1. Abstract

Protein Structure Alignment is one of the major areas in Structure biology. Many techniques and algorithms proposed by various authors do exist. For example: DALI, MaxSub, Combinatorial Extension, TM align, TMscore. But, none of them is perfect. One technique take one feature into account and other technique takes other features into account based on the understanding of the authors. For example some compare the distance matrices of both the proteins and give some similarity measure based on the similarity of the values and then they do some scoring. Some are based on the defining equivalences and doing superposition and calculating the number of C alpha atoms whose distances are below the threshold. Others calculate the secondary state structure of each and every residue and then proceed further for the alignment procedure. Here, I have done studies of the various existing algorithms and I have proposed a new idea for the protein-protein structure alignment. My implementation of algorithm idea for protein structure alignment is exciting and studying this new algorithm provides new insights in the field of protein protein structure alignment. My algorithm studies are based on the modification of existing TM-score .My algorithm takes into account contribution from each and every atom constituting the structure. Earlier algorithm only takes one atom as representation of the protein residue and ignores every other atom. Here, I have developed the weightage scheme which will allow us to take the contribution from every atom. Allowing taking contribution from each and every atom is helpful to us to have real picture of the alignment, which was not clear to us when we blindly take only one atom as the representation of the whole residue. Also, I have compared the results of the new algorithm with the existing one.

Keywords: Protein Structure Alignment, DALI, Maxsub, TM align, TMscore, Centre of Mass.

2. Introduction

Protein structural alignment is a valuable tool for protein folds and function classification. The success of the structural genomics initiative, which aims to experimentally determine 3D structures of thousands of representative proteins, critically depends on our ability to develop accurate tools for comparison of protein structures [1]. However, despite its utmost importance, the problem still lacks a fast and accurate solution. While some structural similarity scoring functions can be approximated, there has been no procedure to optimize any commonly used structural alignment measure [1,2]. In their review article on progress in the field of structure comparison, Taylor and coworkers write: 'In structure comparison, we do not even have an algorithm that guarantees an optimal answer for pairs of structures'.

There are several different, but related definitions of an optimal alignment of two proteins. Some methods define an optimal superposition as a superposition that minimizes the distances between the aligned atoms [3, 4]. Other methods attempt to minimize the difference between the intraatomic distances.[5]

Several methods for improved matching of protein structures have recently been introduced, including the methods based on the phenotypic plasticity and the method for flexible alignments by a sequence of local transformations [1].

Perhaps the most intuitive and most widely used measure of similarity of two proteins is the largest number of atoms (such as alpha-carbons, $C A$) in two structures that can be superimposed under a specified distance of each other. From now on, we will denote this metric by " $C A \leq \sigma$ ", where $\sigma>0$ denotes the distance threshold in angstroms. Many structural alignment measures build upon $C A \leq \sigma$, including GDT, AL0 [1], MaxSub [3], CA-atoms <3A, Q-score and TMScore [2]. The TM-Score is routinely used to evaluate the quality of models in the CASP experiment [5].

One of the main measures of model quality in Live Bench is ' $C A$-atoms $\leqslant 3 \AA$ ' [1] (in notation $C A<3$). Due to the difficulty in optimizing the scoring function itself, Live Bench approximates $C A<3$ using 3deval, a program that attempts to maximize another metric, namely 3D-score [1].

CAFASP benchmark of structure prediction servers uses MaxSub to assess the quality of servers' predictions. [3] MaxSub is defined as the fraction of the residues in the model falling within $3.5 \AA$ of the aligned residues in the experimental structure [3].

In the TMscore distances between the corresponding residues and following function is evaluated.

$$
\mathrm{d}_{0}=1.24 *(\text { nseqB-15) } * *(1.0 / 3.0)-1.8
$$

With respect to this function all the corresponding distances are normalized and scoring function is evaluated as follows for all the residues.
score_sum=score_sum $+1 /\left(1+\left(\mathrm{dis} / \mathrm{d}_{0}\right){ }^{*}{ }^{*} 2\right)$
Finally, Score =score_sum/float (nseqB), is given as TMscore.

Irrespective of the scoring system used, in all the above methods C-alpha is used as representative of the residue and every other atom is ignored.
Here, in this we propose a method in which we take into account the weighted contribution of each and every atom that compose the residue. Now instead of just using c-alpha as representation, we use the weighted contribution taken from each and every atom that constitutes the residue and that weight is centre of mass of every atom that is used for analyses.

3. Definitions [6]:

3.1 Units of Structure Descriptions

Briefly, we can say that a protein structure consists of elements: atoms, residues, fragments or secondary structure elements (SSEs). A fragment is the structure of a sequence segment. A structure description can consist of architecture, topology and properties.

Architecture is the position of the elements, coordinates or relative positions. When the elements are atoms or residues, the architecture is sometimes called geometry.

Topology is the elements' order along the backbone. Usually, by the topology of a structure one means the architecture and the order of the elements.

Properties of the elements, e.g. physio-chemical properties of the residues and types or exposure of the SSEs.The most common description is element based, meaning that the description has reference to each element. Further, a description can be on fine (low) level or a coarse (high) level.

Fine: the elements are atoms or residues.
Coarse: the elements are fragments or SSEs.
Several descriptions exist for specifying the architecture and topology of proteins. For the fine level it is done by specifying coordinates, distances or torsion angles.

Coordinates: The fundamental three-dimensional (3D) structure description consists of the specification of the coordinates of each atom, as given in the PDB file. The coordinates are determined by either X-ray crystallography or by nuclear magnetic resonance (NMR). Structures are 'vibrating', and that there might also be uncertainty in the determinations. In structure comparison it is common to let one or two atoms represent each residue, often the $\mathrm{C}_{\text {alpha }}$ atom. The coordinates of $\mathrm{C}_{\text {beta }}$ are sometimes used, in order to include some information on the orientation of the side chains. The side chain is alternatively represented by a 'mean' side chain atom.

Figure 1: Shows differences when c-alpha and c-beta are taken for representation [6].

3.2 Distance Matrices

A distance matrix for a structure shows the pairwise distances between elements. In this way it is a 2 D representation of the 3D structure. Following Figure shows a distance matrix, where the distances between the $\mathrm{C}_{\text {alpha }}$ atoms are used. The distances are in angstroms and rounded to integers, and distances larger than nine are represented by a dot.
A distance matrix contains more than enough information to reconstruct the 3D structure, except for handedness or chirality (mirror images) Figure3 shows the difference.

0	d_{12}	d_{13}	d_{14}
d_{12}	0	d_{23}	d_{24}
d_{13}	d_{23}	0	d_{34}
d_{14}	d_{24}	d_{34}	0

Figure2 Distance Matrix[6].

Figure 3 A structure A and its minor image B. They will get equal distance matrices, but trying to superpose B onto A will fail. Assume the plane drawn goes through points 1, 2, 3. Placing points 1, 2, 3 from B onto those from A will result in the two residues 4 being on opposite sides of the plane[6].

3.3 Torsion Angles

Geometrically, the backbone chain of a protein is a succession of points (atoms) in space:,

$$
\cdots \mathrm{C}_{\mathrm{i}-1}=\mathrm{N}_{\mathrm{i}}-\mathrm{C}_{\mathrm{i}}^{\text {alpha }}-\mathrm{C}_{\mathrm{i}}=\mathrm{N}_{\mathrm{i}+1}-\mathrm{C}_{\mathrm{i}+1}^{\text {alpha }}-\mathrm{C}_{\mathrm{i}+1}, \cdots
$$

where `-' means a single bond and ' $=$ ' a double bond......
The distance between the successive atoms on the backbone is approximately contant. They are specified by Schulz and Schirmer (1979) as 1.47 for $\mathrm{N}-\mathrm{C}^{\text {alpha }}, 1.53$ for $\mathrm{C}^{\text {alpha }}-\mathrm{C}$ and 1.32 for $\mathrm{C}-\mathrm{N}$ (in angstroms). The angles between the two bonds of each atom are also approximately equal. The only freedom the proteins have in folding is to rotate around the bonds (in the backbone and side chains). Generally, three points define a plane, and due to the constant values the position of the fourth can be defined an angle relative to this plane. This angle is the rotational angle between the second and third of the three points. Consider atom C_{i} in Figure 8.7. The angle δ and the distance $\mathrm{C}_{\mathrm{i}}^{\text {alpha }}-\mathrm{C}_{\mathrm{i}}$ are constants, hence the only freedom C_{i}, has relative to the plane of three points $\left(\mathrm{C}_{\mathrm{i}-1}, \mathrm{~N}_{1}, \mathrm{C}_{\mathrm{i}}{ }^{\alpha}\right)$ is the angle ϕ_{i} 'around' the bond $\left(\mathrm{N}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}{ }^{\alpha}\right)$ (the angle of C_{i} alpha $-\mathrm{C}_{\mathrm{i}}$ to the plane of $\left(\mathrm{C}_{\mathrm{i}-1}, \mathrm{~N}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}^{\alpha}\right)$).
Positive values of the angles are defined to be in the clockwise direction.
The only freedom C_{i} has to be placed relative to the plane of $\left(\mathrm{C}_{\mathrm{i}-1}, \mathrm{~N}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}\right.$ alpha $)$ is to rotate 'around' the bond $\left(\mathrm{N}_{\mathrm{i}}, \mathrm{C}_{\mathrm{i}}{ }^{\text {alpha }}\right)$. This angle is denoted $\phi_{\mathrm{i}} \cdot$

- The freedom $\mathrm{N}_{\mathrm{i}+1}$ has relative its three preceding atoms is to rotate around the bond $\left(\mathrm{C}_{\mathrm{i}}^{\text {alpha }}, \mathrm{C}_{\mathrm{i}}\right)$. This angle is denoted ψ_{i}.

Figure 4.Description of ϕ_{i} and $\psi_{\mathrm{i}}[6]$.

- The freedom $\mathrm{C}_{\mathrm{i}+1}$ alpha has relative to its three preceding atoms is to rotate around the bond $\left(\mathrm{C}_{\mathrm{i}}\right.$, $\mathrm{N}_{\mathrm{i}+1}$). This is the peptide bond, which is effectively a double bound and not free to rotate. The two possibilities are (approximately) 0, called cis and (approximately) 180, called trans.
- We can calculate the coordinates of the backbone chain by using these angles. The 3D structure of a protein is therefore completely specified by the torsion angles and the rotational angles of all the side chains. We can 'go in the opposite direction' : the torsion angles can be calculated from the coordinates.
The rotation around the single bonds is only restricted by possible steric collisions in the conformation. A Ramachandran plot (named after the Indian biophysicist, G. N. Ramachandran) is a plot where the angles ψ_{i} and ϕ_{i} are plotted. The preferred rotational angles for the side chains are called rotamers.

3.4 Helices

The main SSEs, helices and strands, are formed by hydrogen bonds. Let Hbond (i, j) mean that there is a hydrogen bond between the $\mathrm{C}=0$ group of residue i and the $\mathrm{N}-\mathrm{H}$ group of residue j. Hbond is thus a logical function which is true when there is an H -bond between the residues given as its parameters.
Helices are formed by hydrogen bonds between residues in the same helix. Three different types of helices exist.
$\boldsymbol{\alpha}$-helix is made by successive hydrogen bonds:Hbond (i, $\mathrm{i}+4$), Hbond (i+1,i+5),
The average length is 10 residues. This is by far the most common helix.
$\mathbf{3}_{\mathbf{1 0}}$-helix is made by successive hydrogen bonds: $\operatorname{Hbond}(\mathrm{i}, \mathrm{i}+3), \operatorname{Hbond}(\mathrm{i}+1, i+4), \ldots$.
π-helix is made by successive hydrogen bonds: $\operatorname{Hbond}(\mathrm{i}, \mathrm{i}+5)$, $\operatorname{Hbond}(\mathrm{i}+1, i+6)$, They are very rare in proteins.

The bonds forming helices restrict the torsion angles, and the idealized angles for 'geometrically correct' α-helix are $\Phi=-57.8$ and $\psi=-47.0$. However, the real angles usually deviate from these.

3.5 Strands and sheets

Strands and sheets are formed by successive hydrogen bonds between residues which can be far apart in sequence. The backbone hydrogen-bonding groups ($\mathrm{N}-\mathrm{H}$ and $0=\mathrm{C}$) are in the plane of the sheet, with the bonding groups from successive residues pointing in opposite directions. Let residue i be in one strand, and residue j in another. Then the bonding of the two strands can be either parallel or antiparallel.

- Parallel bonding is formed by each residue forming hydrogen bonds to two residues on the other strand, separated by a residue in the sequence. This means successive hydrogen bonds:
$[\operatorname{Hbond}((\mathrm{i}, j), \operatorname{Hbond}((\mathrm{j}, \mathrm{i}+2)],[\operatorname{Hbond}((\mathrm{i}+2, \mathrm{j}+2)$, Hbond $((\mathrm{j}+2, i+4)], \ldots \ldots \ldots \ldots \ldots$.
- Antiparallel bonding is formed by each residue forming two hydrogen bonds with a single residue on the other strand. This means successive hydrogen bonds:
$[\operatorname{Hbond}((\mathrm{j}, i), \operatorname{Hbond}((\mathrm{i}, \mathrm{j})],[\operatorname{Hbond}((\mathrm{j}-2, i+2), \operatorname{Hbond}((\mathrm{i}+2, j-2)], \ldots \ldots \ldots \ldots$.
Sheets can be parallel, antiparallel or mixed (with both parallel and antiparallel bondings). The idealized strand satisfying these constraints can be thought of as a helix with two residues per turn, with torsion angles of approximately $\Phi=-120$ and $\psi=+120$.

Figure 5: Antiparallel and Parallel Bridge[6].

3.6 Identifying the SSEs

There does not exist a precise universal definition for SSEs. Some automatic methods for identification of SSE do exist. Three different tools are mainly used: angle plots, distance matrices and hydrogen bonds. Plots of the torsion angles are least used, mostly because the helices and strands can have angles that differ considerably from the typical values.

Use of distance matrices

Distance matrices can be useful, either manually or automatically, to indicate where there can be SSEs. For idealized α-helices, the distances between the C_{α}, atoms from the start of the helix can be roughly calculated to be $3.8,5.4,5.1,6.3,8.7,9.9,10.6,12.5, \ldots$. These distances are found by using an idealized angle pair for a-helices and the distances between the backbone atoms. Real helices usually deviates from these due to irregularities, as shown in following table.
Some distances in the helix (residues 31-38) of PDB entry
lchc.

	31	32	33	34	35	36	37
31	0.0	3.9	5.5	5.1	7.1	9.3	10.4
32	3.9	0.0	3.8	5.5	5.8	7.0	9.4
3	5.5	3.8	0.0	3.8	5.3	4.8	6.3
34	5.1	5.5	3.8	0.0	3.8	5.4	5.4

Figure6: Distance Matrix for alpha helix. [6]

For an idealized β-strand the successive distances from a residue i can be calculated to be 3.8, 6.6, $10.3,13.5,16.9, \ldots$ Again, real strands deviate from these, as following figure.

(b)					
	18	19			
18	0.0	3.8	6.2	21	22
18	3.5	12.2			
19	3.8	0.0	3.8	6.3	9.2
20	6.2	3.8	0.0	3.8	6.1
21	9.5	6.3	3.8	0.0	3.8
22	12.2	9.2	6.1	3.8	0.0

Figure7: Distance matrix for β-strand. [6]

It is sometimes possible to recognize adjacent strands by looking around the diagonal of a distance matrix, but as the distances grow, the strand interactions appear further away from the diagonal in the distance matrix. However, it is often possible to detect the connections between the strands in a sheet. These occur as areas of small distances around local subdiagonals and anti-subdiagonals. Parallel sheets appear as areas around subdiagonals, antiparallel as areas around anti-subdiagonals.

Define Secondary Structure of Proteins (DSSP)

The most commonly used program to identify (define) SSEs from structures is probably Define Secondary Structure of Proteins (DSSP) by Kabsch and Sander (1983), which is mainly based on H-bonding patterns [25].
DSSP identifies both the SSEs and solvent exposure of proteins.

Defining SSEs

A minimal helix of length $n(n=3,4,5)$ from residue i to residue $\mathrm{i}+\mathrm{n}-1$ is defined by Hbond ($\mathrm{i}-1, \mathrm{i}+\mathrm{n}-1$) and Hbond ($\mathrm{i}, \mathrm{i}+\mathrm{n}$). Longer helices are defined by overlaps of minimal helices.

To determine the strands the concept of the bridge is defined:

Parallel_bridge $(\mathrm{i}, \mathrm{j})=\quad[\operatorname{Hbond}(\mathrm{i}-1, j)$ and Hbond $(\mathrm{j}, i+1)]$ or $[\operatorname{Hbond}(\mathrm{j}-1, i)$ and $\mathrm{Hbond}(\mathrm{i}, \mathrm{j}+$ 1)]

Antiparallel_bridge (i, j$)=[\operatorname{Hbond}(\mathrm{i}, \mathrm{j})$ and Hbond $(\mathrm{j}, i)]$ or $[\operatorname{Hbond}(\mathrm{i}-1, j+1)$ and Hbond ($\mathrm{j}-1, \mathrm{i}+1)$].

3.7 Protein Domains

A domain is part of a polypeptide chain of a protein or the whole chain. They are compact, local and semi-independent units, but there is no general agreement as to the exact definition of what a domain is. One definition is that it is part of the chain that can independently fold into a stable structure, and that it is also a unit of function (different domains of a protein are often associated with different functions). This implies that a domain should contain a hydrophobic core and should therefore be larger than, roughly, 40 residues (the rule is that a domain consists of one hydrophobic core, but in rare cases it might consist of two). The number of domains in proteins can be from one up to several dozens, and also a domain does not need to comprise a sequential region of the polypeptide chain.

Figure8: The PDB entry 3grs with three domains.

Since different classification methods generally use different methods for domain identification, the domains will not always correspond. Several approaches have been used when developing methods for domain identification. Some of the concepts used are the following.

- Local compactness, which means that a domain will make more intra-domain contacts than contacts to the residues in the remainder of the structure. Almost all methods use this, but can in addition use some of the other points.
- Domains must contain at least one hydrophobic core.
- Minimizing the number of chain-breaks needed to separate domains while also measuring the degree of association (number of contacts) between the separating units. This implies a trade-off in trying to both minimize the number of chainbreaks and the number of contacts.
- Solvent area calculation. Let D_{l} and D2 be two potential domains. If the solvent area calculated when the potential domains are split is almost equal to the one calculated when not split, then it indicates two domains.
- Secondary structures (including β-sheets) should rarely cross between different domains.

Domain Classes

The core of the proteins is made by packing of the secondary structure elements. Since
there are only two types of SSE taking part in the packing, there are only three types of pairwise combinations:

1. α with α
2. β with β
3. α with β

Many domains contain almost exclusively one of the combinations, and these lead to the definition of three (main) classes of domains: mainly- α, mainly- β and α with β.

Mainly- α

α / β

Figure 9 Examples of the four classes, mainly- α, mainly $-\beta, \alpha / \beta, \alpha+\beta$.[6]

3.8 Folds

The way the secondary structure elements are packed, together with how the chain 'runs' through the secondary structures, is referred to as the fold of the chain.
It is assumed that there is a relatively small number of different folds. That only some of the possible packing and topological arrangements are observed probably comes from the physical and chemical constraints on the chain. Several people have tried to predict the number of different folds, with results ranging from some hundreds to a few thousands. Most groups seem to agree that among the currently known structures (in 2002) there are around 800 different folds.

Proteins having the same fold are assumed to have a greater probability of having a common ancestor (being homologous), but they might also have the same fold due to convergence to the same fold from different ancestors (being analogous).

3.9 Structure Comparison

Structures are compared for the same reasons as sequences are compared: to find homologous proteins and for the discovery of motifs .Comparing structures can reveal relations that are not possible to identify using sequences alone. Comparing structures is a more complicated problem than comparing sequences, and a larger variety of methods exist.

The different steps involve the following.
Feature extraction. In this the features to be used in the comparison of the structures or in the pattern discovery method are extracted. This might include comprehensive computing, e.g. assigning secondary structures to the residues.

Comparison This takes as input a pair of structure descriptions (or a pair of description/pattern) and finds (local or global) similarities between the two, optimizing a similarity measure and outputting a score. The similarity may also be represented as a pattern.

Discovery Patterns matching many or all of the input structures are found. The patterns are chosen from a solution space so that their fitness with respect to the input structures is as high as possible.

Matcher This takes as input one pattern and one structure and evaluates the match between the two; the output is 'yes' or 'no' if the pattern is deterministic or a score if the pattern is probabilistic.

Structure descriptions for comparison

When performing structure comparison one must first decide on which structure level similarities are sought (e.g. atom group, residue, secondary structures). Also, one needs to decide whether the similarities should require sequence order to be preserved, a reasonable requirement if we assume that the proteins are evolutionarily related. The structure description to be used as input to the comparison or pattern discovery algorithms should contain only the features which we would like to compare and/or to describe as patterns.
In the framework used, patterns are to be found from structure descriptions so that they represent features common to a set of such structure descriptions. Patterns will therefore be generalizations of structure descriptions, and are limited to features included in these.
In order to provide the comparison (pattern discovery) algorithms with a good starting point, the structure descriptions should ideally satisfy the following properties.

1. invariant to trivial changes, such as translation and rotation.
2. Robust-the description should not change drastically due to minor changes in the structure. This is important, since the determination of structures can contain errors. Small errors should result in similar structure descriptions, for example, the SSEs found at the same positions.
3. Similar structures should get similar descriptions. This point is important for classification.
4. Different structures should get different descriptions.

A natural way to describe a complex object like a protein structure is to break it into pieces (units) and to describe each unit separately and (most often) the relationship between the units. As already noted, the natural structure of elements such as atoms, residues, fragments, SSEs are used as the basic units. These descriptions make use of the element class, property and relation.

Element class The level of the description varies: atom (group), residue, backbone fragment and secondary structure element.

Property This is used for specifying the properties of each element, such as threedimensional coordinates physico-chemical properties, amino acid type, secondary structure type, curvature and torsion.
Relation. This is used for describing the relation between the elements. In practice, the relations are binary, such as geometrical distances, difference in orientation and bonding.

Figure10: General Algorithm Description [6].

3.10 Superposition and Dynamic Programming

Superposition

Superposition can be used to find and score equivalences, by measuring how close the equivalent pairs can come together. One way of thinking of it is to put, the structures on top of each other so that the equivalence elements from the two structures lie as close as possible. If the geometry of the structures is not changed in this process, it is referred to as rigid-body superposition. The score can then be a function of the distances between the elements of each equivalent pair in the equivalence. Commonly, the root of the mean of the squares of the distances is used, and is called the root mean square deviation (RMSD). Low

RMSD values are best, zero indicates exact equality.
Note that superposition can be used to measure (score) equivalences, not necessarily alignments directly. Two different measures are mainly used.

a) Coordinate RMSD

Superposition can be done by a transformation of structure A over B such that the equivalent pairs come as close as possible.
Let $\left(\alpha_{1}, \beta_{1}\right) \ldots \ldots .\left(\alpha_{r}, \beta_{\mathrm{r}}\right)$ be the coordinate sets of the equivalenced elements of the equivalence E (α_{i} from A and β_{i} from B, for three dimensions a coordinate set consisting of three values). The problem is then to find a transformation T for A which minimizes the coordinate root mean square deviation, that is,

$$
\operatorname{RMSD}_{\mathrm{C}}(\mathrm{E})=\min \mathbf{T} \sqrt{\sum_{i=1}^{r} \boldsymbol{w i}(\mathbf{T \alpha i}-\beta i) * * 2 / \sum_{i=1}^{r} w i}
$$

A transformation can be performed as a translation (three distances), and a rotation (three angles, around each of the x, y and z -axes). The rotation can also be performed in one operation around a line, the direction of the line has to be calculated for each rotation: cf. Euler's theorem.

It has been shown that a transformation for the minimum RMSD can be found by first shifting the centroids (geometrical centres) of each structure to the origin of a common coordinate system, and then finding the rotation of A which minimizes the $\mathrm{RMSD}_{\mathrm{c}}$.

A rotation around the origin can be described by an orthogonal matrix $\mathrm{R}_{3,3}$ (3D space) with determinant equal to 1 . A matrix is orthogonal if the scalar product of any two different columns is 0 and the result of taking the scalar product of any column with itself is 1 . The matrix must be orthogonal to assure that the distances between the points of the same structure are not changed (cf. rigid-body superposition).

The formula can therefore be described by a rotation matrix R and a translation vector t, and we search for a pair (R, t) which minimizes the expression (assuming wi $=1$ for all i):

$$
\sum_{i=1}^{r}(R \alpha i+t-\beta i) * * 2
$$

b) Distance RMSD

The distance score method Distance RMSD ($\mathrm{RMSD}_{\mathrm{D}}$) alleviates the need for finding a translation and rotation of one of the structures and is given by

$$
\operatorname{RMSD}_{\mathrm{D}}(\mathrm{E})=\left(\sqrt{\sum_{i=1}^{r} \sum_{j=1}^{r}(\delta A(i j)-\delta B(i j)) * * 2} \quad\right) / \mathrm{r}
$$

where $\delta \mathrm{A}(\mathrm{ij})$ is the spatial distance between the elements of A in pairs i and j of the equivalence. Since there is no need to calculate a transformation, it is a faster calculation. However, it has a (sometimes serious) weakness: it is invariant under reflection. This means that if structure B is the mirror image of structure A, then $\operatorname{RMSD}_{D}(A, B)=0$ and $\operatorname{RMSD}_{\mathrm{D}}(\mathrm{C}, \mathrm{A})=\operatorname{RMSDD}(\mathrm{C}, B)$ for all structures C .

Using RMSD as scoring of structure similarities

The problem of pairwise structure comparison is often the problem of finding equivalences with low RMSD value(s). However, several quite different equivalences with similar scores might be found and which of these equivalences represent the 'correct' solution is not an easy task to decide. However, one always needs to consider how many elements were equivalenced, since for random comparisons the expected RMSD value seems to be proportional to the square root of the number of equivalenced residues. When taking this into consideration, different measures can be used for evaluating how well two structures can be superposed.

1. Find the equivalence that minimizes the RMSD divided by the square root of the length of the equivalence: $\min _{E} \operatorname{RMSD}(\mathrm{E}(\mathrm{A}, \mathrm{B})) / \sqrt{n_{E}}$ where n_{E} is the number of pairs in the equivalence E.
2. Define a threshold L. Find the maximum number of elements that can be superposed such that RMSD is less than or equal to L.
3. Define a threshold 1 . Find the maximum number of elements that can be superposed such that the distance between each equivalenced element is less than or equal to 1 .
The two last methods are mostly used to improve detection of regions of similar topology, excluding structurally unrelated regions.
3.11 Protein Structure Classification The number of proteins with known 3D structure has grown to several thousands, and to be accessible this large number of structures needs to be organized and classified. Like any Natural history collection a classification or taxonomy of the objects is especially helpful for the understanding of their evolution. In addition, when taxonomy exists, new protein structures can be placed into this, helping to understand the function of the protein. If it is discovered that there exists only a fixed number of structure classes, structure prediction will be easier.
Since the evolution of protein structure is not fully understood, there is no definitive taxonomy that can be used to derive a classification and, as a result, several systems have been developed. The most widely used classification systems are CATH, SCOP, Dali-FSSP and Dali-DD. They are all hierarchical, and most use the protein domain as classification unit. Their databases are all accessible via the World Wide Web.

3.12 Databases for Structure Classification

The three most popular databases for structure classifications are (all accessible via, the web) the following.

FSSP-Dali DD. FSSP is a fold classification based on structure-structure alignment of proteins (or protein chains). FSSP classification is done fully automatically, by use of the pairwise structure alignment program, DALI. The pairwise alignments of a representative subset of PDB are scored by the Z values, and a hierarchical classification is done based on the Z values. A Z value of 2 is used to divide into different folds.
weblink- http://www2.ebi.ac.ukklali/fssp/

Dali Domain Dictionary classifies domains fully automatically. It has five levels: class, fold, functional family, sequence family and PDB entry of representative domain.
weblink- http:/www2.ebi.ac.uk/dali/domain

CATH: Class, Architecture, Topology, Homologous superfamily

CATH classification is done by using both automated and manual approaches. It has six levels: class, architecture, topology, homologous superfamily,sequence family.
weblink-http://www.biochem.ucl.ac.u1c/bsmicath_new/

SCOP: A Structural Classification of Proteins Database[6,8,9]. •

SCOP classification is essentially done manually, and has seven levels: class, fold, superfamily, family, protein domain, species and PDB entry. It has become the gold standard for assessing sequence and structure comparison methods.
Weblink: http://scop.mrc-lmb.cana.ac. ${ }^{\text {uk/scop/. }}$
Since the methods used for classification are different, the resulting classifications are different. A systematic comparison of the results of these three classifications has been made which fortunately shows a high degree of agreement. Most of the discrepancies arise from different domain definitions.

4. Literature survey:

The comparison of protein structures has played an important role in developing our current understanding of protein structure and function [27]. Through this approach, many duplicated domains and structural similarities have been identified, even between proteins with no apparent sequence identity. Comparison of more closely related structures has also proved useful in understanding how proteins accommodate slight alterations in amino acid sequence and the analysis of such changes provides a vital guide to the introduction of genetically engineered changes in sequence [26]. Structures have been compared by finding the superposition that will produce the closest approach between equivalent atoms and the technique of least-squares has generally been employed to find a best solution (Matthews \& Rossmann, 1985).

In the many years that structure comparison has been practised, no wholly satisfactory solution has been found to either problem.

Mainly two types of assessment methods are there known as 'sequence- independent' and 'sequence-dependent'. In the former, the structural similarity of the predicted model and the experimental structure is measured, without requiring that each model residue be structurally matched to its corresponding residue in the experimental structure. The displacement of a model residue from its corresponding residue in the experimental structure, as measured from the best structural alignment, is referred to as a 'shift'[3,11].

In the latter (sequence-dependent assessment), only corresponding residues are compared (Hubbard, 1999; Zemla et al., 1999). Thus, this is a stricter assessment criterion.In the method developed by Sippl and colleagues which is a sequence-independent method and is based on the structural superposition of the model over the experimental structure[3]. From structural superposition, a set of numbers is generated, which include the number of equivalent residues of the optimum match and the number of residues aligned at shifts zero, one, five, and above five, plus the average over the shifts. A similar method based on structural superposition that measures both the shift error and 'contact specificity' was developed by Bryant and colleagues [12].

These sequence-independent methods award credit to fold-recognition predictions that resemble the correct fold, but in which, due to errors in the alignment methods, some fragments may have been displaced (i.e. inaccurate alignments). Being based on structural superposition, these methods suffer from some of the limitations inherent in structural superposition programs, such as the need of a similarity score definition or the need of predefined thresholds, among others[3].

Another set of approaches is based on the sequence- dependent alignment, where each predicted residue is compared to its corresponding residue in the experimental structure.[14,15,16]. Sequence-dependent approaches are stricter in their evaluation criteria simpler and more straightforward measure of similarity between a model and an experimental structure[3].

Hubbard's RMS/Coverage graphs (Hubbard, 1999) is a sequence-dependent method that samples the best RMSD from a large number of structural super positions, each having a different number of equivalent residues. The graphs plot the best RMSD values against the number of equivalent residues [13]. A related method named GDT was developed by Adam Zemla as part of the evaluation (Zemla et al., 1999). GDT is aimed at identifying any accurately, not necessarily contiguous, predicted substructures. GDT attempts to find the maximum number of predicted residues that can be superimposed over the experimental structure within a given threshold[3]. Because each model residue lies at a distance below the given threshold, the resulting RMSD of the superimposed residues is always smaller than the given threshold. GDT's approach corresponds to the notion of identifying the largest 'well-predicted' subset in the model based on given constraints [12].

In other measure called MaxSub, which is based on similar principles as GDT. MaxSub computes a single scalar in the range of 0 to 1 , which measures the similarity of a model to its corresponding experimental structure (0 for a completely wrong model, 1 for a perfect model). The scalar is a normalization of the size of the largest 'well-predicted' subset and is computed using a variation of a formula suggested by Levitt and Gerstein (1999)[3].

4.1 DALI[17,18]

Dali is for optimal pairwise alignment of protein structure. In this, C-alpha-C-alpha distances were calculated and were used to build distance matrix. The three-dimensional co-ordinates of each protein are used to calculate residue-residue ($\mathrm{C}_{\alpha}-\mathrm{C}_{\alpha}$) distance matrices. A distance matrix is a 2 D representation of 3 D) structure. The matrix is independent of the coordinate frame and contains more than enough information to build up the structure. The distance matrices are first decomposed into elementary contact patterns, e.g. hexapeptidehexapeptide sub matrices. Then, similar contact patterns in the two matrices are paired and combined into larger consistent sets of pairs. A Monte Carlo procedure is used to optimize a similarity score defined in terms of equivalent intramolecular distances. Several alignments are optimized in parallel, leading to simultaneous detection of the best, second-best and so on solutions. The method is fully automatic and identifies structural resemblances and common structural cores accurately and sensitively, even in the presence of geometrical distortions.

Figure 11: Distance matrix for two proteins[18].

Algorithm Description

Two proteins labeled A and B. The match of 2 substructures is evaluated using an additive similarity score S of the form.

$$
S=\sum_{i=1}^{L} \sum_{J=1}^{L} \phi(i, j)
$$

Where i and j label pairs of equivalent (matched residues).
L is the number of such pairs.
And ϕ is the similarity measure.
Unmatched residues don't contribute to overall score.
For a given functional largest form of $\phi(i, j)$, the largest value of S corresponds to optimal set of residue equivalences.

Where:

$$
\phi^{\mathrm{E}}(i, j)=\left\{\begin{array}{cc}
\left(\theta^{\mathrm{E}}-\frac{\left|d_{i j}^{\mathrm{A}}-d_{j \mathrm{~B}}^{\mathrm{B}}\right|}{d_{i j}^{*}}\right) w\left(d_{i j}^{*}\right), & i \neq j \\
\theta^{\mathrm{E}}, & i=j
\end{array}\right\}
$$

In this $\mathrm{d}^{*}{ }_{i j}$ is the average of $\mathrm{d}^{\mathrm{A}} \mathrm{ij}^{\mathrm{B}} \mathrm{D}_{\mathrm{ij}}$,
Θ^{E} is the measure of similarity threshold and w is envelope function.
Value of Θ^{E} is 0.20 .
$\mathrm{w}(\mathrm{r})=\exp \left(-\mathrm{r}^{2} / \alpha^{2}\right)$, where $\alpha=20$ angstrom
The first step is the systematic comparision of all elementary contact patterns in the 2 distance matrices..they use hexapeptide -hexapeptide contact patterns $\left(\mathrm{i}_{\mathrm{A}} \ldots \ldots . \mathrm{i}_{\mathrm{A}}+5, \mathrm{j}_{\mathrm{A}} \ldots \ldots . . \mathrm{j}_{\mathrm{A}}+5\right)$ in protein A paired with $\left(\mathrm{i}_{\mathrm{B}} \ldots \ldots \ldots \ldots \mathrm{i}_{\mathrm{B}}+5, \mathrm{j}_{\mathrm{B}} \ldots \ldots . \mathrm{j}_{\mathrm{B}}+5\right)$ in protein B , where the hexapeptide $\mathrm{i}_{\mathrm{A}} \ldots \ldots . \mathrm{i}_{\mathrm{A}}+5$ is equivalence with $\mathrm{i}_{\mathrm{B}} \ldots \ldots \ldots \ldots \mathrm{i}_{\mathrm{B}}+5$ and the hexapeptide, $\mathrm{j}_{\mathrm{A}} \ldots \ldots \ldots \mathrm{j}_{\mathrm{A}}+5$ is equivalence with $\mathrm{j}_{\mathrm{B}} \ldots \ldots . . \mathrm{j}_{\mathrm{B}}+5$.Similar contact patterns are stored in a non-exclusive list of pairs('pair list').This acts as a raw material for structural alignment. The goal of $2^{\text {nd }}$ step is to assemble pairs of contact patterns into larger consistent sets of pairs, maximizing the similarity score. A montecarlo algorithm is used to deal with combinatorial complexity of building up alignments from contact patterns.

