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Insight 

 

The first section of the project deals with the designing of novel anti-cancer molecules 

as inhibitors of β-tubulin, the first step of which was modeling the structures of 

different tubulin isoforms. Further, I went on to design noscapine derivatives which 

show better binding affinities to the target and thus, are promising substitutes to 

noscapine (which is in clinical trials). After this part of the project was completed, it was 

realized that protein structure prediction and protein structure refinement are the two 

main steps which should be precisely carried out as the downstream processing is 

entirely dependent upon them. Therefore, the second section deals with the protein 

structure refinement problem. To this end, two main protocols have been developed. 

Firstly, ab initio modeling was executed on the longer loops, end loops and the missing 

secondary structural elements that exist in the protein as they are the regions which are 

poorly modeled and increase the divergence from the native structure. Secondly, a 

molecular dynamics simulation protocol has been developed and used to further refine 

the structures. 
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ABSTRACT 

 

 

Tubulin is the target for numerous small molecule ligands which alter microtubule dynamics 

leading to cell cycle arrest and apoptosis. Many of these ligands are currently used clinically for 

the treatment of several types of cancer, and they bind to one of three distinct binding sites 

within β-tubulin (paclitaxel, vinca, and colchicine), all of which have been identified 

crystallographically. Unfortunately, serious side effects always accompany chemotherapy since 

these drugs bind to tubulin indiscriminately, leading to the death of both cancerous and healthy 

cells. However, the existence and distribution of divergent tubulin isoforms provide a platform 

upon which we may build novel chemotherapeutic drugs that can differentiate between different 

cell types and therefore reduce undesirable side effects. We report results of computational 

analysis that aims at predicting differences between the binding energies of a family of noscapine 

derivatives against 8 human α/β-tubulin isoforms. Docking and binding energy calculated using 

molecular mechanics generalized born surface area (MM/GB-SA) method has been used in our 

calculations and the results provide a proof of principle by indicating significant differences both 

among the derivatives and between tubulin isoforms. 
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Chapter 1 

INTRODUCTION 
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Cancer is a term for a large group of different diseases, all involving unregulated cell growth. In 

cancer, cells divide and grow uncontrollably, forming malignant tumors, and invade nearby parts 

of the body. The cancer may also spread to more distant parts of the body through the lymphatic 

system or bloodstream. Not all tumors are cancerous. Benign tumors do not grow uncontrollably, 

do not invade neighboring tissues, and do not spread throughout the body. Healthy cells control 

their own growth and will destroy themselves if they become unhealthy. Cell division is a 

complex process that is normally tightly regulated. Cancer occurs when problems in the genes of 

a cell prevent these controls from functioning properly. These problems may come from damage 

to the gene or may be inherited, and can be caused by various sources inside or outside of the 

cell. Faults in two types of genes are especially important: oncogenes, which drive the growth of 

cancer cells, and tumor suppressor genes, which prevent cancer from developing. 

Determining what causes cancer is complex and it is often impossible to assign a specific cause 

for a specific cancer. Many things are known to increase the risk of cancer, including tobacco 

use, infection, radiation, lack of physical activity, poor diet and obesity, and environmental 

pollutants [1]. These can directly damage genes or combine with existing genetic faults within 

cells to cause the disease [2]. A small percentage of cancers, approximately five to ten percent, 

are entirely hereditary. Cancer can be detected in a number of ways, including the presence of 

certain signs and symptoms, screening tests, or medical imaging. Once a possible cancer is 

detected it is diagnosed by microscopic examination of a tissue sample. Cancer is usually treated 

with chemotherapy, radiation therapy and surgery. The chances of surviving the disease vary 

greatly by the type and location of the cancer and the extent of disease at the start of treatment. 

A mitotic inhibitor is a drug that inhibits mitosis, or cell division. These drugs disrupt 

microtubules, which are structures that pull the cell apart when it divides. Mitotic inhibitors are 
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http://en.wikipedia.org/wiki/Mitosis
http://en.wikipedia.org/wiki/Microtubules


 

A.3 

 

used in cancer treatment, because cancer cells are able to grow and eventually spread through the 

body (metastasize) through continuous mitotic division and so are more sensitive to inhibition of 

mitosis than normal cells.  

 

Microtubules (MTs) are filamentous intracellular structures in all eukaryotic cells that are 

responsible for moving vesicles, granules, organelles like mitochondria, and chromosomes. They 

are important in mitosis or nuclear cell division, organization of intracellular structure, and 

intracellular transport, as well as ciliary and flagellar motility. A microtubule is a hollow 

filament of about 24 nm in diameter and is formed via polymerizations of the α/β-tubulin 

heterodimer as shown in Figure 1.  

 

 
 

Figure 1. Microtubule structure showing tubulin polymerization 

 

Tubulin is constituted of two 50kDa monomers: an α-subunit and a related β- subunit, with 40% 

sequence identity between them. During polymerization, αβ tubulin heterodimers arrange head-

to-tail to form straight protofilaments, which are therefore polar structures. Protofilaments 

interact laterally to constitute the wall of the MT. The polar nature of protofilaments gives 

http://en.wikipedia.org/wiki/Cancer
http://en.wikipedia.org/wiki/Metastasis
http://en.wikipedia.org/wiki/Mitosis
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polarity to MTs, with a fast growing (+) end exposing β subunits and a slower growing (−) end 

exposing α subunits [3]. Under conditions of steady state, at the plus end more dimers are added 

than lost and at the minus end more dimers are released than new ones re-associate. 

