman (1967) did not give numerical values in their papers. Using the 
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conjugate load-displacement method, Brown (1991) investigated the buckling of rectangular 

plates under (a) a uniformly distributed load, (b) a linearly increasing distributed load and (c) a 

varying sinusoidal load across the plate width. The second type of load is equivalent to the 

plate’s self weight. In his study, Brown treated a number of combinations of boundary 

conditions. More recently, Wang et al. (2002) considered the buckling problem of vertical plates 

under body forces/self weight. The vertical plate is either clamped or simply supported at its 

bottom edge while its top edge is free. The two sides of the plate may either be free, simply 

supported or clamped. Xiang et al. (2003) treated yet another new elastic buckling problem 

where the buckling capacities of cantilevered, vertical, rectangular plates underbody forces are 

computed. Buckling of plates under other forms of loads Bulson cited Yamaki’s buckling studies 

on SSSS, CSCS and CCCC plates under equal and opposite point loads as shown in Fig. 2.1a. 

Bulson (1970) also cited Yamaki’s research on buckling problems of CSCS and SSSS plates 

under partially distributed loads which are acted upon the simply supported edges as shown in 

Fig. 2.1b. Lee et al. (2001) considered the buckling problem of square EEEE and ESES plates 

subjected to in-plane loads of different configurations acting on opposite sides of plates as shown 

in Figs 2.1c and 2.1d. The effects of Kinney’s fixity factor (introduced to describe the support 

conditions at the edges covering the boundary conditions of simply supported and fixed edges) 

and the width factor on critical load factors were treated. 

Sarat and Ramachandra (2010) studied the effects of boundary conditions, non-uniform in plane 

loading, plate aspect ratio and length/thickness ratio on the buckling behavior of rectangular 

composite plates. 
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Fig. 2.1 plates under (a) points loads; (b) partially distributed load ;(c) patch loads at edge center; 

(d) patch loads near corners 

 

2.2 Post buckling of rectangular plates: 

This part is concerned with the development of the plastic stability theories. Incremental theory 

of plasticity (IT) and the deformation theory of plasticity (DT) are considered in detail. As an 

alternative method, the strip method is also briefly reviewed. The earliest development of DT is 

due to Engesser (1895) and Von Karman (1910).They developed a theory based on the fact that 

for a fiber which is compressed beyond the elastic limit, the tangent modulus (i.e. the ratio of the 

variation of strain to the corresponding variation of stress) assumes different values depending 

on whether the variation of stress constitutes an increase or a relief of the existing compressive 

stress. 

Bleich (1924) and Timoshenko (1936) applied Engesser-Von Karman theory to the plastic 

buckling of plates by introducing the “reduced modulus” into the formulas for the elastic 

(b) 

(c) 
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buckling of plates. The results of their theory were obtained in the case of an arrow rectangular 

strip with its compressed short edge simply supported and the long edges free. Kaufmann (1936) 

and Ilyushin (1944) developed the basis of deformation theory of plasticity by presenting another 

route for application of Engesser-Von Karman theory. They went back to the considerations by 

which the reduced modulus was derived and applied to the case of buckled a plate. Ilyushin 

(1946) reduced the problem to the solution of two simultaneous nonlinear partial differential 

equations of the fourth order in the deflection and stress function, and in the approximate 

analysis to a single linear equation. Solutions were given for the special cases of a rectangular 

plate buckling into a cylindrical form, and of an arbitrarily shaped plate under uniform 

compression. Stowell(1948) assumed that the plate remained in the purely plastic state during 

buckling. Heused Ilyushin’s  general relations to derive the differential equation of equilibrium 

of plates under combined loads. The corresponding energy expressions were also found. Bijlaard 

(1949) also used the assumption of “plastic deformation”. He derived the stress-strain relations 

by writing the infinitely small excess strains as total differentials and computing the partial 

derivatives of the strains with respect to the stresses. The differential equation for plate buckling 

was derived and results of its application to several kinds of loading and boundary conditions 

were given. El-Ghazaly and Sherbourne (1986) employed the deformation theory for the elastic-

plastic buckling analysis of plates under non-proportional external loading and non-proportional 

stresses. Loading, unloading, and reloading situations were considered. Comparison between 

experiments and analysis results showed that the deformation theory of plasticity was applicable 

insituations involving plastic buckling under non-proportional loading and non-uniform stress 

fields. The incremental theory of plasticity was first developed in the early work by Handelman 

and Prager (1948). They assumed that for a given state of stress there existed a one-to-one 

correspondence between the rates of change of stress and strain in such a manner that the 

resulting relation between stress and strain cannot be integrated so as to yield a relation between 

stress and strain along. Pearson (1950) modified Handelman and Prager’s assumption of initial 

loading. His analytical results showed that the incremental was improved by incorporating 

Shanley’s concept of continuous loading. Deformation theory and incremental theory of 

plasticity are two competing plastic theories. Consequently much work and comparison studies 

have been done by using both of them. Shrivastava (1979) analyzed the inelastic buckling by 

including the effects of transverse shear by both theories. Three cases were discussed: (1) for 
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infinitely long simply supported plates, (2) for square simply supported plates, and (3) for 

infinitely long ones simply supported on three sides and free on one unloaded edge. Ore and 

Durban (1989) presented a linear buckling analysis for annular elastoplastic plates under shear 

loads. They found that deformation theory predicts critical loads which were considerably below 

the predictions obtained with the flow theory. Furthermore, comparison with experimental data 

for different metals showed a good agreement with the deformation theory. Tugcu (1991) 

employed both theories for simply supported plates under biaxial loads. It was shown that the 

incremental theory predictions for the critical buckling were susceptible to significant reductions 

due to a number of factors pertinent to testing, while the deformation theory analysis was shown 

to be more or less insensitive to all of these factors. Durban and Zuckerman (1999) examined the 

elasto plastic buckling of a rectangular plate with three sets of boundary conditions (four simply 

supported boundaries and the symmetric combinations of clamped/simply supported sides). It 

was found that for thicker plates, the deformation theory gives lower critical stresses than those 

obtained from the incremental theory. There is a general agreement among engineers and 

researchers that (a) deformation theory is physically less correct than incremental theory, but (b) 

deformation theory predicts buckling loads that are smaller than those obtained with incremental 

theory, and(c) experimental evidence points in favor of deformation theory results. Onat and 

Drucker (1953) through an approximate analysis showed that incremental theory predictions for 

the maximum support load of long plates supported on three sides will come down to the 

deformation theory bifurcation load if small but unavoidable imperfections were taken into 

account. Later, the plate buckling paradox was examined by Sewell (1963) who obtained 

somewhat lower flow theory buckling loads by allowing a variation in the direction of the unit 

normal. Sewell (1973) in a subsequent study illustrated that use of Tresca yield surface brings 

about significant reductions in the buckling loads obtained using incremental theory. Neale 

(1975) examined the sensitivity of maximum support load predictions to initial geometric 

imperfections, using incremental theory. A similar study was performed by Needleman and 

Tvergaard (1976) which also included the effect of in-plane boundary conditions for square 

plates under uniaxial compression. An exhaustive discussion of the buckling paradox in general 

is given by Hutchinson (1974). While imperfection sensitivity provided a widely accepted 

explanation for the buckling paradox in general, reservations concerning the mode and amplitude 

of the imposed imperfections for some buckling problems are not uncommon. Readers who are 
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interested in plastic buckling of plates may obtain further information from these published 

papers: Wang (2003).From the literature review above, we can see that although much work has 

been done, the buckling of rectangular plates subjected to end and intermediate loads remain 

hitherto untouched. This has prompted the author to work on this project. 

 An analysis of the elastic postbuckling response of biaxially compressed plates was 

carried out by Steen et al. (2008) with main focus on change of in-plane postbuckling stiffness 

under prescribed plate end shortenings rather than the load control. Basagni and Vescovini 

(2009) presented an analytical formulation for the study of linearized local skin buckling load 

and nonlinear postbuckling behavior of isotropic and composite stiffened panel under axial 

compression. Authors concluded that the analysis is best suited to be used in optimization routine 

for preliminary design. A finite element formulation of Koiter’s initial postbuckling theory using 

a multi mode approach was investigated by Rahman and Jansen (2009). They illustrated the 

capability of method by analyzing the buckling of shell structures including modal interaction.  
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3Mathematical Formulation 

3.1 Introduction 

In this chapter, the partial differential equations governing the buckling and postbuckling 

of isotropic plates are derived from variational principles. The governing partial differential 

equations in two independent variables are derived via variational principles. Usually one could 

formulate the governing partial differential equations in three independent variables (as in three-

dimensional elasticity) or in two variables (as in the case of two-dimensional models). In the 

present case, two-dimensional approach has been adopted to model of plates. The dimensional 

reduction is achieved by mapping all mechanical variables (such as body forces, strains and 

stresses) from three-dimensions to two-dimensions making use of the across the thickness 

assumption. The multi-term Galerkin’s procedure adopted for solving partial differential 

equations is also discussed. The governing partial differential equations governing the buckling 

and postbuckling isotropic plates are derived from variational principle in this chapter 

adopting higher order shear deformation theory (Reddy, 2002, 2007) and including von 

Karman type of nonlinearity. 