Step 1: Decomposition of distance matrix:

1) By restricting number of hexapeptide -hexapeptide contact patterns in each protein.

Successive hexapeptide fragments that repeat a strongly similar contact pattern along the main diagonal are merged into longer segments.
2) By restricting the number of pairs of such patterns.

Pair list is closed when
a) Mean intra - pattern distance reaches 25 angstrom
b) 80,000 pairs with a positive similarity score have been recorded.

Step 2: Assembly of alignments:
i Monte Carlo Optimization: It is an iterative improvement by a random walk exploration of search space.A move is a randomly chosen change in the configuration of system. Probability p of accepting a move is $p=\exp \left(\beta^{*}\left(S^{\prime}-S\right)\right)$, where S^{\prime} is the new score and S is old score and β is a parameter. β is inversely proportional to temperature of the system.

Moves that improve the score are always accepted .Sets of residue pair equivalences is called trajectory. The alignment with the highest score along each trajectory is remembered. The optimization starts from a seed alignment. The Monte Carlo algorithm has two basic modes of operation. In the expansion mode, an alignment is incremented using contact patterns that overlap with it. One expansion cycle corresponds to testing all prospective candidates in the pair list in random order. The trimming mode removes from the alignment fragments that give a net negative contribution to total similarity score.

3D (Spatial)
2D (Distance Matrix)
1D (Sequence)
Figure12:DALI Algorithm[18].

Selection protocol:
To cover a broad range of potential optima, several trajectories are optimized in parallel. The range of alignments is narrowed onto the highest scoring one(s) in 3 stages.

Each stage consists of 1or more expansion/trimming cycles.

In stage 1, a large number of seed alignments are generated. The pair list is screened for all triplets of non-overlapping hexapeptides.

In stage 2 optimization is continued in parallel until all alignments have settled in an optimum.

The $3{ }^{\text {rd }}$ stage consists of refining the best alignment.
4.2 MaxSub[3]: Aim is at identifying the largest subset of C -alpha atoms of a model that superimposes well with the experimental structure .It produces a single normalized score that represents the quality of the model.

Consider two ordered set of points:

$$
\begin{aligned}
A & =\{a 1, a 2, a 3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . a n\} \\
B & =\{b 1, b 2, b 3 \ldots \ldots \ldots \ldots \ldots \ldots \ldots . b n\}
\end{aligned}
$$

A match is an optimal transformation T (rotation and translation) that superimposes the points of B over A, T minimizes

$$
\mathbf{R M S}=\sqrt{ } \sum\left\|\mathbf{a}_{\mathbf{i}}-\mathbf{T}\left(\mathbf{b}_{\mathbf{i}}\right)\right\|^{2} /|\mathbf{M}|
$$

Algorithm is:

for $\mathrm{i}=1$ to $\mathrm{n}-\mathrm{L}+1$
let $\mathrm{M}=\{(\mathrm{a}(\mathrm{i}), \mathrm{b}(\mathrm{i})),(\mathrm{a}(\mathrm{i}+1), \mathrm{b}(\mathrm{i}+1)), \ldots \ldots \ldots . .(\mathrm{a}(\mathrm{i}+\mathrm{L}-1), \mathrm{b}(\mathrm{i}+\mathrm{L}-1)\}$
$\mathrm{M}=\operatorname{extend}(\mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{d})$
if $|\mathrm{M}|>\mathrm{s}_{\text {max }}$ then $\mathrm{s}_{\text {max }}=|\mathrm{M}|$

* $\mathrm{s}_{\max }=0$; it holds the size of largest subset found so far.....

Extend (M, A , B , d)

$$
\text { for } \mathrm{j}=1 \text { to } \mathrm{k} \text { (Extends } \mathrm{M} \text { in } \mathrm{k}=4 \text { iterations) }
$$

1.1 compute the transformation T that optimally superimposes the residues in M .
$1.2 \mathrm{~N}=\{ \}$
1.3 for $\mathrm{i}=1$ to n do
i. If the distance between $a(i)$ and $T(b(i))$ is below the threshold $j^{*} d / k$ then $N=N U$ $\{(\mathrm{a}(\mathrm{i}), \mathrm{b}(\mathrm{i})\}$

$$
1.4 \mathrm{M}=\mathrm{N}
$$

2. using the last M recompute the transformation T that optimally superimposes B onto A . if for some (a(i), b(i)) \& M , the distance is above threshold remove (a(i), $\mathrm{b}(\mathrm{i})$) from M .
return M .
Result is presented as structural similarity score, which is $\mathrm{S}=\Sigma 1 / 1+(\mathrm{di} / \mathrm{d})^{2} / \mathrm{q}$.
where q is the number of C -alpha atoms in the experimental structure.
4.3 RMS/Coverage Graphs [13]: The other way to compare pairs of three dimensional protein structures has long been root mean square distance (RMS) superposition. A large number of super positions are used to sample the best RMS for each number of equivalent residues (not necessarily contiguous). The graphical representation is a line for each prediction relating these best RMS values to number of equivalent residues. The result is the RMS/Coverage graph, which appears to represent the best prediction as the lowest line on the graph.

A structural superposition results from the unique transformation, which minimizes the RMS between two lists of atomic coordinates. Different super positions therefore result from different lists. In this algorithm the lists are generated by iterating from all possible starting points of three consecutive results.

Iteration consists of building a new list from the result of the previous superposition, followed by a new superposition etc. The new list is constructed by measuring the distance between equivalent residues. Any pair for which the distance is less than six Angstroms is included in the new list. In this experiment, three iterations are carried from each starting point. For many prediction/target pairs, after three iterations many of these super positions and their corresponding residue pair lists will be very similar, i.e., the iteration converges.

Coverage is defined here as the fraction of the target being predicted for the number of residues being considered. Coverage as defined here is non-consecutive. The minimum RMS for each coverage value out of all the super positions sampled can be determined by measuring the distance between each equivalent residue pair; sorting this list and then calculating the RMS for the first two residue pairs in the list, the first three pairs, etc. The minimum RMS for each coverage value for the entire prediction/target comparison is the set of lowest RMSs for each coverage value, across all the different super positions. It is this minimum RMS that is plotted against coverage as a line on an RMS/Coverage graph.
a

Figure 13 :RMS vs. Coverage[13].

4.4 Protein structure alignment by combinatorial extension (CE)[4]:

The alignment between two protein structures A and B of length $n A$ and $n B$, respectively, is considered the longest continuous path P of AFPs of size m in a similarity matrix S, of size ($n A-$ $\mathrm{m}) \cdot(\mathrm{nB}-\mathrm{m})$ representing all possible AFPs that conform to the criteria for structure similarity. One of the following three conditions should be satisfied for every two consecutive AFPs i and $i+1$ in the alignment path:
$p_{i+1}{ }^{A}=p_{A}^{A}+m$ and $p_{i+1}{ }_{B}=p_{B}^{B}{ }_{i}+m$ \qquad
$p_{i+1}{ }^{A}>p^{A}{ }_{i}+m$ and $p_{i+1}{ }^{B}=p_{B}^{B}{ }_{i}+m$. 1
$p_{i+1}{ }^{A}=p^{A}{ }_{i}+m$ and $p_{i+1}{ }^{B}>p^{B}{ }_{i}+m$
....... 3
Where $\mathrm{p}^{\mathrm{A}}{ }_{\mathrm{i}}$ is the AFP's is the starting residue position in protein A at the ith position in the alignment path; similarly for p^{B} i.
The alignment path is constructed from AFPs of fixed size m.That is, one fragment of length m from the first protein and another fragment from the second protein form a pair if they satisfy a similarity criterion described below. The first AFP starting the path can be selected at any position within the similarity matrix S, consecutive AFPs are added such that conditions ($1-3$) are satisfied.

We study the following three distance measures:
(i) distance Dij calculated using an 'independent' set of inter- residue distances, where each residue participates once and only once in the selected distance set:


```
pi i
```

(ii) distance Dij calculated using a full set of inter-residue distances, where all possible distances except those for neighboring residues are evaluated:
$\left.\mid d^{A}{ }_{p}{ }^{A}{ }_{i+k}, p_{j+1}{ }^{A}-d^{B}{ }_{p}^{B}{ }_{i+k}, p_{j+1}^{B}\right) \mid$

$$
\operatorname{Dij}=1 / \mathrm{m}^{2}\left(\sum_{k=0}^{m-1} \sum_{l=0}^{m-1} / d^{A}{ }_{p}^{A}{ }_{i+k}, p_{j+l}{ }^{A}-d^{B}{ }_{p}^{B}{ }_{i+k}, p_{j+l}{ }^{B} \mid\right) \quad \ldots \ldots \ldots .2
$$

(iii) r.m.s.d obtained from structures optimally superimposed as rigid bodies using least square minimization. .3

Distance measure 1 is used to evaluate the combination of two AFPs, one already in the alignment path and one to be added.
Distance measure 2 is used to evaluate a single AFP .
3 is used as last step in selecting few best alignments and for optimizing gaps..

Figure14:Combinatorial Extension Algorithm[4].

Path extension strategy....

1. We can consider all possible AFPs that extend the path and satisfy similarity criteria.
2. consider only the best AFP..
3. use some intermediate strategy

Heuristics used for the extension of the path....
Decisions are made at three levels:
i) single $A F P$
ii) AFP against the path
iii) whole path

This result in following three conditions:

- Dnn < Do .4
- $1 / \mathrm{n}-1(\Sigma(\mathrm{i}=0$ to $\mathrm{n}-1))$ Din<D1.. 5

Dij is the distance between aligned fragments defined by the AFPs i and j in the alignment path and n is the next AFP to be considered for addition to the alignment path of $\mathrm{n}-1$ AFPs in length
$\mathrm{D}_{\mathrm{o}}=3$ angtrom
$\mathrm{D}_{1}=4$ angstrom
- All candidate AFP are selected on condition 4
- Best is chosen based on condition 5
- Decision to extend or terminate the path is made on condition 6.
4.5 TMalign[2]: TM-align, an algorithm to identify the structural alignment between protein pairs that combines the TM-score rotation matrix and Dynamic Programming.
- TM-align employs the backbone C-alpha coordinates of the given protein structures.
- Three kinds of quickly identified initial alignments are exploited. The first type of initial alignment is obtained by aligning the secondary structures (SSs) of two proteins using dynamic programming.
- For a given residue, an SS state (alpha, beta or coil) is assigned based on the C-alpha coordinates of five neighboring residues, i.e. ith residue is assigned as alpha(beta) when

$$
\left|\mathrm{d}_{\mathrm{j}, \mathrm{j} \mathrm{jk}}-\lambda_{\mathrm{k}}{ }^{\alpha(\beta)}\right|<\delta^{\alpha(\beta)}
$$

($\mathrm{j}=\mathrm{i}-2, \mathrm{i}-1: \mathrm{k}=2,3,4$,)
is satisfied for all $\mathrm{d}_{\mathrm{j}, \mathrm{j}+\mathrm{k}}$
Otherwise it is assigned to be a coil.

- The second type of initial alignment is based on the gapless matching of two structures..
- The third initial alignment is also obtained by DP using a gap-opening penalty of 1 , but the score matrix is a half/half combination of the SS score matrix and the distance score matrix selected in the second initial alignment.
- The above-obtained initial alignments are submitted to a heuristic iterative algorithm.
- In this procedure, we first rotate the structures by the TMscore rotation matrix based on the aligned residues in the initial alignments.
The score similarity matrix is defined as
- $S(\mathrm{i}, \mathrm{j})=1 / 1+\mathrm{d}_{\mathrm{ij}}^{2} / \mathrm{d}_{\mathrm{o}}(\operatorname{Lmin})^{2}$
- Where dij is the distance of the ith residue in structure 1 and the jth residue in structure 2 under the TM-score superposition.
- $\mathrm{d}_{\mathrm{o}}(\mathrm{Lmin})=1.24 * \operatorname{cuberoot}($ Lmin-15 $)-1.8$
- Lmin is the length of smaller protein.
- A new alignment can be obtained by implementing DP on the matrix $S(i, j)$ with an
optimal gap opening penalty of 0.6.
- We then again superimpose the structures by the TM-score rotation matrix according to the new alignment and obtain a newer alignment by implementing DP with the new score matrix.
- The procedure is repeated until the alignment becomes stable and the alignment with the Highest TM-score is returned.
- To have a single scoring function that can reasonably assess the alignment quality and balance the coverage and accuracy, we use the TM-score, which is defined as
TM-score $=\operatorname{Max}\left[\frac{1}{L_{\text {Target }}} \sum_{i}^{L_{a l}} \frac{1}{1+\left(\frac{d_{i}}{d_{0}\left(L_{\text {Tagea }}\right)}\right)^{2}}\right]$.
- $\mathrm{L}_{\text {Target }}$ is the length of target protein.
- $\mathrm{L}_{\text {ali }}$ is the number of aligned residues.
- d_{i} is the distance between the ith pair of aligned residues.
- $\mathrm{d}_{\mathrm{o}}\left(\mathrm{L}_{\text {target }}\right)=1.24 * \operatorname{cuberoot}\left(\mathrm{~L}_{\text {target }}-15\right)-1.8$
- that normalizes the distance so that the average TM-score is not dependent on the protein size for random structure pairs.

5 Methodology:

5.1 Idea behind TMscore[5,]: TM-score use an iterative search algorithm to find the spatially optimal superposition of the template and the native structure. Starting with an initial fragment of the template that consists of $L_{i n t}$ neighboring aligned residues, we superposed the fragment to the corresponding residues of the native structure according to rotation matrix. Then, we collected all of the residues of the template with distance to native of less than $d 0$ and superposed this set of residues onto the native structure again. The process was repeated till the rotation matrix converged. Since the converged superposition is usually sensitive to the initial selection of the fragment $L_{i n t}$, we ran an iterative process with $n _a l i, n _$ali $/ 2$, $n _$ali $/ 4 \ldots 4$, respectively. With $L_{\text {int }}$, we ran all the iterations with the location of initial fragments shifting continuously from the N - to the C-terminus. The rotation matrix with the highest TM-score was selected.

Step by step description:

- We have pdb file of protein 1 and x, y, and z coordinates and residue sequence number of all the residues from protein 1.
- Likewise, We have pdb file of protein 2 and x, y, and z coordinates and residue sequence number of all the residues from protein 2 i.e.target protein.
- Picking the aligned residues say n_ali.
- Calculation of parameters: $\mathrm{d}_{0}, \mathrm{~d} 0 _$search
- $\mathrm{d}_{0}=1.24 *($ nseqB-15)**(1.0/3.0)-1.8
- $\quad \operatorname{if}\left(\mathrm{d}_{0} .1 \mathrm{lt} .0 .5\right) \mathrm{d}_{0}=0.5$
- d0_search=d0 if(d0_search.gt.8)d0_search=8 if(d0_search.lt.4.5)d0_search=4.5
- Formation of a list L_ini whose elements are [n_ali, $n _a l i / 2, ~ n _a l i / 4, ~ n _a l i / 8$, n_ali/16...4].
- Now pick one by one element of the list and do the following calculations.
- Say first element n_ali
- Store the coordinates in the lists for protein structure 1 and 2.
- Perform rotation.
- Output will be a rotation matrix and translation vector for the optimal superposition.
- Apply that rotation matrix to all of c-alpha of protein 1.
- Do scoring
for all 1,n_ali:
- Calculate distance between the corresponding c-alpha atoms in two structures.
- Count the residues and store the residues position for which distance is less than threshold.
- And calculate
score_sum=score_sum $+1 /\left(1+\left(\mathrm{dis} / \mathrm{d}_{0}\right){ }^{* *} 2\right)$
- If the counts of atoms for which the distance is less than 3(i.e. $n _c u t<3$) but n_ali>3: increase the threshold value of the distance with .5 and repeat the procedure till n_cut>3
- Calculate: score=score_sum/float(nseqB)

This is actually TM-score value.

- Store the value of maximum score and corresponding residue position.
- Next for 20 number of iterations:
for those residues position for which distance was less than the threshold retrieve their coordinates and perform rotation.
- Apply the result of rotation matrix to all the c-alpha atom positions:
- Now for rotated structure 1 and other structure 2:
- Call the scoring function: Calculate the no: of residues for which the distance is less than the threshold(say n_cut)
for every residue 1, n_ali calculate scoring:
- score_sum=score_sum $+1 /\left(1+\left(\mathrm{dis} / \mathrm{d}_{0}\right) * * 2\right)$
- Now if $n _c u t<3$ but $n _$ali >3 :
increase the distance threshold with .5 and again perform the above scoring .repeat the procedure until I get n_cut>3.
And calculate:
score =score_sum/float(nseqB) which is TMscore...
- Best iteration which gives maximum TMscore is stored....
- Whole above procedure is repeated for the rest of elements of the list:
[n_ali, n_ali/2, n_ali/4, n_ali/8, n_ali/16....4]
and with their correspoding shifts as well ..
and the one that gives me value of maximum TMscore is finally printed out.

5.2 Modification of TM-score:

- In scoring function we are calculating the distances between the corresponding c -alpha and c-alpha positions.
- So, I calculated the centre of masses for each residue position in both the proteins.
- After i get the rotation matrix[21,22], i apply that to all the atoms and get the new coordinates for each and every atom.
- Next,i multiply respective positions with their respective masses in a single residue and divide that with sum of all the masses of atoms[19].
center_of_mass_x $=\sum \mathrm{x}_{\mathrm{i}} * \mathrm{~m}_{\mathrm{i}} / \sum \mathrm{m}_{\mathrm{i}}$
And calculated the distances between their centres of masses and used those distances in the scoring function instead of C -alpha C -alpha distances..
score_sum=score_sum+1/(1+(dis/d0)**2)
- I ran this on 602 protein structure alignments and compare the results with the original TMscore.
- Idea behind this was to take the weight age from each and every atom present in the residue.

5.3 Source Code:

import math
import sys
import time
$\mathrm{tt}=$ time.time ()
print(tt)
def rotation($\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{n}$, mode):
$\mathrm{xc}=$ [None] ${ }^{*} 3$
$\mathrm{yc}=[\text { None }]^{*} 3$
wc=0.0
rr=[None]*6
ss=[None]*6
$\mathrm{e}=$ [None] ${ }^{*} 3$
sqrt3 $=1.73205080756888$
$\mathrm{tol}=.01$
\#value of $1.0 \mathrm{~d}-2$ is tol value

```
ip=[0,1,3,1,2,4,3,4,5]
ip2312 = [1,2,0,1]
rms=0.0
e0=0.0
t=[None]*3
s1x = 0.0
s1y = 0.0
s1z=0.0
s2x = 0.0
s2y = 0.0
s2z=0.0
sxx = 0.0
sxy = 0.0
sxz = 0.0
syx =0.0
syy = 0.0
syz=0.0
szx = 0.0
szy = 0.0
szz = 0.0
u= [[None]*3 for i in range(3)]
r= [[None]*3 for i in range(3)]
a= [[None]*3 for i in range(3)]
b}=[[None]*3 for i in range(3)
for i in range(0,3,1):
    xc[i] = 0.0
    yc[i] = 0.0
    t[i] = 0.0
    for j in range(0,3,1):
```

```
        r[j][i]=0.0
        u[j][i]=0.0
        a[j][i]=0.0
        if i== j:
        u[j][i]=1.0
        a[j][i]=1.0
    #print("u",u,"a",a,"r",r)
    #print("xc",xc,"yc",yc, "t",t)
    ier = -1
    if n< 1:
        return("no rotation possible")
    ier =-2
    for m in range(0,n,1):
        c1x = x[m][0]
    c1y =x[m][1]
    c1z =x[m][2]
    c2x = y[m][0]
    c2y = y[m][1]
    c2z = y[m][2]
    s1x = s1x + c1x
    s1y=s1y+c1y
    s1z=s1z+c1z
    s2x = s2x + c 2x
    s2y=s2y+c2y
    s2z=s2z+c2z
    sxx = sxx + c1x*c2x
    sxy = sxy + c1x*c2y
    sxz = sxz + c1x*c2z
    syx = syx + c1y*c2x
    syy = syy + c1y*c2y
    syz = syz + c1y*c2z
    szx = szx + c1z*c2x
    szy = szy + c1z*c2y
    szz = szZ + clz*c2z
# out.write('sxx')
# out.write('%f \n' %(sxx))
# out.write('sxy')
```

```
# out.write('%f \n' %(sxy))
# out.write('sxz')
# out.write('%f \n' %(sxz))
# out.write('syx')
# out.write('%f \n' %(syx))
# out.write('syy')
# out.write("%f \n" %(syy))
# out.write('syz')
# out.write("%f \n" %(syz))
# out.write('szx')
# out.write('%f \n' %(szx))
# out.write('szy')
# out.write("%f \n" %(szy))
# out.write('szz')
# out.write("%f \n" %(szz))
    xc[0]=s1x/n
# out.write('xc[0]')
# out.write('%f \n' %(xc[0]))
# out.write('xc[1]')
# out.write('%f \n' %(xc[1]))
# out.write('xc[2]')
# out.write('%f \n' %(xc[2]))
# out.write('yc[0]')
# out.write('%f \n' %(yc[0]))
# out.write('yc[1]')
# out.write('%f \n' %(yc[1]))
# out.write('yc[2]')
# out.write('%f \n' %(yc[2]))
    for m in range(0,n,1):
        for i in range(0,3,1):
        e0 = e0+ pow((x[m][i]-xc[i]),2)+(pow((y[m][i]-yc[i]),2))
        out.write('x[m][i]')
# out.write('y[m][i]')
# out.write('%f \n' %(y[m][i]))
# out.write('xc[i]')
# out.write('%f \n' %(xc[i]))
# out.write('yc[i]')
# out.write('%f \n' %(yc[i]))
```

```
# out.write('e0')
```

\# out.write('\%f $\backslash n$ ' \%(e0))

$$
\begin{aligned}
\mathrm{r}[0][0] & =\mathrm{sxx}-\mathrm{s} 1 \mathrm{x} * \mathrm{~s} 2 \mathrm{x} / \mathrm{n} \\
\mathrm{r}[0][1] & =\mathrm{sxy}-\mathrm{s} 1 \mathrm{x} * \mathrm{~s} 2 \mathrm{y} / \mathrm{n} \\
\mathrm{r}[0][2] & =\mathrm{sxz}-\mathrm{s} 1 \mathrm{x} * \mathrm{~s} 2 \mathrm{z} / \mathrm{n} \\
\mathrm{r}[1][0] & =\mathrm{syx}-\mathrm{s} 1 \mathrm{y}^{*} \mathrm{~s} 2 \mathrm{x} / \mathrm{n} \\
\mathrm{r}[1][1] & =\mathrm{syy}-\mathrm{s} 1 \mathrm{y} * \mathrm{~s} 2 \mathrm{y} / \mathrm{n} \\
\mathrm{r}[1][2] & =\mathrm{syz}-\mathrm{s} 1 \mathrm{y} * \mathrm{~s} 2 \mathrm{z} / \mathrm{n} \\
\mathrm{r}[2][0] & =\mathrm{szx}-\mathrm{s} 1 \mathrm{z} * \mathrm{~s} 2 \mathrm{x} / \mathrm{n} \\
\mathrm{r}[2][1] & =\mathrm{szy}-\mathrm{s} 1 \mathrm{z}^{*} \mathrm{~s} 2 \mathrm{y} / \mathrm{n} \\
\mathrm{r}[2][2] & =\mathrm{szz}-\mathrm{s} 1 \mathrm{z}^{*} \mathrm{~s} 2 \mathrm{z} / \mathrm{n}
\end{aligned}
$$

\# out.write('r[0][0] r[0][1] r[0][2] r[1][0] r[1][1] r[1][2] r[2][0] r[2][1] r[2][2]')
$\operatorname{print}(\operatorname{r}[0][0] \mathrm{r}[0][1] \mathrm{r}[0][2] \mathrm{r}[1][0] \mathrm{r}[1][1] \mathrm{r}[1][2] \mathrm{r}[2][0] \mathrm{r}[2][1] \mathrm{r}[2][2]$ ')
$\operatorname{print}(\mathrm{r}[0][0], \mathrm{r}[0][1], \mathrm{r}[0][2], \mathrm{r}[1][0], \mathrm{r}[1][1], \mathrm{r}[1][2], \mathrm{r}[2][0], \mathrm{r}[2][1], \mathrm{r}[2][2])$
\# out.write('\%f \ln ' \% (r[0][0]))
\# out.write('\%f \ln ' \% (r[0][1]))
\# out.write('\%f \ln ' \%(r[0][2]))
\# out.write('\%f \ln ' $\%(r[1][0]))$
\# out.write('\%f \ln ' $\%(r[1][1]))$
\# out.write('\%f \ln ' \%(r[1][2]))
\# out.write('\%f \ln ' \% (r[2][0]))
\# out.write('\%f \ln ' $\%(r[2][1]))$
\# out.write('\%f $\backslash \mathrm{n} ' \%(r[2][2]))$
\#print("r",r)
$\operatorname{det} \quad=\quad\left(\mathrm{r}[0][0]^{*}(\mathrm{r}[1][1] * \mathrm{r}[2][2]-\mathrm{r}[2][1] * \mathrm{r}[1][2])-(\mathrm{r}[1][0] *(\mathrm{r}[0][1] * \mathrm{r}[2][2]-\right.$
$\mathrm{r}[2][1] * \mathrm{r}[0][2]))+\mathrm{r}[2][0] *(\mathrm{r}[0][1] * \mathrm{r}[1][2]-\mathrm{r}[1][1] * \mathrm{r}[0][2])$
\# out.write('det')
\# out.write('\%f \ln '\%(det))
sigma $=$ det
$\mathrm{m}=0$
for j in range $(0,3,1)$:
for i in range $(0, \mathrm{j}+1,1)$:
$\operatorname{rr}[\mathrm{m}]=(\mathrm{r}[\mathrm{i}][0] * \mathrm{r}[\mathrm{j}][0]+\mathrm{r}[\mathrm{i}][1] * \mathrm{r}[\mathrm{j}][1]+\mathrm{r}[\mathrm{i}][2] * \mathrm{r}[\mathrm{j}][2])$
$\mathrm{m}=\mathrm{m}+1$
\#print('rr',rr)
\# out.write('rr')
\# out.write('\%f \%f \%f \%f \%f \%f' \%(rr[0],rr[1],rr[2],rr[3],rr[4],rr[5]))
spur $=(\operatorname{rr}[0]+\mathrm{rr}[2]+\mathrm{rr}[5]) / 3.0$
\# out.write('spur')
\# out.write('\%f \n' \%(spur))
$\operatorname{cof}=(((((\operatorname{rr}[2] * \operatorname{rr}[5]-\operatorname{rr}[4] * \operatorname{rr}[4])+\mathrm{rr}[0] * \operatorname{rr}[5])-\operatorname{rr}[3] * \operatorname{rr}[3])+\mathrm{rr}[0] * \operatorname{rr}[2])-\operatorname{rr}[1] * \operatorname{rr}[1]) / 3.0$
det=det*det
\# out.write('cof')
\# out.write('\%f \ln ' \%(cof))
\# out.write('det')
\# out.write('\%f \ln ' \%(det))
\#print('spur',spur)
\#print('cof',cof)
\#print('det_new',det)
for i in range $(0,3,1)$:
$\mathrm{e}[\mathrm{i}]=$ spur
\# out.write('e')
\# out.write('\%f \t \%f \t \%f \ln '\%(e[0],e[1],e[2]))
\#print('e',e)
if spur<=0.0:
for i in range $(0,3,1)$:
$\mathrm{t}[\mathrm{i}]=((\mathrm{yc}[\mathrm{i}]-\mathrm{u}[0][\mathrm{i}] * \mathrm{xc}[0])-\mathrm{u}[1][\mathrm{i}] * \mathrm{xc}[1])-\mathrm{u}[2][\mathrm{i}] * \mathrm{xc}[2]$
for i in range $(0,3,1)$:
if $\mathrm{e}[\mathrm{i}]<0.0$:
e[i] $=0.0$
$\mathrm{e}[\mathrm{i}]=$ math.sqrt(e[i])
\#print('e',e)
ier $=0$
if $\mathrm{e}[1]<=\left(\mathrm{e}[0]^{*} .00001\right)$:
ier $=-1$
$\mathrm{d}=\mathrm{e}[2]$
\#print('ier',ier)
\#print('d',d)
if sigma<0.0:

$$
\mathrm{d}=-\mathrm{d}
$$

if(e[1]-e[2])<=(e[0]*.00001):
ier=-1
$\mathrm{d}=\mathrm{d}+\mathrm{e}[1]+\mathrm{e}[0]$
\# out.write('d')
\# out.write('\%f' \%(d))
\#print('final_d','e1','e0',d,e[1],e[0])
\#print('e0',e0)
\#print('e0-d)',e0-d)
rms $=(\mathrm{e} 0-\mathrm{d})-\mathrm{d}$
\#print('rms',rms)
if $\mathrm{rms}<0.0$:

```
    rms = 0.0
    return(rms,u,t,ier)
# out.write('rms')
# out.write('%f' %(rms))
#print('rms',rms)
    d= spur*spur
    h = d-cof
    g = (spur*cof-det)/2.0 - spur*h
# out.write('d')
# out.write('%f \n' %(d))
# out.write('h')
# out.write('%f \n' %(h))
# out.write('g')
# out.write('%f \n' %(g))
    #print('d','h','g',d,h,g)
    if h<=0.0:
        if mode==0:
        for i in range(0,3,1):
                if e[i]<0.0:
                e[i]=0
                e[i]=math.sqrt(e[i])
            ier =0
            if e[1]<=(e[0]*.00001):
                ier = -1
                d=e[2]
                #print('e0,e1,e2',e[0],e[1],e[2])
                #print('d latest',d)
                if sigma<0.0:
                d = -d
                    ('d more latest',d)
                    if(e[1]-e[2])<=(e[0]*.00001):
                        ier=-1
                d= d +e[1]+e[0]
            out.write('d')
            out.write('%f' %(d))
        #print('d more more latest',d)
        rms = (e0-d)-d
        #print('rms ',rms)
        if rms<0.0:
                rms = 0.0
                return(rms,u,t,ier)
```

```
            #print("rms",rms)
# out.write('rms')
#
    out.write('%f' %(rms))
else:
for l in range(0,2,1):
    d=0.0
    for i in range(0,3,1):
        b[1][i]=r[0][i]*a[1][0]+r[1][i]*a[1][1]+r[2][i]*a[1][2]
        #print('l','i',l,i)
        #print('b',b)
        d= d+pow(b[l][i],2)
    if d>0.0:
        d = 1/math.sqrt(d)
    #print("one more d",d)
    for i in range(0,3,1):
        b[1][i]=b[l][i]*d
d = b[0][0]*b[1][0]+b[0][1]*b[1][1]+b[0][2]*b[1][2]
    out.write('d')
    out.write('%f \n' %(p))
#print('end d',d)
p=0.0
for i in range(0,3,1):
    b[1][i]=b[1][i]-d*b[0][i]
    p=p+pow(b[1][i],2)
    out.write('p')
    out.write('%f \n' %(p))
    #print('p_nw',p)
if p<=tol:
    p = 1.0
    for i in range(0,3,1):
        if p <math.fabs(b[0][i]):
            break
        p = math.fabs(b[0][i])
        j = i
    k= ip2312[j]
    #print('k',k)
    l= ip2312[j+1]
    #print('l',l)
```

```
p = math.sqrt(pow(b[0][k],2)+pow(b[0][l],2))
if p<= .01:
    for i in range(0,3,1):
        t[i]=((yc[i]-u[0][i]*xc[0])-u[1][i]*xc[1])-u[2][i]*xc[2]
        out.write('t[i]')
        out.write('%f \n' %(t[i]))
    for i in range(0,3,1):
        if e[i]<0.0:
            e[i]=0.0
        e[i]=math.sqrt(e[i])
    ier =0
    if e[1]<=(e[0]*.00001):
        ier =-1
    d = e[2]
    if sigma<0.0:
        d=-d
        if(e[1]-e[2])<=(e[0]*.00001):
            ier=-1
    d = d+e[1]+e[0]
    #print('d',d)
    rms = (e0-d)-d
    print('rms',rms)
    if rms<0.0:
        rms=0.0
            out.write('rms')
            out.write('%f \n' %(rms))
        print("rms,u,t,ier",rms,u,t,ier)
    return(rms,u,t,ier)
```

```
b[1][j]=0.0
```

b[1][j]=0.0
b[1][k]= -b[0][l]/p
b[1][k]= -b[0][l]/p
b[1][1]= b[0][k]/p
b[1][1]= b[0][k]/p
out.write("b[1][j],b[1][k],b[1][1]",b[1][j],b[1][k],b[1][l])
out.write("b[1][j],b[1][k],b[1][1]",b[1][j],b[1][k],b[1][l])
out.write("%f %f %f "%(b[1][j],b[1][k],b[1][1]))
out.write("%f %f %f "%(b[1][j],b[1][k],b[1][1]))
else:
p = 1.0/math.sqrt(p)
\#print("p at last and b",p,b)
for i in range(0,3,1):
b[1][i]=b[1][i]*p
out.write('b[1][i]')
out.write('%f' %(b[1][i]))

```
```

b[2][0] = b[0][1]*b[1][2]-b[1][1]*b[0][2]
b[2][1] = b[0][2]*b[1][0]-b[1][2]*b[0][0]
b[2][2] = b[0][0]*b[1][1]-b[1][0]*b[0][1]

 for j in range(0,3,1):
 for i in range(0,3,1):
 u[i][j]= b[0][j]*a[0][i]+b[1][j]*a[1][i]+b[2][j]*a[2][i]
 out.write('i j')
 out.write('%d %d'%(i,j))
 out.write('u[i][j]')
 out.write('%f' %(u[i][j]))
 for i in range(0,3,1):
 t[i]=((yc[i]-u[0][i]*xc[0])-u[1][i]*xc[1])-u[2][i]*xc[2]
 out.write('t[i]')
 out.write('%f' %(t[i]))
 #print("t",t)
 for i in range(0,3,1):
 if e[i]<0.0:
 e[i]=0.0
 e[i]=math.sqrt(e[i])
 ier = 0
 if e[1]<=(e[0]*.00001):
 ier = -1
 d=e[2]
 if sigma<0:
 d = -d
 if(e[1]-e[2])<=(e[0]*.00001):
 ier=-1
 d = d +e[1]+e[0]
 rms = (e0-d)-d
if rms<0.0:
rms = 0.0
out.write('rms')
out.write('%f' %(rms))
return(rms,u,t,ier)

```
    sqrth \(=\) math.sqrt(h)
    \(\mathrm{d}=\mathrm{h} * \mathrm{~h} * \mathrm{~h}-\mathrm{g} * \mathrm{~g}\)
\# out.write('sqrth')
```


out.write('%f' %(sqrth))

out.write('d')

out.write('%f' %(d))

 if d<0.0:
 d=0.0
 d1 = math.sqrt(d)
 d = (math.atan2(d1,-g))/3.0

out.write('other d')

out.write('%f \n' %(d))

 cth = sqrth*math.cos(d)
 sth = sqrth*sqrt3*math.sin(d)

out.write('cth')

out.write('%f \n' %(cth))

out.write('sth')

out.write('%f \n' %(sth))

 e[0]=(spur+cth)+cth
 e[1]=(spur-cth)+sth
 e[2]=(spur-cth)-sth

out.write('e[0]')

out.write('%f \n' %(e[0]))

out.write('e[1]')

out.write('%f \n' %(e[1]))

out.write('e[2]')

out.write('%f \n' %(e[2]))

```
if mode==0:
    for i in range \((0,3,1)\) :
        if \(\mathrm{e}[\mathrm{i}]<0.0\) :
            \(\mathrm{e}[\mathrm{i}]=0.0\)
        \(\mathrm{e}[\mathrm{i}]=\) math.sqrt(e[i])
    ier \(=0\)
    if e[1]<=(e[0]*.00001):
        ier \(=-1\)
    \(\mathrm{d}=\mathrm{e}[2]\)
    if sigma<0.0:
        \(\mathrm{d}=-\mathrm{d}\)
        if(e[1]-e[2])<=(e[0]*.00001):
            ier=-1
    \(\mathrm{d}=\mathrm{d}+\mathrm{e}[1]+\mathrm{e}[0]\)
    rms \(=(\mathrm{e} 0-\mathrm{d})-\mathrm{d}\)
    if \(\mathrm{rms}<0.0\) :
\[
\mathrm{rms}=0.0
\]
return(rms,u,t,ier)
```