3.2 The Von Karman theory of plates  

In this section we shall derive the Von Karman theory of plates. This is a nonlinear theory that 

allows for comparatively large rotations of line elements originally normal to the x, y axes in the 

mid plane of the plate (figure 3.2.1). These rotations terms allow projections of the in- plane 

forces 𝑁𝑁𝑣𝑣���� and 𝑁𝑁𝑣𝑣𝑣𝑣����� to be felt in the transverse direction, normal to the plane of plate. 

This theory is derive assuming that strains and rotations are both small compared to 

unity, so that we can ignore changes in geometry in the definition of stress components and in 

the limits of integration needed for work and energy considerations. We further stipulate that the 

strains will be smaller than the rotations, in the sense described below.  

We introduce the linear strain parameters eij and the rotation parameters ωij   defined as 



12 
 

 

Fig.3.2.1 

2eij = 𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑢𝑢𝑗𝑗 ,𝑖𝑖                (3.2.1) 

2ωij = 𝑢𝑢𝑖𝑖 ,𝑗𝑗 − 𝑢𝑢𝑗𝑗 ,𝑖𝑖                (3.2.2) 

2 ∈ij = 2𝑒𝑒𝑖𝑖𝑗𝑗 + (𝑒𝑒𝑘𝑘𝑖𝑖  +ωki )(𝑒𝑒𝑘𝑘𝑗𝑗  + ωkj )             (3.2.3) 

For simplification discussed, namely 𝑒𝑒𝑘𝑘𝑖𝑖  << wki  reduces to  

∈ij =  𝑒𝑒𝑖𝑖𝑗𝑗 + 1
2

ωki  ∗ωki                 (3.2.4) 

Finally Kirchhoff assumption that lines normal to under formed middle surface remain normal to 

this surface in the deformed geometry and are un extended after deformation. That means 

𝑢𝑢1(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3) = u(x,y)-z𝜕𝜕𝜕𝜕 (𝑥𝑥 ,𝑦𝑦)
𝜕𝜕𝑥𝑥

              (3.2.5) 
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𝑢𝑢2(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3) = v(x,y)-z𝜕𝜕𝜕𝜕 (𝑥𝑥 ,𝑦𝑦)
𝜕𝜕𝑦𝑦

             (3.2.6) 

𝑢𝑢3(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3) = w(x,y)               (3.2.7) 

Where u, v and w are the displacement components of the middle surface of the plate. We may 

now give strain parameters and rotation parameters as follows: 

𝑒𝑒11  = 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
− 𝑧𝑧 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2  

𝑒𝑒12  = 1
2
 �𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
− 2𝑧𝑧 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
� 

𝑒𝑒22  = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
− 𝑧𝑧 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑦𝑦2                         (3.2.8a) 

𝑒𝑒13 = 𝑒𝑒23 = 0 

ω12 =  
1
2 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦 −

𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥� 

ω13 = -𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

                       (3.2.8b) 

ω23  = -𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 

We now observe the following. The rotation parameter ω12  approximates a rotation component 

about the z axis, while rotation components about axes parallel to the x and y axes, respectively, 

in the mid plane of the plate. For a thin, hence flexible, plate we can reasonably expect that: 

ω12 << ω23, ω13                    (3.2.9) 

Neglecting ω12, we can now employ Eqs.3.2.4 and 3.2.8 to find the ∈ij : 

∈11  = 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
− 𝑧𝑧 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2 + 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�

2
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∈22  = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦
− 𝑧𝑧 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑦𝑦2 + 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�

2
  

∈33  = 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�2  + 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�

2
                    (3.2.10) 

∈12= 1
2
 �𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
− 2𝑧𝑧 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
� + 1

2
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 

∈13 ≅ ∈23  ≅ 0 

For a constitutive law we will employ Hook’s law for plane stress over the thickness of the plate. 

Thus we shall be concerned here only with ∈11 , ∈22  and ∈12 . Accordingly, for the assumptions 

presented here, we can say that the first variation of strain energy U is 

𝛿𝛿(1)𝑈𝑈 = ∭ 𝜏𝜏𝑖𝑖𝑗𝑗𝑉𝑉  𝛿𝛿 ∈ijdv 

=∬ ∫ (𝜏𝜏11
ℎ/2
−ℎ/2𝑅𝑅 𝛿𝛿 ∈11+ 2𝜏𝜏12𝛿𝛿 ∈12+ 𝜏𝜏22𝛿𝛿 ∈22)dz dA               (3.2.11) 

Now we replace the strain terms in the above expression and commute the delta operator with 

derivative operators. 

 𝛿𝛿(1)𝑈𝑈=∬ ∫ {� 𝜏𝜏11 �
𝜕𝜕 𝛿𝛿𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥

− 𝑧𝑧 𝜕𝜕
2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥2 ��

ℎ/2
−ℎ/2𝑅𝑅 + �𝜕𝜕 𝛿𝛿𝑢𝑢

𝜕𝜕𝑦𝑦
+ 𝜕𝜕  𝛿𝛿𝑣𝑣

𝜕𝜕𝑥𝑥
− 2𝑧𝑧 𝜕𝜕

2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕 𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥

� +𝜏𝜏22 �
𝜕𝜕 𝛿𝛿𝑣𝑣
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦

− 𝑧𝑧 𝜕𝜕
2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦 2 �}dA dz                      (3.2.12)                       

Next we integrate with respect to z and introduce resultant stress and moment intensity functions 

𝑁𝑁𝑥𝑥 , 𝑁𝑁𝑦𝑦  and 𝑁𝑁𝑥𝑥𝑦𝑦 , and 𝑀𝑀𝑥𝑥 , 𝑀𝑀𝑦𝑦 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝑀𝑀𝑥𝑥𝑦𝑦  𝑟𝑟𝑒𝑒𝑣𝑣𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑖𝑖𝑣𝑣𝑒𝑒𝑟𝑟𝑦𝑦: 

𝑀𝑀𝑥𝑥  = ∫ 𝜏𝜏𝑥𝑥𝑥𝑥 𝑧𝑧 𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2  

𝑀𝑀𝑦𝑦  = ∫ 𝜏𝜏𝑦𝑦𝑦𝑦 𝑧𝑧 𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2  

𝑀𝑀𝑥𝑥𝑦𝑦  = ∫ 𝜏𝜏𝑥𝑥𝑥𝑥 𝑧𝑧 𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2  = 𝑀𝑀𝑥𝑥𝑦𝑦                                                                          (3.2.13) 
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𝑁𝑁𝑥𝑥  = ∫ 𝜏𝜏𝑥𝑥𝑥𝑥  𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2  

𝑁𝑁𝑦𝑦  = ∫ 𝜏𝜏𝑦𝑦𝑦𝑦  𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2  

𝑁𝑁𝑥𝑥𝑦𝑦  = ∫ 𝜏𝜏𝑥𝑥𝑦𝑦  𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2  = 𝑁𝑁𝑦𝑦𝑥𝑥  

 

Fig.3.2.2 

Where 𝑁𝑁𝑥𝑥  (𝑁𝑁𝑦𝑦 ), as shown in the figure3.2.2 is a force in the x direction (y direction) measured 

per unit length in the y direction (x direction) and where 𝑁𝑁𝑥𝑥𝑦𝑦  (𝑁𝑁𝑦𝑦𝑥𝑥 ) is a force in the x(y) direction 

per unit length in the y(x) direction. Similarly, the quantity 𝑀𝑀𝑥𝑥  represents a moment per unit 

length in the y direction, with its vector in the y direction. Finally, 𝑀𝑀𝑥𝑥𝑦𝑦  is the twisting moment 

per unit length in the y direction with its vector in the x direction. The terms 𝑁𝑁𝑥𝑥 , 𝑁𝑁𝑦𝑦 , 𝑁𝑁𝑥𝑥𝑦𝑦  𝑎𝑎𝑎𝑎𝑎𝑎 

𝑁𝑁𝑦𝑦𝑥𝑥  may for practical purposes be compared with normal and shear stresses and we may 

conclude that 𝑁𝑁𝑥𝑥𝑦𝑦  = 𝑁𝑁𝑦𝑦𝑥𝑥  then we got the following result: 
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The Eqs(3.2.12) can be written as 

𝛿𝛿(1)𝑈𝑈=∬ �𝑁𝑁𝑥𝑥 �
𝜕𝜕  𝛿𝛿𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥

� − 𝑀𝑀𝑥𝑥
𝜕𝜕2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑥𝑥𝑦𝑦  �𝜕𝜕  𝛿𝛿𝑢𝑢

𝜕𝜕𝑦𝑦
+ 𝜕𝜕  𝛿𝛿𝑣𝑣

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦

+𝑅𝑅

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥 � − 2𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑁𝑁𝑦𝑦 �
𝜕𝜕 𝛿𝛿𝑣𝑣
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦

� −  𝑀𝑀𝑦𝑦
𝜕𝜕2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦 2 �dx dy                  (3.2.14) 

The first variation of the potential of the applied forces meanwhile takes the form noting that  𝑁𝑁𝑣𝑣���� 

is taken as positive in compression as shown in the figure. 

𝛿𝛿(1)𝑉𝑉 = -∬ 𝑞𝑞 𝛿𝛿𝜕𝜕 𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦𝑅𝑅  + ∮𝑁𝑁𝑣𝑣���� 𝛿𝛿𝑢𝑢𝑣𝑣 𝑎𝑎𝑣𝑣 ᵣ  + ∮𝑁𝑁𝑣𝑣𝑣𝑣����� 𝛿𝛿𝑢𝑢𝑣𝑣 𝑎𝑎𝑣𝑣 ᵣ                                        (3.2.15) 

Where 𝑢𝑢𝑣𝑣 and 𝑢𝑢𝑣𝑣 are the in plane displacements of the boundary of the plate in direction normal 

and tangential to the boundary, respectively. We are using the under formed geometry for the 

applied loads above rather than the deformed geometry thereby restricting the result to 

reasonably small deformations. By using the above result for 𝛿𝛿(1)𝑉𝑉 and using equation 3.2.14 for 

𝛿𝛿(1)𝑈𝑈 , may be form 𝛿𝛿(1)𝜋𝜋 . The total potential energy so formed approximates the actual total 

potential energy for the kind of deformation restrictions embodied in kirchhoff’s assumptions. 

And since we have used under formed geometry for stresses and external loads, we are limited to 

small deformations in employing this functional. Finally, because we used equation 3.2.4 for 

strain, we are assuming that strains are much smaller than rotations. Thus we have for the total 

potential energy principle: 

𝛿𝛿(1)𝜋𝜋 = U = ∬ �𝑁𝑁𝑥𝑥 �
𝜕𝜕  𝛿𝛿𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

𝜕𝜕 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥

� − 𝑀𝑀𝑥𝑥
𝜕𝜕2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥2 + 𝑁𝑁𝑥𝑥𝑦𝑦  �𝜕𝜕  𝛿𝛿𝑢𝑢

𝜕𝜕𝑦𝑦
+ 𝜕𝜕 𝛿𝛿𝑣𝑣

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦

+𝑅𝑅

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥 � − 2𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑁𝑁𝑦𝑦 �
𝜕𝜕 𝛿𝛿𝑣𝑣
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦

� −  𝑀𝑀𝑦𝑦
𝜕𝜕2 𝛿𝛿𝜕𝜕
𝜕𝜕𝑦𝑦 2 �dx dy - ∬ 𝑞𝑞 𝛿𝛿𝜕𝜕 𝑎𝑎𝑥𝑥 𝑎𝑎𝑦𝑦𝑅𝑅  

+ ∮𝑁𝑁𝑣𝑣���� 𝛿𝛿𝑢𝑢𝑣𝑣 𝑎𝑎𝑣𝑣 ᵣ  + ∮𝑁𝑁𝑣𝑣𝑣𝑣����� 𝛿𝛿𝑢𝑢𝑣𝑣 𝑎𝑎𝑣𝑣 ᵣ                                                                         (3.2.16) 
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Fig. 3.2.3 

We may proceed to carry out the extermination process. We employ Green’s theorem one or 

more times to get the 𝛿𝛿𝑢𝑢′𝑣𝑣 and 𝛿𝛿𝑣𝑣′𝑣𝑣 out form of partial derivatives. Then we proceed to simplify 

the expressions in the line integrals by noting form equilibrium shown in the above figure3.2.3. 

𝑁𝑁𝑣𝑣  = 𝑁𝑁𝑥𝑥  𝑎𝑎2
𝑣𝑣𝑥𝑥  + 2𝑁𝑁𝑥𝑥𝑦𝑦 𝑎𝑎𝑣𝑣𝑥𝑥𝑎𝑎𝑣𝑣𝑦𝑦  + 𝑁𝑁𝑦𝑦  𝑎𝑎2

𝑣𝑣𝑦𝑦                                                          (3.2.17) 

𝑁𝑁𝑣𝑣𝑣𝑣  = (𝑁𝑁𝑦𝑦 − 𝑁𝑁𝑥𝑥) + 2𝑁𝑁𝑥𝑥𝑦𝑦 𝑎𝑎𝑣𝑣𝑥𝑥𝑎𝑎𝑣𝑣𝑦𝑦  + 𝑁𝑁𝑥𝑥𝑦𝑦 ( 𝑎𝑎2
𝑣𝑣𝑥𝑥  - 𝑎𝑎2

𝑣𝑣𝑦𝑦 )                                    (3.2.18) 

Where 𝑎𝑎𝑣𝑣𝑥𝑥  and 𝑎𝑎𝑣𝑣𝑦𝑦  are the direction cosine of the outward normal of the boundary. Furthermore, 

simple vector projections permit us to say  

𝑢𝑢𝑣𝑣  = 𝑎𝑎𝑣𝑣𝑥𝑥u +𝑎𝑎𝑣𝑣𝑦𝑦v                                                                                             (3.2.19) 

𝑢𝑢𝑣𝑣  = −𝑎𝑎𝑣𝑣𝑦𝑦u +𝑎𝑎𝑣𝑣𝑥𝑥v                                                                                          (3.2.20) 

Here we also note 

𝜕𝜕
𝜕𝜕𝑥𝑥

 = 𝑎𝑎𝑣𝑣𝑥𝑥  𝜕𝜕
𝜕𝜕𝑣𝑣

 - 𝑎𝑎𝑣𝑣𝑦𝑦
𝜕𝜕
𝜕𝜕𝑣𝑣

                                                                                         (3.2.21) 
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𝜕𝜕
𝜕𝜕𝑦𝑦

 = 𝑎𝑎𝑣𝑣𝑦𝑦  𝜕𝜕
𝜕𝜕𝑣𝑣

 + 𝑎𝑎𝑣𝑣𝑥𝑥
𝜕𝜕
𝜕𝜕𝑣𝑣

                                                                                       (3.2.22) 

Finally we introduce the transverse shear forces of plate theory  

𝑄𝑄𝑣𝑣  = 𝑄𝑄𝑥𝑥𝑎𝑎𝑣𝑣𝑥𝑥  + 𝑄𝑄𝑦𝑦𝑎𝑎𝑣𝑣𝑦𝑦  

𝑄𝑄𝑥𝑥  = 𝜕𝜕𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥
 + 

𝜕𝜕𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑦𝑦
                                                                                              (3.2.23) 

𝑄𝑄𝑦𝑦  = 
𝜕𝜕𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦
 + 

𝜕𝜕𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥
 

Now using equation 3.2.17, 3.2.18 and 3.2.23 we can write as 

𝛿𝛿(1)𝜋𝜋 = −∬ ��𝜕𝜕  𝑁𝑁𝑥𝑥
𝜕𝜕𝑥𝑥

+
𝜕𝜕  𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

� 𝛿𝛿𝑢𝑢 + �
𝜕𝜕 𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

+
𝜕𝜕  𝑁𝑁𝑦𝑦
𝜕𝜕𝑦𝑦

�𝛿𝛿𝑣𝑣 + �𝜕𝜕
2 𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥2 + 2
𝜕𝜕2 𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
+

𝜕𝜕2 𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦2 +𝑅𝑅

𝜕𝜕
𝜕𝜕𝑥𝑥
�𝑁𝑁𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� + 𝜕𝜕

𝜕𝜕𝑦𝑦
�𝑁𝑁𝑥𝑥𝑦𝑦  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� + 𝜕𝜕

𝜕𝜕𝑥𝑥
�𝑁𝑁𝑥𝑥𝑦𝑦  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
� + 𝜕𝜕

𝜕𝜕𝑦𝑦
�𝑁𝑁𝑦𝑦  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
� + 𝑞𝑞� 𝛿𝛿𝜕𝜕�dxdy+∮(𝑁𝑁𝑣𝑣 +ᵣ

𝑁𝑁𝑣𝑣���� )𝛿𝛿𝑢𝑢𝑣𝑣 𝑎𝑎𝑣𝑣 +∮(𝑁𝑁𝑣𝑣𝑣𝑣 + 𝑁𝑁𝑣𝑣𝑣𝑣����� )𝛿𝛿𝑢𝑢𝑣𝑣 𝑎𝑎𝑣𝑣 ᵣ -∮𝑀𝑀𝑣𝑣
𝜕𝜕  𝛿𝛿𝜕𝜕
𝜕𝜕𝑣𝑣