 #print('rms',rms)

out.write('rms')

out.write('%f' %(rms))

 #print('rms_old',rms)
    ```
    for 1 in range \((0,3,2)\) :
    \(\mathrm{d}=\mathrm{e}[1]\)
    out.write('e[l]')
    out.write('\%f' \%(d))
    \(\mathrm{ss}[0]=(\mathrm{d}-\mathrm{rr}[2]) *(\mathrm{~d}-\mathrm{rr}[5])-\mathrm{rr}[4] * \mathrm{rr}[4]\)
    \(\mathrm{ss}[1]=(\mathrm{d}-\mathrm{rr}[5]) * \mathrm{rr}[1]+\mathrm{rr}[3] * \mathrm{rr}[4]\)
    \(\mathrm{ss}[2]=(\mathrm{d}-\mathrm{rr}[0]) *(\mathrm{~d}-\mathrm{rr}[5])-\mathrm{rr}[3] * \mathrm{rr}[3]\)
    \(\mathrm{ss}[3]=(\mathrm{d}-\mathrm{rr}[2]) * \mathrm{rr}[3]+\mathrm{rr}[1] * \mathrm{rr}[4]\)
    \(\mathrm{ss}[4]=(\mathrm{d}-\mathrm{rr}[0]) * \mathrm{rr}[4]+\mathrm{rr}[1] * \mathrm{rr}[3]\)
    \(\mathrm{ss}[5]=(\mathrm{d}-\mathrm{rr}[0]) *(\mathrm{~d}-\mathrm{rr}[2])-\mathrm{rr}[1] * \operatorname{rr}[1]\)
    \#print("ss",ss)
    out.write('ss[0] ss[1] ss[2] ss[3] ss[4] ss[5]')
    out.write('\%f \(\ln\) ' \%(ss[0]))
    out.write('\%f \(\ln\) ' \%(ss[1]))
    out.write('\%f \(\ln\) ' \%(ss[2]))
    out.write('\%f \(\ln\) ' \%(ss[3]))
    out.write('\%f \(\ln\) ' \%(ss[4]))
    out.write('\%f \(\operatorname{nn}\) \%(ss[5]))
    if math.fabs(ss[0])>=math.fabs(ss[2]):
        \(\mathrm{j}=1\)
        if math.fabs(ss[0])<math.fabs(ss[5]):
        \(\mathrm{j}=3\)
    elif math.fabs(ss[2])>=math.fabs(ss[5]):
        \(j=2\)
    else:
        \(j=3\)
    \#print('j_old',j)
    out.write('math.fabs(ss[0])')

    out.write('math.fabs(ss[2])')
    out.write('\%f \(\operatorname{nn}\) ' \%(math.fabs(ss[2])))
    out.write('math.fabs(ss[5])')

    out.write('above j')
    out.write('\%d \(\backslash \mathrm{n}\) ' \%(j))
```

$$
d=0.0
$$

$$
\mathrm{j}=3 *(\mathrm{j}-1)
$$

\# out.write('j')

$$
\# \quad \text { out.write(' } \% \text { d } \ln \text { ' } \%(\mathrm{j}))
$$

\#print("j",j)
for i in range $(0,3,1)$:
$\mathrm{k}=\mathrm{ip}[\mathrm{i}+\mathrm{j}]$
\#print("value of k ,l,i",k,1,i)
$\mathrm{a}[1][\mathrm{i}]=\mathrm{ss}[\mathrm{k}]$
$\mathrm{d}=\mathrm{d}+\mathrm{ss}[\mathrm{k}] * \mathrm{ss}[\mathrm{k}]$
out.write('k')
out.write('\%d \n'\%(k))
out.write('a[l][i]')
out.write('\%f \ln ' \%(a[1][i]))
out.write('d')
out.write('\%d $\backslash n ' \%(d))$
\#print('d',d)
if $\mathrm{d}>0.0$:
$\mathrm{d}=1.0 / \mathrm{math} . \mathrm{sqrt}(\mathrm{d})$
out.write('d after sqroot')
out.write('\%f $\backslash n ' \%(d))$
for i in range $(0,3,1)$:
$\mathrm{a}[1][\mathrm{i}]=\mathrm{a}[1][\mathrm{i}] * \mathrm{~d}$
\# out.write('new a(i,l)')
\# out.write('\%f \ln ' \%(a[1][i]))
\#print('a[1][i]',a[1][i])
$\mathrm{d}=\mathrm{a}[0][0] * \mathrm{a}[2][0]+\mathrm{a}[0][1]^{*} \mathrm{a}[2][1]+\mathrm{a}[0][2] * \mathrm{a}[2][2]$
\# out.write('last d')
\# out.write('\%f \ln ' \%(d))
\#print('at last d',d)
if (e[0]-e[1])>(e[1]-e[2]):

$$
\mathrm{ml}=2
$$

$$
\mathrm{m}=0
$$

else:
$\mathrm{m} 1=0$
$\mathrm{m}=2$
\# out.write('m1')
\# out.write('\%d \n' \%(m1))
\# out.write('m')
\# out.write('\%d $\backslash n ' \%(m))$
$\mathrm{p}=0.0$
\#print('m1,m',m1,m)
for i in range $(0,3,1)$:
$\mathrm{a}[\mathrm{m} 1][\mathrm{i}]=\mathrm{a}[\mathrm{m} 1][\mathrm{i}]-\mathrm{d} * \mathrm{a}[\mathrm{m}][\mathrm{i}]$
\# out.write('other a[m1][i]')

```
```


out.write('%f' %(a[m1][i]))

 #print('a[m1][i]',a[m1][i])
 p = p+pow(a[m1][i],2)

out.write('p')

out.write('%f' %(p))

 if p<=tol:
 p = 1.0
 out.write('other p')
 out.write('%f' %(p))
 for i in range(0,3,1):
 if p<math.fabs(a[m][i]):
 break
 p = math.fabs(a[m][i])
 j = i
 k= ip2312[j]
 l = ip2312[j+1]
 #print('j k l',j,k,l)
 p = math.sqrt(pow(a[m][k],2)+\operatorname{pow}(a[m][l],2))
 #print("nw_p",p)
 if p <=tol:
 for i in range(0,3,1):
 t[i]=((yc[i]-u[0][i]*xc[0])-u[1][i]*xc[1])-u[2][i]*xc[2]
 out.write('t[i]')
 out.write('%f' %(t[i]))
 #print('t',t)
 for i in range(0,3,1):
 if e[i]<0.0:
 e[i]=0.0
 e[i]=math.sqrt(e[i])
 ier = 0
 if e[1]<=(e[0]*.00001):
 ier = -1
 d=e[2]
 if sigma<0.0:
 d = -d
 if(e[1]-e[2])<=(e[0]*.00001):
 ier=-1
 d = d +e[1]+e[0]
 rms = (e0-d)-d
 if rms<0.0:
 rms=0.0
 out.write('rms')
 out.write('%f \n' %(rms))
 return(rms,u,t,ier)
    ```
```

 a[m1][j]=0.0
 a[m1][k]=-a[m][l]/p
 a[m1][l]=a[m][k]/p
 #print("a[m1][j],a[m1][k],a[m1][l]",a[m1][j],a[m1][k],a[m1][l])
 else:
 p = 1.0/math.sqrt(p)
 for i in range(0,3,1):
 a[m1][i]=a[m1][i]*p

out.write('a[m1][i]')

out.write("%f" %(a[m1][i]))

 a[1][0]=a[2][1]*a[0][2]-a[0][1]*a[2][2]
 a[1][1]=a[2][2]*a[0][0]-a[0][2]*a[2][0]
 a[1][2]=a[2][0]*a[0][1]-a[0][0]*a[2][1]

out.write('a[1][0]')

out.write("%f" %(a[1][0]))

out.write('a[1][1]')

out.write("%f" %(a[1][1]))

out.write('a[1][2]')

out.write("%f" %(a[1][2]))

 #print("a",a)
 for l in range(0,2,1):
 d = 0.0
 for i in range(0,3,1):
 b[1][i]=r[0][i]*a[1][0]+r[1][i]*a[1][1]+r[2][i]*a[1][2]

out.write('b[1][i]')

out.write('%f \n' %(b[l][i]))

 d = d+pow(b[l][i],2)

out.write('d')

out.write('%f \n' %(d))

 if d>0.0:
 d = 1/math.sqrt(d)
 for i in range(0,3,1):
 b[l][i]=b[l][i]*d

out.write('one more b(l,i)')

out.write('%f' %(b[l][i]))

 d = b[0][0]*b[1][0]+b[0][1]*b[1][1]+b[0][2]*b[1][2]

out.write('one more d')

out.write('%f' %(d))

 p = 0.0
 for i in range(0,3,1):
 b[1][i]=b[1][i]-d*b[0][i]
    ```
```

 p = p+pow(b[1][i],2)

out.write('b[1][i]')

out.write('%f' %(b[1][i]))

out.write('p')

out.write('%f' %(p))

 if p<=tol:
 p=1.0
 for i in range(0,3,1):
 if p <math.fabs(b[0][i]):
 continue
 p = math.fabs(b[0][i])
 j = i
 k=ip2312[j]
 l = ip2312[j+1]
 p = math.sqrt(pow(b[0][k],2)+\operatorname{pow}(b[0][l],2))
 if p<= tol:
 for i in range(0,3,1):
 t[i]=((yc[i]-u[0][i]*xc[0])-u[1][i]*xc[1])-u[2][i]*xc[2]
 for i in range(0,3,1):
 if e[i]<0.0:
 e[i]=0.0
 e[i]=math.sqrt(e[i])
 ier = 0
 if e[1]<=(e[0]*.00001):
 ier = -1
 d = e[2]
 if sigma<0.0:
 d = -d
 if(e[1]-e[2])<=(e[0]*.00001):
 ier=-1
 d = d+e[1]+e[0]
 rms = (e0-d)-d
 if rms<0.0:
 rms=0.0
 out.write('rms')
 out.write('%f \n' %(rms))
 return(rms,u,t,ier)
    ```
    \#print('p',p)
    \(\mathrm{b}[1][\mathrm{j}]=0.0\)
    \(\mathrm{b}[1][\mathrm{k}]=-\mathrm{b}[0][1] / \mathrm{p}\)
    \(\mathrm{b}[1][1]=\mathrm{b}[0][\mathrm{k}] / \mathrm{p}\)
else:
```

 p = 1.0/math.sqrt(p)
 for i in range(0,3,1):
 b[1][i]=b[1][i]*p

out.write('b[1][i]')

out.write('%f \n' %(b[1][i]))

 b[2][0] = b[0][1]*b[1][2]-b[1][1]*b[0][2]
 b[2][1] = b[0][2]*b[1][0]-b[1][2]*b[0][0]
 b[2][2] = b[0][0]*b[1][1]-b[1][0]*b[0][1]

out.write('b[2][0]')

out.write('%f \n' %(b[2][0]))

out.write('b[2][1]')

out.write('%f \n' %(b[2][1]))

out.write('b[2][2]')

out.write('%f \n' %(b[2][2]))

```
    for j in range \((0,3,1)\) :
        for \(i\) in range \((0,3,1)\) :
                \(\mathrm{u}[\mathrm{i}][\mathrm{j}]=\mathrm{b}[0][\mathrm{j}] * \mathrm{a}[0][\mathrm{i}]+\mathrm{b}[1][\mathrm{j}] * \mathrm{a}[1][\mathrm{i}]+\mathrm{b}[2][\mathrm{j}] * \mathrm{a}[2][\mathrm{i}]\)
\# out.write('i j')
\# out.write('\%d \%d' \%(i,j))
\# out.write('u[j][i]')
\# out.write('\%f \(\ln\) ' \%(u[j][i]))
    \#print('u', u)
\# out.write('u[0][0]')
\# out.write('\%f \(\ln\) ' \%(u[0][0]))
\# out.write('u[1][0]')
\# out.write('\%f \(\backslash n ' \%(u[1][0]))\)
\# out.write('u[2][0]')
\# out.write('\%f \(\ln\) ' \%(u[2][0]))
\# out.write('u[0][1]')
\# out.write('\%f \(\ln\) ' \%(u[0][1]))
\# out.write('u[1][1]')
\# out.write('\%f \(\backslash n ' \%(u[1][1]))\)
\# out.write('u[2][1]')
\# out.write('\%f \(\ln\) ' \%(u[2][1]))
\# out.write('u[0][2]')
\# out.write('\%f \(\ln\) ' \%(u[0][2]))
\# out.write('u[1][2]')
\# out.write('\%f \(\ln\) ' \(\%(u[1][2]))\)
\# out.write('u[2][2]')
\# out.write('\%f \(\ln\) ' \%(u[2][2]))
    for i in range \((0,3,1)\) :
\# out.write('yc[i]')
\# out.write('\%f \(\ln\) ' \%(yc[i]))
```


out.write('xc[0]')

out.write('%f \n' %(xc[0]))

out.write('xc[1]')

out.write('%f \n' %(xc[1]))

out.write('xc[2]')

out.write('%f \n' %(xc[2]))

out.write('xc[2]')

out.write('%f \n' %(xc[2]))

out.write('u[0][i]')

out.write('%f \n' %(u[0][i]))

out.write('u[1][i]')

out.write('%f \n' %(u[1][i]))

out.write('u[2][i]')

out.write('%f \n' %(u[2][i]))

 t[i]=((yc[i]-u[0][i]*xc[0])-u[1][i]*xc[1])-u[2][i]*xc[2]
 out.write('t[i]')
 out.write('%f \n' %(t[i]))
 out.write('e[0]')
 out.write('%f \n' %(e[0]))
 out.write('e[1]')

out.write('%f \n' %(e[1]))

out.write('e[2]')

out.write('%f \n' %(e[2]))

 for i in range(0,3,1):
 if e[i]<0.0:
 e[i]=0.0
 e[i]=math.sqrt(e[i])

out.write('e[i]')

out.write('%f \n' %(e[i]))

 ier =0
 if e[1]<=(e[0]*.00001):
 ier = -1

out.write('ier')

out.write('%f \n' %(ier))

 d = e[2]
 if sigma<0.0:
 d= -d
 if(e[1]-e[2])<=(e[0]*.00001):
 ier=-1
 out.write('d')
 out.write('%f \n' %(d))
 out.write('ier')
 out.write('%f \n' %(ier))
 d=d +e[1]+e[0]

```
```


out.write('d')

out.write('%f \n' %(d))

out.write('e0')

out.write('%f \n' %(e0))

 rms = (e0-d)-d

out.write('rms')

out.write('%f \n' %(rms))

 if rms<0.0:
 rms = 0.0

out.write('new rms')

out.write('%f \n' %(rms))

 if mode==0:
 return(rms)
 else:
 return(rms,u,t,ier)
 def score_fun():
d_tmp = d

out.write('d_tmp')

out.write('%f' %(d_tmp))

 n_cut =0
 score_sum=0
 i_ali=[None]*3000
 for k in range(0,n_ali):
 i = iA[k]
 j = iB[k]

out.write('i')

out.write('%d' %(i))

out.write('j')

out.write('%d' %(j))

out.write('xa[i]')

out.write('%f \n' %(i))

out.write('xb[j]')

out.write('%f \n' %(j))

out.write('ya[i]')

out.write('%f \n' %(i))

out.write('yb[j]')

out.write('%f \n' %(j))

out.write('za[i]')

out.write('%f \n' %(i))

out.write('zb[j]')

out.write('%f \n' %(j))

print('xt2[i]')

print(xt2[i])

print('yt2[i]')

```
```


print(yt2[i])

print('zt2')

print(zt2[i])

 dis= math.sqrt(pow((xt2[i]- x2_final[j]),2)+pow((yt2[i]-y2_final[j]),2)+pow((zt2[i]-
 z2_final[j]),2))
out.write('distance inside score')
out.write('%f \n' %(dis))
if dis<d_tmp:
i_ali[n_cut]=k
n_cut=n_cut+1
score_sum = score_sum+1/(1+(dis/d0)**2)
score = score_sum/float(nseqB)

out.write('scores')

out.write('%f' %(score))

print('score')

print('%f' %(score))

out.write('n_cut')

out.write('%d' %(n_cut))

 while n_cut<3 and n_ali>3:
 d_tmp= d_tmp+. 5
 n_cut =0
 score_sum=0
 for k in range(0,n_ali):
 i = iA[k]
 j = iB[k]
 out.write('xa[i]')
 out.write('%f \n' %(i))
 out.write('xb[j]')
 out.write('%f \n' %(j))
 out.write('ya[i]')
 out.write('%f \n' %(i))
 out.write('yb[j]')
 out.write('%f \n' %(j))
 out.write('za[i]')
 out.write('%f \n' %(i))
 out.write('zb[j]')
 out.write('%f \n' %(j))
 print('i')
 print(i)
 print('j')
 print(j)
 print('xt2[i]')
 print(xt2[i])
    ```
```


print('yt2')

print(yt2[i])

print('zt2')

print(zt2[i])

print("x2_final[j]")

print(x2_final[j])

print('y2_final[j]')

print(y2_final[j])

print('z2_final[j]')

print(z2_final[j])

 dis= math.sqrt(pow((xt2[i]-x2_final[j]),2)+pow((yt2[i]-y2_final[j]),2)+pow((zt2[i]-
 z2_final[j]),2))
out.write('distance inside score')
out.write('%f \n' %(dis))
if dis<d_tmp:
print('ncut inside inside score',n_cut)
i_ali[n_cut]=k
n_cut=n_cut+1
score_sum = score_sum+1/(1+(dis/d0)**2)
score = score_sum/float(nseqB)

out.write('scoreinside')

out.write('%f \n' %(score))

 print('score')
 print('%f \n' %(score))
 return(score,n_cut,i_ali)
 p1 =open(sys.argv[1],'r')
p2 =open(sys.argv[2],'r')
\#p1 = open(input('enter the pdb file/1'),'r')
\#p2 = open(input('enter the pdb file/2'),'r')
out = open('result_python_TMscore.txt','w')
line1 = p1.readline()
line2 = p2.readline()
count1=0
count2 = 0
x1=[]
y1=[]
z1=[]
x2=[]
y2=[]
z2=[]
xa=[]
ya=[]
za=[]
xb=[]
yb=[]

```
```

zb=[]
nresA=[]
nresB=[]
res_seq1=[]
res_seq2=[]
iA=[]
iB=[]
w=[]
L_ini=[]
k_ali=[None]*3000
k_ali0=[None]*3000
xt = [None]*3000
yt = [None]*3000
zt = [None]*3000
r_1 = [[None]*3 for i in range(3000)]
r_2 = [[None]*3 for i in range(3000)]
r_3 = [[None]*3 for i in range(3000)]
t = [None]*3
u = [[None]*3 for i in range (3)]
x1_atoms =[]
y1_atoms =[]
z1_atoms =[]
atom_name_1 =[]
x2_atoms =[]
y2_atoms =[]
z2_atoms =[]
atom_name_2 =[]
xt2=[None]*3000
yt2=[None]*3000
zt2=[None]*3000
x2_final=[]
y2_final=[]
z2_final=[]
x_rotated_1 =[None]*40000
y_rotated_1 =[None]*40000
z_rotated_1 =[None]*40000
order = ['H', 'C', 'O', 'N', 'P', 'S']
masses = [1.6738e-24,1.994e-23,2.65e-23,2.32e-23,5.14e-23,5.31e-23]
serial_number1=[]
serial_number2=[]
res_seq11=[]
for line1 in p1:
if 'ATOM' in line1[:6] and 'CA' in line1[13:17]:
x1.append(float(line1[31:39]))

```
```

 y1.append(float(line1[39:47]))
 z1.append(float(line1[47:55]))
 res_seq1.append(int(line1[23:27]))

out.write('%f %f %f %d' %(x1[count1], y1[count1], z1[count1],res_seq1[count1]))

 count1= count1+1
 line1 = p1.readline()
 p1.close()
p1 =open(sys.argv[1],'r')
while 1:
line1 = p1.readline()
if 'ATOM' in line1[:6]and('C' in line1[77:78] or'N' in line1[77:78]or 'H' in line1[77:78]or'O' in
line1[77:78] or'S' in line1[77:78]) :
atom_name_1.append(line1[77:78])
serial_number1.append(int(line1[7:12]))
x1_atoms.append(float(line1[31:39]))
y1_atoms.append(float(line1[39:47]))
z1_atoms.append(float(line1[47:55]))
res_seq11.append(int(line1[23:27]))
if not line1:
break
print('serial_number1')
print(serial_number1)
print('x1_atoms')
print(x1_atoms)
\#print(x1,yl,z1)
\#print('res_sequence',res_seq1)
\#print('count/1',count1)
\#print('serial_number1')
\#print(serial_number1)
for line2 in p2:
if 'ATOM' in line2[:6] and 'CA' in line2[13:17]:

```
        x2.append(float(line2[31:39]))
        y2.append(float(line2[39:47]))
        z2.append(float(line2[47:55]))
        res_seq2.append(int(line2[23:27]))
        line \(2=\mathrm{p} 2\).readline ()
        count2 \(=\) count \(2+1\)
p2.close()
res_seq33=[]
p2 =open(sys.argv[2],'r')
while 1:
    line2 \(=\mathrm{p} 2\).readline()
    if'ATOM' in line2[:6] and('C' in line2[77:78] or'N' in line2[77:78]or 'H' in line2[77:78]or'O' in
line2[77:78] or'S' in line2[77:78]):
```

 atom_name_2.append(line2[77:78])
 serial_number2.append(int(line2[7:12]))
 x2_atoms.append(float(line2[31:39]))
 y2_atoms.append(float(line2[39:47]))
 z2_atoms.append(float(line2[47:55]))
 res_seq33.append(int(line2[23:27]))
 if not line2:
 break
 print('x2_atoms')
print(x2_atoms)
print(len(x2))
print(len(x2_atoms))
x2_atoms_inter =0
y2_atoms_inter=0
z2_atoms_inter=0
tot_mass2=0
j=0
\#print('x2_atoms')
\#print(x2_atoms)
\#print('res_seq33')
\#print(res_seq33)
p = len(serial_number2)
for i in range(0,len(serial_number2),1):
zz = order.index(atom_name_2[i])
x2_atoms_inter = x2_atoms_inter+x2_atoms[i]*masses[zz]
y2_atoms_inter = y2_atoms_inter+y2_atoms[i]*masses[zz]
z2_atoms_inter = z2_atoms_inter+z2_atoms[i]*masses[zz]
tot_mass2 = tot_mass2+masses[zz]
if i!=(p-1) and res_seq33[i]!=res_seq33[i+1]:
x2_final.append(x2_atoms_inter/tot_mass2)
y2_final.append(y2_atoms_inter/tot_mass2)
z2_final.append(z2_atoms_inter/tot_mass2)
tot_mass2 = 0
x2_atoms_inter =0
y2_atoms_inter=0
z2_atoms_inter=0
j = j+1
if i== p-1:
x2_final.append(x2_atoms_inter/tot_mass2)
y2_final.append(y2_atoms_inter/tot_mass2)
z2_final.append(z2_atoms_inter/tot_mass2)
print('len_x2_final')
print(len(x2_final))

```
```

print('count2')

```
print(count2)
\# out.write('x2_final \(\backslash n\) ')
\# out.write(x2_final[j])
\# out.write('y2_final \n')
\# out.write(y2_final[j])
\# out.write('z2_final \(\backslash n\) ')
\# out.write(z2_final[j])
```

\#print('p')
\#print(p)

```
print('x2_final \(\backslash n\) ')
print(x2_final)
print('y2_final \n')
print(y2_final)
print('z2_final \(\backslash n\) ')
print(z2_final)
print('j')
\(\operatorname{print}(\mathrm{j})\)
print('p')
print(p)
print('len-of_x2')
print(len(x2_final))
print('len_of_x2')
print(len(x2))
\(\mathrm{xa}=\operatorname{list}(\mathrm{x} 1)\)
\(\mathrm{ya}=\operatorname{list}(\mathrm{y} 1)\)
\(\mathrm{za}=\operatorname{list}(\mathrm{z} 1)\)
\(\mathrm{xb}=\operatorname{list}(\mathrm{x} 2)\)
\(\mathrm{yb}=\operatorname{list}(\mathrm{y} 2)\)
\(\mathrm{zb}=\operatorname{list}(\mathrm{z} 2)\)
x1_atoms_inter \(=0\)
\#print('count1')
\#print(count1)
for \(m\) in range \((0\), count 1,1\()\) :
    w.append(float(1.0))
for i in range ( 0, count 1,1 ):
    nresA.append(i)
\#print('nresA',nresA)
for \(i\) in range( 0 ,count 2,1 ):
    nresB.append(i)
\#print('nresB',nresB)
```

k=0
for i in range(0,count1,1):
for j in range(0,count 2,1):
if nresA[i]== nresB[j]:
print('nresA[i]')
print(nresA[i])
iA.append(i)
iB.append(j)
out.write('iA iB')
out.write('%d %d'%(iA[k], iB[k]))
k = k+1
break
n_ali=k
\#print('n_ali')
\#print(n_ali)
Lcomm = n_ali
nseqA = count1
nseqB = count2
if n_ali<1:
TM=0
Rcomm=0
print('TM','Rcomm',TM,Rcomm)
sys.exit()
d0=1.24*(nseqB-15)**(1.0/3.0)-1.8
if d0<0.5:
d0=0.5
d0_search = d0
if d0_search>8:
d0_search = 8
if d0_search<4.5:
d0_search = 4.5
n_it = 20
d_output=5
n_init_max=6
n_init =0
L_ini_min=4
if n_ali<4:
L_ini_min = n_ali
for i in range(0,n_init_max):
L_ini.append(int(n_ali/2**(n_init)))
if L_ini[n_init]<=L_ini_min:

```
```

 L_ini[n_init]=L_ini_min
 break
 n_init = n_init+1
 \#out.write('L_ini total')
\#out.write('%d %d %d %d %d' %(L_ini[0],L_ini[1],L_ini[2],L_ini[3],L_ini[4]))
if len(L_ini)==6 and L_ini[5]>4:
L_ini.append(L_ini_min)

out.write('L_ini total')

out.write('%d %d %d %d %d %d' %(L_ini[0],L_ini[1],L_ini[2],L_ini[3],L_ini[4],L_ini[5]))

\#print("L_ini",L_ini)
score_max = -1
for i_init in range(0,n_init):
L_init = int(L_ini[i_init])
iL_max = int(n_ali-L_init+1)

out.write('L_init iL_max')

out.write('%d %d'%(L_init, iL_max))

print('r_1',r_1)

print('r_2',r_2)

 for iL in range(0,iL_max):
 LL=0
 ka=0
 print('L_init',L_init)
 for i in range(0,int(L_init)):
 k = iL+i
 p = iA[k]
 q = iB[k]

out.write('k')

out.write('%d' %(k))

out.write('p')

out.write('%d' %(p))

out.write('%d' %(q))

 r_1[i][0]=xa[p]
 r_1[i][1]=ya[p]
 r_1[i][2]=za[p]
 r_2[i][0]=xb[q]
 r_2[i][1]=yb[q]
 r_2[i][2]=zb[q]
 LL=LL+1

out.write('k')

out.write('%d \n' %(k))

out.write('r_1[i][0]')

out.write('%f \n' %(r_1[i][0]))

out.write('r_1[i][1]')

out.write('%f \n' %(r_1[i][1]))

```
\#print(' p ', p)
\#print('q',q)
\#print('xa[p]',xa[p])
\#print('ya[p]',ya[p])
\#print('za[p]',za[p])
rms,u,t,ier \(=\) rotation \(\left(w, r \_1, r \_2, L L, 1\right)\)
    out.write('rms u t ier')
    out.write(' \(\%\) g \(\% \mathrm{~d}^{\prime} \%(r m s, u[0][0], \backslash\)
    \(\mathrm{u}[0][1], \mathrm{u}[0][2], \mathrm{u}[1][0], \mathrm{u}[1][1], \mathrm{u}[1][2], \mathrm{u}[2][0], \mathrm{u}[2][1], \mathrm{u}[2][2], \mathrm{t}[0], \backslash\)
    \(\mathrm{t}[1], \mathrm{t}[2]\),ier \()\) )
    print('rms,u,t,ier')
    print(rms,u,t,ier)
    if i_init==0:
        armsd \(=\) math.sqrt(rms/LL)
        rmsd_ali \(=\) armsd
        out.write('rms of superposed region')
        out.write('\%f' \%(rms))
        out.write('LL')
        out.write('\%d' \%(LL))
for \(j\) in range \((0, n \operatorname{seq} A)\) :
    \(\mathrm{xt}[\mathrm{j}]=\mathrm{t}[0]+\mathrm{u}[0][0] * \mathrm{xa}[\mathrm{j}]+\mathrm{u}[1][0] * \mathrm{ya}[\mathrm{j}]+\mathrm{u}[2][0] * \mathrm{za}[\mathrm{j}]\)
    \(\mathrm{yt}[\mathrm{j}]=\mathrm{t}[1]+\mathrm{u}[0][1] * \mathrm{xa}[\mathrm{j}]+\mathrm{u}[1][1] * \mathrm{ya}[\mathrm{j}]+\mathrm{u}[2][1] * \mathrm{za}[\mathrm{j}]\)
    \(\mathrm{zt}[\mathrm{j}]=\mathrm{t}[2]+\mathrm{u}[0][2] * \mathrm{xa}[\mathrm{j}]+\mathrm{u}[1][2]^{*} \mathrm{ya}[\mathrm{j}]+\mathrm{u}[2][2]^{*} \mathrm{za}[\mathrm{j}]\)
for j in range( 0 ,len(serial_number1), 1 ):
\(\mathrm{x} \_\)rotated_1[j] \(=\mathrm{t}[0]+\mathrm{u}[0][0] * \mathrm{x} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[1][0] * \mathrm{y} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[2][0] * \mathrm{z} 1 \_\)atoms \([\mathrm{j}]\)
\(\mathrm{y} \_\)rotated_1[j] \(=\mathrm{t}[1]+\mathrm{u}[0][1] * \mathrm{x} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[1][1] * \mathrm{y} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[2][1] * \mathrm{z} 1 \_\)atoms \([\mathrm{j}]\)
\(\mathrm{z} \_\)rotated_1[j] \(=\mathrm{t}[2]+\mathrm{u}[0][2] * \mathrm{x} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[1][2] * \mathrm{y} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[2][2] * \mathrm{z} 1 \_\)atoms \([\mathrm{j}]\)
x1_atoms_inter =0
y1_atoms_inter=0
```

z1_atoms_inter=0
tot_mass1=0
j =0
m}= len(serial_number1
xt2=[]
yt2=[]
zt2=[]
for i in range(0,len(serial_number1),1):
zz = order.index(atom_name_1[i])
x1_atoms_inter = x1_atoms_inter+x_rotated_1[i]*masses[zz]
y1_atoms_inter = y1_atoms_inter+y_rotated_1[i]*masses[zz]
z1_atoms_inter = z1_atoms_inter+z_rotated_1[i]*masses[zz]
tot_mass1 = tot_mass1+masses[zz]
if i!=(m-1) and res_seq11[i]!=res_seq11[i+1]:
xt2.append(x1_atoms_inter/tot_mass1)
yt2.append(y1_atoms_inter/tot_mass1)
zt2.append(z1_atoms_inter/tot_mass1)
j = j+1
tot_mass1 =0
x1_atoms_inter =0
y1_atoms_inter=0
z1_atoms_inter=0
if i== m-1:
xt2.append(x1_atoms_inter/tot_mass1)
yt2.append(y1_atoms_inter/tot_mass1)
zt2.append(z1_atoms_inter/tot_mass1)

print('xt2')

print(xt2)

print('yt2')

print(yt2)

print('zt2')

print(zt2)

print('xt2')
print(len(xt2))
print('yt2')
print(len(yt2))
print('zt2')
print(len(zt2))
print('count1')
print(count1)
out.write('x2_final \n')