 𝑎𝑎𝑣𝑣 ᵣ +∮�𝑄𝑄𝑣𝑣 + 𝜕𝜕  𝑀𝑀𝑣𝑣𝑣𝑣

𝜕𝜕𝑣𝑣
+ 𝑁𝑁𝑣𝑣

𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣

+ᵣ

𝑁𝑁𝑣𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣
� 𝛿𝛿𝜕𝜕 𝑎𝑎𝑣𝑣 -[𝑀𝑀𝑣𝑣𝑣𝑣  𝛿𝛿𝜕𝜕]ᵣ = 0                                                                       (3.2.24) 

The last expression accounts for “corners” in the boundary. From the above equations we may 

now make series of deductions. First, in region R we conclude that  

𝜕𝜕𝑁𝑁𝑥𝑥
𝜕𝜕𝑥𝑥

 + 
𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕𝑦𝑦

  = 0                                                                                              (3.2.25a) 

𝜕𝜕𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥

 + 
𝜕𝜕𝑁𝑁𝑦𝑦
𝜕𝜕𝑦𝑦

  = 0                                                                                              (3.2.25b) 

𝜕𝜕2 𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥2 + 2
𝜕𝜕2 𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
+

𝜕𝜕2 𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦2 + 𝜕𝜕
𝜕𝜕𝑦𝑦
�𝑁𝑁𝑥𝑥

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�+ 𝜕𝜕

𝜕𝜕𝑦𝑦
�𝑁𝑁𝑥𝑥𝑦𝑦  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
� + 𝜕𝜕

𝜕𝜕𝑥𝑥
�𝑁𝑁𝑥𝑥𝑦𝑦  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
� +

𝜕𝜕
𝜕𝜕𝑦𝑦
�𝑁𝑁𝑦𝑦  

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
� + 𝑞𝑞 = 0                                                                                      (3.2.25c)  

The first two equations above clearly are identical to the equations of equilibrium for plane 

stress, as is to be expected. We shall use these equations now to simplify the third equation after 
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we use the differentiation operators on the above expressions involving products. We are thus 

able to eliminate expressions involving products. We are thus able to eliminate expressions 

involving products. We are thus able to eliminate expressions involving the partial of w.   We get  

𝜕𝜕2 𝑀𝑀𝑥𝑥

𝜕𝜕𝑥𝑥2 + 2
𝜕𝜕2 𝑀𝑀𝑥𝑥𝑦𝑦

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
+

𝜕𝜕2 𝑀𝑀𝑦𝑦

𝜕𝜕𝑦𝑦2 + 𝑁𝑁𝑥𝑥
𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑥𝑥2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑁𝑁𝑦𝑦
𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑦𝑦2 + 𝑞𝑞 = 0               (3.2.26) 

Now comparing Eq. (3.2.26) with the classical case we have here introduced nonlinear terms 

�𝑁𝑁𝑥𝑥
𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑥𝑥2 + 2𝑁𝑁𝑥𝑥𝑦𝑦

𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+ 𝑁𝑁𝑦𝑦
𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑦𝑦2 � involving the in-plane force intensities as additional “transverse 

loading”. 

Considering next the reminder Eq. (3.2.24) we can stipulate the following boundary conditions 

along Γ: 

EITHER 𝑁𝑁𝑣𝑣 = -𝑁𝑁𝑣𝑣���� OR 𝑢𝑢𝑣𝑣  IS SPECIFIED                                                   (3.2.27a) 

EITHER 𝑁𝑁𝑣𝑣𝑣𝑣  = -𝑁𝑁𝑣𝑣𝑣𝑣����� OR 𝑢𝑢𝑣𝑣  IS SPECIFIED                                                  (3.2.27b)  

EITHER 𝑀𝑀𝑣𝑣  = 0 OR 𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣

 IS SPECIFIED                                                         (3.2.27c)  

EITHER 𝑄𝑄𝑣𝑣 + 𝜕𝜕  𝑀𝑀𝑣𝑣𝑣𝑣
𝜕𝜕𝑣𝑣

+ 𝑁𝑁𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣

+ 𝑁𝑁𝑣𝑣𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝑣𝑣

  = 0 OR w IS SPECIFIED                (3.2.27d) 

At discontinuities [𝑀𝑀𝑣𝑣𝑣𝑣  𝛿𝛿𝜕𝜕] = 0                                                                      (3.2.27e) 

The last three conditions are familiar form work on plates except that the effective shear force 

(𝑄𝑄𝑣𝑣 + 𝜕𝜕  𝑀𝑀𝑣𝑣𝑣𝑣
𝜕𝜕𝑣𝑣

) is now augmented by projections of the in-plate forces at the plate edges. 

The equations of equilibrium may be solved if a constitutive law is used. We will employ here 

(as pointed out earlier) the familiar Hook’s law for plane stress. We will use the constitutive law 

to replace the resultant intensity functions by appropriate derivatives of the displacement field of 

the mid plane of the plate. Consider, for example, the quantity 𝑀𝑀𝑥𝑥 . Using Hook’s law and Eq. 

(3.2.10), we have 



20 
 

𝑀𝑀𝑥𝑥  = ∫ 𝜏𝜏𝑥𝑥𝑥𝑥 𝑧𝑧 𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2  = ∫ 𝑧𝑧 𝐸𝐸

1−𝜇𝜇2  (∈𝑥𝑥𝑥𝑥+ 𝜇𝜇 ∈𝑦𝑦𝑦𝑦 )𝑎𝑎𝑧𝑧ℎ/2
−ℎ/2   =∫ 𝑧𝑧 𝐸𝐸

1−𝜇𝜇2  �𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
− 𝑧𝑧 𝜕𝜕

2𝜕𝜕
𝜕𝜕𝑥𝑥2 +ℎ/2

−ℎ/2

1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�

2
+ 𝜇𝜇 𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
− 𝑧𝑧𝜇𝜇 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑦𝑦2 + 𝜇𝜇
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�

2
� 𝑎𝑎𝑧𝑧   

Integrating and inserting limits, we get 

𝑀𝑀𝑥𝑥  = 𝐸𝐸
1−𝜇𝜇2  ℎ

3

12
�− 𝜕𝜕2𝜕𝜕  

𝜕𝜕𝑥𝑥2 − 𝜇𝜇 𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2� = -D�𝜕𝜕

2𝜕𝜕  
𝜕𝜕𝑥𝑥2 + 𝜇𝜇 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑦𝑦2�                                     (3.2.28) 

Where D is the familiar bending rigidity, given as D = 𝐸𝐸ℎ3

12(1−𝜇𝜇2)
 , similarly we have 

𝑀𝑀𝑦𝑦  = -D�𝜕𝜕
2𝜕𝜕  
𝜕𝜕𝑦𝑦2 + 𝜇𝜇 𝜕𝜕2𝜕𝜕

𝜕𝜕𝑥𝑥2�                                                                                  (3.2.29a) 

𝑀𝑀𝑥𝑥𝑦𝑦  = - D(1 − 𝜇𝜇) 𝜕𝜕
2𝜕𝜕

𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦
                                                    (3.2.29b)  

𝑁𝑁𝑦𝑦  = C��𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�

2
 � + 𝜇𝜇 � 𝜕𝜕𝑣𝑣

𝜕𝜕𝑦𝑦
+ 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�

2
��                                      (3.2.29c) 

𝑁𝑁𝑥𝑥  = C��𝜕𝜕𝑣𝑣
𝜕𝜕𝑦𝑦

+ 1
2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�

2
 � + 𝜇𝜇 � 𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
+ 1

2
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥
�

2
��                                      (3.2.29d) 

𝑁𝑁𝑥𝑥𝑦𝑦  = C�1−𝜇𝜇
2
� �𝜕𝜕𝑢𝑢

𝜕𝜕𝑦𝑦
+ 𝜕𝜕𝑣𝑣

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝑥𝑥
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�                                                  (3.2.29e)

 Where C is given extensional rigidity, given as 

C = 𝐸𝐸ℎ
1−𝜇𝜇2 

We could now substitute in Eq. (3.2.26) for the resultant intensity functions, using above 

relations to get the equilibrium equations in terms of displacement components of the mid plane 

plate. However, we shall follow another route that leads to a somewhat less complicated system 

of equations. 

Note accordingly that Eqs. (3.2.25a) and (3.2.25b) will be individually satisfied if we define an 

Airy stress function F as follows: 
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𝑁𝑁𝑥𝑥  = 𝜕𝜕
2 𝐹𝐹
𝜕𝜕𝑦𝑦 2  

𝑁𝑁𝑦𝑦  = 𝜕𝜕
2 𝐹𝐹
𝜕𝜕𝑥𝑥2                                                              (3.2.30) 

𝑁𝑁𝑥𝑥𝑦𝑦  = - 𝜕𝜕
2 𝐹𝐹

𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦
  

Then replacing 𝑀𝑀𝑥𝑥 , 𝑀𝑀𝑦𝑦  and 𝑀𝑀𝑥𝑥𝑦𝑦 , it is a simple matter to show that Eq. (3.2.25c) can be written as  

D∇4𝜕𝜕 = 𝜕𝜕
2 𝐹𝐹
𝜕𝜕𝑦𝑦 2  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑥𝑥2  -2 𝜕𝜕2 𝐹𝐹

𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦
𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦

 + 𝜕𝜕
2 𝐹𝐹
𝜕𝜕𝑥𝑥2  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑦𝑦2  + q                                     (3.2.31)  

We now have a single partial differential equation with two dependent variables, w and F. since 

we are now studying in-plane effects by a stress approach, we must ensure the compatibility of 

the in-plane displacements. This will give us a second companion equation to go with Eq. 