```
```


out.write(x2_final[j])

out.write('y2_final \n')

out.write(y2_final[j])

out.write('z2_final \n')

out.write(z2_final[j])

 d = d0_search-1
 out.write('d')

out.write('%f \n'%(d))

 score,n_cut,i_ali = score_fun()
 print('score')
 print(score)
 out.write('score outside')
 out.write('%f \n' %(score))
 if score_max <score:
 score_max=score
 ka0 = ka
 out.write('score_max')
 out.write('%f \n' %(score_max))
 out.write('ka0')
 out.write('%f \n' %(ka0))
 for i in range(0,ka0):
 k_aliO[i]=k_ali[i]
 out.write('k_ali0[i]')
 out.write('%f \n' %(k_ali0[i]))
 print('k_ali0000')
 print(k_ali0)
 d = d0_search+1
 for it in range(1,n_it):
 LL=0
 ka=0
 for i in range(0,n_cut):
 print('i',i)
 m=i_ali[i]
 print('m',m)
 print('iA[m]',iA[m])
 r_1[i][0]=xa[iA[m]]
 r_1[i][1]=ya[iA[m]]
 r_1[i][2]=za[iA[m]]
 r_2[i][0]=xb[iB[m]]
 r_2[i][1]=yb[iB[m]]
 r_2[i][2]=zb[iB[m]]
 out.write('r_1[i][0]')
    ```
out.write('\%f \(\left.\backslash n^{\prime} \%\left(r \_1[i][0]\right)\right)\)
out.write('r_1[i][1]')
out.write('\%f \(\left.\backslash \mathrm{n}^{\prime} \%\left(\mathrm{r} \_1[\mathrm{i}][1]\right)\right)\)
out.write('r_1[i][2]')
out.write('\%f \(\left.\backslash \mathrm{n}^{\prime} \%\left(\mathrm{r} \_1[\mathrm{i}][2]\right)\right)\)
out.write('r_2[i][0]')
out.write('\%f \(\left.\backslash n^{\prime} \%\left(r \_2[i][0]\right)\right)\)
out.write('r_2[i][1]')
out.write('\%f \(\backslash \mathrm{n}^{\prime} \%\left(\mathrm{r} \_2[\mathrm{i}][1]\right)\) )
out.write('r_2[i][2]')
out.write('\%f \(\ln\) ' \%(r_2[i][2]))
LL=LL+1
print('ka')
print(ka)
k_ali \([k a]=m\)
print('k_ali[ka]')
print(k_ali[ka])
\(\mathrm{ka}=\mathrm{ka}+1\)
print('r_1[i][0]r_1[i][1]r_1[i][2]r_2[i][0]r_2[i][1]r_2[i][2]')
\(\operatorname{print}\left(\mathrm{r}_{-} 1[\mathrm{i}][0], \mathrm{r}_{-} 1[\mathrm{i}][1], \mathrm{r}_{-} 1[\mathrm{i}][2], \mathrm{r}_{-} 2[\mathrm{i}][0], \mathrm{r}_{-} 2[\mathrm{i}][1], \mathrm{r}_{2} 2[\mathrm{i}][2]\right)\)
out.write('r_1[i][0]r_1[i][1]r_1[i][2]r_2[i][0]r_2[i][1]r_2[i][2]')
rms,u,t,ier=rotation(w,r_1,r_2,LL,1)
print('rms,u,t,ier',rms,u,t,ier)
out.write('rms u t ier')
out.write(' \(\%\) g \(\%\) d' \(\%(r m s, u[0][0], \backslash\)
\(\mathrm{u}[0][1], \mathrm{u}[0][2], \mathrm{u}[1][0], \mathrm{u}[1][1], \mathrm{u}[1][2], \mathrm{u}[2][0], \mathrm{u}[2][1], \mathrm{u}[2][2], \mathrm{t}[0], \backslash\)
t[1],t[2],ier))
for j in range \((0, \mathrm{nseq} \mathrm{A})\) :
\(\mathrm{xt}[\mathrm{j}]=\mathrm{t}[0]+\mathrm{u}[0][0] * \mathrm{xa}[\mathrm{j}]+\mathrm{u}[1][0] * \mathrm{ya}[\mathrm{j}]+\mathrm{u}[2][0] * z \mathrm{za}[\mathrm{j}]\)
\(\mathrm{yt}[\mathrm{j}]=\mathrm{t}[1]+\mathrm{u}[0][1]^{*} \mathrm{xa}[\mathrm{j}]+\mathrm{u}[1][1] * \mathrm{ya}[\mathrm{j}]+\mathrm{u}[2][1] * \mathrm{za}^{2}[\mathrm{j}]\)
\(\mathrm{zt}[\mathrm{j}]=\mathrm{t}[2]+\mathrm{u}[0][2] * \mathrm{xa}[\mathrm{j}]+\mathrm{u}[1][2] * \mathrm{ya}[\mathrm{j}]+\mathrm{u}[2][2] * z a[j]\)
out.write('xt')
out.write('\%f' \%(xt[j]))
out.write('yt')
out.write('\%f' \%(yt[j]))
out.write('zt')
out.write('\%f' \%(zt[j]))
for j in range( 0 ,len(serial_number1), 1\()\) :
\(\mathrm{x} \_\)rotated_1[j] \(=\mathrm{t}[0]+\mathrm{u}[0][0]^{*} \mathrm{x} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[1][0]^{*} \mathrm{y} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[2][0]^{*} \mathrm{z} 1 \_\)atoms \([\mathrm{j}]\)
y_rotated_1[j] \(=\mathrm{t}[1]+\mathrm{u}[0][1] * \mathrm{x} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[1][1]^{*} \mathrm{y} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[2][1]^{*} \mathrm{z} 1 \_\)atoms \([\mathrm{j}]\)
z _rotated_1[j] \(=\mathrm{t}[2]+\mathrm{u}[0][2] * \mathrm{x} 1 \_\)atoms \([\mathrm{j}]+\mathrm{u}[1][2]^{*} \mathrm{y} 1 \_\)atoms[j]+u[2][2]*z1_atoms[j]
x1_atoms_inter \(=0\)
y1_atoms_inter=0
```

 z1_atoms_inter=0
 tot_mass1=0
 xt2=[]
 yt2=[]
 zt2=[]
 j =0
 m = len(serial_number1)
 for i in range(0,len(serial_number1),1):
 zz = order.index(atom_name_1[i])
 x1_atoms_inter = x1_atoms_inter+x_rotated_1[i]*masses[zz]
 y1_atoms_inter = y1_atoms_inter+y_rotated_1[i]*masses[zz]
 z1_atoms_inter = z1_atoms_inter+z_rotated_1[i]*masses[zz]
 tot_mass1 = tot_mass1+masses[zz]
 if i!=(m-1) and res_seq11[i]!=res_seq11[i+1]:
 xt2.append(x1_atoms_inter/tot_mass1)
 yt2.append(y1_atoms_inter/tot_mass1)
 zt2.append(z1_atoms_inter/tot_mass1)
 j = j+1
 tot_mass1 =0
 x1_atoms_inter =0
 y1_atoms_inter=0
 z1_atoms_inter=0
 if i==m-1:
 xt2.append(x1_atoms_inter/tot_mass1)
 yt2.append(y1_atoms_inter/tot_mass1)
 zt2.append(z1_atoms_inter/tot_mass1)
 print('xt2')
print(len(xt2))
print('yt2')
print(len(yt2))
print('zt2')
print(len(zt2))
score,n_cut,i_ali = score_fun()
\#print('score,n_cut,i_ali',score,n_cut,i_ali)
if score_max <score:
score_max=score
out.write('score_max')
out.write('%f' %(score_max))
ka0=ka
for i in range(0,ka):
k_ali0[i]=k_ali[i]
out.write('k_ali0[i]')
out.write('%f' %(k_ali0[i]))

```
```

 print('k_ali0[i]')

 print(k_ali0)
 if it==n:
 break
 if n_cut==ka:
 neq=0
 for i in range(0,n_cut):
 if i_ali[i]==k_ali[i]:
 neq=neq+1
 if n_cut==neq:
 break
 \#out.write('number of residues in common')
\#out.write('%d' %(n_ali))
\#out.write('rmsd of common residues')
\#out.write('%f' %(rmsd_ali))
\#out.write('TMscore d0')
\#out.write('%f %f' %(score_max,d0))
print('number of residues in common %d' %(n_ali))
print('rmsd of common residues %f' %(rmsd_ali))
print('TMscore d0')
print('%f %f' %(score_max,d0))
cov = n_ali/count2
print('coverage')
print(cov)
TMfinal = score_max
print('TMfinal',TMfinal)
ttt = time.time()
tb}=\textrm{ttt}-\textrm{tt
print('time_taken')
print(tb)
out.close()

```

\section*{6. Results and Discussion:}

\subsection*{6.1 Original TMscore}
- Minimum coverage 0.10412
- maximum coverage 1.00000
- Average coverage0.798685
- min_aligned_length 53
- max_aligned_length 456
- min_rmsd 8.718909
- max_rmsd 25.813628
- min_tm_score 0.034275
- max_tm_score 0.230733
- Avg time taken 34.112822s
- average no: of residue in common144.990033
- Average rmsd of common residue 17.772953
- average TMscore 0.145405
- no of alignments between 0 and 17477
- no of alignments between 4 and1 0

\subsection*{6.2 Modified TMscore}
- Minimum coverage 0.10412
- maximum coverage 1.00000
- Average coverage0.798685
- min_aligned_length 53
- max_aligned_length 456
- min_rmsd 8.718909
- max_rmsd 25.813628
- min_tm_score 0.032508
- max_tm_score 0.225588
- avg time taken33.87848s
- average no: of residue in common 144.598006
- Average rmsd of common residue 17.7202
- Average Tmscore 0.136190
- no of alignments between 0 and .17
- no of alignments between .4 and1 0

\subsection*{6.3 Discussion, Conclusion and Future Work:}

As, we can see there is no difference in the coverage value between the two algorithms. Average coverage value of the two algorithms and minimum and maximum coverage is the same in both cases, which is true, because as long as we don't change the dataset, they will remain same for the same proteins taken into consideration. As coverage is number of aligned residues divided by the target length [2]. The same explanation is for the aligned length as well in both the cases. It will remain same as long as we don't change the dataset. RMSD value also remains same. As long as we don't take centre of masses into account in the calculation of RMSD value, it will remain same. There is lower shift in case of TM-score evaluation in modified algorithm. When we take centre of masses into account, value of TMscore gets lower. In modified one, average time taken is lower than original. Average numbers of residues in common are same in both cases. In, case of original TMscore, if we calculate the number of random alignments, they are lower and their number gets higher in case of modified one.

The center of mass of a protein is an artificial point useful for detecting important and simple features of proteins structure, shape and association [19]. The center of mass of a protein is used for defining constraints useful to predict protein tertiary models, to assess the global shape of proteins in protein-protein complexes and to measure their distance. One explanation is that when we take centre of masses into account so it happens that in a particular residue position in protein A there is a residue which is compact and light weight but the corresponding residue in the protein B may be very wide and heavier so that there is a great shift in the centre of mass positions, hence high distances between them and finally low TMscore, as TMscore calculations are inversely proportional to the distance. But when we are comparing two model structures of the same protein, centre of mass can give us useful findings, because in that case we have same residue correspondence. In that case, taking centre of mass into consideration becomes a true evaluation criteria.
Suggestions for future work:
(1) Comparision of the center of mass of a protein chain of one protein with the center of mass of a protein chain of other protein, and take the distance between the two in scoring function.
(2) The center of mass of two proteins chains and takes their distance in scoring function;
(3) For multi-chains complexes the centers of mass and the distance for each pair of chains and take their distance in scoring function.
(4) The distance to the center of mass for specific protein amino acid(s); for example first calculating surface residues and core residues and then doing all distance calculations and take their distance in scoring function.
(5) The average distance to the center of mass for a list of protein residues and take that distance in the calculation of coring function.
(6) Evaluation of RMSD value with centre of masses in all the above cases.
(7) Redefine the d0 value when we are taking centre of masses into account \(\mathrm{d} 0=1.24 *(\mathrm{nseqB}-15) * *(1.0 / 3.0)-1.8\).
It shud have some high value.

\section*{7. References:}
1) Aleksandar Poleksic Algorithms for optimal protein structure alignment, Bioinformatics (2009) 25 (21): 2751-2756.
2) Yang Zhang and Jeffrey Skolnick," TM-align: a protein structure alignment algorithm based on the TM-score", Nucleic Acids Research, 2005, Vol. 33, No. 7
3) Naomi Siew,Arne Elofson,Leszek Rychlewski,Daniel Fischer"Maxsub an automated measure for the assessment of protein structure prediction quality"Bioinformatics, Vol 16,no.9,2000,pages 776-785.
4) Ilya N.Shindyalov and Philip E.Bourne," Protein structure alignment by incremental combinatorial extension (CE) of the optimal path" Protein Engineering vol. 11 no. 9 pp.739-747, 1998.
5) Yang Zhang and Jeffrey Skolnick," Scoring Function for Automated Assessment of Protein Structure Template Quality, PROTEINS: Structure, Function, and Bioinformatics 57:702-710 (2004).
6) Protein bioinformatics: an algorithmic approach to sequence and structure analysis
I. Eidhammer, I. Jonassen and W. R. Taylor
7) C.A. Orengo ,W.R. Taylor"Protein Structure Alignment" J.Mol. Biol (1989) 208,1-22.
8) STEVENE . BRENNERC, YRUSC HOTHIAT, IMJ . P. HUBBARD, and ALEXEYG . MURZIN," Understanding Protein Structure: Using Scop for Fold Interpretation" J. Mol. Biol. 247, 536 (1995).
9) Alexey G. Murzin, Steven E. Brenner, Tim Hubbard and Cyrus Chothia," SCOP: A Structural Classification of Proteins Database for the Investigation of Sequences and Structures" J. Mol. Biol. (1995) 247, 536-540.
10) C.A. Oreng , W. R. Taylor "A Rapid method of Protein Structure Alignment" ,J.theor. \(\operatorname{Biol}(1990)\) 147,517-551.
11) Liisa Holm, Chris Sander"Mapping the Protein Universe", Science, New Series ,Vol.273, No. 5275 (Aug.2,1996),pp.595-602.
12) Mark S.Johnson "Comparision of protein structures", Current Opinion in Structural Biology 1991,1:334-344.
13) Tim J.P. Hubbard," RMS/Coverage Graphs: A Qualitative Method for Comparing ThreeDimensional Protein Structure Predictions" PROTEINS: Structure, Function, and Genetics Suppl 3:15-21 (1999).
14) Patrice Koehl "Protein Structure Similarities", Current Opinion in Structural Biology 2001,11:348-353.
15) David T Jones"Progress in Protein Structure Prediction", Current Opinion in Structural Biology 1997,7:377-387.
16) Nigel P.Brown, C.A. Orengo ,W.R. Taylor"A Protein Structure Comparision Methodology",Computers Chem. Vol.20,No.3,pp.359-380,1996.
17) Liisa Holm, and Pa " ivi Rosenstro"m," Dali server: conservation mapping in 3D", Nucleic Acids Research, 2010, Vol. 38, Web Server issue W545-W549.
18) Liisa Holm, and Chris Sander, "Protein structure comparision by distance matrices", J.Mol.Biol, (1993)233,123-138.
19) Susan Costantini, Antonella Paladino and Angelo M. Facchiano" CALCOM: A software for calculating the centre of mass of proteins" Bioinformation 2(7): 271-272 (2008)
20) Daisuke Kihara and Jeffrey Skolnick," The PDB is a Covering Set of Small Protein Structures", J. Mol. Biol. (2003) 334, 793-802
21) Kabsch, Wolfgang, (1976) "A solution of the best rotation to relate two sets of vectors", Acta Crystallographica 32:922.
22) Kabsch, Wolfgang, (1978) "A discussion of the solution for the best rotation to relate two sets of vectors", Acta Crystallographica A34:827-828.
23) Hitomi Hasegawa and Liisa Holm"Advances and Pitfalls of Protein Structural Alignment", Current Opinion in Structural Biology,2009,19:341-348.
24) David Shortle "Prediction of protein structure",Current Biology, Vol 10 No 2.
25) Protein Bioinformatics: From Sequence to Function, M. Michael Gromiha.
26) Todd C. Wood and William R. Pearson, "Evolution of Protein Sequences and Structures" J. Mol. Biol. (1999) 291, 977 \(\pm 995\).
27) Jean Francois Gibrat,Thomas Madej,Stephan H.Bryant ,"Surprising Similarities in Structure Comparision Current Opinion in Structural Biology 1996,6:377-385

\section*{8Appendix}

\subsection*{8.1 Results with original code:}
```

time1340798447.825823
pdb_35/1amm_.pdb pdb_35/1amuA.pdb
number of residues in common174
rmsd of common residues19.737357

```
coverage0. 341840
TMfinal0.097811
pdb_35/1amm_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues19.891091
coverage1.000000
TMfinal0. 143090
pdb_35/1amm_.pdb pdb_35/1an8_.pdb
number of residues in common174
rmsd of common residues17.630455
coverage0.844660
TMfinal0.169118
pdb_35/1amm_.pdb pdb_35/1an9A.pdb
number of residues in common174
rmsd of common residues18.921813
coverage0. 511760
TMfinal0.115626
pdb_35/1amm_.pdb pdb_35/1aoa_.pdb
number of residues in common174
```

rmsd of common residues19.904385
coverage0.704450
TMfinal0.131195
pdb_35/1amm_.pdb pdb_35/1aocA.pdb
number of residues in common174
rmsd of common residues21.627235
coverage0.994280
TMfinal0.143718
pdb_35/1amm_.pdb pdb_35/1aoeA.pdb
number of residues in common174
rmsd of common residues19.318845
coverage0.906250
TMfinal0.145482
pdb_35/1amm_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues19.966991
coverage1.000000
TMfinal0.161979
pdb_35/1amm_.pdb pdb_35/1aol_.pdb
number of residues in common174
rmsd of common residues18.983933
coverage0.763150
TMfinal0.145265
pdb_35/1amm_.pdb pdb_35/1aop_.pdb
number of residues in common174

```
```

rmsd of common residues17.459590
coverage0.381570
TMfinal0.096609
pdb_35/1amm_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues13.658349
coverage1.000000
TMfinal0.195342
pdb_35/1amm_.pdb pdb_35/1ap8_.pdb
number of residues in common174
rmsd of common residues19.524679
coverage0.816900
TMfinal0.145132
pdb_35/1amm_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues12.787075
coverage1.000000
TMfinal0.164220
pdb_35/1amm_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues11.308121
coverage1.000000
TMfinal0.178753
pdb_35/1amm_.pdb pdb_35/1aq0A.pdb
number of residues in common174

```
```

rmsd of common residues17.671342
coverage0.568620
TMfinal0.135122
pdb_35/1amm_.pdb pdb_35/1aqb_.pdb
number of residues in common174
rmsd of common residues20.675146
coverage0.994280
TMfinal0.197550
pdb_35/1amm_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues18.712583
coverage1.000000
TMfinal0.157286
pdb_35/1amm_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues16.502564
coverage1.000000
TMfinal0.143345
pdb_35/1amm_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues14.431519
coverage1.000000
TMfinal0.187136
pdb_35/1amm_.pdb pdb_35/1aquA.pdb
number of residues in common174

```
```

rmsd of common residues19.426155
coverage0.619210
TMfinal0.135132
pdb_35/1amm_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues19.681408
coverage1.000000
TMfinal0.153145
pdb_35/1amm_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues18.693595
coverage1.000000
TMfinal0.161249
pdb_35/1amm_.pdb pdb_35/1at3A.pdb
number of residues in common174
rmsd of common residues18.870589
coverage0.801840
TMfinal0.163825
pdb_35/1amm_.pdb pdb_35/1atb_.pdb
pdb_35/1amm_.pdb pdb_35/1atg_.pdb
number of residues in common174
rmsd of common residues14.385261
coverage0.753240
TMfinal0.161386
pdb_35/1amuA.pdb pdb_35/1amm_.pdb

```
```

number of residues in common174
rmsd of common residues19.737357
coverage1.000000
TMfinal0.190308
pdb_35/1amuA.pdb pdb_35/1amp_.pdb
pdb_35/1amuA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues22.218321
coverage1.000000
TMfinal0.155664
pdb_35/1amuA.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues21.721178
coverage1.000000
TMfinal0.163495
pdb_35/1amuA.pdb pdb_35/1an9A.pdb
number of residues in common340
rmsd of common residues21.114435
coverage1.000000
TMfinal0.193054
pdb_35/1amuA.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues22.287718
coverage1.000000
TMfinal0.172720

```
```

pdb_35/1amuA.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues19.275388
coverage1.000000
TMfinal0.190400
pdb_35/1amuA.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues22.245406
coverage1.000000
TMfinal0.163386
pdb_35/1amuA.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues 21.324346
coverage1.000000
TMfinal0.161966
pdb_35/1amuA.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues19.585450
coverage1.000000
TMfinal0.194559
pdb_35/1amuA.pdb pdb_35/1aop_.pdb
number of residues in common456
rmsd of common residues21.696198
coverage1.000000
TMfinal0.230134

```
```

pdb_35/1amuA.pdb pdb_35/1aorA.pdb

```
pdb_35/1amuA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues15.107924
coverage1.000000
TMfinalo. 181411
pdb_35/1amuA.pdb pdb_35/1aozA.pdb
pdb_35/1amuA.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues 20.312366
coverage1.000000
TMfinalo. 169134
pdb_35/1amuA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues18.672592
coverage1.000000
TMfinal0.178974
pdb_35/1amuA.pdb pdb_35/1apmE.pdb
pdb_35/1amuA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues16.304880
coverage1.000000
TMfinal0.139662
pdb_35/1amuA.pdb pdb_35/1apxA.pdb
pdb_35/1amuA.pdb pdb_35/1aq0A.pdb
```

number of residues in common306
rmsd of common residues20.759635
coverage1.000000
TMfinal0.194609
pdb_35/1amuA.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues21.475181
coverage1.000000
TMfinal0.155102
pdb_35/1amuA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues19.874976
coverage1.000000
TMfinal0.153017
pdb_35/1amuA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues17.688878
coverage1.000000
TMfinal0.212389
pdb_35/1amuA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues18.986028
coverage1.000000
TMfinal0.170840
pdb_35/1amuA.pdb pdb_35/1aquA.pdb

```
```

number of residues in common281
rmsd of common residues24.078919
coverage1.000000
TMfinal0.164127
pdb_35/1amuA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues19.554735
coverage1.000000
TMfinal0.157966
pdb_35/1amuA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues20.442807
coverage1.000000
TMfinal0.135844
pdb_35/1amuA.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues22.425179
coverage1.000000
TMfinal0.164875
pdb_35/1amuA.pdb pdb_35/1atb_.pdb
pdb_35/1amuA.pdb pdb_35/latg_.pdb
number of residues in common231
rmsd of common residues19.793872
coverage1.000000
TMfinal0.169708

```
```

pdb_35/1amx_.pdb pdb_35/1amm_.pdb
number of residues in common150
rmsd of common residues19.891091
coverage0.862060
TMfinal0.134778
pdb_35/1amx_.pdb pdb_35/1amp_.pdb
pdb_35/1amx_.pdb pdb_35/1amuA.pdb
number of residues in common150
rmsd of common residues22.218321
coverage0.294690
TMfinal0.079140
pdb_35/1amx_.pdb pdb_35/1an8_.pdb
number of residues in common150
rmsd of common residues19.393080
coverage0.728150
TMfinal0.122303
pdb_35/1amx_.pdb pdb_35/1an9A.pdb
number of residues in common150
rmsd of common residues20.638173
coverage0.441170
TMfinal0.115788
pdb_35/1amx_.pdb pdb_35/1aoa_.pdb
number of residues in common150
rmsd of common residues18.519452
coverage0.607280

```
```

TMfinal0.138593
pdb_35/1amx_.pdb pdb_35/1aocA.pdb
number of residues in common150
rmsd of common residues18.197335
coverage0.857140
TMfinal0.157869
pdb_35/1amx_.pdb pdb_35/1aoeA.pdb
number of residues in common150
rmsd of common residues17.193091
coverage0.781250
TMfinal0.171791
pdb_35/1amx_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues17.186102
coverage1.000000
TMfinal0.178064
pdb_35/1amx_.pdb pdb_35/1aol_.pdb
number of residues in common150
rmsd of common residues18.837804
coverage0.657890
TMfinal0.120383
pdb_35/1amx_.pdb pdb_35/1aop_.pdb
number of residues in common150
rmsd of common residues19.634690
coverage0.328940

```

TMfinal0.088180
pdb_35/1amx_.pdb pdb_35/1aorA.pdb pdb_35/1amx_.pdb pdb_35/1aoy_.pdb number of residues in common78
rmsd of common residues14.528715
coverage1. 000000
TMfinalo. 179442
pdb_35/1amx_.pdb pdb_35/1aozA.pdb
pdb_35/1amx_.pdb pdb_35/1ap8_.pdb
number of residues in common150
rmsd of common residues22.776661
coverage0. 704220
TMfinalo. 121070
pdb_35/1amx_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues11.751448
coverage1.000000
TMfinal0.198923
pdb_35/1amx_.pdb pdb_35/1apmE.pdb
pdb_35/1amx_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues9.855834
coverage1.000000
TMfinal0.186915
pdb_35/1amx_.pdb pdb_35/1apxA.pdb
```

pdb_35/1amx_.pdb pdb_35/1aq0A.pdb
number of residues in common150
rmsd of common residues18.045554
coverage0.490190
TMfinal0.114406
pdb_35/1amx_.pdb pdb_35/1aqb_.pdb
number of residues in common150
rmsd of common residues16.281107
coverage0.857140
TMfinal0.175415
pdb_35/1amx_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues16.714081
coverage1.000000
TMfinal0.180817
pdb_35/1amx_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues15.002468
coverage1.000000
TMfinal0.200535
pdb_35/1amx_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues19.973741
coverage1.000000
TMfinal0.144835

```
```

pdb_35/1amx_.pdb pdb_35/1aquA.pdb
number of residues in common150
rmsd of common residues16.372136
coverage0.533800
TMfinal0.128734
pdb_35/1amx_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues17.044477
coverage1.000000
TMfinal0.156258
pdb_35/1amx_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues15.354356
coverage1.000000
TMfinal0.166039
pdb_35/1amx_.pdb pdb_35/1at3A.pdb
number of residues in common150
rmsd of common residues18.043908
coverage0.691240
TMfinal0.150309
pdb_35/1amx_.pdb pdb_35/1atb_.pdb
pdb_35/1amx_.pdb pdb_35/1atg_.pdb
number of residues in common150
rmsd of common residues19.733939
coverage0.649350

```
```

TMfinal0.137481

```
pdb_35/1an8_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues17.630455
coverage1.000000
TMfinal0.184803
pdb_35/1an8_.pdb pdb_35/1amp_.pdb
pdb_35/1an8_.pdb pdb_35/1amuA.pdb
number of residues in common206
rmsd of common residues21.721178
coverage0. 404710
TMfinal0. 100995
pdb_35/1an8_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues19.393080
coverage1.000000
TMfinal0.142865
pdb_35/1an8_.pdb pdb_35/1an9A.pdb
number of residues in common206
rmsd of common residues22.110851
coverage 0.605880
TMfinal0.111643
pdb_35/1an8_.pdb pdb_35/1aoa_.pdb
number of residues in common206
rmsd of common residues19.866652
```

coverage0.834000
TMfinal0.135950
pdb_35/1an8_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues20.898762
coverage1.000000
TMfinal0.134125
pdb_35/1an8_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues18.545583
coverage1.000000
TMfinal0.187190
pdb_35/1an8_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues16.850978
coverage1.000000
TMfinal0.175772
pdb_35/1an8_.pdb pdb_35/1aol_.pdb
number of residues in common206
rmsd of common residues20.349374
coverage0.903500
TMfinal0.149221
pdb_35/1an8_.pdb pdb_35/1aop_.pdb
number of residues in common206
rmsd of common residues19.277687

```
```

coverage0.451750
TMfinal0.107538
pdb_35/1an8_.pdb pdb_35/1aorA.pdb
pdb_35/1an8_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues12.626557
coverage1.000000
TMfinal0.175910
pdb_35/1an8_.pdb pdb_35/1aozA.pdb
pdb_35/1an8_.pdb pdb_35/1ap8_.pdb
number of residues in common206
rmsd of common residues20.841873
coverage0.967130
TMfinal0.169690
pdb_35/1an8_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.370451
coverage1.000000
TMfinal0.164993
pdb_35/1an8_.pdb pdb_35/1apmE.pdb
pdb_35/1an8_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues11.416533
coverage1.000000
TMfinal0.183252

```
```

pdb_35/1an8_.pdb pdb_35/1apxA.pdb
pdb_35/1an8_.pdb pdb_35/1aq0A.pdb
number of residues in common206
rmsd of common residues19.755022
coverage0.673200
TMfinal0.131333
pdb_35/1an8_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues17.852260
coverage1.000000
TMfinal0.162187
pdb_35/1an8_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues18.575698
coverage1.000000
TMfinal0.150636
pdb_35/1an8_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues16.580280
coverage1.000000
TMfinal0.157469
pdb_35/1an8_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues16.211305
coverage1.000000

```
```

TMfinal0.170834
pdb_35/1an8_.pdb pdb_35/1aquA.pdb
number of residues in common206
rmsd of common residues19.156693
coverage0.733090
TMfinal0.141976
pdb_35/1an8_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues17.080092
coverage1.000000
TMfinal0.180772
pdb_35/1an8_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues19.193526
coverage1.000000
TMfinal0.157238
pdb_35/1an8_.pdb pdb_35/1at3A.pdb
number of residues in common206
rmsd of common residues20.984940
coverage0.949300
TMfinal0.153513
pdb_35/1an8_.pdb pdb_35/1atb_.pdb
pdb_35/1an8_.pdb pdb_35/latg_.pdb
number of residues in common206
rmsd of common residues20.044364

```
```

coverage0.891770
TMfinal0.150510
pdb_35/1an9A.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues18.921813
coverage1.000000
TMfinal0.157156
pdb_35/1an9A.pdb pdb_35/1amp_.pdb
pdb_35/1an9A.pdb pdb_35/1amuA.pdb
number of residues in common340
rmsd of common residues21.114435
coverage0.667970
TMfinal0.157067
pdb_35/1an9A.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues20.638173
coverage1.000000
TMfinal0.176075
pdb_35/1an9A.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues22.110851
coverage1.000000
TMfinal0.142325
pdb_35/1an9A.pdb pdb_35/1aoa_.pdb
number of residues in common247

```
```

rmsd of common residues23.744534
coverage1.000000
TMfinal0.154496
pdb_35/1an9A.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues24.106042
coverage1.000000
TMfinal0.137275
pdb_35/1an9A.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues20.100994
coverage1.000000
TMfinal0.170426
pdb_35/1an9A.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues22.315467
coverage1.000000
TMfinal0.148027
pdb_35/1an9A.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues22.570624
coverage1.000000
TMfinal0.162402
pdb_35/1an9A.pdb pdb_35/1aop_.pdb
number of residues in common340

```
```

rmsd of common residues25.813628
coverage0.745610
TMfinal0.130852
pdb_35/1an9A.pdb pdb_35/1aorA.pdb
pdb_35/1an9A.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.169116
coverage1.000000
TMfinal0.192271
pdb_35/1an9A.pdb pdb_35/1aozA.pdb
pdb_35/1an9A.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues23.593618
coverage1.000000
TMfinal0.147005
pdb_35/1an9A.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues12.764772
coverage1.000000
TMfinal0.160768
pdb_35/1an9A.pdb pdb_35/1apmE.pdb
pdb_35/1an9A.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues12.228052
coverage1.000000

```
```

TMfinal0.145656
pdb_35/1an9A.pdb pdb_35/1apxA.pdb
pdb_35/1an9A.pdb pdb_35/1aq0A.pdb
number of residues in common306
rmsd of common residues20.967718
coverage1.000000
TMfinal0.211753
pdb_35/1an9A.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues21.244033
coverage1.000000
TMfinal0.139198
pdb_35/1an9A.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues17.849008
coverage1.000000
TMfinal0.173408
pdb_35/1an9A.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues17.093370
coverage1.000000
TMfinal0.171655
pdb_35/1an9A.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues17.850258

```
```

coverage1.000000
TMfinal0.147447
pdb_35/1an9A.pdb pdb_35/1aquA.pdb
number of residues in common281
rmsd of common residues20.629246
coverage1.000000
TMfinal0.204471
pdb_35/1an9A.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues21.376947
coverage1.000000
TMfinal0.160483
pdb_35/1an9A.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues19.934466
coverage1.000000
TMfinal0.142337
pdb_35/1an9A.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues21.600447
coverage1.000000
TMfinal0.155963
pdb_35/1an9A.pdb pdb_35/1atb_.pdb
pdb_35/1an9A.pdb pdb_35/1atg_.pdb
number of residues in common231

```
```

rmsd of common residues22.707749
coverage1.000000
TMfinal0.165446
pdb_35/1aoa_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues19.904385
coverage1.000000
TMfinal0.154465
pdb_35/1aoa_.pdb pdb_35/1amp_.pdb
pdb_35/1aoa_.pdb pdb_35/1amuA.pdb
number of residues in common247
rmsd of common residues22.287718
coverage0.485260
TMfinal0.114788
pdb_35/1aoa_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues18.519452
coverage1.000000
TMfinal0.179600
pdb_35/1aoa_.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues19.866652
coverage1.000000
TMfinal0.147074
pdb_35/1aoa_.pdb pdb_35/1an9A.pdb

```
```

number of residues in common247
rmsd of common residues23.744534
coverage0.726470
TMfinal0.133157
pdb_35/1aoa_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues20.324616
coverage1.000000
TMfinal0.147082
pdb_35/1aoa_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues18.732762
coverage1.000000
TMfinal0.183886
pdb_35/1aoa_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues17.853984
coverage1.000000
TMfinal0.160040
pdb_35/1aoa_.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues18.748010
coverage1.000000
TMfinal0.194825
pdb_35/1aoa_.pdb pdb_35/1aop_.pdb

```
```

number of residues in common247
rmsd of common residues20.653704
coverage0.541660
TMfinal0.130976
pdb_35/1aoa_.pdb pdb_35/1aorA.pdb
pdb_35/1aoa_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues11.218511
coverage1.000000
TMfinal0.230733
pdb_35/1aoa_.pdb pdb_35/1aozA.pdb
pdb_35/1aoa_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues22.275435
coverage1.000000
TMfinal0.176820
pdb_35/1aoa_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues10.959227
coverage1.000000
TMfinal0.147874
pdb_35/1aoa_.pdb pdb_35/1apmE.pdb
pdb_35/1aoa_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues8.718909

```
```

coverage1.000000
TMfinal0.167607
pdb_35/1aoa_.pdb pdb_35/1apxA.pdb
pdb_35/1aoa_.pdb pdb_35/1aq0A.pdb
number of residues in common247
rmsd of common residues17.877404
coverage0.807190
TMfinal0.185028
pdb_35/1aoa_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues19.626528
coverage1.000000
TMfinal0.148759
pdb_35/1aoa_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues15.433222
coverage1.000000
TMfinal0.186639
pdb_35/1aoa_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues12.482603
coverage1.000000
TMfinal0.196602
pdb_35/1aoa_.pdb pdb_35/1aqt_.pdb
number of residues in common135

```
```

rmsd of common residues17.687686
coverage1.000000
TMfinal0.172289
pdb_35/1aoa_.pdb pdb_35/1aquA.pdb
number of residues in common247
rmsd of common residues20.849604
coverage0.879000
TMfinal0.163272
pdb_35/1aoa_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues17.292341
coverage1.000000
TMfinal0.166220
pdb_35/1aoa_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues17.197258
coverage1.000000
TMfinal0.176152
pdb_35/1aoa_.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues22.004300
coverage1.000000
TMfinal0.162685
pdb_35/1aoa_.pdb pdb_35/1atb_.pdb
pdb_35/1aoa_.pdb pdb_35/1atg_.pdb

```
```

number of residues in common231
rmsd of common residues20.104588
coverage1.000000
TMfinal0.214900
pdb_35/1aocA.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues21.627235
coverage1.000000
TMfinal0.144158
pdb_35/1aocA.pdb pdb_35/1amp_.pdb
pdb_35/1aocA.pdb pdb_35/1amuA.pdb
number of residues in common175
rmsd of common residues19.275388
coverage0.343810
TMfinal0.106930
pdb_35/1aocA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues18.197335
coverage1.000000
TMfinal0.168430
pdb_35/1aocA.pdb pdb_35/1an8_.pdb
number of residues in common175
rmsd of common residues20.898762
coverage0.849510
TMfinal0.124236

```
```

pdb_35/1aocA.pdb pdb_35/1an9A.pdb
number of residues in common175
rmsd of common residues24.106042
coverage0.514700
TMfinal0.099422
pdb_35/1aocA.pdb pdb_35/1aoa_.pdb
number of residues in common175
rmsd of common residues20.324616
coverage0.708500
TMfinal0.124166
pdb_35/1aocA.pdb pdb_35/1aoeA.pdb
number of residues in common175
rmsd of common residues21.138997
coverage0.911450
TMfinal0.143963
pdb_35/1aocA.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues20.124257
coverage1.000000
TMfinal0.136864
pdb_35/1aocA.pdb pdb_35/1aol_.pdb
number of residues in common175
rmsd of common residues21.127731
coverage0.767540
TMfinal0.136826

```
```

pdb_35/1aocA.pdb pdb_35/1aop_.pdb

```
number of residues in common175
rmsd of common residues19.158489
coverage0. 383770
TMfinal0.088759
pdb_35/1aocA.pdb pdb_35/1aorA.pdb
pdb_35/1aocA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.047876
coverage1.000000
TMfinal0.178581
pdb_35/1aocA.pdb pdb_35/1aozA.pdb
pdb_35/1aocA.pdb pdb_35/1ap8_.pdb
number of residues in common175
rmsd of common residues22.046566
coverage0. 821590
TMfinal0.153637
pdb_35/1aocA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues15.423336
coverage1.000000
TMfinal0. 175206
pdb_35/1aocA.pdb pdb_35/1apmE.pdb
pdb_35/1aocA.pdb pdb_35/1apq_.pdb
number of residues in common53
```

rmsd of common residues12.779239
coverage1.000000
TMfinal0.158412
pdb_35/1aocA.pdb pdb_35/1apxA.pdb
pdb_35/1aocA.pdb pdb_35/1aq0A.pdb
number of residues in common175
rmsd of common residues18.924453
coverage0.571890
TMfinal0.121015
pdb_35/1aocA.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues20.782697
coverage1.000000
TMfinal0.140680
pdb_35/1aocA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues20.300408
coverage1.000000
TMfinal0.140776
pdb_35/1aocA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues16.803439
coverage1.000000
TMfinal0.150510
pdb_35/1aocA.pdb pdb_35/1aqt_.pdb

```
```

number of residues in common135
rmsd of common residues20.246087
coverage1.000000
TMfinal0.149078
pdb_35/1aocA.pdb pdb_35/1aquA.pdb
number of residues in common175
rmsd of common residues19.468265
coverage0.622770
TMfinal0.142695
pdb_35/1aocA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues16.778563
coverage1.000000
TMfinal0.175465
pdb_35/1aocA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues19.185779
coverage1.000000
TMfinal0.152799
pdb_35/1aocA.pdb pdb_35/1at3A.pdb
number of residues in common175
rmsd of common residues17.933026
coverage0.806450
TMfinal0.166659
pdb_35/1aocA.pdb pdb_35/1atb_.pdb

```
```

pdb_35/1aocA.pdb pdb_35/1atg_.pdb
number of residues in common175
rmsd of common residues19.326012
coverage0.757570
TMfinal0.145858
pdb_35/1aoeA.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues19.318845
coverage1.000000
TMfinal0.152715
pdb_35/1aoeA.pdb pdb_35/1amp_.pdb
pdb_35/1aoeA.pdb pdb_35/1amuA.pdb
number of residues in common192
rmsd of common residues22.245406
coverage0.377210
TMfinal0.098444
pdb_35/1aoeA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues17.193091
coverage1.000000
TMfinal0.194077
pdb_35/1aoeA.pdb pdb_35/1an8_.pdb
number of residues in common192
rmsd of common residues18.545583
coverage0.932030

```
```