(3.2.31). To do this, we shall seek to relate the strain 𝜖𝜖𝑥𝑥𝑥𝑥 , 𝜖𝜖𝑦𝑦𝑦𝑦 , and 𝜖𝜖𝑥𝑥𝑦𝑦  at the mid plane surface in 

such a way that when employ Eq. (3.2.10) to replace the strains we end up with a result that does 

not contain the in-plane displacement components u and v. thus we you may readily demonstrate 

by substituting from Eq. (3.2.10) that 

 �𝜕𝜕
2 𝜖𝜖𝑥𝑥𝑥𝑥
𝜕𝜕𝑦𝑦2 − 2

𝜕𝜕2 𝜖𝜖𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

+
𝜕𝜕2 𝜖𝜖𝑦𝑦𝑦𝑦
𝜕𝜕𝑥𝑥2  �z = 0 = � 𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦

 �
2
- 𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑥𝑥2  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑦𝑦2                                     (3.2.32) 

Since this equation ensures the proper relation of strains at the mid plane surface to the mid plane 

displacement component w without explicitly involving in-plane displacement components u and 

v, it serves as the desired compatibility equation for the strains at the mid plane surface. We next 

express the compatibility equation in terms of the stress resultant intensity function. To do this, 

substitute for strains, using Eq.(3.2.10) and then note Eqs.(3.2.29) stemming from Hook’s law: 

1
𝐸𝐸ℎ
�𝜕𝜕

2 𝑁𝑁𝑥𝑥
𝜕𝜕𝑦𝑦2 − 𝜇𝜇

𝜕𝜕2 𝑁𝑁𝑦𝑦
𝜕𝜕𝑦𝑦2 +

𝜕𝜕2 𝑁𝑁𝑦𝑦
𝜕𝜕𝑥𝑥2 − 𝜇𝜇 𝜕𝜕2 𝑁𝑁𝑥𝑥

𝜕𝜕𝑥𝑥2 + 2(1 + 𝜇𝜇) 𝜕𝜕
2 𝑁𝑁𝑥𝑥𝑦𝑦
𝜕𝜕𝑥𝑥𝜕𝜕𝑦𝑦

�  = � 𝜕𝜕
2 𝜕𝜕

𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦
 �

2
- 𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑥𝑥2  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑦𝑦2  

Finally, replacing the resultant intensity functions in terms of the Airy function [see Eq. 

(3.2.30)], we get 
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∇4𝐹𝐹 = 𝐸𝐸ℎ �� 𝜕𝜕
2 𝜕𝜕

𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦
 �

2
−  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑥𝑥2  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑦𝑦2  �                                                                                                   (3.2.33)  

the above  equation and Eq. (3.2.31), which we now rewrite as 

D ∇4𝜕𝜕 = 𝜕𝜕
2 𝐹𝐹
𝜕𝜕𝑦𝑦 2  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑥𝑥2  -2 𝜕𝜕2 𝐹𝐹

𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦
𝜕𝜕2 𝜕𝜕
𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦

 + 𝜕𝜕
2 𝐹𝐹
𝜕𝜕𝑥𝑥2  𝜕𝜕

2 𝜕𝜕
𝜕𝜕𝑦𝑦2  + q                (3.2.34) 

Are the celebrated von karman plate equations. Note that they are still highly non-linear. The 

equations do have considerable mutual symmetry. This is brought out by defining a nonlinear 

operator L: 

L(p,q) = 𝜕𝜕
2 𝑟𝑟
𝜕𝜕𝑦𝑦 2  𝜕𝜕

2 𝑞𝑞
𝜕𝜕𝑥𝑥2  -2 𝜕𝜕2 𝑟𝑟

𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦
𝜕𝜕2 𝑞𝑞
𝜕𝜕𝑥𝑥  𝜕𝜕𝑦𝑦

 + 𝜕𝜕
2 𝑟𝑟
𝜕𝜕𝑥𝑥2  𝜕𝜕

2 𝑞𝑞
𝜕𝜕𝑦𝑦 2                                                        (3.2.35)  

Then the von karman plate equations can be given as 

∇4𝐹𝐹 =  −  𝐸𝐸ℎ
2

 𝐿𝐿(𝜕𝜕,𝜕𝜕)                                                                                    (3.2.36a) 

D ∇4𝜕𝜕 = 𝐿𝐿(𝐹𝐹,𝜕𝜕) + 𝑞𝑞                                                                                                                                  (3.2.36b) 

The deflection of the non linear operator leaves us with the (uncoupled) plane –stress problem of 

two – dimensional elasticity theory and the classic plate bending equation.  

3.3 Strain-displacement relations 

In the present formulation the strain-displacement relations are derived based on a higher-order 

shear deformation theory that includes the initial geometric imperfections and von Karman-type 

geometric nonlinearities.  

The nonlinear strain-displacement relations at a distance ‘z’ away from the mid-plane of a 

isotropic plate can be written as: 

∈𝑥𝑥  =  ∈𝑥𝑥𝑜𝑜  - z𝜕𝜕,𝑥𝑥𝑥𝑥
𝑜𝑜   

∈𝑦𝑦  =  ∈𝑦𝑦𝑜𝑜  - z𝜕𝜕,𝑦𝑦𝑦𝑦
𝑜𝑜  

𝛾𝛾𝑥𝑥𝑦𝑦  = ∈𝑥𝑥𝑦𝑦𝑜𝑜  - 2z∈,𝑥𝑥𝑦𝑦𝑜𝑜            (3.3.1) 
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𝛾𝛾𝑥𝑥𝑧𝑧  = 𝑢𝑢,𝑧𝑧 + 𝜕𝜕,𝑥𝑥  

𝛾𝛾𝑦𝑦𝑧𝑧  = 𝑣𝑣,𝑧𝑧 + 𝜕𝜕,𝑦𝑦  

∈𝑥𝑥𝑜𝑜 , ∈𝑦𝑦𝑜𝑜  and 𝛾𝛾𝑥𝑥𝑦𝑦𝑜𝑜  are reference surface strains and are defined as: 

∈𝑥𝑥𝑜𝑜  = 𝑢𝑢,𝑥𝑥
𝑜𝑜  +1

2
(𝜕𝜕,𝑥𝑥𝑜𝑜 )2 

∈𝑦𝑦𝑜𝑜  = 𝑢𝑢,𝑦𝑦
𝑜𝑜  +1

2
(𝜕𝜕,𝑦𝑦𝑜𝑜 )2           (3.3.2) 

𝛾𝛾𝑥𝑥𝑦𝑦𝑜𝑜  = 𝑢𝑢,𝑦𝑦
𝑜𝑜  + 𝑣𝑣,𝑥𝑥

𝑜𝑜  +𝜕𝜕,𝑥𝑥𝑜𝑜 𝜕𝜕,𝑦𝑦𝑜𝑜   

For a slightly imperfect plate let 𝜕𝜕∗ denote a known small geometric imperfection, i.e., a 

small deviation of the plate middle-surface from the mid-plane of a perfect plate. The unloaded 

imperfect plate is assumed to be stress free. In the case of imperfect plate, ow  is measured from 

the load free imperfect middle-surface. The geometric imperfection of a plate based on 

fundamental buckling mode of a geometrically perfect plate is assumed as: 

𝜕𝜕∗ = e sin𝜋𝜋𝑥𝑥
𝑎𝑎

 sin𝜋𝜋𝑦𝑦
𝑏𝑏

         

The coefficient e represents amplitude of the initial imperfection. The initial strains due to the 

imperfection can be written as 

∈𝑥𝑥∗  = 1
2

(𝜕𝜕,𝑥𝑥∗ )2;  ∈𝑦𝑦∗  = 1
2

(𝜕𝜕,𝑦𝑦∗ )2; 

𝛾𝛾𝑥𝑥𝑦𝑦∗  = 𝜕𝜕,𝑥𝑥∗ 𝜕𝜕,𝑦𝑦∗  ;         (3.3.3) 

𝛾𝛾𝑥𝑥𝑧𝑧∗  = 𝜕𝜕,𝑥𝑥∗ ; 𝛾𝛾𝑦𝑦𝑧𝑧∗  = 𝜕𝜕,𝑦𝑦∗ ;      

The net strain component in the middle surface of the imperfect plate become (small angles of 

rotation 𝜕𝜕,𝑥𝑥∗  in the equations for an initially perfect plate are replaced by (𝜕𝜕∗  + 𝜕𝜕𝑜𝑜),𝑥𝑥  : 

∈�𝑥𝑥𝑜𝑜  =𝑢𝑢,𝑥𝑥
𝑜𝑜  +  1

2
 [(𝜕𝜕∗  +  𝜕𝜕𝑜𝑜),𝑥𝑥

2 ] - ∈𝑥𝑥∗  = (∈𝑥𝑥𝑜𝑜  +𝜕𝜕,𝑥𝑥𝑜𝑜  𝜕𝜕,𝑥𝑥∗ ) 

∈�𝑦𝑦𝑜𝑜  =𝑣𝑣,𝑦𝑦
𝑜𝑜  +  1

2
 [(𝜕𝜕∗  +  𝜕𝜕𝑜𝑜),𝑦𝑦

2 ] - ∈𝑦𝑦∗  = (∈𝑦𝑦𝑜𝑜  +𝜕𝜕,𝑦𝑦𝑜𝑜  𝜕𝜕,𝑦𝑦∗ )     (3.3.4) 



24 
 

�̅�𝛾𝑥𝑥𝑦𝑦𝑜𝑜  = 𝑢𝑢,𝑦𝑦
𝑜𝑜  + 𝑣𝑣,𝑥𝑥

𝑜𝑜  +[ (𝜕𝜕∗  +  𝜕𝜕𝑜𝑜),𝑥𝑥 (𝜕𝜕∗  +  𝜕𝜕𝑜𝑜),𝑦𝑦 ]- 𝛾𝛾𝑥𝑥𝑦𝑦  
∗ =(𝛾𝛾𝑥𝑥𝑦𝑦𝑜𝑜  +𝜕𝜕,𝑥𝑥𝑜𝑜  𝜕𝜕,𝑦𝑦∗+𝜕𝜕,𝑥𝑥∗ 𝜕𝜕,𝑦𝑦𝑜𝑜 )   

Introducing Eqs. (3.3.4) into Eqs. (3.3.1) (i.e., replacing ∈𝑥𝑥𝑜𝑜 , ∈𝑦𝑦𝑜𝑜  and 𝛾𝛾𝑥𝑥𝑦𝑦𝑜𝑜  with ∈�𝑥𝑥𝑜𝑜 ,∈�𝑦𝑦𝑜𝑜   and �̅�𝛾𝑥𝑥𝑦𝑦𝑜𝑜 ), 

the strain components of the imperfect plate is written as: 

∈𝑥𝑥  = ∈𝑥𝑥𝑜𝑜  + 𝜕𝜕,𝑥𝑥𝑜𝑜  𝜕𝜕,𝑥𝑥∗  - z𝜕𝜕,𝑥𝑥𝑥𝑥∗   

∈𝑦𝑦  = ∈𝑦𝑦𝑜𝑜  + 𝜕𝜕,𝑦𝑦𝑜𝑜  𝜕𝜕,𝑦𝑦∗  - z𝜕𝜕,𝑦𝑦𝑦𝑦∗   

𝛾𝛾𝑥𝑥𝑦𝑦  = 𝛾𝛾𝑥𝑥𝑦𝑦𝑜𝑜  + 𝜕𝜕,𝑥𝑥𝑜𝑜  𝜕𝜕,𝑦𝑦∗+ 𝜕𝜕,𝑥𝑥∗ 𝜕𝜕,𝑦𝑦𝑜𝑜 ) -2z𝜕𝜕,𝑥𝑥𝑦𝑦𝑜𝑜          (3.3.5) 

𝛾𝛾𝑥𝑥𝑧𝑧  = 𝑢𝑢,𝑧𝑧 + 𝜕𝜕,𝑥𝑥   

𝛾𝛾𝑦𝑦𝑧𝑧  = 𝑣𝑣,𝑧𝑧 + 𝜕𝜕,𝑦𝑦    

 
3.4Method of Solution  

3.4.1 Galerkin’s method 

Approximate solutions for the partial differential equations can be obtained using the Galerkin 

method, which is briefly outlined below:  

An approximate solution (𝑢𝑢�𝑜𝑜 , 𝑣𝑣,�𝑜𝑜  𝜕𝜕�𝑜𝑜) of the problem is sought in the form 

𝑢𝑢�𝑜𝑜 = � �𝑈𝑈𝑚𝑚𝑎𝑎

𝑗𝑗

𝑎𝑎=1

𝑖𝑖

𝑚𝑚=1

𝑎𝑎�𝑚𝑚𝑎𝑎  (𝑥𝑥, 𝑦𝑦) 

𝑣𝑣�𝑜𝑜 = � �𝑉𝑉𝑚𝑚𝑎𝑎

𝑗𝑗

𝑎𝑎=1

𝑖𝑖

𝑚𝑚=1

𝑏𝑏�𝑚𝑚𝑎𝑎  (𝑥𝑥,𝑦𝑦) 

𝜕𝜕�𝑜𝑜 = � �𝑊𝑊𝑚𝑚𝑎𝑎

𝑗𝑗

𝑎𝑎=1

𝑖𝑖

𝑚𝑚=1

𝐶𝐶�̅�𝑚𝑎𝑎  (𝑥𝑥, 𝑦𝑦)  

                                                (3.4.1.1) 
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Where 𝑈𝑈𝑚𝑚𝑎𝑎 , 𝑉𝑉𝑚𝑚𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎 𝑊𝑊𝑚𝑚𝑎𝑎  are undetermined coefficients and 𝑎𝑎�𝑚𝑚𝑎𝑎 ,𝑏𝑏�𝑚𝑚𝑎𝑎  𝑎𝑎𝑎𝑎𝑎𝑎 𝑟𝑟�̅�𝑚𝑎𝑎  are suitably 

chosen spatial functions satisfying the prescribed boundary conditions. Then the Galerkin 

method implies 

∬𝐿𝐿1(𝑢𝑢�𝑜𝑜 , 𝑣𝑣,�𝑜𝑜 𝜕𝜕�𝑜𝑜) 𝑎𝑎�𝑚𝑚𝑎𝑎 (x,y)dxdy=0 

∬𝐿𝐿1(𝑢𝑢�𝑜𝑜 , 𝑣𝑣,�𝑜𝑜 𝜕𝜕�𝑜𝑜) 𝑏𝑏�𝑚𝑚𝑎𝑎 (x,y)dxdy=0  

∬𝐿𝐿1(𝑢𝑢�𝑜𝑜 , 𝑣𝑣,�𝑜𝑜 𝜕𝜕�𝑜𝑜) 𝑟𝑟�̅�𝑚𝑎𝑎 (x,y)dxdy=0                       (3.4.1.2) 

Where the integration is carried out over the entire shell area. There will be as many equations 

(in Li) as the number of terms taken for the series given by Eqs. (3.4.1.2).  

3.4.2 Boundary conditions and displacement fields 

It is presumed that all four edges of the plate or shell are simply supported. The following 

three sets of simply supported boundary conditions are considered in the present study. 

3.4.2.1 only normal in-plane displacements can occur (SS-1): In-plane tangential 

displacements and out-of-plane displacements are prevented. 

𝑁𝑁𝑥𝑥  = 𝑣𝑣𝑜𝑜  = 𝜕𝜕𝑜𝑜   = 𝑀𝑀𝑥𝑥  = 0 at x =0, a 

𝑁𝑁𝑦𝑦  = 𝑢𝑢𝑜𝑜  = 𝜕𝜕𝑜𝑜   = 𝑀𝑀𝑥𝑥  = 0 at x =0, b                  (3.4.2.1a) 

The following displacement fields are used to satisfy the above set of boundary conditions: 

𝑢𝑢�𝑜𝑜 = � �𝑈𝑈𝑚𝑚𝑎𝑎

𝑁𝑁

𝑎𝑎=1

𝑀𝑀

𝑚𝑚=1

𝑟𝑟𝑜𝑜𝑣𝑣
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑣𝑣𝑖𝑖𝑎𝑎
𝑎𝑎𝜋𝜋𝑦𝑦
𝑏𝑏

 

𝑣𝑣�𝑜𝑜 = � �𝑉𝑉𝑚𝑚𝑎𝑎

𝑁𝑁

𝑎𝑎=1

𝑀𝑀

𝑚𝑚=1

𝑣𝑣𝑖𝑖𝑎𝑎
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑟𝑟𝑜𝑜𝑣𝑣
𝑎𝑎𝜋𝜋𝑦𝑦
𝑏𝑏
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𝜕𝜕�𝑜𝑜 = � �𝑊𝑊𝑚𝑚𝑎𝑎

𝑁𝑁

𝑎𝑎=1

𝑀𝑀

𝑚𝑚=1

𝑣𝑣𝑖𝑖𝑎𝑎
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑣𝑣𝑖𝑖𝑎𝑎
𝑎𝑎𝜋𝜋𝑦𝑦
𝑏𝑏

   

                 (3.4.2.1b) 

3.4.2.2 Immovable edges (SS-2): In-plane normal and tangential displacements and out-of-plane 

displacements are prevented.  