TMfinal0.181874

```
pdb_35/1aoeA.pdb pdb_35/1an9A.pdb
number of residues in common192
rmsd of common residues20.100994
coverage 0.564700
TMfinalo. 130492
pdb_35/1aoeA.pdb pdb_35/1aoa_.pdb
number of residues in common192
rmsd of common residues18.732762
coverage0.777320
TMfinal0.164287
pdb_35/1aoeA.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues21.138997
coverage1.000000
TMfinal0.150440
pdb_35/1aoeA.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues18.103426
coverage1.000000
TMfinalo. 175352
pdb_35/1aoeA.pdb pdb_35/1aol_.pdb
number of residues in common192
rmsd of common residues18.684735
coverage0.842100
```

TMfinal0.165600
pdb_35/1aoeA.pdb pdb_35/1aop_.pdb
number of residues in common192
rmsd of common residues20.957986
coverage0.421050
TMfinal0.096092
pdb_35/1aoeA.pdb pdb_35/1aorA.pdb
pdb_35/1aoeA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues11.248152
coverage1.000000
TMfinal0.169833
pdb_35/1aoeA.pdb pdb_35/1aozA.pdb
pdb_35/1aoeA.pdb pdb_35/1ap8_.pdb
number of residues in common192
rmsd of common residues22.072761
coverage0.901400
TMfinal0.134864
pdb_35/1aoeA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.267161
coverage1.000000
TMfinal0.153151
pdb_35/1aoeA.pdb pdb_35/1apmE.pdb
pdb_35/1aoeA.pdb pdb_35/1apq_.pdb

```
```

number of residues in common53
rmsd of common residues14.741566
coverage1.000000
TMfinal0.139589
pdb_35/1aoeA.pdb pdb_35/1apxA.pdb
pdb_35/1aoeA.pdb pdb_35/1aq0A.pdb
number of residues in common192
rmsd of common residues18.390247
coverage0.627450
TMfinal0.141971
pdb_35/1aoeA.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues15.254669
coverage1.000000
TMfinal0.192672
pdb_35/1aoeA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues17.246834
coverage1.000000
TMfinal0.169209
pdb_35/1aoeA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues14.018807
coverage1.000000
TMfinal0.180458

```
```

pdb_35/1aoeA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues17.706268
coverage1.000000
TMfinal0.138424
pdb_35/1aoeA.pdb pdb_35/1aquA.pdb
number of residues in common192
rmsd of common residues17.393857
coverage0.683270
TMfinal0.158273
pdb_35/1aoeA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues17.493066
coverage1.000000
TMfinal0.162716
pdb_35/1aoeA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues17.441553
coverage1.000000
TMfinal0.157740
pdb_35/1aoeA.pdb pdb_35/1at3A.pdb
number of residues in common192
rmsd of common residues18.553312
coverage0.884790
TMfinal0.185974

```
```

pdb_35/1aoeA.pdb pdb_35/1atb_.pdb
pdb_35/1aoeA.pdb pdb_35/1atg_.pdb
number of residues in common192
rmsd of common residues21.126670
coverage0.831160
TMfinal0.175189
pdb_35/1aohA.pdb pdb_35/1amm_.pdb
number of residues in common143
rmsd of common residues19.966991
coverage0.821830
TMfinal0.145079
pdb_35/1aohA.pdb pdb_35/1amp_.pdb
pdb_35/1aohA.pdb pdb_35/1amuA.pdb
number of residues in common143
rmsd of common residues21.324346
coverage0.280940
TMfinal0.082795
pdb_35/1aohA.pdb pdb_35/1amx_.pdb
number of residues in common143
rmsd of common residues17.186102
coverage0.953330
TMfinal0.173910
pdb_35/1aohA.pdb pdb_35/1an8_.pdb
number of residues in common143
rmsd of common residues16.850978

```
```

coverage0.694170
TMfinal0.147139
pdb_35/1aohA.pdb pdb_35/1an9A.pdb
number of residues in common143
rmsd of common residues22.315467
coverage0.420580
TMfinal0.095027
pdb_35/1aohA.pdb pdb_35/1aoa_.pdb
number of residues in common143
rmsd of common residues17.853984
coverage0.578940
TMfinal0.123646
pdb_35/1aohA.pdb pdb_35/1aocA.pdb
number of residues in common143
rmsd of common residues20.124257
coverage0.817140
TMfinal0.127217
pdb_35/1aohA.pdb pdb_35/1aoeA.pdb
number of residues in common143
rmsd of common residues18.103426
coverage0.744790
TMfinal0.154153
pdb_35/1aohA.pdb pdb_35/1aol_.pdb
number of residues in common143
rmsd of common residues19.790503

```
```

coverage0.627190
TMfinal0.111714
pdb_35/1aohA.pdb pdb_35/1aop_.pdb
number of residues in common143
rmsd of common residues18.896587
coverage0.313590
TMfinal0.079641
pdb_35/1aohA.pdb pdb_35/1aorA.pdb
pdb_35/1aohA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.524921
coverage1.000000
TMfinal0.162597
pdb_35/1aohA.pdb pdb_35/1aozA.pdb
pdb_35/1aohA.pdb pdb_35/1ap8_.pdb
number of residues in common143
rmsd of common residues22.050241
coverage0.671360
TMfinal0.147381
pdb_35/1aohA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues11.138078
coverage1.000000
TMfinal0.166709
pdb_35/1aohA.pdb pdb_35/1apmE.pdb

```
```

pdb_35/1aohA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues11.826628
coverage1.000000
TMfinal0.155543
pdb_35/1aohA.pdb pdb_35/1apxA.pdb
pdb_35/1aohA.pdb pdb_35/1aq0A.pdb
number of residues in common143
rmsd of common residues19.607984
coverage0.467320
TMfinal0.103414
pdb_35/1aohA.pdb pdb_35/1aqb_.pdb
number of residues in common143
rmsd of common residues16.627085
coverage0.817140
TMfinal0.164562
pdb_35/1aohA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues17.298634
coverage1.000000
TMfinal0.133226
pdb_35/1aohA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues16.882596
coverage1.000000

```
```

TMfinal0.147321

```
pdb_35/1aohA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues17.757580
coverage1. 000000
TMfinalo. 162565
pdb_35/1aohA.pdb pdb_35/1aquA.pdb
number of residues in common143
rmsd of common residues17.325502
coverage0.508890
TMfinal0.119889
pdb_35/1aohA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues 16.309530
coverage1.000000
TMfinal0.155927
pdb_35/1aohA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues18.057295
coverage1.000000
TMfinal0.146988
pdb_35/1aohA.pdb pdb_35/1at3A.pdb
number of residues in common143
rmsd of common residues18.281737
coverage0. 658980
```

TMfinal0.163189

```
pdb_35/1aohA.pdb pdb_35/1atb_.pdb
pdb_35/1aohA.pdb pdb_35/latg_.pdb
number of residues in common143
rmsd of common residues 20.037547
coverage0. 619040
TMfinal0.115423
pdb_35/1aol_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues18.983933
coverage1. 000000
TMfinal0.166776
pdb_35/1aol_.pdb pdb_35/1amp_.pdb
pdb_35/1aol_.pdb pdb_35/1amuA.pdb
number of residues in common228
rmsd of common residues19.585450
coverage0. 447930
TMfinal0.127419
pdb_35/1aol_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues18.837804
coverage1.000000
TMfinal0.145124
pdb_35/1aol_.pdb pdb_35/1an8_.pdb
number of residues in common206
```

rmsd of common residues20.349374
coverage1.000000
TMfinal0.156870
pdb_35/1aol_.pdb pdb_35/1an9A.pdb
number of residues in common228
rmsd of common residues22.570624
coverage0.670580
TMfinal0.132708
pdb_35/1aol_.pdb pdb_35/1aoa_.pdb
number of residues in common228
rmsd of common residues18.748010
coverage0.923070
TMfinal0.187577
pdb_35/1aol_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues21.127731
coverage1.000000
TMfinal0.155918
pdb_35/1aol_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues18.684735
coverage1.000000
TMfinal0.179937
pdb_35/1aol_.pdb pdb_35/1aohA.pdb
number of residues in common143

```
```

rmsd of common residues19.790503
coverage1.000000
TMfinal0.154099
pdb_35/1aol_.pdb pdb_35/1aop_.pdb
number of residues in common228
rmsd of common residues20.740942
coverage0.500000
TMfinal0.123125
pdb_35/1aol_.pdb pdb_35/1aorA.pdb
pdb_35/1aol_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues17.136313
coverage1.000000
TMfinal0.129204
pdb_35/1aol_.pdb pdb_35/1aozA.pdb
pdb_35/1aol_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues21.205976
coverage1.000000
TMfinalo.159137
pdb_35/1aol_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.400698
coverage1.000000
TMfinal0.139505

```
```

pdb_35/1aol_.pdb pdb_35/1apmE.pdb
pdb_35/1aol_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues11.581109
coverage1.000000
TMfinal0.143496
pdb_35/1aol_.pdb pdb_35/1apxA.pdb
pdb_35/1aol_.pdb pdb_35/1aq0A.pdb
number of residues in common228
rmsd of common residues20.697081
coverage0.745090
TMfinal0.142709
pdb_35/1aol_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues18.058771
coverage1.000000
TMfinal0.170716
pdb_35/1aol_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues18.788377
coverage1.000000
TMfinal0.158582
pdb_35/1aol_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues14.661004

```
```

coverage1.000000
TMfinal0.154988
pdb_35/1aol_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues19.204563
coverage1.000000
TMfinal0.156105
pdb_35/1aol_.pdb pdb_35/1aquA.pdb
number of residues in common228
rmsd of common residues20.406063
coverage0.811380
TMfinal0.174805
pdb_35/1aol_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues19.879900
coverage1.000000
TMfinal0.136552
pdb_35/1aol_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues17.754407
coverage1.000000
TMfinal0.130177
pdb_35/1aol_.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues18.952376

```
```

coverage1.000000
TMfinal0.191524
pdb_35/1aol_.pdb pdb_35/1atb_.pdb
pdb_35/1aol_.pdb pdb_35/1atg_.pdb
number of residues in common228
rmsd of common residues21.435441
coverage0.987010
TMfinal0.170492
pdb_35/1aop_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues17.459590
coverage1.000000
TMfinal0.157173
pdb_35/1aop_.pdb pdb_35/1amp_.pdb
pdb_35/1aop_.pdb pdb_35/1amuA.pdb
number of residues in common456
rmsd of common residues21.696198
coverage0.895870
TMfinal0.217158
pdb_35/1aop_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues19.634690
coverage1.000000
TMfinal0.158127
pdb_35/1aop_.pdb pdb_35/1an8_.pdb

```
```

number of residues in common206
rmsd of common residues19.277687
coverage1.000000
TMfinal0.162554
pdb_35/1aop_.pdb pdb_35/1an9A.pdb
number of residues in common340
rmsd of common residues25.813628
coverage1.000000
TMfinal0.147070
pdb_35/1aop_.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues20.653704
coverage1.000000
TMfinal0.183098
pdb_35/1aop_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues19.158489
coverage1.000000
TMfinal0.142231
pdb_35/1aop_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues20.957986
coverage1.000000
TMfinal0.148942
pdb_35/1aop_.pdb pdb_35/1aohA.pdb

```
```

number of residues in common143
rmsd of common residues18.896587
coverage1.000000
TMfinal0.156286
pdb_35/1aop_.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues20.740942
coverage1.000000
TMfinal0.173656
pdb_35/1aop_.pdb pdb_35/1aorA.pdb
pdb_35/1aop_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.198814
coverage1.000000
TMfinal0.169275
pdb_35/1aop_.pdb pdb_35/1aozA.pdb
pdb_35/1aop_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues21.839926
coverage1.000000
TMfinal0.156520
pdb_35/1aop_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues12.548253
coverage1.000000

```
```

TMfinal0.159369

```
pdb_35/1aop_.pdb pdb_35/1apmE.pdb
pdb_35/1aop_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues12.347238
coverage1.000000
TMfinalo.162781
pdb_35/1aop_.pdb pdb_35/1apxA.pdb
pdb_35/1aop_.pdb pdb_35/1aq0A.pdb
number of residues in common306
rmsd of common residues21.444117
coverage1.000000
TMfinal0.188088
pdb_35/1aop_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues20.440615
coverage1.000000
TMfinal0.153963
pdb_35/1aop_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues16.571488
coverage1.000000
TMfinal0.134705
pdb_35/1aop_.pdb pdb_35/1aqe_.pdb
number of residues in common110
```

rmsd of common residues16.339511
coverage1.000000
TMfinal0.165353
pdb_35/1aop_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues15.418265
coverage1.000000
TMfinal0.180106
pdb_35/1aop_.pdb pdb_35/1aquA.pdb
number of residues in common281
rmsd of common residues21.554555
coverage1.000000
TMfinal0.169653
pdb_35/1aop_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues19.457345
coverage1.000000
TMfinal0.130526
pdb_35/1aop_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues17.148450
coverage1.000000
TMfinal0.156789
pdb_35/1aop_.pdb pdb_35/1at3A.pdb
number of residues in common217

```
```

rmsd of common residues21.027798
coverage1.000000
TMfinal0.173091
pdb_35/1aop_.pdb pdb_35/1atb_.pdb
pdb_35/1aop_.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues22.069328
coverage1.000000
TMfinal0.179866
pdb_35/1aoy_.pdb pdb_35/1amm_.pdb
number of residues in common78
rmsd of common residues13.658349
coverage0.448270
TMfinal0.127370
pdb_35/1aoy_.pdb pdb_35/1amp_.pdb
pdb_35/1aoy_.pdb pdb_35/1amuA.pdb
number of residues in common78
rmsd of common residues15.107924
coverage0.153240
TMfinal0.051697
pdb_35/1aoy_.pdb pdb_35/1amx_.pdb
number of residues in common78
rmsd of common residues14.528715
coverage0.520000
TMfinal0.130657

```
```

pdb_35/1aoy_.pdb pdb_35/1an8_.pdb
number of residues in common78
rmsd of common residues12.626557
coverage0.378640
TMfinal0.113603
pdb_35/1aoy_.pdb pdb_35/1an9A.pdb
number of residues in common78
rmsd of common residues14.169116
coverage0.229410
TMfinal0.084484
pdb_35/1aoy_.pdb pdb_35/1aoa_.pdb
number of residues in common78
rmsd of common residues11.218511
coverage0.315780
TMfinal0.110120
pdb_35/1aoy_.pdb pdb_35/1aocA.pdb
number of residues in common78
rmsd of common residues14.047876
coverage0.445710
TMfinal0.108353
pdb_35/1aoy_.pdb pdb_35/1aoeA.pdb
number of residues in common78
rmsd of common residues11.248152
coverage0.406250
TMfinal0.117689

```
```

pdb_35/1aoy_.pdb pdb_35/1aohA.pdb
number of residues in common78
rmsd of common residues14.524921
coverage0.545450
TMfinal0.114991
pdb_35/1aoy_.pdb pdb_35/1aol_.pdb
number of residues in common78
rmsd of common residues17.136313
coverage0.342100
TMfinal0.079761
pdb_35/1aoy_.pdb pdb_35/1aop_.pdb
number of residues in common78
rmsd of common residues14.198814
coverage0.171050
TMfinal0.065144
pdb_35/1aoy_.pdb pdb_35/1ap8_.pdb
number of residues in common78
rmsd of common residues21.607494
coverage0.366190
TMfinal0.071489
pdb_35/1aoy_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.152012
coverage1.000000
TMfinal0.178917

```
```

pdb_35/1aoy_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues11.183607
coverage1.000000
TMfinal0.155871
pdb_35/1aoy_.pdb pdb_35/1aq0A.pdb
number of residues in common78
rmsd of common residues14.927847
coverage0.254900
TMfinal0.076209
pdb_35/1aoy_.pdb pdb_35/1aqb_.pdb
number of residues in common78
rmsd of common residues14.177464
coverage0.445710
TMfinal0.108791
pdb_35/1aoy_.pdb pdb_35/1aqcA.pdb
number of residues in common78
rmsd of common residues15.312153
coverage0.644620
TMfinal0.131275
pdb_35/1aoy_.pdb pdb_35/1aqe_.pdb
number of residues in common78
rmsd of common residues13.566144
coverage0.709090
TMfinal0.136303

```
```

pdb_35/1aoy_.pdb pdb_35/1aqt_.pdb
number of residues in common78
rmsd of common residues13.323101
coverage0.577770
TMfinal0.124300
pdb_35/1aoy_.pdb pdb_35/1aquA.pdb
number of residues in common78
rmsd of common residues14.805076
coverage0.277580
TMfinal0.075269
pdb_35/1aoy_.pdb pdb_35/1aqzA.pdb
number of residues in common78
rmsd of common residues14.238004
coverage0.549290
TMfinal0.123548
pdb_35/1aoy_.pdb pdb_35/1at0_.pdb
number of residues in common78
rmsd of common residues15.061864
coverage0.549290
TMfinal0.106387
pdb_35/1aoy_.pdb pdb_35/1at3A.pdb
number of residues in common78
rmsd of common residues13.522765
coverage0.359440
TMfinal0.112384

```
```

pdb_35/1aoy_.pdb pdb_35/1atg_.pdb
number of residues in common78
rmsd of common residues14.675436
coverage0.337660
TMfinal0.099039
pdb_35/1ap8_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues19.524679
coverage1.000000
TMfinal0.159663
pdb_35/1ap8_.pdb pdb_35/1amuA.pdb
number of residues in common213
rmsd of common residues20.312366
coverage0.418460
TMfinal0.109252
pdb_35/1ap8_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues22.776661
coverage1.000000
TMfinal0.145818
pdb_35/1ap8_.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues20.841873
coverage1.000000
TMfinal0.173004

```
```

pdb_35/1ap8_.pdb pdb_35/1an9A.pdb
number of residues in common213
rmsd of common residues23.593618
coverage0.626470
TMfinal0.116231
pdb_35/1ap8_.pdb pdb_35/1aoa_.pdb
number of residues in common213
rmsd of common residues22.275435
coverage0.862340
TMfinal0.164650
pdb_35/1ap8_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues22.046566
coverage1.000000
TMfinal0.167700
pdb_35/1ap8_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues22.072761
coverage1.000000
TMfinal0.140375
pdb_35/1ap8_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues22.050241
coverage1.000000
TMfinal0.172940

```
```

pdb_35/1ap8_.pdb pdb_35/1aol_.pdb
number of residues in common213
rmsd of common residues21.205976
coverage0.934210
TMfinal0.154896
pdb_35/1ap8_.pdb pdb_35/1aop_.pdb
number of residues in common213
rmsd of common residues21.839926
coverage0.467100
TMfinal0.118062
pdb_35/1ap8_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues21.607494
coverage1.000000
TMfinal0.124728
pdb_35/1ap8_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues21.302682
coverage1.000000
TMfinal0.140132
pdb_35/1ap8_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues18.071859
coverage1.000000
TMfinal0.129546

```
```

pdb_35/1ap8_.pdb pdb_35/1aq0A.pdb

```
number of residues in common213
rmsd of common residues 21.333755
coverage0.696070
TMfinalo. 125361
pdb_35/1ap8_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues23.392765
coverage1.000000
TMfinal0. 149003
pdb_35/1ap8_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues23.997634
coverage1. 000000
TMfinalo. 141114
pdb_35/1ap8_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 21.923635
coverage1. 000000
TMfinalo. 137721
pdb_35/1ap8_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 22.071688
coverage1. 000000
TMfinal0.169741
```

pdb_35/1ap8_.pdb pdb_35/1aquA.pdb
number of residues in common213
rmsd of common residues21.121397
coverage0.758000
TMfinal0.161390
pdb_35/1ap8_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues20.735017
coverage1.000000
TMfinal0.169376
pdb_35/1ap8_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues19.702157
coverage1.000000
TMfinal0.145380
pdb_35/1ap8_.pdb pdb_35/1at3A.pdb
number of residues in common213
rmsd of common residues23.238933
coverage0.981560
TMfinal0.164675
pdb_35/1ap8_.pdb pdb_35/1atg_.pdb
number of residues in common213
rmsd of common residues22.062598
coverage0.922070
TMfinal0.148366

```
```

pdb_35/1apj_.pdb pdb_35/1amm_.pdb
number of residues in common74
rmsd of common residues12.787075
coverage0.425280
TMfinal0.114191
pdb_35/1apj_.pdb pdb_35/1amuA.pdb
number of residues in common74
rmsd of common residues18.672592
coverage0.145380
TMfinal0.055452
pdb_35/1apj_.pdb pdb_35/1amx_.pdb
number of residues in common74
rmsd of common residues11.751448
coverage0.493330
TMfinal0.140716
pdb_35/1apj_.pdb pdb_35/1an8_.pdb
number of residues in common74
rmsd of common residues14.370451
coverage0.359220
TMfinal0.105214
pdb_35/1apj_.pdb pdb_35/1an9A.pdb
number of residues in common74
rmsd of common residues12.764772
coverage0.217640
TMfinal0.075502

```
```

pdb_35/1apj_.pdb pdb_35/1aoa_.pdb
number of residues in common74
rmsd of common residues10.959227
coverage0.299590
TMfinal0.092840
pdb_35/1apj_.pdb pdb_35/1aocA.pdb
number of residues in common74
rmsd of common residues15.423336
coverage0.422850
TMfinal0.115307
pdb_35/1apj_.pdb pdb_35/1aoeA.pdb
number of residues in common74
rmsd of common residues14.267161
coverage0.385410
TMfinal0.100343
pdb_35/1apj_.pdb pdb_35/1aohA.pdb
number of residues in common74
rmsd of common residues11.138078
coverage0.517480
TMfinal0.128955
pdb_35/1apj_.pdb pdb_35/1aol_.pdb
number of residues in common74
rmsd of common residues14.400698
coverage0.324560
TMfinal0.083665

```
```

pdb_35/1apj_.pdb pdb_35/1aop_.pdb
number of residues in common74
rmsd of common residues12.548253
coverage0.162280
TMfinal0.066348
pdb_35/1apj_.pdb pdb_35/1aoy_.pdb
number of residues in common74
rmsd of common residues14.152012
coverage0.948710
TMfinal0.174539
pdb_35/1apj_.pdb pdb_35/1ap8_.pdb
number of residues in common74
rmsd of common residues 21.302682
coverage0.347410
TMfinal0.070503
pdb_35/1apj_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues10.146199
coverage1.000000
TMfinal0.197062
pdb_35/1apj_.pdb pdb_35/1aq0A.pdb
number of residues in common74
rmsd of common residues12.278370
coverage0.241830
TMfinal0.085226

```
```

pdb_35/1apj_.pdb pdb_35/1aqb_.pdb
number of residues in common74
rmsd of common residues14.499716
coverage0.422850
TMfinal0.091651
pdb_35/1apj_.pdb pdb_35/1aqcA.pdb
number of residues in common74
rmsd of common residues14.364467
coverage0.611570
TMfinal0.125625
pdb_35/1apj_.pdb pdb_35/1aqe_.pdb
number of residues in common74
rmsd of common residues12.675291
coverage0.672720
TMfinal0.167009
pdb_35/1apj_.pdb pdb_35/1aqt_.pdb
number of residues in common74
rmsd of common residues13.100471
coverage0.548140
TMfinal0.119051
pdb_35/1apj_.pdb pdb_35/1aquA.pdb
number of residues in common74
rmsd of common residues13.929327
coverage0.263340
TMfinal0.087960

```
```

pdb_35/1apj_.pdb pdb_35/1aqzA.pdb
number of residues in common74
rmsd of common residues13.794999
coverage0.521120
TMfinal0.112988
pdb_35/1apj_.pdb pdb_35/1at0_.pdb
number of residues in common74
rmsd of common residues11.498072
coverage0.521120
TMfinal0.116405
pdb_35/1apj_.pdb pdb_35/1at3A.pdb
number of residues in common74
rmsd of common residues14.551395
coverage0.341010
TMfinal0.090559
pdb_35/1apj_.pdb pdb_35/1atg_.pdb
number of residues in common74
rmsd of common residues11.748913
coverage0.320340
TMfinal0.096271
pdb_35/1apq_.pdb pdb_35/1amm_.pdb
number of residues in common53
rmsd of common residues11.308121
coverage0.304590
TMfinal0.100323

```
```

pdb_35/1apq_.pdb pdb_35/1amuA.pdb
number of residues in common53
rmsd of common residues16.304880
coverage0.104120
TMfinal0.034275
pdb_35/1apq_.pdb pdb_35/1amx_.pdb
number of residues in common53
rmsd of common residues9.855834
coverage0.353330
TMfinal0.112450
pdb_35/1apq_.pdb pdb_35/1an8_.pdb
number of residues in common53
rmsd of common residues11.416533
coverage0.257280
TMfinal0.097546
pdb_35/1apq_.pdb pdb_35/1an9A.pdb
number of residues in common53
rmsd of common residues12.228052
coverage0.155880
TMfinal0.060282
pdb_35/1apq_.pdb pdb_35/1aoa_.pdb
number of residues in common53
rmsd of common residues8.718909
coverage0.214570
TMfinal0.093502

```
```

pdb_35/1apq_.pdb pdb_35/1aocA.pdb
number of residues in common53
rmsd of common residues12.779239
coverage0.302850
TMfinal0.087317
pdb_35/1apq_.pdb pdb_35/1aoeA.pdb
number of residues in common53
rmsd of common residues14.741566
coverage0.276040
TMfinal0.078866
pdb_35/1apq_.pdb pdb_35/1aohA.pdb
number of residues in common53
rmsd of common residues11.826628
coverage0.370620
TMfinal0.091294
pdb_35/1apq_.pdb pdb_35/1aol_.pdb
number of residues in common53
rmsd of common residues11.581109
coverage0.232450
TMfinal0.074197
pdb_35/1apq_.pdb pdb_35/1aop_.pdb
number of residues in common53
rmsd of common residues12.347238
coverage0.116220
TMfinal0.052435

```
```

pdb_35/1apq_.pdb pdb_35/1aoy_.pdb
number of residues in common53
rmsd of common residues11.183607
coverage0.679480
TMfinal0.144892
pdb_35/1apq_.pdb pdb_35/1ap8_.pdb
number of residues in common53
rmsd of common residues18.071859
coverage0.248820
TMfinal0.066323
pdb_35/1apq_.pdb pdb_35/1apj_.pdb
number of residues in common53
rmsd of common residues10.146199
coverage0.716210
TMfinal0.180081
pdb_35/1apq_.pdb pdb_35/1aq0A.pdb
number of residues in common53
rmsd of common residues10.515152
coverage0.173200
TMfinal0.070059
pdb_35/1apq_.pdb pdb_35/1aqb_.pdb
number of residues in common53
rmsd of common residues10.186784
coverage0.302850
TMfinal0.098361

```
```

pdb_35/1apq_.pdb pdb_35/1aqcA.pdb
number of residues in common53
rmsd of common residues14.731629
coverage0.438010
TMfinal0.092742
pdb_35/1apq_.pdb pdb_35/1aqe_.pdb
number of residues in common53
rmsd of common residues10.476801
coverage0.481810
TMfinal0.130279
pdb_35/1apq_.pdb pdb_35/1aqt_.pdb
number of residues in common53
rmsd of common residues12.659478
coverage0.392590
TMfinal0.103832
pdb_35/1apq_.pdb pdb_35/1aquA.pdb
number of residues in common53
rmsd of common residues13.441735
coverage0.188610
TMfinal0.060458
pdb_35/1apq_.pdb pdb_35/1aqzA.pdb
number of residues in common53
rmsd of common residues12.542869
coverage0.373230
TMfinal0.091817

```
```

pdb_35/1apq_.pdb pdb_35/1at0_.pdb
number of residues in common53
rmsd of common residues13.276603
coverage0.373230
TMfinal0.096916
pdb_35/1apq_.pdb pdb_35/1at3A.pdb
number of residues in common53
rmsd of common residues13.283036
coverage0.244240
TMfinal0.065152
pdb_35/1apq_.pdb pdb_35/1atg_.pdb
number of residues in common53
rmsd of common residues12.436005
coverage0.229430
TMfinal0.074565
pdb_35/1aq0A.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues17.671342
coverage1.000000
TMfinal0.175298
pdb_35/1aq0A.pdb pdb_35/1amuA.pdb
number of residues in common306
rmsd of common residues20.759635
coverage0.601170
TMfinal0.146645

```
```

pdb_35/1aq0A.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues18.045554
coverage1.000000
TMfinal0.163771
pdb_35/1aq0A.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues19.755022
coverage1.000000
TMfinal0.162040
pdb_35/1aq0A.pdb pdb_35/1an9A.pdb
number of residues in common306
rmsd of common residues20.967718
coverage0.900000
TMfinal0.200506
pdb_35/1aq0A.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues17.877404
coverage1.000000
TMfinal0.206152
pdb_35/1aq0A.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues18.924453
coverage1.000000
TMfinal0.158827

```
```

pdb_35/1aq0A.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues18.390247
coverage1.000000
TMfinal0.186691
pdb_35/1aq0A.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues19.607984
coverage1.000000
TMfinal0.151859
pdb_35/1aq0A.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues20.697081
coverage1.000000
TMfinal0.165445
pdb_35/1aq0A.pdb pdb_35/1aop_.pdb
number of residues in common306
rmsd of common residues21.444117
coverage0.671050
TMfinal0.152861
pdb_35/1aq0A.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.927847
coverage1.000000
TMfinal0.144861

```
```

pdb_35/1aq0A.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues21.333755
coverage1.000000
TMfinal0.147702
pdb_35/1aq0A.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues12.278370
coverage1.000000
TMfinal0.167745
pdb_35/1aq0A.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues10.515152
coverage1.000000
TMfinal0.164255
pdb_35/1aq0A.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues19.261487
coverage1.000000
TMfinal0.172883
pdb_35/1aq0A.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues15.852089
coverage1.000000
TMfinal0.213609

```
```

pdb_35/1aq0A.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues14.908206
coverage1.000000
TMfinal0.208149
pdb_35/1aq0A.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues14.500546
coverage1.000000
TMfinal0.167294
pdb_35/1aq0A.pdb pdb_35/1aquA.pdb
number of residues in common281
rmsd of common residues22.537627
coverage1.000000
TMfinal0.160179
pdb_35/1aq0A.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues18.083662
coverage1.000000
TMfinal0.171316
pdb_35/1aq0A.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues15.976193
coverage1.000000
TMfinal0.162279

```
```

pdb_35/1aq0A.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues20.472847
coverage1.000000
TMfinal0.157513
pdb_35/1aq0A.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues21.313044
coverage1.000000
TMfinal0.168945
pdb_35/1aqb_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues20.675146
coverage1.000000
TMfinal0.198163
pdb_35/1aqb_.pdb pdb_35/1amuA.pdb
number of residues in common175
rmsd of common residues21.475181
coverage0.343810
TMfinal0.086969
pdb_35/1aqb_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues16.281107
coverage1.000000
TMfinal0.188303

```
```

pdb_35/1aqb_.pdb pdb_35/1an8_.pdb
number of residues in common175
rmsd of common residues17.852260
coverage0.849510
TMfinal0.151504
pdb_35/1aqb_.pdb pdb_35/1an9A.pdb
number of residues in common175
rmsd of common residues21.244033
coverage0.514700
TMfinal0.099763
pdb_35/1aqb_.pdb pdb_35/1aoa_.pdb
number of residues in common175
rmsd of common residues19.626528
coverage0.708500
TMfinal0.139810
pdb_35/1aqb_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues20.782697
coverage1.000000
TMfinal0.140680
pdb_35/1aqb_.pdb pdb_35/1aoeA.pdb
number of residues in common175
rmsd of common residues15.254669
coverage0.911450
TMfinal0.185345

```
```

pdb_35/1aqb_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues16.627085
coverage1.000000
TMfinal0.181511
pdb_35/1aqb_.pdb pdb_35/1aol_.pdb
number of residues in common175
rmsd of common residues18.058771
coverage0.767540
TMfinal0.153831
pdb_35/1aqb_.pdb pdb_35/1aop_.pdb
number of residues in common175
rmsd of common residues20.440615
coverage0.383770
TMfinal0.093122
pdb_35/1aqb_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.177464
coverage1.000000
TMfinal0.163053
pdb_35/1aqb_.pdb pdb_35/1ap8_.pdb
number of residues in common175
rmsd of common residues23.392765
coverage0.821590
TMfinal0.136367

```
```

pdb_35/1aqb_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.499716
coverage1.000000
TMfinal0.129715
pdb_35/1aqb_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues10.186784
coverage1.000000
TMfinal0.158138
pdb_35/1aqb_.pdb pdb_35/1aq0A.pdb
number of residues in common175
rmsd of common residues19.261487
coverage0.571890
TMfinal0.129859
pdb_35/1aqb_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues17.333204
coverage1.000000
TMfinal0.145467
pdb_35/1aqb_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues15.937471
coverage1.000000
TMfinal0.179705

```
```

pdb_35/1aqb_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues20.236544
coverage1.000000
TMfinal0.137050
pdb_35/1aqb_.pdb pdb_35/1aquA.pdb
number of residues in common175
rmsd of common residues18.069998
coverage0.622770
TMfinal0.143480
pdb_35/1aqb_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues17.787576
coverage1.000000
TMfinal0.155201
pdb_35/1aqb_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues17.859761
coverage1.000000
TMfinal0.153043
pdb_35/1aqb_.pdb pdb_35/1at3A.pdb
number of residues in common175
rmsd of common residues18.892587
coverage0.806450
TMfinal0.147788

```
```

pdb_35/1aqb_.pdb pdb_35/1atg_.pdb
number of residues in common175
rmsd of common residues20.474842
coverage0.757570
TMfinal0.137374
pdb_35/1aqcA.pdb pdb_35/1amm_.pdb
number of residues in common121
rmsd of common residues18.712583
coverage0.695400
TMfinal0.129785
pdb_35/1aqcA.pdb pdb_35/1amp_.pdb
pdb_35/1aqcA.pdb pdb_35/1amuA.pdb
number of residues in common121
rmsd of common residues19.874976
coverage0.237720
TMfinal0.071098
pdb_35/1aqcA.pdb pdb_35/1amx_.pdb
number of residues in common121
rmsd of common residues16.714081
coverage0.806660
TMfinal0.163911
pdb_35/1aqcA.pdb pdb_35/1an8_.pdb
number of residues in common121
rmsd of common residues18.575698
coverage0.587370

```
```