 𝑢𝑢𝑜𝑜= 𝑣𝑣𝑜𝑜  = 𝜕𝜕𝑜𝑜   = 𝑀𝑀𝑥𝑥  = 0 at x =0, a   

 𝑣𝑣𝑜𝑜= 𝑢𝑢𝑜𝑜  = 𝜕𝜕𝑜𝑜  =  𝑀𝑀𝑥𝑥  = 0 at x =0, b                       (3.4.2.2a) 

The following displacement fields are used to satisfy the above set of boundary conditions: 

𝑢𝑢�𝑜𝑜 = � �𝑈𝑈𝑚𝑚𝑎𝑎

𝑁𝑁

𝑎𝑎=1

𝑀𝑀

𝑚𝑚=1

𝑣𝑣𝑖𝑖𝑎𝑎
2𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑣𝑣𝑖𝑖𝑎𝑎
𝑎𝑎𝜋𝜋𝑦𝑦
𝑏𝑏

 

𝑣𝑣�𝑜𝑜 = � �𝑉𝑉𝑚𝑚𝑎𝑎

𝑁𝑁

𝑎𝑎=1

𝑀𝑀

𝑚𝑚=1

𝑣𝑣𝑖𝑖𝑎𝑎
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑣𝑣𝑖𝑖𝑎𝑎
2𝑎𝑎𝜋𝜋𝑦𝑦
𝑏𝑏

 

𝜕𝜕�𝑜𝑜 = � �𝑊𝑊𝑚𝑚𝑎𝑎

𝑁𝑁

𝑎𝑎=1

𝑀𝑀

𝑚𝑚=1

𝑣𝑣𝑖𝑖𝑎𝑎
𝑚𝑚𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑣𝑣𝑖𝑖𝑎𝑎
𝑎𝑎𝜋𝜋𝑦𝑦
𝑏𝑏

 

                                (3.4.2.2b) 

3.4.2.3 only tangential displacements can occur (SS-3): In-plane normal displacements and 

out-of-plane displacements are prevented. 

𝑁𝑁𝑥𝑥𝑦𝑦  = 𝑣𝑣𝑜𝑜  = 𝜕𝜕𝑜𝑜   = 𝑀𝑀𝑥𝑥  = 0 at x =0, a 

𝑁𝑁𝑥𝑥𝑦𝑦  = 𝑢𝑢𝑜𝑜  = 𝜕𝜕𝑜𝑜   = 𝑀𝑀𝑥𝑥  = 0 at x =0, b          (3.4.2.3a) 

The following displacement fields are used to satisfy the above set of boundary conditions: 
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𝑢𝑢�𝑜𝑜 = ��𝑈𝑈𝑖𝑖𝑗𝑗

𝑎𝑎

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑣𝑣𝑖𝑖𝑎𝑎
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑟𝑟𝑜𝑜𝑣𝑣
𝑗𝑗𝜋𝜋𝑦𝑦
𝑏𝑏

 

𝑣𝑣�𝑜𝑜 = ��𝑉𝑉𝑖𝑖𝑗𝑗

𝑎𝑎

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑟𝑟𝑜𝑜𝑣𝑣
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑣𝑣𝑖𝑖𝑎𝑎
𝑗𝑗𝜋𝜋𝑦𝑦
𝑏𝑏

 

𝜕𝜕�𝑜𝑜 = ��𝑊𝑊𝑖𝑖𝑗𝑗

𝑎𝑎

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1

𝑣𝑣𝑖𝑖𝑎𝑎
𝑖𝑖𝜋𝜋𝑥𝑥
𝑎𝑎

 𝑣𝑣𝑖𝑖𝑎𝑎
𝑗𝑗𝜋𝜋𝑦𝑦
𝑏𝑏

 

          (3.4.2.3a) 

 

3.5Solution of a non-linear equation 

Equations that can be cast in the form of a polynomial are referred to as algebraic equations. 

Equations involving more complicated terms, such as trigonometric, hyperbolic, exponential, or 

logarithmic functions are referred to as transcendental equations. The methods presented in this 

section are numerical methods that can be applied to the solution of such equations, to which we 

will refer, in general, as non-linear equations. In general, we will we searching for one, or more, 

solutions to the equation, 

f(x) = 0. 

We will present the Newton-Raphson method. In the Newton-Raphson methods only one initial 

value is required. Because the solution is not exact, the algorithms for any of the methods 

presented herein will not provide the exact solution to the equation f(x) = 0, instead, we will stop 

the algorithm when the equation is satisfied within an allowed tolerance or error, ε. In 

mathematical terms this is expressed as 

|f(xR)| < ε. 

The value of x for which the non-linear equation f(x)=0 is satisfied, i.e., x = xR, will be the 

solution, or root, to the equation within an error of ε units. 
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3.5.1The Newton-Raphson method 

Consider the Taylor-series expansion of the function f(x) about a value x = xo: 

f(x)= f(xo)+𝑓𝑓′ (xo)(x-xo)+(𝑓𝑓′′ (xo)/2!)(x-xo)2+…. 

Using only the first two terms of the expansion, a first approximation to the root of the equation 

f(x) = 0 

can be obtained from 

f(x) = 0 ≈ f(xo)+𝑓𝑓′ (xo)(x1 -xo) 

Such approximation is given by, 

x1 = xo - f(xo)/𝑓𝑓′ (xo). 

The Newton-Raphson method consists in obtaining improved values of the approximate root 

through the recurrent application of equation above. For example, the second and third 

approximations to tType equation here.hat root will be given by 

x2 = x1 - f(x1)/𝑓𝑓′ (x1), 

and 

x3= x2 - f(x2)/𝑓𝑓′ (x2), 

respectively. 

This iterative procedure can be generalized by writing the following equation, where i represents 

the iteration number: 

xi+1 = xi - f(xi)/ 𝑓𝑓′ (xi). 

After each iteration the program should check to see if the convergence condition, namely, 

|f(x i+1)|<ε, 

is satisfied. 

The figure below illustrates the way in which the solution is found by using the Newton- 

Raphson method. Notice that the equation f(x) = 0 ≈ f(xo)+ 𝑓𝑓′ (xo)(x1 -xo) represents a straight 

line tangent to the curve y = f(x) at x = xo. This line intersects the x-axis (i.e., y = f(x) = 0) at the 

point x1 as given by x1 = xo - f(xo)/ 𝑓𝑓′ (xo). At that point we can construct another straight line 

tangent to y = f(x) whose intersection with the x-axis is the new approximation to the root of f(x) 

= 0, namely, x = x2. Proceeding with the iteration we can see that the intersection of consecutive 

tangent lines with the x-axis approaches the actual root relatively fast. 
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Fig no -3.5.1 

The Newton-Raphson method converges relatively fast for most functions regardless of the 

initial value chosen. The main disadvantage is that you need to know not only the function f(x), 

but also its derivative, 𝑓𝑓′ (x), in order to achieve a solution.  

  



30 
 

4Numerical Results and Discussion: Plates 

4.1 Introduction 

The mathematical formulation presented in previous chapter is applicable for buckling and 

postbuckling of isotropic plates. In this chapter, the numerical results validating the analytical 

formulation for buckling and postbuckling of isotropic plates by using MAT Lab are presented in 

this chapter. In this chapter the uniaxial loads are presented here in details.  

4.2 Boundary conditions 

All numerical results presented in this chapter are for simply supported isotropic plates, 

composed of equal thickness of homogenous material. Depending upon the in-plane 

displacement constraint at edges, following three sets of simply supported boundary conditions 

are considered in the present study. 

4.2.1 Only normal in-plane displacements can occur (SS-1): In-plane tangential displacements 

and out-of-plane displacements are prevented. 

 𝑁𝑁𝑥𝑥  = 𝑣𝑣𝑜𝑜  = 𝜕𝜕𝑜𝑜  =  𝑀𝑀𝑥𝑥  = 0 at x =0, a 

𝑁𝑁𝑦𝑦  = 𝑢𝑢𝑜𝑜  = 𝜕𝜕𝑜𝑜  =  𝑀𝑀𝑦𝑦  = 0 at x =0, b       

4.2.2 Immovable edges (SS-2): In-plane normal and tangential displacements and out-of-plane 

displacements are prevented.  

 𝑢𝑢𝑜𝑜= 𝑣𝑣𝑜𝑜  = 𝜕𝜕𝑜𝑜   = 𝑀𝑀𝑥𝑥  = 0 at x =0, a   

 𝑣𝑣𝑜𝑜= 𝑢𝑢𝑜𝑜  = 𝜕𝜕𝑜𝑜  =  𝑀𝑀𝑦𝑦  = 0 at x =0, b        

4.2.3 Only tangential displacements can occur (SS-3): In-plane normal displacements and out-

of-plane displacements are prevented. 

𝑁𝑁𝑥𝑥𝑦𝑦  = 𝑣𝑣𝑜𝑜  = 𝜕𝜕𝑜𝑜   = 𝑀𝑀𝑥𝑥  = 0 at x =0, a 

𝑁𝑁𝑥𝑥𝑦𝑦  = 𝑢𝑢𝑜𝑜  = 𝜕𝜕𝑜𝑜  =  𝑀𝑀𝑦𝑦  = 0 at x =0, b           
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Where a and b are the plate lengths in the x- and y-directions, respectively. The displacement 

fields appropriate to the above set of boundary conditions (SS-1, SS-2, SS-3) are specified in 

Mathematical formulation. 