TMfinal0.117360
pdb_35/1aqcA.pdb pdb_35/1an9A.pdb
number of residues in common121
rmsd of common residues17.849008
coverage0.355880
TMfinal0.101225
pdb_35/1aqcA.pdb pdb_35/1aoa_.pdb
number of residues in common121
rmsd of common residues15.433222
coverage0.489870
TMfinal0.128234
pdb_35/1aqcA.pdb pdb_35/1aocA.pdb
number of residues in common121
rmsd of common residues20.300408
coverage0.691420
TMfinal0.118544
pdb_35/1aqcA.pdb pdb_35/1aoeA.pdb
number of residues in common121
rmsd of common residues17.246834
coverage0.630200
TMfinal0.133372
pdb_35/1aqcA.pdb pdb_35/1aohA.pdb
number of residues in common121
rmsd of common residues17.298634
coverage0.846150

```
```

TMfinal0.122605

```
pdb_35/1aqcA.pdb pdb_35/1aol_.pdb
number of residues in common121
rmsd of common residues18.788377
coverage0. 530700
TMfinal0. 124647
pdb_35/1aqcA.pdb pdb_35/1aop_.pdb
number of residues in common121
rmsd of common residues16.571488
coverage 0.265350
TMfinal0.075027
pdb_35/1aqcA.pdb pdb_35/1aorA.pdb
pdb_35/1aqcA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues15.312153
coverage1.000000
TMfinal0.155855
pdb_35/1aqcA.pdb pdb_35/1aozA.pdb
pdb_35/1aqcA.pdb pdb_35/1ap8_.pdb
number of residues in common121
rmsd of common residues23.997634
coverage0. 568070
TMfinal0.106084
pdb_35/1aqcA.pdb pdb_35/1apj_.pdb
number of residues in common74
```

rmsd of common residues14.364467
coverage1.000000
TMfinal0.160468
pdb_35/1aqcA.pdb pdb_35/1apmE.pdb
pdb_35/1aqcA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues14.731629
coverage1.000000
TMfinal0.133338
pdb_35/1aqcA.pdb pdb_35/1apxA.pdb
pdb_35/1aqcA.pdb pdb_35/1aq0A.pdb
number of residues in common121
rmsd of common residues15.852089
coverage0.395420
TMfinal0.123520
pdb_35/1aqcA.pdb pdb_35/1aqb_.pdb
number of residues in common121
rmsd of common residues17.333204
coverage0.691420
TMfinal0.123164
pdb_35/1aqcA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues15.169231
coverage1.000000
TMfinal0.190924

```
```

pdb_35/1aqcA.pdb pdb_35/1aqt_.pdb
number of residues in common121
rmsd of common residues19.089246
coverage0.896290
TMfinal0.148004
pdb_35/1aqcA.pdb pdb_35/1aquA.pdb
number of residues in common121
rmsd of common residues17.608923
coverage0.430600
TMfinal0.111281
pdb_35/1aqcA.pdb pdb_35/1aqzA.pdb
number of residues in common121
rmsd of common residues16.278623
coverage0.852110
TMfinal0.157612
pdb_35/1aqcA.pdb pdb_35/1at0_.pdb
number of residues in common121
rmsd of common residues15.460685
coverage0.852110
TMfinal0.158807
pdb_35/1aqcA.pdb pdb_35/1at3A.pdb
number of residues in common121
rmsd of common residues18.710968
coverage0.557600
TMfinal0.121326

```
```

pdb_35/1aqcA.pdb pdb_35/1atg_.pdb
number of residues in common121
rmsd of common residues19.120635
coverage0.523810
TMfinal0.099074
pdb_35/1aqe_.pdb pdb_35/1amm_.pdb
number of residues in common110
rmsd of common residues16.502564
coverage0.632180
TMfinal0.118010
pdb_35/1aqe_.pdb pdb_35/1amuA.pdb
number of residues in common110
rmsd of common residues17.688878
coverage0.216110
TMfinal0.084419
pdb_35/1aqe_.pdb pdb_35/1amx_.pdb
number of residues in common110
rmsd of common residues15.002468
coverage0.733330
TMfinal0.175664
pdb_35/1aqe_.pdb pdb_35/1an8_.pdb
number of residues in common110
rmsd of common residues16.580280
coverage0.533980
TMfinal0.110983

```
```

pdb_35/1aqe_.pdb pdb_35/1an9A.pdb
number of residues in common110
rmsd of common residues17.093370
coverage0.323520
TMfinal0.091449
pdb_35/1aqe_.pdb pdb_35/1aoa_.pdb
number of residues in common110
rmsd of common residues12.482603
coverage0.445340
TMfinal0.135173
pdb_35/1aqe_.pdb pdb_35/1aocA.pdb
number of residues in common110
rmsd of common residues16.803439
coverage0.628570
TMfinal0.121746
pdb_35/1aqe_.pdb pdb_35/1aoeA.pdb
number of residues in common110
rmsd of common residues14.018807
coverage0.572910
TMfinalo.142437
pdb_35/1aqe_.pdb pdb_35/1aohA.pdb
number of residues in common110
rmsd of common residues16.882596
coverage0.769230
TMfinal0.131036

```
```

pdb_35/1aqe_.pdb pdb_35/1aol_.pdb
number of residues in common110
rmsd of common residues14.661004
coverage0.482450
TMfinal0.112319
pdb_35/1aqe_.pdb pdb_35/1aop_.pdb
number of residues in common110
rmsd of common residues16.339511
coverage0.241220
TMfinal0.067674
pdb_35/1aqe_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues13.566144
coverage1.000000
TMfinal0.157340
pdb_35/1aqe_.pdb pdb_35/1ap8_.pdb
number of residues in common110
rmsd of common residues21.923635
coverage0.516430
TMfinal0.097937
pdb_35/1aqe_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues12.675291
coverage1.000000
TMfinal0.200019

```
```

pdb_35/1aqe_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues10.476801
coverage1.000000
TMfinal0.172039
pdb_35/1aqe_.pdb pdb_35/1aq0A.pdb
number of residues in common110
rmsd of common residues14.908206
coverage0.359470
TMfinal0.118435
pdb_35/1aqe_.pdb pdb_35/1aqb_.pdb
number of residues in common110
rmsd of common residues15.937471
coverage0.628570
TMfinal0.145437
pdb_35/1aqe_.pdb pdb_35/1aqcA.pdb
number of residues in common110
rmsd of common residues15.169231
coverage0.909090
TMfinal0.182579
pdb_35/1aqe_.pdb pdb_35/1aqt_.pdb
number of residues in common110
rmsd of common residues16.409157
coverage0.814810
TMfinal0.144499

```
```

pdb_35/1aqe_.pdb pdb_35/1aquA.pdb

```
number of residues in common110
rmsd of common residues14.137646
coverage0. 391450
TMfinal0. 123103
pdb_35/1aqe_.pdb pdb_35/1aqzA.pdb
number of residues in common110
rmsd of common residues15.375237
coverage0.774640
TMfinalo. 151175
pdb_35/1aqe_.pdb pdb_35/1at0_.pdb
number of residues in common110
rmsd of common residues13.685743
coverage0. 774640
TMfinal0.136641
pdb_35/1aqe_.pdb pdb_35/1at3A.pdb
number of residues in common110
rmsd of common residues15.709912
coverage0. 506910
TMfinalo. 111466
pdb_35/1aqe_.pdb pdb_35/1atg_.pdb
number of residues in common110
rmsd of common residues17.077941
coverage0.476190
TMfinal0. 105445
```

pdb_35/1aqt_.pdb pdb_35/1amm_.pdb
number of residues in common135
rmsd of common residues14.431519
coverage0.775860
TMfinal0.165875
pdb_35/1aqt_.pdb pdb_35/1amuA.pdb
number of residues in common135
rmsd of common residues18.986028
coverage0.265220
TMfinal0.081881
pdb_35/1aqt_.pdb pdb_35/1amx_.pdb
number of residues in common135
rmsd of common residues19.973741
coverage0.900000
TMfinal0.137935
pdb_35/1aqt_.pdb pdb_35/1an8_.pdb
number of residues in common135
rmsd of common residues16.211305
coverage0.655340
TMfinal0.141835
pdb_35/1aqt_.pdb pdb_35/1an9A.pdb
number of residues in common135
rmsd of common residues17.850258
coverage0.397050
TMfinal0.098665

```
```

pdb_35/1aqt_.pdb pdb_35/1aoa_.pdb
number of residues in common135
rmsd of common residues17.687686
coverage0.546550
TMfinal0.119054
pdb_35/1aqt_.pdb pdb_35/1aocA.pdb
number of residues in common135
rmsd of common residues20.246087
coverage0.771420
TMfinal0.131237
pdb_35/1aqt_.pdb pdb_35/1aoeA.pdb
number of residues in common135
rmsd of common residues17.706268
coverage0.703120
TMfinal0.119314
pdb_35/1aqt_.pdb pdb_35/1aohA.pdb
number of residues in common135
rmsd of common residues17.757580
coverage0.944050
TMfinal0.157727
pdb_35/1aqt_.pdb pdb_35/1aol_.pdb
number of residues in common135
rmsd of common residues19.204563
coverage0.592100
TMfinal0.123271

```
```

pdb_35/1aqt_.pdb pdb_35/1aop_.pdb
number of residues in common135
rmsd of common residues15.418265
coverage0.296050
TMfinal0.098608
pdb_35/1aqt_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues13.323101
coverage1.000000
TMfinal0.160894
pdb_35/1aqt_.pdb pdb_35/1ap8_.pdb
number of residues in common135
rmsd of common residues22.071688
coverage0.633800
TMfinal0.133596
pdb_35/1aqt_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues13.100471
coverage1.000000
TMfinal0.151291
pdb_35/1aqt_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues12.659478
coverage1.000000
TMfinal0.155287

```
```

pdb_35/1aqt_.pdb pdb_35/1aq0A.pdb

```
number of residues in common135
rmsd of common residues14.500546
coverage0. 441170
TMfinal0.116534
pdb_35/1aqt_.pdb pdb_35/1aqb_.pdb
number of residues in common135
rmsd of common residues20.236544
coverage0.771420
TMfinal0.119823
pdb_35/1aqt_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues19.089246
coverage1.000000
TMfinal0.156267
pdb_35/1aqt_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues16.409157
coverage1. 000000
TMfinalo. 159590
pdb_35/1aqt_.pdb pdb_35/1aquA.pdb
number of residues in common135
rmsd of common residues17.954278
coverage0. 480420
TMfinal0.124435
```

pdb_35/1aqt_.pdb pdb_35/1aqzA.pdb

```
number of residues in common135
rmsd of common residues17.811805
coverage0.950700
TMfinalo. 165331
pdb_35/1aqt_.pdb pdb_35/1at0_.pdb
number of residues in common135
rmsd of common residues18.643341
coverage0.950700
TMfinal0.137190
pdb_35/1aqt_.pdb pdb_35/1at3A.pdb
number of residues in common135
rmsd of common residues17.854322
coverage0. 622120
TMfinal0.117850
pdb_35/1aqt_.pdb pdb_35/1atg_.pdb
number of residues in common135
rmsd of common residues15.547058
coverage0. 584410
TMfinalo. 135934
pdb_35/1aquA.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues19.426155
coverage1.000000
TMfinal0.168974
```

pdb_35/1aquA.pdb pdb_35/1amuA.pdb
number of residues in common281
rmsd of common residues24.078919
coverage0.552060
TMfinal0.120212
pdb_35/1aquA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues16.372136
coverage1.000000
TMfinal0.168808
pdb_35/1aquA.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues19.156693
coverage1.000000
TMfinal0.164548
pdb_35/1aquA.pdb pdb_35/1an9A.pdb
number of residues in common281
rmsd of common residues20.629246
coverage0.826470
TMfinal0.186370
pdb_35/1aquA.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues20.849604
coverage1.000000
TMfinal0.173865

```
```

pdb_35/1aquA.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues19.468265
coverage1.000000
TMfinal0.179293
pdb_35/1aquA.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues17.393857
coverage1.000000
TMfinal0.189359
pdb_35/1aquA.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues17.325502
coverage1.000000
TMfinal0.175795
pdb_35/1aquA.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues20.406063
coverage1.000000
TMfinal0.195561
pdb_35/1aquA.pdb pdb_35/1aop_.pdb
number of residues in common281
rmsd of common residues21.554555
coverage0.616220
TMfinal0.134609

```
```

pdb_35/1aquA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.805076
coverage1.000000
TMfinal0.175991
pdb_35/1aquA.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues21.121397
coverage1.000000
TMfinal0.185942
pdb_35/1aquA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues13.929327
coverage1.000000
TMfinal0.165460
pdb_35/1aquA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues13.441735
coverage1.000000
TMfinal0.145900
pdb_35/1aquA.pdb pdb_35/1aq0A.pdb
number of residues in common281
rmsd of common residues22.537627
coverage0.918300
TMfinal0.154345

```
```

pdb_35/1aquA.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues18.069998
coverage1.000000
TMfinal0.183666
pdb_35/1aquA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues17.608923
coverage1.000000
TMfinal0.165952
pdb_35/1aquA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues14.137646
coverage1.000000
TMfinal0.198574
pdb_35/1aquA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues17.954278
coverage1.000000
TMfinal0.174173
pdb_35/1aquA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues15.862749
coverage1.000000
TMfinal0.162803

```
```

pdb_35/1aquA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues16.369786
coverage1.000000
TMfinal0.155062
pdb_35/1aquA.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues20.662016
coverage1.000000
TMfinal0.165238
pdb_35/1aquA.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues20.955674
coverage1.000000
TMfinal0.172893
pdb_35/1aqzA.pdb pdb_35/1amm_.pdb
number of residues in common142
rmsd of common residues19.681408
coverage0.816090
TMfinal0.135497
pdb_35/1aqzA.pdb pdb_35/1amuA.pdb
number of residues in common142
rmsd of common residues19.554735
coverage0.278970
TMfinal0.083744

```
```

pdb_35/1aqzA.pdb pdb_35/1amx_.pdb
number of residues in common142
rmsd of common residues17.044477
coverage0.946660
TMfinal0.152997
pdb_35/1aqzA.pdb pdb_35/1an8_.pdb
number of residues in common142
rmsd of common residues17.080092
coverage0.689320
TMfinal0.150181
pdb_35/1aqzA.pdb pdb_35/1an9A.pdb
number of residues in common142
rmsd of common residues21.376947
coverage0.417640
TMfinal0.103189
pdb_35/1aqzA.pdb pdb_35/1aoa_.pdb
number of residues in common142
rmsd of common residues17.292341
coverage0.574890
TMfinal0.127316
pdb_35/1aqzA.pdb pdb_35/1aocA.pdb
number of residues in common142
rmsd of common residues16.778563
coverage0.811420
TMfinal0.160218

```
```

pdb_35/1aqzA.pdb pdb_35/1aoeA.pdb
number of residues in common142
rmsd of common residues17.493066
coverage0.739580
TMfinal0.142405
pdb_35/1aqzA.pdb pdb_35/1aohA.pdb
number of residues in common142
rmsd of common residues16.309530
coverage0.993000
TMfinal0.155409
pdb_35/1aqzA.pdb pdb_35/1aol_.pdb
number of residues in common142
rmsd of common residues19.879900
coverage0.622800
TMfinal0.110775
pdb_35/1aqzA.pdb pdb_35/1aop_.pdb
number of residues in common142
rmsd of common residues19.457345
coverage0.311400
TMfinal0.073598
pdb_35/1aqzA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.238004
coverage1.000000
TMfinal0.160212

```
```

pdb_35/1aqzA.pdb pdb_35/1ap8_.pdb
number of residues in common142
rmsd of common residues20.735017
coverage0.666660
TMfinal0.136484
pdb_35/1aqzA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues13.794999
coverage1.000000
TMfinal0.144514
pdb_35/1aqzA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues12.542869
coverage1.000000
TMfinal0.142488
pdb_35/1aqzA.pdb pdb_35/1aq0A.pdb
number of residues in common142
rmsd of common residues18.083662
coverage0.464050
TMfinal0.118203
pdb_35/1aqzA.pdb pdb_35/1aqb_.pdb
number of residues in common142
rmsd of common residues17.787576
coverage0.811420
TMfinal0.141174

```
```

pdb_35/1aqzA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues16.278623
coverage1.000000
TMfinal0.169317
pdb_35/1aqzA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues15.375237
coverage1.000000
TMfinal0.168782
pdb_35/1aqzA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues17.811805
coverage1.000000
TMfinal0.169613
pdb_35/1aqzA.pdb pdb_35/1aquA.pdb
number of residues in common142
rmsd of common residues15.862749
coverage0.505330
TMfinal0.122051
pdb_35/1aqzA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues14.476397
coverage1.000000
TMfinal0.209702

```
```

pdb_35/1aqzA.pdb pdb_35/1at3A.pdb

```
number of residues in common142
rmsd of common residues17.762094
coverage0.654370
TMfinal0. 129077
pdb_35/1aqzA.pdb pdb_35/1atg_.pdb
number of residues in common142
rmsd of common residues18. 261920
coverage0. 614710
TMfinal0. 110794
pdb_35/1at0_.pdb pdb_35/1amm_.pdb
number of residues in common142
rmsd of common residues18.693595
coverage 0.816090
TMfinal0. 146224
pdb_35/1at0_.pdb pdb_35/1amuA.pdb
number of residues in common142
rmsd of common residues 20.442807
coverage 0.278970
TMfinal0.070405
pdb_35/1at0_.pdb pdb_35/1amx_.pdb
number of residues in common142
rmsd of common residues15.354356
coverage0.946660
TMfinalo.161587
```

pdb_35/1at0_.pdb pdb_35/1an8_.pdb
number of residues in common142
rmsd of common residues19.193526
coverage0.689320
TMfinal0.130893
pdb_35/1at0_.pdb pdb_35/1an9A.pdb
number of residues in common142
rmsd of common residues19.934466
coverage0.417640
TMfinal0.094108
pdb_35/1at0_.pdb pdb_35/1aoa_.pdb
number of residues in common142
rmsd of common residues17.197258
coverage0.574890
TMfinal0.132441
pdb_35/1at0_.pdb pdb_35/1aocA.pdb
number of residues in common142
rmsd of common residues19.185779
coverage0.811420
TMfinal0.138130
pdb_35/1at0_.pdb pdb_35/1aoeA.pdb
number of residues in common142
rmsd of common residues17.441553
coverage0.739580
TMfinal0.139025

```
```

pdb_35/1at0_.pdb pdb_35/1aohA.pdb
number of residues in common142
rmsd of common residues18.057295
coverage0.993000
TMfinal0.146578
pdb_35/1at0_.pdb pdb_35/1aol_.pdb
number of residues in common142
rmsd of common residues17.754407
coverage0.622800
TMfinal0.106243
pdb_35/1at0_.pdb pdb_35/1aop_.pdb
number of residues in common142
rmsd of common residues17.148450
coverage0.311400
TMfinal0.088730
pdb_35/1at0_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues15.061864
coverage1.000000
TMfinal0.138173
pdb_35/1at0_.pdb pdb_35/1ap8_.pdb
number of residues in common142
rmsd of common residues19.702157
coverage0.666660
TMfinal0.120293

```
```

pdb_35/1at0_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues11.498072
coverage1.000000
TMfinal0.157725
pdb_35/1at0_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues13.276603
coverage1.000000
TMfinal0.147954
pdb_35/1at0_.pdb pdb_35/1aq0A.pdb
number of residues in common142
rmsd of common residues15.976193
coverage0.464050
TMfinal0.117468
pdb_35/1at0_.pdb pdb_35/1aqb_.pdb
number of residues in common142
rmsd of common residues17.859761
coverage0.811420
TMfinal0.141098
pdb_35/1at0_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues15.460685
coverage1.000000
TMfinal0.168705

```
```

pdb_35/1at0_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues13.685743
coverage1.000000
TMfinal0.150167
pdb_35/1at0_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues18.643341
coverage1.000000
TMfinal0.140258
pdb_35/1at0_.pdb pdb_35/1aquA.pdb
number of residues in common142
rmsd of common residues16.369786
coverage0.505330
TMfinal0.109780
pdb_35/1at0_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues14.476397
coverage1.000000
TMfinal0.209702
pdb_35/1at0_.pdb pdb_35/1at3A.pdb
number of residues in common142
rmsd of common residues16.345438
coverage0.654370
TMfinal0.149183

```
```

pdb_35/1at0_.pdb pdb_35/1atg_.pdb
number of residues in common142
rmsd of common residues18.843293
coverage0.614710
TMfinal0.111522
pdb_35/1at3A.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues18.870589
coverage1.000000
TMfinal0.182586
pdb_35/1at3A.pdb pdb_35/1amuA.pdb
number of residues in common217
rmsd of common residues22.425179
coverage0.426320
TMfinal0.103186
pdb_35/1at3A.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues18.043908
coverage1.000000
TMfinal0.185543
pdb_35/1at3A.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues20.984940
coverage1.000000
TMfinal0.157094

```
```

pdb_35/1at3A.pdb pdb_35/1an9A.pdb
number of residues in common217
rmsd of common residues21.600447
coverage0.638230
TMfinal0.125239
pdb_35/1at3A.pdb pdb_35/1aoa_.pdb
number of residues in common217
rmsd of common residues22.004300
coverage0.878540
TMfinal0.152396
pdb_35/1at3A.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues17.933026
coverage1.000000
TMfinal0.184017
pdb_35/1at3A.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues18.553312
coverage1.000000
TMfinal0.196385
pdb_35/1at3A.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues18.281737
coverage1.000000
TMfinal0.203890

```
```

pdb_35/1at3A.pdb pdb_35/1aol_.pdb
number of residues in common217
rmsd of common residues18.952376
coverage0.951750
TMfinal0.186978
pdb_35/1at3A.pdb pdb_35/1aop_.pdb
number of residues in common217
rmsd of common residues21.027798
coverage0.475870
TMfinal0.115656
pdb_35/1at3A.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues13.522765
coverage1.000000
TMfinal0.196443
pdb_35/1at3A.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues23.238933
coverage1.000000
TMfinal0.166210
pdb_35/1at3A.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.551395
coverage1.000000

```
TMfinal0.149367
```

pdb_35/1at3A.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues13.283036
coverage1.000000
TMfinal0.155797
pdb_35/1at3A.pdb pdb_35/1aq0A.pdb
number of residues in common217
rmsd of common residues20.472847
coverage0.709150
TMfinal0.133195
pdb_35/1at3A.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues18.892587
coverage1.000000
TMfinal0.164164
pdb_35/1at3A.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues18.710968
coverage1.000000
TMfinal0.163939
pdb_35/1at3A.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues15.709912
coverage1.000000
TMfinal0.162176

```
```

pdb_35/1at3A.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues17.854322
coverage1.000000
TMfinal0.145023
pdb_35/1at3A.pdb pdb_35/1aquA.pdb
number of residues in common217
rmsd of common residues20.662016
coverage0.772240
TMfinal0.145698
pdb_35/1at3A.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues17.762094
coverage1.000000
TMfinal0.158802
pdb_35/1at3A.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues16.345438
coverage1.000000
TMfinal0.183309
pdb_35/1at3A.pdb pdb_35/1atg_.pdb
number of residues in common217
rmsd of common residues20.356250
coverage0.939390
TMfinal0.152118

```
```

pdb_35/1atg_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues14.385261
coverage1.000000
TMfinal0.180425
pdb_35/1atg_.pdb pdb_35/1amuA.pdb
number of residues in common231
rmsd of common residues19.793872
coverage0.453830
TMfinal0.115163
pdb_35/1atg_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues19.733939
coverage1.000000
TMfinal0.168855
pdb_35/1atg_.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues20.044364
coverage1.000000
TMfinal0.157360
pdb_35/1atg_.pdb pdb_35/1an9A.pdb
number of residues in common231
rmsd of common residues22.707749
coverage0.679410
TMfinal0.138267

```
```

pdb_35/1atg_.pdb pdb_35/1aoa_.pdb
number of residues in common231
rmsd of common residues20.104588
coverage0.935220
TMfinal0.208214
pdb_35/1atg_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues19.326012
coverage1.000000
TMfinal0.160966
pdb_35/1atg_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues21.126670
coverage1.000000
TMfinal0.191743
pdb_35/1atg_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues20.037547
coverage1.000000
TMfinal0.147234
pdb_35/1atg_.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues21.435441
coverage1.000000
TMfinal0.170989

```
```

pdb_35/1atg_.pdb pdb_35/1aop_.pdb
number of residues in common231
rmsd of common residues22.069328
coverage0.506570
TMfinal0.125362
pdb_35/1atg_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.675436
coverage1.000000
TMfinal0.194408
pdb_35/1atg_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues22.062598
coverage1.000000
TMfinal0.152622
pdb_35/1atg_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues11.748913
coverage1.000000
TMfinal0.163717
pdb_35/1atg_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues12.436005
coverage1.000000
TMfinal0.168471

```
```

pdb_35/1atg_.pdb pdb_35/1aq0A.pdb
number of residues in common231
rmsd of common residues21.313044
coverage0.754900
TMfinal0.145918
pdb_35/1atg_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues20.474842
coverage1.000000
TMfinal0.160696
pdb_35/1atg_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues19.120635
coverage1.000000
TMfinal0.135661
pdb_35/1atg_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues17.077941
coverage1.000000
TMfinal0.155732
pdb_35/1atg_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues15.547058
coverage1.000000
TMfinal0.179758

```
```

pdb_35/1atg_.pdb pdb_35/1aquA.pdb
number of residues in common231
rmsd of common residues20.955674
coverage0.822060
TMfinal0.155682
pdb_35/1atg_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues18.261920
coverage1.000000
TMfinal0.131204
pdb_35/1atg_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues18.843293
coverage1.000000
TMfinal0.141919
pdb_35/1atg_.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues20.356250
coverage1.000000
TMfinal0.156107
pdb_35/1atg_.pdb pdb_35/1atb_.pdb
number of residues in common62
rmsd of common residues12.595425
coverage1.000000
TMfinal0.172354

```
```

minimum coverage0.104120maximum coverage1.000000average
coverage0.798685min_aligned_length53
min_rmsd8.718909
min_tm_score0.034275
max_aligned_length456
max_rmsd25.813628
max_tm_score0.230733
time1340818983.744571
count602
sum_of_residues87284
sum_rmsd10699.317573
sum_tm87.533815
avg time taken34.112822
average no: of residue in common144.990033
rmsd of common residue17.772953
average TMscore0.145405
no of alignments between 0 and .17 477
no of alignments between . 4 andl 0

```

\subsection*{8.2 Results with modified code:}
time1340701429.184738
pdb_35/1amm_.pdb pdb_35/1amuA.pdb
number of residues in common174
rmsd of common residues 19.737357
TMfinal0.094839
pdb_35/1amm_.pdb pdb_35/1amx_.pdb number of residues in common150
rmsd of common residues19.891091
TMfinal0. 140656
pdb_35/1amm_.pdb pdb_35/1an8_.pdb number of residues in common 174
rmsd of common residues 17.630455
TMfinal0. 157357
pdb_35/1amm_.pdb pdb_35/1an9A.pdb
number of residues in common174
rmsd of common residues 18.921813
TMfinal0. 110498
pdb_35/1amm_.pdb pdb_35/1aoa_.pdb
number of residues in common174
rmsd of common residues 19.904385

TMfinal0. 127709
pdb_35/1amm_.pdb pdb_35/1aocA.pdb number of residues in common174
rmsd of common residues 21.627235

TMfinal0. 136207
pdb_35/1amm_.pdb pdb_35/1aoeA.pdb number of residues in common174 rmsd of common residues 19.318845

TMfinal0. 134164
pdb_35/1amm_.pdb pdb_35/1aohA.pdb
number of residues in common 143
rmsd of common residues 19.966991
TMfinal0. 143871
pdb_35/1amm_.pdb pdb_35/1aol_.pdb
number of residues in common174
rmsd of common residues 18.983933
TMfinal0. 134245
pdb_35/1amm_.pdb pdb_35/1aop_.pdb
number of residues in common174
rmsd of common residues17.459590
TMfinal0.095709
pdb_35/1amm_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 13.658349
TMfinal0. 166353
pdb_35/1amm_.pdb pdb_35/1ap8_.pdb
number of residues in common174
rmsd of common residues 19.524679
TMfinal0. 133849
pdb_35/1amm_.pdb pdb_35/1apj_.pdb number of residues in common74 rmsd of common residues 12.787075

TMfinal0.151982
pdb_35/1amm_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 11.308121
TMfinal0.146990
pdb_35/1amm_.pdb pdb_35/1aq0A.pdb
number of residues in common174
rmsd of common residues 17.671342
TMfinal0. 131028
pdb_35/1amm_.pdb pdb_35/1aqb_.pdb
number of residues in common174
rmsd of common residues 20.675146
TMfinal0. 183476
pdb_35/1amm_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues 18.712583
TMfinal0. 138406
pdb_35/1amm_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues16.502564
TMfinal0.130552
pdb_35/1amm_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 14.431519
TMfinal0.170718
pdb_35/1amm_.pdb pdb_35/1aquA.pdb number of residues in common 174
rmsd of common residues 19.426155
TMfinal0. 126871
pdb_35/1amm_.pdb pdb_35/1aqzA.pdb number of residues in common142
rmsd of common residues 19.681408
TMfinal0. 140459
pdb_35/1amm_.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues 18.693595
TMfinal0. 151839
pdb_35/1amm_.pdb pdb_35/1at3A.pdb
number of residues in common174
rmsd of common residues 18.870589
TMfinal0. 158666
pdb_35/1amm_.pdb pdb_35/1atb_.pdb
pdb_35/1amm_.pdb pdb_35/1atg_.pdb
number of residues in common174
rmsd of common residues 14.385261
TMfinal0. 151885
pdb_35/1amuA.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues 19.737357
TMfinal0. 178762
pdb_35/1amuA.pdb pdb_35/1amp_.pdb
pdb_35/1amuA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 22.218321
TMfinal0. 152109
pdb_35/1amuA.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 21.721178
TMfinal0. 151786
pdb_35/1amuA.pdb pdb_35/1an9A.pdb
number of residues in common340
rmsd of common residues 21.114435
TMfinal0. 185736
pdb_35/1amuA.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues 22.287718
TMfinal0. 164765
pdb_35/1amuA.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues 19.275388
TMfinal0. 179213
pdb_35/1amuA.pdb pdb_35/1aoeA.pdb
number of residues in common 192
rmsd of common residues 22.245406
TMfinal0. 154361
pdb_35/1amuA.pdb pdb_35/1aohA.pdb number of residues in common143 rmsd of common residues 21.324346

TMfinal0. 151576
pdb_35/1amuA.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues 19.585450
TMfinal0. 183552
pdb_35/1amuA.pdb pdb_35/1aop_.pdb
number of residues in common456
rmsd of common residues 21.696198
TMfinal0. 225588
pdb_35/1amuA.pdb pdb_35/1aorA.pdb
pdb_35/1amuA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 15.107924
TMfinal0. 160068
pdb_35/1amuA.pdb pdb_35/1aozA.pdb
pdb_35/1amuA.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues 20.312366
TMfinal0. 164190
pdb_35/1amuA.pdb pdb_35/1apj_.pdb number of residues in common74
rmsd of common residues 18.672592
TMfinal0. 164747
pdb_35/1amuA.pdb pdb_35/1apmE.pdb
pdb_35/1amuA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 16.304880
TMfinal0. 120777
pdb_35/1amuA.pdb pdb_35/1apxA.pdb
pdb_35/1amuA.pdb pdb_35/1aq0A.pdb
number of residues in common306
rmsd of common residues 20.759635
TMfinal0. 186949
pdb_35/1amuA.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues 21.475181
TMfinal0. 144483
pdb_35/1amuA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues 19.874976
TMfinal0. 142873
pdb_35/1amuA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues17.688878

TMfinal0. 194184
pdb_35/1amuA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 18.986028
TMfinal0. 156731
pdb_35/1amuA.pdb pdb_35/1aquA.pdb
number of residues in common 281
rmsd of common residues24.078919
TMfinal0. 155094
pdb_35/1amuA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues 19.554735
TMfinal0. 156711
pdb_35/1amuA.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues 20.442807
TMfinal0. 126381
pdb_35/1amuA.pdb pdb_35/1at3A.pdb number of residues in common217
rmsd of common residues 22.425179
TMfinal0. 160743
pdb_35/1amuA.pdb pdb_35/1atb_.pdb
pdb_35/1amuA.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues 19.793872

TMfinal0. 160422
pdb_35/1amx_.pdb pdb_35/1amm_.pdb
number of residues in common150
rmsd of common residues 19.891091
TMfinal0. 134356
pdb_35/1amx_.pdb pdb_35/1amp_.pdb
pdb_35/1amx_.pdb pdb_35/1amuA.pdb
number of residues in common150
rmsd of common residues 22.218321
TMfinal0.078363
pdb_35/1amx_.pdb pdb_35/1an8_.pdb
number of residues in common 150
rmsd of common residues 19.393080
TMfinal0. 115382
pdb_35/1amx_.pdb pdb_35/1an9A.pdb
number of residues in common150
rmsd of common residues20.638173
TMfinal0. 109490
pdb_35/1amx_.pdb pdb_35/1aoa_.pdb
number of residues in common 150
rmsd of common residues 18.519452
TMfinal0. 131219
pdb_35/1amx_.pdb pdb_35/1aocA.pdb
number of residues in common150
rmsd of common residues 18.197335

TMfinal0. 151929
pdb_35/1amx_.pdb pdb_35/1aoeA.pdb
number of residues in common150
rmsd of common residues17.193091
TMfinal0. 163931
pdb_35/1amx_.pdb pdb_35/1aohA.pdb
number of residues in common 143
rmsd of common residues17.186102
TMfinal0.167027
pdb_35/1amx_.pdb pdb_35/1aol_.pdb
number of residues in common150
rmsd of common residues 18.837804
TMfinal0.116202
pdb_35/1amx_.pdb pdb_35/1aop_.pdb
number of residues in common150
rmsd of common residues 19.634690
TMfinal0.084268
pdb_35/1amx_.pdb pdb_35/1aorA.pdb
pdb_35/1amx_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 14.528715
TMfinal0. 160286
pdb_35/1amx_.pdb pdb_35/1aozA.pdb pdb_35/1amx_.pdb pdb_35/1ap8_.pdb
number of residues in common150
rmsd of common residues 22.776661
TMfinal0.111031
pdb_35/1amx_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 11.751448
TMfinal0.170089
pdb_35/1amx_.pdb pdb_35/1apmE.pdb
pdb_35/1amx_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 9.855834
TMfinal0. 168297
pdb_35/1amx_.pdb pdb_35/1apxA.pdb
pdb_35/1amx_.pdb pdb_35/1aq0A.pdb
number of residues in common150
rmsd of common residues18.045554
TMfinal0.112079
pdb_35/1amx_.pdb pdb_35/1aqb_.pdb
number of residues in common150
rmsd of common residues 16.281107
TMfinal0. 164135
pdb_35/1amx_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues 16.714081
TMfinal0.167762
pdb_35/1amx_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 15.002468
TMfinal0. 180535
pdb_35/1amx_.pdb pdb_35/1aqt_.pdb
number of residues in common 135
rmsd of common residues 19.973741
TMfinal0. 143834
pdb_35/1amx_.pdb pdb_35/1aquA.pdb
number of residues in common150
rmsd of common residues 16.372136
TMfinal0. 123739
pdb_35/1amx_.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues 17.044477
TMfinal0.149622
pdb_35/1amx_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues 15.354356
TMfinal0. 155694
pdb_35/1amx_.pdb pdb_35/1at3A.pdb
number of residues in common150
rmsd of common residues 18.043908
TMfinal0. 142398
pdb_35/1amx_.pdb pdb_35/1atb_.pdb
pdb_35/1amx_.pdb pdb_35/1atg_.pdb
number of residues in common150
rmsd of common residues19.733939
TMfinal0.134619
pdb_35/1an8_.pdb pdb_35/1amm_.pdb number of residues in common174
rmsd of common residues17.630455
TMfinal0.169908
pdb_35/1an8_.pdb pdb_35/1amp_.pdb
pdb_35/1an8_.pdb pdb_35/1amuA.pdb
number of residues in common206
rmsd of common residues 21.721178
TMfinal0. 097757
pdb_35/1an8_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues19.393080
TMfinal0. 135357
pdb_35/1an8_.pdb pdb_35/1an9A.pdb
number of residues in common206
rmsd of common residues 22.110851
TMfinal0. 108194
pdb_35/1an8_.pdb pdb_35/1aoa_.pdb
number of residues in common206
rmsd of common residues 19.866652
TMfinal0. 132701
pdb_35/1an8_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues20.898762
TMfinal0. 127711
pdb_35/1an8_.pdb pdb_35/1aoeA.pdb number of residues in common192
rmsd of common residues 18.545583
TMfinal0. 179802
pdb_35/1an8_.pdb pdb_35/1aohA.pdb number of residues in common143
rmsd of common residues 16.850978
TMfinal0. 162367
pdb_35/1an8_.pdb pdb_35/1aol_.pdb
number of residues in common206
rmsd of common residues20.349374
TMfinal0. 139570
pdb_35/1an8_.pdb pdb_35/1aop_.pdb
number of residues in common206
rmsd of common residues 19.277687
TMfinal0. 105241
pdb_35/1an8_.pdb pdb_35/1aorA.pdb
pdb_35/1an8_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 12.626557
TMfinal0.160846
pdb_35/1an8_.pdb pdb_35/1aozA.pdb
pdb_35/1an8_.pdb pdb_35/1ap8_.pdb
number of residues in common206
rmsd of common residues20.841873
TMfinal0. 161543
pdb_35/1an8_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 14.370451
TMfinal0. 169772
pdb_35/1an8_.pdb pdb_35/1apmE.pdb
pdb_35/1an8_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 11.416533
TMfinal0. 148762
pdb_35/1an8_.pdb pdb_35/1apxA.pdb
pdb_35/1an8_.pdb pdb_35/1aq0A.pdb
number of residues in common206
rmsd of common residues 19.755022
TMfinal0. 123448
pdb_35/1an8_.pdb pdb_35/1aqb_.pdb
number of residues in common 175
rmsd of common residues 17.852260
TMfinal0. 152628
pdb_35/1an8_.pdb pdb_35/1aqcA.pdb number of residues in common121
rmsd of common residues 18.575698

TMfinal0. 135236
pdb_35/1an8_.pdb pdb_35/1aqe_.pdb number of residues in common110 rmsd of common residues 16.580280

TMfinal0. 135724
pdb_35/1an8_.pdb pdb_35/1aqt_.pdb
number of residues in common 135
rmsd of common residues 16.211305
TMfinal0.164501
pdb_35/1an8_.pdb pdb_35/1aquA.pdb
number of residues in common206
rmsd of common residues19.156693
TMfinal0. 134270
pdb_35/1an8_.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues 17.080092
TMfinal0.164291
pdb_35/1an8_.pdb pdb_35/1at0_.pdb number of residues in common142
rmsd of common residues19.193526
TMfinal0. 144022
pdb_35/1an8_.pdb pdb_35/1at3A.pdb
number of residues in common206
rmsd of common residues 20.984940
TMfinal0. 147365
pdb_35/1an8_.pdb pdb_35/1atb_.pdb pdb_35/1an8_.pdb pdb_35/1atg_.pdb number of residues in common206 rmsd of common residues 20.044364

TMfinal0. 146079
pdb_35/1an9A.pdb pdb_35/1amm_.pdb
number of residues in common 174
rmsd of common residues 18.921813
TMfinal0. 151440
pdb_35/1an9A.pdb pdb_35/1amp_.pdb
pdb_35/1an9A.pdb pdb_35/1amuA.pdb
number of residues in common340
rmsd of common residues 21.114435
TMfinal0. 152329
pdb_35/1an9A.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 20.638173
TMfinal0. 162479
pdb_35/1an9A.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 22.110851
TMfinal0. 139465
pdb_35/1an9A.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues 23.744534

TMfinal0. 150888
pdb_35/1an9A.pdb pdb_35/1aocA.pdb number of residues in common175 rmsd of common residues 24.106042

TMfinal0. 131959
pdb_35/1an9A.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues20.100994
TMfinal0.162218
pdb_35/1an9A.pdb pdb_35/1aohA.pdb
number of residues in common 143
rmsd of common residues 22.315467
TMfinal0. 136762
pdb_35/1an9A.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues 22.570624
TMfinal0. 150748
pdb_35/1an9A.pdb pdb_35/1aop_.pdb
number of residues in common 340
rmsd of common residues 25.813628
TMfinal0. 122780
pdb_35/1an9A.pdb pdb_35/1aorA.pdb
pdb_35/1an9A.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.169116

TMfinal0. 165110
pdb_35/1an9A.pdb pdb_35/1aozA.pdb pdb_35/1an9A.pdb pdb_35/1ap8_.pdb number of residues in common213 rmsd of common residues 23.593618

TMfinal0. 140409
pdb_35/1an9A.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 12.764772
TMfinal0. 156396
pdb_35/1an9A.pdb pdb_35/1apmE.pdb
pdb_35/1an9A.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 12.228052
TMfinal0. 133966
pdb_35/1an9A.pdb pdb_35/1apxA.pdb
pdb_35/1an9A.pdb pdb_35/1aq0A.pdb
number of residues in common306
rmsd of common residues 20.967718
TMfinal0. 201873
pdb_35/1an9A.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues 21.244033
TMfinal0.131431
pdb_35/1an9A.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues 17.849008
TMfinal0. 162171
pdb_35/1an9A.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 17.093370
TMfinal0.163279
pdb_35/1an9A.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 17.850258
TMfinal0. 140207
pdb_35/1an9A.pdb pdb_35/1aquA.pdb
number of residues in common 281
rmsd of common residues 20.629246
TMfinal0. 194689
pdb_35/1an9A.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues 21.376947
TMfinal0. 155096
pdb_35/1an9A.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues 19.934466
TMfinal0. 137079
pdb_35/1an9A.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues 21.600447
TMfinal0. 152705
pdb_35/1an9A.pdb pdb_35/1atb_.pdb
pdb_35/1an9A.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues 22.707749
TMfinal0. 157278
pdb_35/1aoa_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues 19.904385
TMfinal0. 148037
pdb_35/1aoa_.pdb pdb_35/1amp_.pdb
pdb_35/1aoa_.pdb pdb_35/1amuA.pdb
number of residues in common247
rmsd of common residues22.287718
TMfinal0.111327
pdb_35/1aoa_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 18.519452
TMfinal0. 165625
pdb_35/1aoa_.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 19.866652
TMfinal0. 142935
pdb_35/1aoa_.pdb pdb_35/1an9A.pdb
number of residues in common247
rmsd of common residues 23.744534
TMfinal0. 129051
pdb_35/1aoa_.pdb pdb_35/1aocA.pdb number of residues in common 175 rmsd of common residues 20.324616

TMfinal0. 141776
pdb_35/1aoa_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues 18.732762
TMfinal0. 175320
pdb_35/1aoa_.pdb pdb_35/1aohA.pdb
number of residues in common 143
rmsd of common residues 17.853984
TMfinal0. 153733
pdb_35/1aoa_.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues 18.748010
TMfinal0. 187439
pdb_35/1aoa_.pdb pdb_35/1aop_.pdb
number of residues in common247
rmsd of common residues20.653704
TMfinal0. 124700
pdb_35/1aoa_.pdb pdb_35/1aorA.pdb
pdb_35/1aoa_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 11.218511
TMfinal0. 214820
pdb_35/1aoa_.pdb pdb_35/1aozA.pdb
pdb_35/1aoa_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues 22.275435
TMfinal0. 163506
pdb_35/1aoa_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 10.959227
TMfinal0. 145230
pdb_35/1aoa_.pdb pdb_35/1apmE.pdb
pdb_35/1aoa_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues8.718909
TMfinal0. 150205
pdb_35/1aoa_.pdb pdb_35/1apxA.pdb
pdb_35/1aoa_.pdb pdb_35/1aq0A.pdb
number of residues in common247
rmsd of common residues 17.877404
TMfinal0.179926
pdb_35/1aoa_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues 19.626528

TMfinal0. 158111
pdb_35/1aoa_.pdb pdb_35/1aqcA.pdb number of residues in common121 rmsd of common residues 15.433222

TMfinal0. 168182
pdb_35/1aoa_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 12.482603
TMfinal0. 181093
pdb_35/1aoa_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 17.687686
TMfinal0. 163358
pdb_35/1aoa_.pdb pdb_35/1aquA.pdb
number of residues in common247
rmsd of common residues20.849604
TMfinal0.156419
pdb_35/1aoa_.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues 17.292341
TMfinal0.156859
pdb_35/1aoa_.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues 17.197258
TMfinal0. 162574
pdb_35/1aoa_.pdb pdb_35/1at3A.pdb number of residues in common217
rmsd of common residues 22.004300
TMfinal0. 155651
pdb_35/1aoa_.pdb pdb_35/1atb_.pdb
pdb_35/1aoa_.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues20.104588
TMfinal0. 205769
pdb_35/1aocA.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues 21.627235
TMfinal0. 136616
pdb_35/1aocA.pdb pdb_35/1amp_.pdb
pdb_35/1aocA.pdb pdb_35/1amuA.pdb
number of residues in common175
rmsd of common residues 19.275388
TMfinal0.101922
pdb_35/1aocA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues18.197335
TMfinal0.161311
pdb_35/1aocA.pdb pdb_35/1an8_.pdb
number of residues in common175
rmsd of common residues 20.898762

TMfinal0.119389
pdb_35/1aocA.pdb pdb_35/1an9A.pdb number of residues in common175 rmsd of common residues 24.106042

TMfinal0. 095709
pdb_35/1aocA.pdb pdb_35/1aoa_.pdb
number of residues in common 175
rmsd of common residues 20.324616
TMfinal0. 122002
pdb_35/1aocA.pdb pdb_35/1aoeA.pdb
number of residues in common 175
rmsd of common residues21.138997
TMfinal0. 137296
pdb_35/1aocA.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues 20.124257
TMfinal0. 134387
pdb_35/1aocA.pdb pdb_35/1aol_.pdb
number of residues in common 175
rmsd of common residues 21.127731
TMfinal0. 134875
pdb_35/1aocA.pdb pdb_35/1aop_.pdb
number of residues in common175
rmsd of common residues 19.158489
TMfinal0.085881
pdb_35/1aocA.pdb pdb_35/1aorA.pdb pdb_35/1aocA.pdb pdb_35/1aoy_.pdb number of residues in common78 rmsd of common residues 14.047876

TMfinal0. 155755
pdb_35/1aocA.pdb pdb_35/1aozA.pdb
pdb_35/1aocA.pdb pdb_35/1ap8_.pdb number of residues in common175
rmsd of common residues 22.046566
TMfinal0. 141854
pdb_35/1aocA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 15.423336
TMfinal0. 145177
pdb_35/1aocA.pdb pdb_35/1apmE.pdb
pdb_35/1aocA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 12.779239
TMfinal0. 140882
pdb_35/1aocA.pdb pdb_35/1apxA.pdb
pdb_35/1aocA.pdb pdb_35/1aq0A.pdb
number of residues in common175
rmsd of common residues18.924453
TMfinal0.117860
pdb_35/1aocA.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues 20.782697
TMfinal0. 132198
pdb_35/1aocA.pdb pdb_35/1aqcA.pdb number of residues in common121 rmsd of common residues 20.300408

TMfinal0. 129975
pdb_35/1aocA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 16.803439
TMfinal0. 147835
pdb_35/1aocA.pdb pdb_35/1aqt_.pdb
number of residues in common 135
rmsd of common residues 20.246087
TMfinal0. 140502
pdb_35/1aocA.pdb pdb_35/1aquA.pdb
number of residues in common175
rmsd of common residues19.468265
TMfinal0. 137057
pdb_35/1aocA.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues16.778563
TMfinal0.163949
pdb_35/1aocA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues 19.185779
TMfinal0. 145226
pdb_35/1aocA.pdb pdb_35/1at3A.pdb number of residues in common 175 rmsd of common residues 17.933026

TMfinal0. 159827
pdb_35/1aocA.pdb pdb_35/1atb_.pdb
pdb_35/1aocA.pdb pdb_35/1atg_.pdb
number of residues in common175
rmsd of common residues 19.326012
TMfinal0. 139013
pdb_35/1aoeA.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues19.318845
TMfinal0. 138664
pdb_35/1aoeA.pdb pdb_35/1amp_.pdb
pdb_35/1aoeA.pdb pdb_35/1amuA.pdb
number of residues in common192
rmsd of common residues 22.245406
TMfinal0.095782
pdb_35/1aoeA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues17.193091
TMfinal0.183622
pdb_35/1aoeA.pdb pdb_35/1an8_.pdb
number of residues in common192
rmsd of common residues 18.545583
TMfinal0. 174155
pdb_35/1aoeA.pdb pdb_35/1an9A.pdb number of residues in common192
rmsd of common residues20.100994
TMfinal0. 124126
pdb_35/1aoeA.pdb pdb_35/1aoa_.pdb
number of residues in common192
rmsd of common residues 18.732762
TMfinal0. 158472
pdb_35/1aoeA.pdb pdb_35/1aocA.pdb
number of residues in common 175
rmsd of common residues21.138997
TMfinal0. 143096
pdb_35/1aoeA.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues18.103426
TMfinal0. 163503
pdb_35/1aoeA.pdb pdb_35/1aol_.pdb
number of residues in common192
rmsd of common residues18.684735
TMfinal0. 158616
pdb_35/1aoeA.pdb pdb_35/1aop_.pdb
number of residues in common192
rmsd of common residues 20.957986
TMfinal0.093152
pdb_35/1aoeA.pdb pdb_35/1aorA.pdb pdb_35/1aoeA.pdb pdb_35/1aoy_.pdb number of residues in common78 rmsd of common residues 11.248152

TMfinal0. 150428
pdb_35/1aoeA.pdb pdb_35/1aozA.pdb
pdb_35/1aoeA.pdb pdb_35/1ap8_.pdb
number of residues in common192
rmsd of common residues 22.072761
TMfinal0. 131596
pdb_35/1aoeA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.267161
TMfinal0.144422
pdb_35/1aoeA.pdb pdb_35/1apmE.pdb pdb_35/1aoeA.pdb pdb_35/1apq_.pdb number of residues in common53
rmsd of common residues 14.741566
TMfinal0.114849
pdb_35/1aoeA.pdb pdb_35/1apxA.pdb
pdb_35/1aoeA.pdb pdb_35/1aq0A.pdb
number of residues in common192
rmsd of common residues 18.390247

TMfinal0. 139382
pdb_35/1aoeA.pdb pdb_35/1aqb_.pdb number of residues in common175 rmsd of common residues 15.254669

TMfinal0. 186902
pdb_35/1aoeA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues17.246834
TMfinal0. 157255
pdb_35/1aoeA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues14.018807
TMfinal0. 168637
pdb_35/1aoeA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 17.706268
TMfinal0. 138304
pdb_35/1aoeA.pdb pdb_35/1aquA.pdb
number of residues in common192
rmsd of common residues 17.393857
TMfinal0. 147373
pdb_35/1aoeA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues 17.493066
TMfinal0. 150184
pdb_35/1aoeA.pdb pdb_35/1at0_.pdb number of residues in common 142
rmsd of common residues 17.441553
TMfinal0. 153090
pdb_35/1aoeA.pdb pdb_35/1at3A.pdb
number of residues in common192
rmsd of common residues 18.553312
TMfinal0.176931
pdb_35/1aoeA.pdb pdb_35/1atb_.pdb
pdb_35/1aoeA.pdb pdb_35/1atg_.pdb
number of residues in common192
rmsd of common residues 21.126670
TMfinal0. 167764
pdb_35/1aohA.pdb pdb_35/1amm_.pdb
number of residues in common143
rmsd of common residues 19.966991
TMfinal0. 131004
pdb_35/1aohA.pdb pdb_35/1amp_.pdb
pdb_35/1aohA.pdb pdb_35/1amuA.pdb
number of residues in common 143
rmsd of common residues 21.324346
TMfinal0.080782
pdb_35/1aohA.pdb pdb_35/1amx_.pdb
number of residues in common143
rmsd of common residues17.186102

TMfinal0. 163617
pdb_35/1aohA.pdb pdb_35/1an8_.pdb number of residues in common143 rmsd of common residues 16.850978

TMfinal0. 137183
pdb_35/1aohA.pdb pdb_35/1an9A.pdb
number of residues in common 143
rmsd of common residues 22.315467
TMfinal0.091176
pdb_35/1aohA.pdb pdb_35/1aoa_.pdb
number of residues in common 143
rmsd of common residues17.853984
TMfinal0.118563
pdb_35/1aohA.pdb pdb_35/1aocA.pdb
number of residues in common143
rmsd of common residues20.124257
TMfinal0. 124081
pdb_35/1aohA.pdb pdb_35/1aoeA.pdb
number of residues in common143
rmsd of common residues 18.103426
TMfinal0. 144762
pdb_35/1aohA.pdb pdb_35/1aol_.pdb
number of residues in common 143
rmsd of common residues 19.790503
TMfinal0. 107893
pdb_35/1aohA.pdb pdb_35/1aop_.pdb number of residues in common143
rmsd of common residues 18.896587
TMfinal0.079215
pdb_35/1aohA.pdb pdb_35/1aorA.pdb
pdb_35/1aohA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 14.524921
TMfinal0. 142753
pdb_35/1aohA.pdb pdb_35/1aozA.pdb pdb_35/1aohA.pdb pdb_35/1ap8_.pdb number of residues in common143 rmsd of common residues 22.050241

TMfinal0. 144004
pdb_35/1aohA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues11.138078
TMfinal0. 149003
pdb_35/1aohA.pdb pdb_35/1apmE.pdb
pdb_35/1aohA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 11.826628
TMfinal0. 132517
pdb_35/1aohA.pdb pdb_35/1apxA.pdb
pdb_35/1aohA.pdb pdb_35/1aq0A.pdb
number of residues in common143
rmsd of common residues19.607984
TMfinal0.100958
pdb_35/1aohA.pdb pdb_35/1aqb_.pdb
number of residues in common 143
rmsd of common residues 16.627085
TMfinal0.160111
pdb_35/1aohA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues17.298634
TMfinal0. 124695
pdb_35/1aohA.pdb pdb_35/1aqe_.pdb
number of residues in common 110
rmsd of common residues 16.882596
TMfinal0. 134564
pdb_35/1aohA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 17.757580
TMfinal0. 157517
pdb_35/1aohA.pdb pdb_35/1aquA.pdb
number of residues in common 143
rmsd of common residues17.325502
TMfinal0.114310
pdb_35/1aohA.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues 16.309530
TMfinal0. 155614
pdb_35/1aohA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues 18.057295
TMfinal0. 135015
pdb_35/1aohA.pdb pdb_35/1at3A.pdb
number of residues in common143
rmsd of common residues 18.281737
TMfinal0. 149946
pdb_35/1aohA.pdb pdb_35/1atb_.pdb
pdb_35/1aohA.pdb pdb_35/1atg_.pdb
number of residues in common 143
rmsd of common residues 20.037547
TMfinal0.112593
pdb_35/1aol_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues 18.983933
TMfinal0. 152646
pdb_35/1aol_.pdb pdb_35/1amp_.pdb
pdb_35/1aol_.pdb pdb_35/1amuA.pdb
number of residues in common228
rmsd of common residues 19.585450
TMfinal0. 122120
pdb_35/1aol_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues18.837804
TMfinal0. 139739
pdb_35/1aol_.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 20.349374
TMfinal0. 145626
pdb_35/1aol_.pdb pdb_35/1an9A.pdb
number of residues in common228
rmsd of common residues 22.570624
TMfinal0. 122944
pdb_35/1aol_.pdb pdb_35/1aoa_.pdb
number of residues in common 228
rmsd of common residues 18.748010
TMfinal0. 182092
pdb_35/1aol_.pdb pdb_35/1aocA.pdb number of residues in common175 rmsd of common residues 21.127731

TMfinal0. 152514
pdb_35/1aol_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues18.684735
TMfinal0.171425
pdb_35/1aol_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues 19.790503
TMfinal0. 142346
pdb_35/1aol_.pdb pdb_35/1aop_.pdb
number of residues in common228
rmsd of common residues 20.740942
TMfinal0. 121171
pdb_35/1aol_.pdb pdb_35/1aorA.pdb
pdb_35/1aol_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 17.136313
TMfinal0.118656
pdb_35/1aol_.pdb pdb_35/1aozA.pdb
pdb_35/1aol_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues21.205976
TMfinal0.154695
pdb_35/1aol_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues14.400698
TMfinal0. 126726
pdb_35/1aol_.pdb pdb_35/1apmE.pdb
pdb_35/1aol_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 11.581109
TMfinal0. 126739
pdb_35/1aol_.pdb pdb_35/1apxA.pdb pdb_35/1aol_.pdb pdb_35/1aq0A.pdb number of residues in common228 rmsd of common residues 20.697081

TMfinal0. 139645
pdb_35/1aol_.pdb pdb_35/1aqb_.pdb
number of residues in common 175
rmsd of common residues18.058771
TMfinal0. 170363
pdb_35/1aol_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues 18.788377
TMfinal0. 150545
pdb_35/1aol_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 14.661004
TMfinal0. 141967
pdb_35/1aol_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 19.204563
TMfinal0. 142643
pdb_35/1aol_.pdb pdb_35/1aquA.pdb
number of residues in common228
rmsd of common residues20.406063
TMfinal0. 164211
pdb_35/1aol_.pdb pdb_35/1aqzA.pdb number of residues in common 142
rmsd of common residues 19.879900
TMfinal0. 134478
pdb_35/1aol_.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues 17.754407
TMfinal0. 128560
pdb_35/1aol_.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues 18.952376
TMfinal0. 187623
pdb_35/1aol_.pdb pdb_35/1atb_.pdb
pdb_35/1aol_.pdb pdb_35/1atg_.pdb
number of residues in common228
rmsd of common residues21.435441
TMfinal0. 164059
pdb_35/1aop_.pdb pdb_35/1amm_.pdb number of residues in common 174
rmsd of common residues 17.459590
TMfinal0. 145540
pdb_35/1aop_.pdb pdb_35/1amp_.pdb
pdb_35/1aop_.pdb pdb_35/1amuA.pdb
number of residues in common456
rmsd of common residues 21.696198

TMfinal0. 213198
pdb_35/1aop_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 19.634690
TMfinal0. 150016
pdb_35/1aop_.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 19.277687
TMfinal0. 156337
pdb_35/1aop_.pdb pdb_35/1an9A.pdb
number of residues in common340
rmsd of common residues 25.813628
TMfinal0. 146990
pdb_35/1aop_.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues20.653704
TMfinal0. 170523
pdb_35/1aop_.pdb pdb_35/1aocA.pdb
number of residues in common 175
rmsd of common residues 19.158489
TMfinal0. 138149
pdb_35/1aop_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues 20.957986
TMfinal0. 137038
pdb_35/1aop_.pdb pdb_35/1aohA.pdb number of residues in common143
rmsd of common residues 18.896587
TMfinal0. 141457
pdb_35/1aop_.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues 20.740942
TMfinal0.172250
pdb_35/1aop_.pdb pdb_35/1aorA.pdb
pdb_35/1aop_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.198814
TMfinal0. 147521
pdb_35/1aop_.pdb pdb_35/1aozA.pdb
pdb_35/1aop_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues 21.839926
TMfinal0.147115
pdb_35/1aop_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 12.548253
TMfinal0. 151382
pdb_35/1aop_.pdb pdb_35/1apmE.pdb
pdb_35/1aop_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 12.347238
TMfinal0. 143598
pdb_35/1aop_.pdb pdb_35/1apxA.pdb pdb_35/1aop_.pdb pdb_35/1aq0A.pdb number of residues in common306 rmsd of common residues 21.444117

TMfinal0. 181909
pdb_35/1aop_.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues20.440615
TMfinal0. 143573
pdb_35/1aop_.pdb pdb_35/1aqcA.pdb
number of residues in common 121
rmsd of common residues 16.571488
TMfinal0. 126805
pdb_35/1aop_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 16.339511
TMfinal0. 148296
pdb_35/1aop_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues15.418265
TMfinal0.171100
pdb_35/1aop_.pdb pdb_35/1aquA.pdb
number of residues in common281
rmsd of common residues 21.554555
TMfinal0.161882
pdb_35/1aop_.pdb pdb_35/1aqzA.pdb number of residues in common 142 rmsd of common residues 19.457345

TMfinal0. 122659
pdb_35/1aop_.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues17.148450
TMfinal0.146335
pdb_35/1aop_.pdb pdb_35/1at3A.pdb number of residues in common217
rmsd of common residues 21.027798
TMfinal0.164475
pdb_35/1aop_.pdb pdb_35/1atb_.pdb
pdb_35/1aop_.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues 22.069328
TMfinal0. 175876
pdb_35/1aoy_.pdb pdb_35/1amm_.pdb
number of residues in common78
rmsd of common residues 13.658349
TMfinal0.115326
pdb_35/1aoy_.pdb pdb_35/1amp_.pdb
pdb_35/1aoy_.pdb pdb_35/1amuA.pdb
number of residues in common78
rmsd of common residues15.107924
TMfinal0.049578
pdb_35/1aoy_.pdb pdb_35/1amx_.pdb number of residues in common78
rmsd of common residues 14.528715
TMfinal0. 119348
pdb_35/1aoy_.pdb pdb_35/1an8_.pdb
number of residues in common78
rmsd of common residues 12.626557
TMfinal0. 105694
pdb_35/1aoy_.pdb pdb_35/1an9A.pdb
number of residues in common78
rmsd of common residues 14.169116
TMfinal0.078304
pdb_35/1aoy_.pdb pdb_35/1aoa_.pdb
number of residues in common78
rmsd of common residues 11.218511
TMfinal0. 105637
pdb_35/1aoy_.pdb pdb_35/1aocA.pdb
number of residues in common78
rmsd of common residues 14.047876
TMfinal0. 100823
pdb_35/1aoy_.pdb pdb_35/1aoeA.pdb
number of residues in common78
rmsd of common residues11.248152
TMfinal0.107067
pdb_35/1aoy_.pdb pdb_35/1aohA.pdb
number of residues in common78
rmsd of common residues 14.524921
TMfinal0. 111397
pdb_35/1aoy_.pdb pdb_35/1aol_.pdb
number of residues in common78
rmsd of common residues17.136313
TMfinal0. 077568
pdb_35/1aoy_.pdb pdb_35/1aop_.pdb
number of residues in common78
rmsd of common residues 14.198814
TMfinal0.061680
pdb_35/1aoy_.pdb pdb_35/1ap8_.pdb
number of residues in common78
rmsd of common residues 21.607494
TMfinal0.068452
pdb_35/1aoy_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 14.152012
TMfinal0. 154848
pdb_35/1aoy_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 11.183607

TMfinal0. 139977
pdb_35/1aoy_.pdb pdb_35/1aq0A.pdb number of residues in common78 rmsd of common residues 14.927847

TMfinal0. 073974
pdb_35/1aoy_.pdb pdb_35/1aqb_.pdb
number of residues in common78
rmsd of common residues14.177464
TMfinal0.097438
pdb_35/1aoy_.pdb pdb_35/1aqcA.pdb
number of residues in common78
rmsd of common residues 15.312153
TMfinal0. 128897
pdb_35/1aoy_.pdb pdb_35/1aqe_.pdb
number of residues in common78
rmsd of common residues 13.566144
TMfinal0.127718
pdb_35/1aoy_.pdb pdb_35/1aqt_.pdb number of residues in common78
rmsd of common residues 13.323101
TMfinal0. 110661
pdb_35/1aoy_.pdb pdb_35/1aquA.pdb number of residues in common78 rmsd of common residues 14.805076

TMfinal0.068982
pdb_35/1aoy_.pdb pdb_35/1aqzA.pdb number of residues in common78 rmsd of common residues 14.238004

TMfinal0. 120353
pdb_35/1aoy_.pdb pdb_35/1at0_.pdb number of residues in common78
rmsd of common residues 15.061864
TMfinal0.098813
pdb_35/1aoy_.pdb pdb_35/1at3A.pdb
number of residues in common78
rmsd of common residues 13.522765
TMfinal0. 105898
pdb_35/1aoy_.pdb pdb_35/1atg_.pdb
number of residues in common78
rmsd of common residues 14.675436
TMfinal0.095111
pdb_35/1ap8_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues 19.524679
TMfinal0. 145330
pdb_35/1ap8_.pdb pdb_35/1amuA.pdb
number of residues in common213
rmsd of common residues 20.312366
TMfinal0.106583
pdb_35/1ap8_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 22.776661
TMfinal0. 131198
pdb_35/1ap8_.pdb pdb_35/1an8_.pdb number of residues in common206 rmsd of common residues 20.841873

TMfinal0. 164500
pdb_35/1ap8_.pdb pdb_35/1an9A.pdb number of residues in common213
rmsd of common residues 23.593618
TMfinal0.112235
pdb_35/1ap8_.pdb pdb_35/1aoa_.pdb
number of residues in common213
rmsd of common residues 22.275435
TMfinal0. 153374
pdb_35/1ap8_.pdb pdb_35/1aocA.pdb number of residues in common175 rmsd of common residues 22.046566

TMfinal0. 154274
pdb_35/1ap8_.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues 22.072761
TMfinal0. 136461
pdb_35/1ap8_.pdb pdb_35/1aohA.pdb
number of residues in common 143
rmsd of common residues 22.050241
TMfinal0. 168858