4.2.4 Number of terms in the displacement fields:  

In order to examine the convergence of the present multi-term Galerkin’s solution, an extensive 

numerical study using different numbers of terms in the assumed displacement fields was 

performed. The following different numbers of terms were used along x and y directions in the 

displacement field approximation. 

 one-term:      (m = 1, n = 1) 

 two-term:      (m = 1, n = 1), (m = 3, n = 1) 

 three-term:    (m = 1, n = 1), (m = 3, n = 1), (m = 1, n = 3) 

 four-term:     (m = 1, n = 1), (m = 3, n = 1), (m = 1, n = 3), (m = 3, n = 3) 

 six-term:       (m = 1, n = 1), (m = 3, n = 1), (m = 1, n = 3), (m = 3, n = 3), 

                                  (m = 5, n = 1), (m = 1, n = 5) 

 nine-term:     (m = 1, n = 1), (m = 1, n = 3), (m = 1, n = 5), (m = 3, n = 1), 

                                  (m = 3, n = 3), (m = 3, n = 5), (m = 5, n = 1), (m = 5, n = 3), 

                            (m = 5, n = 5)  

 sixteen-term: (m = 1, n = 1), (m = 1, n = 3), (m = 1, n = 5), (m = 1, n = 7), 

                                 (m = 3, n = 1), (m = 3, n = 3), (m = 3, n = 5), (m = 3, n = 7), 

                      (m = 5, n = 1),  (m = 5, n = 3), (m = 5, n = 5), (m = 5, n = 7), 

   (m = 7, n = 1), (m = 7, n = 3), (m = 7, n = 5), (m = 7, n = 7) 
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4.3 Buckling of  Isotropic  plates subjected to a Uniaxial compressive force :  

Our aim is to find critical buckling load of simply supported plate by using Galerkin method. We 

also use the MAT LAB programming to finding eigen value for algebraic equation which gives 

the critical buckling load. We plot the graph between aspect ratio (a/b) and Numerical factor (k) 

by using the MAT LAB programming and find different modes and different aspect ratio. The 

critical buckling load is given by  

𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟 = 4
𝜋𝜋2𝐷𝐷
𝑏𝑏2  

For other proportions of the plate the 𝑁𝑁�𝑥𝑥  can be represented in the form 

𝑁𝑁�𝑥𝑥 =
𝑘𝑘𝜋𝜋2𝐷𝐷
𝑏𝑏2  

Where k is a numerical factor, 

The following properties of plate are used h=1/ 100,µ =0.25,E= 200 Gpa. The graph plotted 

between variation of Numerical factor (k) and aspect ratio (a/b) is shown in the fig. 4.3.1. form 

the given figure  we found that if we increase the aspect ratio different modes   are found .  In the 

point where aspect ratio a/b = 1.4 the mode is changing from m = 1 to m =2. It is also observed 

from figure for very long aspect ratio (a/b>5) plate buckling modes are remain same.  The result 

is compared with Theory of elastic stability by Timoshenko & Gere of page no 353, fig no 9.2. 
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Fig 4.3.1 Variation of buckling coefficient of a SS-1 plate under Uniaxial inplane loading for 

different aspect ratio (a/b) and k value 

4.4 Postbuckling behavior of Isotropic plates 

4.4.1 Isotropic plates subjected to a Uniaxial Compressive force 

 The postbuckling behavior isotropic plates subjected to in-plane compressive loads are studied 

here. Numerical results are presented for Isotropic plates. The simply supported (SS-1) boundary 

conditions are considered on all four edges of the plate. The material properties used for isotropic 

plate are: E = 200Gpa, µ=0.25 

The postbuckled equilibrium paths of a isotropic square plate (length-to-thickness ratio a/h = 

100), subjected to in-plane uniform edge compression are shown in Fig. 4.4.1, and 4.4.2.The 

plate center deflections (w) are normalized with the thickness of the plate (h) and the 

compressive force (𝑁𝑁�𝑥𝑥) is normalized with the critical buckling load of the plate (𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟 ). The 

equilibrium paths are obtained by taking 1-term, 3-terms, 4-terms and 9-terms in the 

displacement field approximation. For the compressive load up to 𝑁𝑁�𝑥𝑥  /𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟  = 2, the postbuckled 

deflections obtained from the 1-term solution and multi-term (3-term, 4-term and 9-term) 

solution are in good agreement. The results indicate that at higher magnitude of uniaxial 

compressive loads the one-term solution is erroneous and the discrepancy between the 1-term 
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and multi-term solution is noticeable. At a load 𝑁𝑁�𝑥𝑥  /𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟   = 5, the difference in the central 

deflections as calculated by considering 1-term and multi-term solution is 9.6%, whereas at 𝑁𝑁�𝑥𝑥  

/𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟   = 10, the difference is 17.5%. It is observed that even at 𝑁𝑁�𝑥𝑥  /𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟   = 10, the discrepancy 

between the 3-terms and multi-term (4-term and 9-term) solution is less than 2%. Thus, a 

minimum of 3-terms is required to obtain accurate results for the problem under consideration. 

Unless stated otherwise, all further numerical results of plates are obtained using 3-terms in the 

displacement field approximation.    

 

Fig. 4.4.1 Postbuckled path of  plate  at central  deflection versus uniaxial compressive load of a 

Isotropic  by taking 1 term square plate. 

  

a/b =1 ,a/h =100 

w/h 

 Bifurcation point 

𝑁𝑁�𝑥𝑥
𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟
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Fig. 4.4.2 Variation of the postbuckled path of plate at central deflection versus uniaxial 

compressive load of a isotropic square plate. 

Fig. 4.4.3 shows the postbuckled equilibrium paths of a rectangular (b/a = 2, a/h = 100) 

isotropic plate subjected to a uniaxial compressive force. The equilibrium paths are obtained by 

taking 1-term, 3-term, 4-term, 9-term and 16-term in the displacement field approximation. It is 

observed from the figure that, the 3-term and 4-term solutions under estimate the plate 

deflections as compared to 9-term and 16-term solutions. It is observed that up to a compressive 

load /x xcrN N = 10, minimum 6-terms are necessary to obtain accurate results.  

Bifurcation point 

 

w/h 

 

 

a/b =1, a/h =100 

𝑁𝑁�𝑥𝑥
𝑁𝑁�𝑥𝑥𝑟𝑟𝑟𝑟
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Fig. 4.4.3 Variation of the postbuckled path of plate at central deflection versus uniaxial 

compressive force of a Isotropic rectangular plate. 

 

4.4.2 Response of plates subjected to uniaxial compressive load in the presence of geometric 

imperfections:  

The response of isotropic plates subjected to uniaxial compressive loads in the presence of initial 

geometric imperfections is shown in Figs. 4.4.4.  The plates have aspect ratio a/b = 1 and length-

to-thickness ratio a/h = 100. Two sets of equilibrium paths are shown in figures for positive (+e) 

and negative (-e) initial imperfection magnitudes e = 0.025h, 0.05h, 0.1h, and 0.2h. The dotted 

curves shown in figures are for the geometrically perfect plate (e = 0) subjected to uniaxial 

compressive loads and are representative of a classic stable, symmetric bifurcation behavior. It is 

observed from the figures that, the introduction of an initial geometric imperfection destroy the 

trivial equilibrium path, and we have now a family of stable equilibrium curves corresponding to 

w/h  
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different values of imperfection magnitudes (e) that round off the bifurcation of the perfect 

system. 

 

Fig. 4.4.4 The influence of initial geometric imperfections on the nonlinear response of a square 

isotropic plate subjected to uniaxial compressive force 
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5. Conclusion:  

In this study the multi-term Galerkin’s method is employed to investigate the buckling and 

postbuckling of isotropic plates subjected to uniaxial loads considering Von Karmon theory of 

plates.  Based on the numerical work reported the following major conclusions are drawn. 

1. It is observed that plate buckle in different mode up to aspect ratio five, If we increase the 

aspect ratio more than five the buckling mode remains same. 

2. It is observed that higher postbuckling load the one-term representation of the displacement 

field is incorrect .The displacement result is much difference when the aspect ratio of the 

isotropic plate is more. In the present observation the results is studied by including up to sixteen 

terms in the displacement field approximation for the case of isotropic plates. For the most of the 

problems considered in this study the three-term representation of the displacement field are 

found to be sufficient. However, it is necessary to investigate the more number of terms in the 

displacement field. 

3. In the case of plates, the initial geometric imperfections both inward (positive) and outward 

(negative) destroy the trivial symmetrical equilibrium path, and a family of stable equilibrium 

curves corresponding to different amplitudes of imperfection that round off the bifurcation of the 

perfect system are obtained. 
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