pdb_35/1ap8_.pdb pdb_35/1aol_.pdb number of residues in common213 rmsd of common residues 21.205976

TMfinal0. 150305
pdb_35/1ap8_.pdb pdb_35/1aop_.pdb
number of residues in common213
rmsd of common residues 21.839926
TMfinal0.113613
pdb_35/1ap8_.pdb pdb_35/1aoy_.pdb number of residues in common78 rmsd of common residues 21.607494

TMfinal0. 106354
pdb_35/1ap8_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues21.302682
TMfinal0. 121272
pdb_35/1ap8_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 18.071859
TMfinal0. 111396
pdb_35/1ap8_.pdb pdb_35/1aq0A.pdb number of residues in common213 rmsd of common residues 21.333755

TMfinal0. 124386
pdb_35/1ap8_.pdb pdb_35/1aqb_.pdb number of residues in common175 rmsd of common residues 23.392765

TMfinal0. 144260
pdb_35/1ap8_.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues23.997634
TMfinal0. 135422
pdb_35/1ap8_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 21.923635
TMfinal0. 125944
pdb_35/1ap8_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 22.071688
TMfinal0. 150480
pdb_35/1ap8_.pdb pdb_35/1aquA.pdb number of residues in common213
rmsd of common residues21.121397
TMfinal0. 153041
pdb_35/1ap8_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues20.735017
TMfinal0. 156442
pdb_35/1ap8_.pdb pdb_35/1at0_.pdb number of residues in common 142
rmsd of common residues 19.702157
TMfinal0. 135667
pdb_35/1ap8_.pdb pdb_35/1at3A.pdb
number of residues in common213
rmsd of common residues 23.238933
TMfinal0. 151674
pdb_35/1ap8_.pdb pdb_35/1atg_.pdb
number of residues in common213
rmsd of common residues 22.062598
TMfinal0. 146210
pdb_35/1apj_.pdb pdb_35/1amm_.pdb
number of residues in common74
rmsd of common residues 12.787075
TMfinal0. 108783
pdb_35/1apj_.pdb pdb_35/1amuA.pdb
number of residues in common74
rmsd of common residues 18.672592
TMfinal0.053261
pdb_35/1apj_.pdb pdb_35/1amx_.pdb
number of residues in common74
rmsd of common residues 11.751448
TMfinal0.129715
pdb_35/1apj_.pdb pdb_35/1an8_.pdb
number of residues in common74
rmsd of common residues 14.370451
TMfinal0.102121
pdb_35/1apj_.pdb pdb_35/1an9A.pdb number of residues in common74
rmsd of common residues 12.764772
TMfinal0.073693
pdb_35/1apj_.pdb pdb_35/1aoa_.pdb number of residues in common74
rmsd of common residues 10.959227
TMfinal0. 085786
pdb_35/1apj_.pdb pdb_35/1aocA.pdb
number of residues in common74
rmsd of common residues 15.423336
TMfinal0. 104090
pdb_35/1apj_.pdb pdb_35/1aoeA.pdb number of residues in common74 rmsd of common residues14.267161

TMfinal0.097488
pdb_35/1apj_.pdb pdb_35/1aohA.pdb
number of residues in common74
rmsd of common residues 11.138078
TMfinal0.116097
pdb_35/1apj_.pdb pdb_35/1aol_.pdb
number of residues in common74
rmsd of common residues 14.400698
TMfinal0.078348
pdb_35/1apj_.pdb pdb_35/1aop_.pdb
number of residues in common74
rmsd of common residues 12.548253
TMfinal0.065259
pdb_35/1apj_.pdb pdb_35/1aoy_.pdb
number of residues in common74
rmsd of common residues14.152012
TMfinal0.151712
pdb_35/1apj_.pdb pdb_35/1ap8_.pdb number of residues in common74
rmsd of common residues 21.302682
TMfinal0.065280
pdb_35/1apj_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 10.146199
TMfinal0. 174123
pdb_35/1apj_.pdb pdb_35/1aq0A.pdb
number of residues in common74
rmsd of common residues 12.278370
TMfinal0.080917
pdb_35/1apj_.pdb pdb_35/1aqb_.pdb
number of residues in common74
rmsd of common residues 14.499716

TMfinal0. 089890
pdb_35/1apj_.pdb pdb_35/1aqcA.pdb number of residues in common74 rmsd of common residues 14.364467

TMfinal0. 110090
pdb_35/1apj_.pdb pdb_35/1aqe_.pdb
number of residues in common74
rmsd of common residues 12.675291
TMfinal0.149528
pdb_35/1apj_.pdb pdb_35/1aqt_.pdb
number of residues in common74
rmsd of common residues 13.100471
TMfinal0. 114240
pdb_35/1apj_.pdb pdb_35/1aquA.pdb
number of residues in common74
rmsd of common residues 13.929327
TMfinal0.082293
pdb_35/1apj_.pdb pdb_35/1aqzA.pdb number of residues in common74
rmsd of common residues 13.794999
TMfinal0. 110805
pdb_35/1apj_.pdb pdb_35/1at0_.pdb
number of residues in common74
rmsd of common residues 11.498072
TMfinal0. 108223
pdb_35/1apj_.pdb pdb_35/1at3A.pdb number of residues in common74
rmsd of common residues 14.551395
TMfinal0.085681
pdb_35/1apj_.pdb pdb_35/1atg_.pdb
number of residues in common74
rmsd of common residues 11.748913
TMfinal0.094678
pdb_35/1apq_.pdb pdb_35/1amm_.pdb
number of residues in common53
rmsd of common residues 11.308121
TMfinal0.088875
pdb_35/1apq_.pdb pdb_35/1amuA.pdb
number of residues in common53
rmsd of common residues 16.304880
TMfinal0.032508
pdb_35/1apq_.pdb pdb_35/1amx_.pdb
number of residues in common53
rmsd of common residues 9.855834
TMfinal0. 100113
pdb_35/1apq_.pdb pdb_35/1an8_.pdb
number of residues in common53
rmsd of common residues 11.416533
TMfinal0.086749
pdb_35/1apq_.pdb pdb_35/1an9A.pdb
number of residues in common53
rmsd of common residues 12.228052
TMfinal0.057672
pdb_35/1apq_.pdb pdb_35/1aoa_.pdb number of residues in common53 rmsd of common residues8.718909

TMfinal0.087066
pdb_35/1apq_.pdb pdb_35/1aocA.pdb number of residues in common53
rmsd of common residues 12.779239
TMfinal0.079813
pdb_35/1apq_.pdb pdb_35/1aoeA.pdb
number of residues in common53
rmsd of common residues 14.741566
TMfinal0.070689
pdb_35/1apq_.pdb pdb_35/1aohA.pdb number of residues in common53 rmsd of common residues 11.826628

TMfinal0.084179
pdb_35/1apq_.pdb pdb_35/1aol_.pdb
number of residues in common53
rmsd of common residues 11.581109
TMfinal0.072250
pdb_35/1apq_.pdb pdb_35/1aop_.pdb
number of residues in common53
rmsd of common residues 12.347238
TMfinal0.049844
pdb_35/1apq_.pdb pdb_35/1aoy_.pdb
number of residues in common53
rmsd of common residues 11.183607
TMfinal0. 128754
pdb_35/1apq_.pdb pdb_35/1ap8_.pdb
number of residues in common53
rmsd of common residues 18.071859
TMfinal0.062829
pdb_35/1apq_.pdb pdb_35/1apj_.pdb number of residues in common53 rmsd of common residues 10.146199

TMfinal0. 160492
pdb_35/1apq_.pdb pdb_35/1aq0A.pdb number of residues in common53
rmsd of common residues 10.515152
TMfinal0.072381
pdb_35/1apq_.pdb pdb_35/1aqb_.pdb
number of residues in common53
rmsd of common residues 10.186784
TMfinal0.088916
pdb_35/1apq_.pdb pdb_35/1aqcA.pdb number of residues in common53 rmsd of common residues 14.731629

TMfinal0.087316
pdb_35/1apq_.pdb pdb_35/1aqe_.pdb number of residues in common53
rmsd of common residues 10.476801
TMfinal0.115181
pdb_35/1apq_.pdb pdb_35/1aqt_.pdb
number of residues in common53
rmsd of common residues 12.659478
TMfinal0. 099276
pdb_35/1apq_.pdb pdb_35/1aquA.pdb
number of residues in common53
rmsd of common residues 13.441735
TMfinal0. 057068
pdb_35/1apq_.pdb pdb_35/1aqzA.pdb number of residues in common53
rmsd of common residues 12.542869
TMfinal0.083942
pdb_35/1apq_.pdb pdb_35/1at0_.pdb number of residues in common53
rmsd of common residues 13.276603
TMfinal0.088339
pdb_35/1apq_.pdb pdb_35/1at3A.pdb
number of residues in common53
rmsd of common residues 13.283036
TMfinal0.061061
pdb_35/1apq_.pdb pdb_35/1atg_.pdb number of residues in common53
rmsd of common residues 12.436005
TMfinal0.070289
pdb_35/1aq0A.pdb pdb_35/1amm_.pdb
number of residues in common 174
rmsd of common residues 17.671342
TMfinal0. 167674
pdb_35/1aq0A.pdb pdb_35/1amuA.pdb
number of residues in common306
rmsd of common residues 20.759635
TMfinal0. 143337
pdb_35/1aq0A.pdb pdb_35/1amx_.pdb
number of residues in common 150
rmsd of common residues18.045554
TMfinal0.158721
pdb_35/1aq0A.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 19.755022
TMfinal0. 148035
pdb_35/1aq0A.pdb pdb_35/1an9A.pdb
number of residues in common306
rmsd of common residues 20.967718
TMfinal0. 191672
pdb_35/1aq0A.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues17.877404
TMfinal0. 200399
pdb_35/1aq0A.pdb pdb_35/1aocA.pdb number of residues in common 175 rmsd of common residues 18.924453

TMfinal0. 155206
pdb_35/1aq0A.pdb pdb_35/1aoeA.pdb
number of residues in common192
rmsd of common residues 18.390247
TMfinal0. 182975
pdb_35/1aq0A.pdb pdb_35/1aohA.pdb
number of residues in common 143
rmsd of common residues 19.607984
TMfinal0. 144029
pdb_35/1aq0A.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues 20.697081
TMfinal0. 161051
pdb_35/1aq0A.pdb pdb_35/1aop_.pdb
number of residues in common306
rmsd of common residues21.444117
TMfinal0. 149400
pdb_35/1aq0A.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 14.927847
TMfinal0. 134355
pdb_35/1aq0A.pdb pdb_35/1ap8_.pdb number of residues in common213 rmsd of common residues 21.333755

TMfinal0. 147887
pdb_35/1aq0A.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 12.278370
TMfinal0.150341
pdb_35/1aq0A.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 10.515152
TMfinal0. 152245
pdb_35/1aq0A.pdb pdb_35/1aqb_.pdb
number of residues in common175
rmsd of common residues 19.261487
TMfinal0. 160084
pdb_35/1aq0A.pdb pdb_35/1aqcA.pdb
number of residues in common 121
rmsd of common residues 15.852089
TMfinal0. 200248
pdb_35/1aq0A.pdb pdb_35/1aqe_.pdb number of residues in common110 rmsd of common residues14.908206

TMfinal0. 199282
pdb_35/1aq0A.pdb pdb_35/1aqt_.pdb
number of residues in common 135
rmsd of common residues 14.500546
TMfinal0. 160030
pdb_35/1aq0A.pdb pdb_35/1aquA.pdb
number of residues in common281
rmsd of common residues 22.537627
TMfinal0. 153321
pdb_35/1aq0A.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues 18.083662
TMfinal0. 164359
pdb_35/1aq0A.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues 15.976193
TMfinal0. 158214
pdb_35/1aq0A.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues 20.472847
TMfinal0. 146176
pdb_35/1aq0A.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues 21.313044
TMfinal0. 161194
pdb_35/1aqb_.pdb pdb_35/1amm_.pdb number of residues in common174
rmsd of common residues 20.675146
TMfinal0. 184006
pdb_35/1aqb_.pdb pdb_35/1amuA.pdb
number of residues in common 175
rmsd of common residues21.475181
TMfinal0.083730
pdb_35/1aqb_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 16.281107
TMfinal0. 175119
pdb_35/1aqb_.pdb pdb_35/1an8_.pdb
number of residues in common 175
rmsd of common residues 17.852260
TMfinal0. 142123
pdb_35/1aqb_.pdb pdb_35/1an9A.pdb
number of residues in common 175
rmsd of common residues 21.244033
TMfinal0. 098279
pdb_35/1aqb_.pdb pdb_35/1aoa_.pdb
number of residues in common175
rmsd of common residues 19.626528
TMfinal0. 126731
pdb_35/1aqb_.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues 20.782697
TMfinal0. 132198
pdb_35/1aqb_.pdb pdb_35/1aoeA.pdb number of residues in common 175 rmsd of common residues 15.254669

TMfinal0. 180055
pdb_35/1aqb_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues 16.627085
TMfinal0.175192
pdb_35/1aqb_.pdb pdb_35/1aol_.pdb
number of residues in common 175
rmsd of common residues 18.058771
TMfinal0. 151519
pdb_35/1aqb_.pdb pdb_35/1aop_.pdb
number of residues in common175
rmsd of common residues 20.440615
TMfinal0.089966
pdb_35/1aqb_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues14.177464
TMfinal0.138879
pdb_35/1aqb_.pdb pdb_35/1ap8_.pdb
number of residues in common 175
rmsd of common residues23.392765
TMfinal0. 133168
pdb_35/1aqb_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 14.499716
TMfinal0. 125301
pdb_35/1aqb_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues10.186784
TMfinal0. 132577
pdb_35/1aqb_.pdb pdb_35/1aq0A.pdb number of residues in common 175 rmsd of common residues 19.261487

TMfinal0. 121991
pdb_35/1aqb_.pdb pdb_35/1aqcA.pdb number of residues in common121
rmsd of common residues 17.333204
TMfinal0. 131896
pdb_35/1aqb_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 15.937471
TMfinal0.162952
pdb_35/1aqb_.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 20.236544

TMfinal0. 129153
pdb_35/1aqb_.pdb pdb_35/1aquA.pdb number of residues in common175 rmsd of common residues 18.069998

TMfinal0. 136086
pdb_35/1aqb_.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues17.787576
TMfinal0. 147020
pdb_35/1aqb_.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues17.859761
TMfinal0. 144053
pdb_35/1aqb_.pdb pdb_35/1at3A.pdb
number of residues in common175
rmsd of common residues 18.892587
TMfinal0. 142388
pdb_35/1aqb_.pdb pdb_35/1atg_.pdb
number of residues in common 175
rmsd of common residues 20.474842
TMfinal0. 136497
pdb_35/1aqcA.pdb pdb_35/1amm_.pdb
number of residues in common121
rmsd of common residues 18.712583
TMfinal0.118319
pdb_35/1aqcA.pdb pdb_35/1amp_.pdb
pdb_35/1aqcA.pdb pdb_35/1amuA.pdb number of residues in common121 rmsd of common residues 19.874976

TMfinal0.068789
pdb_35/1aqcA.pdb pdb_35/1amx_.pdb
number of residues in common121
rmsd of common residues 16.714081
TMfinal0. 152599
pdb_35/1aqcA.pdb pdb_35/1an8_.pdb
number of residues in common121
rmsd of common residues 18.575698
TMfinal0. 107929
pdb_35/1aqcA.pdb pdb_35/1an9A.pdb
number of residues in common121
rmsd of common residues 17.849008
TMfinal0.097179
pdb_35/1aqcA.pdb pdb_35/1aoa_.pdb number of residues in common121
rmsd of common residues 15.433222
TMfinal0. 123260
pdb_35/1aqcA.pdb pdb_35/1aocA.pdb
number of residues in common121
rmsd of common residues20.300408
TMfinal0. 113164
pdb_35/1aqcA.pdb pdb_35/1aoeA.pdb number of residues in common121
rmsd of common residues17.246834
TMfinal0. 127446
pdb_35/1aqcA.pdb pdb_35/1aohA.pdb
number of residues in common121
rmsd of common residues 17.298634
TMfinal0. 115454
pdb_35/1aqcA.pdb pdb_35/1aol_.pdb
number of residues in common121
rmsd of common residues 18.788377
TMfinal0.116754
pdb_35/1aqcA.pdb pdb_35/1aop_.pdb
number of residues in common 121
rmsd of common residues16.571488
TMfinal0.072883
pdb_35/1aqcA.pdb pdb_35/1aorA.pdb
pdb_35/1aqcA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 15.312153
TMfinal0. 156454
pdb_35/1aqcA.pdb pdb_35/1aozA.pdb
pdb_35/1aqcA.pdb pdb_35/1ap8_.pdb
number of residues in common121
rmsd of common residues 23.997634

TMfinal0. 102174
pdb_35/1aqcA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 14.364467
TMfinal0. 132031
pdb_35/1aqcA.pdb pdb_35/1apmE.pdb
pdb_35/1aqcA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 14.731629
TMfinal0.113999
pdb_35/1aqcA.pdb pdb_35/1apxA.pdb
pdb_35/1aqcA.pdb pdb_35/1aq0A.pdb
number of residues in common121
rmsd of common residues 15.852089
TMfinal0.117902
pdb_35/1aqcA.pdb pdb_35/1aqb_.pdb
number of residues in common121
rmsd of common residues17.333204
TMfinal0. 113947
pdb_35/1aqcA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 15.169231
TMfinal0. 175194
pdb_35/1aqcA.pdb pdb_35/1aqt_.pdb
number of residues in common121
rmsd of common residues 19.089246
TMfinal0. 140135
pdb_35/1aqcA.pdb pdb_35/1aquA.pdb
number of residues in common121
rmsd of common residues 17.608923
TMfinal0. 105855
pdb_35/1aqcA.pdb pdb_35/1aqzA.pdb
number of residues in common121
rmsd of common residues16.278623
TMfinal0. 151090
pdb_35/1aqcA.pdb pdb_35/1at0_.pdb
number of residues in common 121
rmsd of common residues 15.460685
TMfinal0. 151005
pdb_35/1aqcA.pdb pdb_35/1at3A.pdb
number of residues in common121
rmsd of common residues 18.710968
TMfinal0. 115658
pdb_35/1aqcA.pdb pdb_35/1atg_.pdb
number of residues in common121
rmsd of common residues 19.120635
TMfinal0.097177
pdb_35/1aqe_.pdb pdb_35/1amm_.pdb
number of residues in common110
rmsd of common residues 16.502564

TMfinal0. 109056
pdb_35/1aqe_.pdb pdb_35/1amuA.pdb
number of residues in common110
rmsd of common residues 17.688878
TMfinal0.080589
pdb_35/1aqe_.pdb pdb_35/1amx_.pdb
number of residues in common110
rmsd of common residues 15.002468
TMfinal0. 162704
pdb_35/1aqe_.pdb pdb_35/1an8_.pdb
number of residues in common110
rmsd of common residues 16.580280
TMfinal0. 106883
pdb_35/1aqe_.pdb pdb_35/1an9A.pdb
number of residues in common110
rmsd of common residues17.093370
TMfinal0.088118
pdb_35/1aqe_.pdb pdb_35/1aoa_.pdb
number of residues in common110
rmsd of common residues 12.482603
TMfinal0. 125983
pdb_35/1aqe_.pdb pdb_35/1aocA.pdb
number of residues in common110
rmsd of common residues 16.803439
TMfinal0. 115280
pdb_35/1aqe_.pdb pdb_35/1aoeA.pdb number of residues in common110 rmsd of common residues 14.018807

TMfinal0. 135418
pdb_35/1aqe_.pdb pdb_35/1aohA.pdb
number of residues in common 110
rmsd of common residues 16.882596
TMfinal0. 121479
pdb_35/1aqe_.pdb pdb_35/1aol_.pdb
number of residues in common110 rmsd of common residues 14.661004

TMfinal0. 109926
pdb_35/1aqe_.pdb pdb_35/1aop_.pdb
number of residues in common110
rmsd of common residues16.339511
TMfinal0.065868
pdb_35/1aqe_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 13.566144
TMfinal0. 144734
pdb_35/1aqe_.pdb pdb_35/1ap8_.pdb
number of residues in common110
rmsd of common residues 21.923635
TMfinal0.092338
pdb_35/1aqe_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 12.675291
TMfinal0.172762
pdb_35/1aqe_.pdb pdb_35/1apq_.pdb number of residues in common53
rmsd of common residues 10.476801
TMfinal0. 142969
pdb_35/1aqe_.pdb pdb_35/1aq0A.pdb
number of residues in common110
rmsd of common residues 14.908206
TMfinal0. 113791
pdb_35/1aqe_.pdb pdb_35/1aqb_.pdb
number of residues in common110
rmsd of common residues 15.937471
TMfinal0.135931
pdb_35/1aqe_.pdb pdb_35/1aqcA.pdb
number of residues in common110
rmsd of common residues 15.169231
TMfinal0. 168051
pdb_35/1aqe_.pdb pdb_35/1aqt_.pdb
number of residues in common110
rmsd of common residues16.409157
TMfinal0. 130447
pdb_35/1aqe_.pdb pdb_35/1aquA.pdb
number of residues in common110
rmsd of common residues 14.137646
TMfinal0.115808
pdb_35/1aqe_.pdb pdb_35/1aqzA.pdb
number of residues in common110
rmsd of common residues 15.375237
TMfinal0. 141079
pdb_35/1aqe_.pdb pdb_35/1at0_.pdb
number of residues in common110
rmsd of common residues13.685743
TMfinal0. 126356
pdb_35/1aqe_.pdb pdb_35/1at3A.pdb
number of residues in common110
rmsd of common residues 15.709912
TMfinal0. 106349
pdb_35/1aqe_.pdb pdb_35/1atg_.pdb
number of residues in common110
rmsd of common residues 17.077941
TMfinal0. 100020
pdb_35/1aqt_.pdb pdb_35/1amm_.pdb
number of residues in common 135
rmsd of common residues14.431519
TMfinal0. 156384
pdb_35/1aqt_.pdb pdb_35/1amuA.pdb
number of residues in common135
rmsd of common residues 18.986028

TMfinal0.081092
pdb_35/1aqt_.pdb pdb_35/1amx_.pdb number of residues in common135 rmsd of common residues 19.973741

TMfinal0. 136917
pdb_35/1aqt_.pdb pdb_35/1an8_.pdb
number of residues in common 135
rmsd of common residues 16.211305
TMfinal0. 137265
pdb_35/1aqt_.pdb pdb_35/1an9A.pdb
number of residues in common 135
rmsd of common residues 17.850258
TMfinal0. 095880
pdb_35/1aqt_.pdb pdb_35/1aoa_.pdb
number of residues in common135
rmsd of common residues 17.687686
TMfinal0.113711
pdb_35/1aqt_.pdb pdb_35/1aocA.pdb
number of residues in common135
rmsd of common residues 20.246087
TMfinal0. 124305
pdb_35/1aqt_.pdb pdb_35/1aoeA.pdb
number of residues in common135
rmsd of common residues 17.706268
TMfinal0. 118743
pdb_35/1aqt_.pdb pdb_35/1aohA.pdb number of residues in common 135 rmsd of common residues 17.757580

TMfinal0. 153039
pdb_35/1aqt_.pdb pdb_35/1aol_.pdb
number of residues in common 135
rmsd of common residues 19.204563
TMfinal0. 109989
pdb_35/1aqt_.pdb pdb_35/1aop_.pdb
number of residues in common 135
rmsd of common residues 15.418265
TMfinal0. 095878
pdb_35/1aqt_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues13.323101
TMfinal0. 135760
pdb_35/1aqt_.pdb pdb_35/1ap8_.pdb
number of residues in common 135
rmsd of common residues 22.071688
TMfinal0. 123273
pdb_35/1aqt_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 13.100471
TMfinal0.140819
pdb_35/1aqt_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 12.659478
TMfinal0. 131677
pdb_35/1aqt_.pdb pdb_35/1aq0A.pdb
number of residues in common 135
rmsd of common residues 14.500546
TMfinal0. 112621
pdb_35/1aqt_.pdb pdb_35/1aqb_.pdb
number of residues in common135
rmsd of common residues 20.236544
TMfinal0. 114640
pdb_35/1aqt_.pdb pdb_35/1aqcA.pdb
number of residues in common 121
rmsd of common residues 19.089246
TMfinal0.147660
pdb_35/1aqt_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues16.409157
TMfinal0. 141549
pdb_35/1aqt_.pdb pdb_35/1aquA.pdb
number of residues in common135
rmsd of common residues 17.954278
TMfinal0.117181
pdb_35/1aqt_.pdb pdb_35/1aqzA.pdb
number of residues in common135
rmsd of common residues 17.811805
TMfinal0. 152927
pdb_35/1aqt_.pdb pdb_35/1at0_.pdb
number of residues in common 135
rmsd of common residues 18.643341
TMfinal0. 122984
pdb_35/1aqt_.pdb pdb_35/1at3A.pdb
number of residues in common 135
rmsd of common residues 17.854322
TMfinal0.116699
pdb_35/1aqt_.pdb pdb_35/1atg_.pdb number of residues in common135 rmsd of common residues 15.547058

TMfinal0. 132063
pdb_35/1aquA.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues 19.426155
TMfinal0. 158785
pdb_35/1aquA.pdb pdb_35/1amuA.pdb
number of residues in common281
rmsd of common residues 24.078919
TMfinal0. 116061
pdb_35/1aquA.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 16.372136

TMfinal0. 157641
pdb_35/1aquA.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 19.156693
TMfinal0. 154861
pdb_35/1aquA.pdb pdb_35/1an9A.pdb
number of residues in common 281
rmsd of common residues20.629246
TMfinal0. 178253
pdb_35/1aquA.pdb pdb_35/1aoa_.pdb
number of residues in common247
rmsd of common residues 20.849604
TMfinal0. 165769
pdb_35/1aquA.pdb pdb_35/1aocA.pdb
number of residues in common175
rmsd of common residues 19.468265
TMfinal0.171962
pdb_35/1aquA.pdb pdb_35/1aoeA.pdb number of residues in common192
rmsd of common residues 17.393857
TMfinal0. 173372
pdb_35/1aquA.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues 17.325502
TMfinal0. 161521
pdb_35/1aquA.pdb pdb_35/1aol_.pdb
number of residues in common228
rmsd of common residues20.406063
TMfinal0. 182313
pdb_35/1aquA.pdb pdb_35/1aop_.pdb
number of residues in common 281
rmsd of common residues 21.554555
TMfinal0. 132064
pdb_35/1aquA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 14.805076
TMfinal0. 144931
pdb_35/1aquA.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues21.121397
TMfinal0. 175486
pdb_35/1aquA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 13.929327
TMfinal0. 143605
pdb_35/1aquA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues13.441735
TMfinal0. 134043
pdb_35/1aquA.pdb pdb_35/1aq0A.pdb
number of residues in common281
rmsd of common residues 22.537627
TMfinal0.147241
pdb_35/1aquA.pdb pdb_35/1aqb_.pdb number of residues in common 175
rmsd of common residues 18.069998
TMfinal0. 170147
pdb_35/1aquA.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues 17.608923
TMfinal0.148116
pdb_35/1aquA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 14.137646
TMfinal0. 179300
pdb_35/1aquA.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 17.954278
TMfinal0. 158728
pdb_35/1aquA.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues15.862749
TMfinal0. 158531
pdb_35/1aquA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues 16.369786
TMfinal0.147425
pdb_35/1aquA.pdb pdb_35/1at3A.pdb number of residues in common217 rmsd of common residues 20.662016

TMfinal0. 152620
pdb_35/1aquA.pdb pdb_35/1atg_.pdb
number of residues in common231
rmsd of common residues20.955674
TMfinal0. 162124
pdb_35/1aqzA.pdb pdb_35/1amm_.pdb number of residues in common142 rmsd of common residues 19.681408

TMfinal0. 124803
pdb_35/1aqzA.pdb pdb_35/1amuA.pdb
number of residues in common142
rmsd of common residues 19.554735
TMfinal0.082595
pdb_35/1aqzA.pdb pdb_35/1amx_.pdb
number of residues in common 142
rmsd of common residues 17.044477
TMfinal0.146547
pdb_35/1aqzA.pdb pdb_35/1an8_.pdb
number of residues in common 142
rmsd of common residues 17.080092

TMfinal0. 138814
pdb_35/1aqzA.pdb pdb_35/1an9A.pdb
number of residues in common142
rmsd of common residues 21.376947
TMfinal0.099781
pdb_35/1aqzA.pdb pdb_35/1aoa_.pdb
number of residues in common 142
rmsd of common residues17.292341
TMfinal0. 120486
pdb_35/1aqzA.pdb pdb_35/1aocA.pdb
number of residues in common142
rmsd of common residues 16.778563
TMfinal0. 151196
pdb_35/1aqzA.pdb pdb_35/1aoeA.pdb
number of residues in common 142
rmsd of common residues 17.493066
TMfinal0. 134844
pdb_35/1aqzA.pdb pdb_35/1aohA.pdb number of residues in common142
rmsd of common residues 16.309530
TMfinal0. 155111
pdb_35/1aqzA.pdb pdb_35/1aol_.pdb
number of residues in common142
rmsd of common residues 19.879900
TMfinal0. 108119
pdb_35/1aqzA.pdb pdb_35/1aop_.pdb number of residues in common 142
rmsd of common residues 19.457345
TMfinal0.071118
pdb_35/1aqzA.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 14.238004
TMfinal0. 153407
pdb_35/1aqzA.pdb pdb_35/1ap8_.pdb
number of residues in common 142
rmsd of common residues 20.735017
TMfinal0. 128528
pdb_35/1aqzA.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues13.794999
TMfinal0. 137394
pdb_35/1aqzA.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 12.542869
TMfinal0. 120712
pdb_35/1aqzA.pdb pdb_35/1aq0A.pdb
number of residues in common 142
rmsd of common residues18.083662
TMfinal0.114267
pdb_35/1aqzA.pdb pdb_35/1aqb_.pdb
number of residues in common 142
rmsd of common residues17.787576
TMfinal0. 134003
pdb_35/1aqzA.pdb pdb_35/1aqcA.pdb number of residues in common121 rmsd of common residues 16.278623

TMfinal0. 161367
pdb_35/1aqzA.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 15.375237
TMfinal0. 155096
pdb_35/1aqzA.pdb pdb_35/1aqt_.pdb
number of residues in common 135
rmsd of common residues 17.811805
TMfinal0. 156526
pdb_35/1aqzA.pdb pdb_35/1aquA.pdb
number of residues in common142
rmsd of common residues 15.862749
TMfinal0. 119497
pdb_35/1aqzA.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues14.476397
TMfinal0. 203586
pdb_35/1aqzA.pdb pdb_35/1at3A.pdb
number of residues in common 142
rmsd of common residues 17.762094
TMfinal0. 123551
pdb_35/1aqzA.pdb pdb_35/1atb_.pdb pdb_35/1aqzA.pdb pdb_35/1atg_.pdb number of residues in common142 rmsd of common residues 18.261920

TMfinal0. 104823
pdb_35/1at0_.pdb pdb_35/1amm_.pdb
number of residues in common142
rmsd of common residues 18.693595
TMfinal0. 137126
pdb_35/1at0_.pdb pdb_35/1amuA.pdb
number of residues in common 142
rmsd of common residues 20.442807
TMfinal0.067559
pdb_35/1at0_.pdb pdb_35/1amx_.pdb
number of residues in common142
rmsd of common residues 15.354356
TMfinal0. 152562
pdb_35/1at0_.pdb pdb_35/1an8_.pdb
number of residues in common 142
rmsd of common residues 19.193526
TMfinal0. 121844
pdb_35/1at0_.pdb pdb_35/1an9A.pdb
number of residues in common142
rmsd of common residues 19.934466
TMfinal0. 092630
pdb_35/1at0_.pdb pdb_35/1aoa_.pdb
number of residues in common 142
rmsd of common residues17.197258
TMfinal0. 124470
pdb_35/1at0_.pdb pdb_35/1aocA.pdb
number of residues in common 142
rmsd of common residues19.185779
TMfinal0. 132861
pdb_35/1at0_.pdb pdb_35/1aoeA.pdb
number of residues in common 142
rmsd of common residues 17.441553
TMfinal0. 130337
pdb_35/1at0_.pdb pdb_35/1aohA.pdb
number of residues in common142
rmsd of common residues 18.057295
TMfinal0. 134636
pdb_35/1at0_.pdb pdb_35/1aol_.pdb
number of residues in common142
rmsd of common residues 17.754407
TMfinal0.106525
pdb_35/1at0_.pdb pdb_35/1aop_.pdb
number of residues in common 142
rmsd of common residues17.148450

TMfinal0.085850
pdb_35/1at0_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 15.061864
TMfinal0.118129
pdb_35/1at0_.pdb pdb_35/1ap8_.pdb
number of residues in common 142
rmsd of common residues19.702157
TMfinal0.113419
pdb_35/1at0_.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 11.498072
TMfinal0. 135905
pdb_35/1at0_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 13.276603
TMfinal0.118405
pdb_35/1at0_.pdb pdb_35/1aq0A.pdb number of residues in common 142
rmsd of common residues 15.976193
TMfinal0.114382
pdb_35/1at0_.pdb pdb_35/1aqb_.pdb
number of residues in common142
rmsd of common residues 17.859761
TMfinal0. 132803
pdb_35/1at0_.pdb pdb_35/1aqcA.pdb number of residues in common121 rmsd of common residues 15.460685

TMfinal0. 160100
pdb_35/1at0_.pdb pdb_35/1aqe_.pdb
number of residues in common 110
rmsd of common residues 13.685743
TMfinal0. 139223
pdb_35/1at0_.pdb pdb_35/1aqt_.pdb
number of residues in common 135
rmsd of common residues 18.643341
TMfinal0. 125468
pdb_35/1at0_.pdb pdb_35/1aquA.pdb
number of residues in common 142
rmsd of common residues 16.369786
TMfinal0. 107323
pdb_35/1at0_.pdb pdb_35/1aqzA.pdb
number of residues in common142
rmsd of common residues14.476397
TMfinal0. 203586
pdb_35/1at0_.pdb pdb_35/1at3A.pdb
number of residues in common 142
rmsd of common residues 16.345438
TMfinal0. 141333
pdb_35/1at0_.pdb pdb_35/1atg_.pdb
number of residues in common 142
rmsd of common residues18.843293
TMfinal0. 110120
pdb_35/1at3A.pdb pdb_35/1amm_.pdb number of residues in common 174
rmsd of common residues 18.870589
TMfinal0.176585
pdb_35/1at3A.pdb pdb_35/1amuA.pdb
number of residues in common217
rmsd of common residues 22.425179
TMfinal0. 101749
pdb_35/1at3A.pdb pdb_35/1amx_.pdb
number of residues in common 150
rmsd of common residues 18.043908
TMfinal0. 173600
pdb_35/1at3A.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 20.984940
TMfinal0. 150381
pdb_35/1at3A.pdb pdb_35/1an9A.pdb
number of residues in common217
rmsd of common residues21.600447
TMfinal0. 123261
pdb_35/1at3A.pdb pdb_35/1aoa_.pdb
number of residues in common217
rmsd of common residues 22.004300
TMfinal0. 146342
pdb_35/1at3A.pdb pdb_35/1aocA.pdb number of residues in common 175 rmsd of common residues 17.933026

TMfinal0. 176179
pdb_35/1at3A.pdb pdb_35/1aoeA.pdb number of residues in common192
rmsd of common residues 18.553312
TMfinal0. 187121
pdb_35/1at3A.pdb pdb_35/1aohA.pdb
number of residues in common 143
rmsd of common residues 18.281737
TMfinal0. 184414
pdb_35/1at3A.pdb pdb_35/1aol_.pdb
number of residues in common217
rmsd of common residues 18.952376
TMfinal0. 183100
pdb_35/1at3A.pdb pdb_35/1aop_.pdb
number of residues in common217
rmsd of common residues 21.027798
TMfinal0.111471
pdb_35/1at3A.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 13.522765

TMfinal0. 185419
pdb_35/1at3A.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues 23.238933
TMfinal0. 153506
pdb_35/1at3A.pdb pdb_35/1apj_.pdb
number of residues in common74
rmsd of common residues 14.551395
TMfinal0. 135334
pdb_35/1at3A.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues13.283036
TMfinal0. 125137
pdb_35/1at3A.pdb pdb_35/1aq0A.pdb
number of residues in common217
rmsd of common residues20.472847
TMfinal0. 126794
pdb_35/1at3A.pdb pdb_35/1aqb_.pdb
number of residues in common 175
rmsd of common residues 18.892587
TMfinal0. 153729
pdb_35/1at3A.pdb pdb_35/1aqcA.pdb
number of residues in common121
rmsd of common residues 18.710968
TMfinal0. 149542
pdb_35/1at3A.pdb pdb_35/1aqe_.pdb number of residues in common110 rmsd of common residues 15.709912

TMfinal0. 150883
pdb_35/1at3A.pdb pdb_35/1aqt_.pdb
number of residues in common135
rmsd of common residues 17.854322
TMfinal0.143175
pdb_35/1at3A.pdb pdb_35/1aquA.pdb number of residues in common217 rmsd of common residues 20.662016

TMfinal0. 135745
pdb_35/1at3A.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues17.762094
TMfinal0. 151506
pdb_35/1at3A.pdb pdb_35/1at0_.pdb
number of residues in common142
rmsd of common residues 16.345438
TMfinal0. 171779
pdb_35/1at3A.pdb pdb_35/1atg_.pdb
number of residues in common217
rmsd of common residues 20.356250
TMfinal0.147797
pdb_35/1atg_.pdb pdb_35/1amm_.pdb
number of residues in common174
rmsd of common residues 14.385261
TMfinal0. 168474
pdb_35/1atg_.pdb pdb_35/1amuA.pdb number of residues in common231
rmsd of common residues 19.793872
TMfinal0.113246
pdb_35/1atg_.pdb pdb_35/1amx_.pdb
number of residues in common150
rmsd of common residues 19.733939
TMfinal0. 165064
pdb_35/1atg_.pdb pdb_35/1an8_.pdb
number of residues in common206
rmsd of common residues 20.044364
TMfinal0.153205
pdb_35/1atg_.pdb pdb_35/1an9A.pdb
number of residues in common231
rmsd of common residues 22.707749
TMfinal0. 132664
pdb_35/1atg_.pdb pdb_35/1aoa_.pdb
number of residues in common231
rmsd of common residues20.104588
TMfinal0. 199746
pdb_35/1atg_.pdb pdb_35/1aocA.pdb
number of residues in common 175
rmsd of common residues 19.326012
TMfinal0. 157537
pdb_35/1atg_.pdb pdb_35/1aoeA.pdb number of residues in common192 rmsd of common residues 21.126670

TMfinal0. 181559
pdb_35/1atg_.pdb pdb_35/1aohA.pdb
number of residues in common143
rmsd of common residues20.037547
TMfinal0. 129788
pdb_35/1atg_.pdb pdb_35/1aol_.pdb number of residues in common 228 rmsd of common residues 21.435441

TMfinal0. 164758
pdb_35/1atg_.pdb pdb_35/1aop_.pdb
number of residues in common231
rmsd of common residues 22.069328
TMfinal0. 123119
pdb_35/1atg_.pdb pdb_35/1aoy_.pdb
number of residues in common78
rmsd of common residues 14.675436
TMfinal0.170431
pdb_35/1atg_.pdb pdb_35/1ap8_.pdb
number of residues in common213
rmsd of common residues 22.062598

TMfinal0. 151504
pdb_35/1atg_.pdb pdb_35/1apj_.pdb number of residues in common74 rmsd of common residues 11.748913

TMfinal0. 154353
pdb_35/1atg_.pdb pdb_35/1apq_.pdb
number of residues in common53
rmsd of common residues 12.436005
TMfinal0. 142662
pdb_35/1atg_.pdb pdb_35/1aq0A.pdb
number of residues in common231
rmsd of common residues 21.313044
TMfinal0. 141435
pdb_35/1atg_.pdb pdb_35/1aqb_.pdb
number of residues in common 175
rmsd of common residues 20.474842
TMfinal0.152851
pdb_35/1atg_.pdb pdb_35/1aqcA.pdb number of residues in common121 rmsd of common residues 19.120635

TMfinal0.126189
pdb_35/1atg_.pdb pdb_35/1aqe_.pdb
number of residues in common110
rmsd of common residues 17.077941
TMfinal0. 144414
pdb_35/1atg_.pdb pdb_35/1aqt_.pdb number of residues in common135 rmsd of common residues 15.547058

TMfinal0. 166745
pdb_35/1atg_.pdb pdb_35/1aquA.pdb
number of residues in common231
rmsd of common residues 20.955674
TMfinal0. 147549
pdb_35/1atg_.pdb pdb_35/1aqzA.pdb
number of residues in common 142
rmsd of common residues 18.261920
TMfinal0. 128873
pdb_35/1atg_.pdb pdb_35/1at0_.pdb
number of residues in common 142
rmsd of common residues18.843293
TMfinal0. 139284
pdb_35/1atg_.pdb pdb_35/1at3A.pdb
number of residues in common217
rmsd of common residues 20.356250
TMfinal0. 151595
pdb_35/1atg_.pdb pdb_35/1atb_.pdb
number of residues in common62
rmsd of common residues 12.595425
TMfinal0. 171124
min_aligned_length53
min_rmsd8.718909
min_tm_score0.032508
max_aligned_length456
max_rmsd25.813628
max_tm_score 0.225588
time 1340721824.034789
count602
sum_of_residues87048
sum_rmsd10667.569640
sum_tm81.986449
avg time taken 33.87138529
average no: of residue in common144.59580
rmsd of common residue 17.7202
average TMscore0.136190
no of alignments between 0 and .17534```