 

Polarity is a very important feature for microtubule functioning. It is the basic property for 

direction-dependent cellular events, e.g., vesicle transport. Since cancer cells divide much more 

rapidly than normal cells, a search for inhibitor drugs that would prevent cell division, is of great 

importance. During mitosis, microtubules construct the mitotic spindle, which are responsible for 

the segregation of aligned chromosomes prior to cell division. Microtubules of mammalian cells 

disintegrate at temperatures below 10 °C. On the other hand, they reconstitute from tubulin in 

vitro at physiological temperature in the presence of GTP (at equimolar concentrations to 

tubulin) and magnesium ions. Microtubules have become the target for a large number of 

antimitotic agents including antitumor drugs such as the taxanes, epothilones, colchicine, and 

vinca alkaloids. The antimitotic and cytotoxic activity of these drugs is believed to primarily 

arise from suppression of dynamics in the mitotic spindle, the inhibition of spindle assembly 

and/or the disruption of spindle checkpoint functions [4]. The method of action of these drugs is 

to promote or inhibit microtubule polymerization by binding at specific sites on the interface of 

α/β-tubulin heterodimers. For example, the vinca alkaloid, vinblastine, binds at the intertubulin 

dimer interface, ultimately resulting in microtubule depolymerization [5]. Colchicine also 

inhibits the microtubule polymerization by binding to tubulin. On the other hand, binding of the 

taxanes results in an overall increase in the spindle microtubule mass with a concurrent reduction 

in microtubule dynamics [6,7]. They stabilize GDP-bound tubulin in the microtubule, thereby 

inhibiting the process of cell division - a "frozen mitosis". Epothilones also act in a manner 

http://en.wikipedia.org/wiki/Tubulin
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similar to taxanes, although early trials have shown that they have better efficacy than the latter. 

The resulting cellular phenotype of these drugs is the induction of mitotic arrest leading to 

apoptosis, making them effective chemotherapeutic agents for targeting rapidly dividing cells. 

Nevertheless, even the most successful chemotherapy drugs have undesirable side effects that 

limit their utility. Their drawback is that when these drugs are given systemically, they bind 

tubulin indiscriminately, leading to the destruction of both cancerous and healthy cells, the 

consequence of which is the presence of serious side effects in all known cancer chemotherapy 

applications. 

 

Noscapine (also known as Narcotine) is a benzylisoquinoline alkaloid from plants of the 

Papaveraceae family. It is a non addictive derivative of opium. This agent is primarily used for 

its antitussive (cough-suppressing) effects [8,9]. It has also been shown to have anticancer 

activity. Noscapine is currently under investigation for use in the treatment of several cancers 

and hypoxic ischemia in stroke patients. 

 

 
Figure 2. Scaffold structure of Noscapine 
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In cancer treatment, noscapine appears to interfere with microtubule function, and thus the 

division of cancer cells in a way similar to the taxanes. Antimicrotubule drugs disturb the 

assembly of the microtubules, thus preventing cell division. In normal cell growth, microtubules 

are formed when a cell starts to divide. Once the cell stops dividing, the microtubules are either 

broken down or destroyed. Anti-microtubule drugs stop the microtubules from breaking down, 

thus causing cancer cells to become so clogged with microtubules, so that they cannot further 

grow and divide. Early studies in treatment of prostate cancer are very promising. In stroke 

patients, noscapine blocks the bradykinine b-2 receptors. In this piece of research, we present a 

brief description of the tubulin isoforms, their 3-dimensional models, and the noscapine binding 

site. Our purpose in this study is to employ computational modeling in order to find derivatives 

of noscapine as potential anticancer drug candidates which would fit in the colchicines binding 

site of the β-tubulin. To this end, we performed both docking and free energy of binding 

[10,11,12] on the noscapine bound to several β-tubulin isoforms as well as on a number of 

derivatives of noscapine also bound to the same set of β- tubulin isoforms to elucidate which of 

these molecules may be considered to be potential substitute(s) for noscapine as an anticancer 

drug.  
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Chapter 2 

OBJECTIVES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

A.8 

 

Cancer has long been an elusive field of research but we are yet to discover extremely efficient 

drugs with minimal side-effects. In this study, we plan to design novel tubulin binding drugs by 

derivatization from noscapine (a drug, which is already in the testing phase as an anti-cancer 

molecule) as potent anti-cancer molecules.  

 

We wish to employ computational modeling in order to find derivatives of noscapine as potential 

anticancer drug candidates which would fit in the colchicines binding site of the β-tubulin. 
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Chapter 3 

MATERIALS AND METHODS 
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3.1. Tubulin isoforms and their 3D models 

 

Homologous protein families, such as tubulin, are collectively known as isoforms. They have 

amino acid sequences that diverged as a result of accumulated mutations since their separation 

by speciation events [13]. The resulting variations in sequence can be neutral (when they are 

irrelevant to the process of natural selection) or essential (when they adapt the function of a 

protein to a given selective pressure).The role of tubulin at the molecular level is extremely 

complex and seems to be related to structural variations observed between α- and β- isoforms 

[14]. The existence and distribution of tubulin isoforms provide a link to their structure and their 

role in the polymerization and stability of microtubules. It is clear that much of the tubulin’s 

surface is invariant; however, those substitutions that do occur are clustered at positions that 

comprise the longitudinal interface between protofilaments [15]. This observation implies that 

there must be a contribution from the interdimer interface, between protofilaments, that is a key 

to our understanding of the properties that each isoform contributes to microtubule stability. 

Isoform composition has previously been recognized as having a demonstrable effect on 

microtubule assembly kinetics [16,17] whereby small differences in the binding energies and 

chemical affinities of different tubulin isoforms surprisingly translate into significant deviations 

in the growth rates and catastrophe frequencies. Short-range interactions have been studied by 

calculating the energy of protofilament - protofilament interactions [18]. Cells, especially cancer 

cells, are capable of altering the expression of each tubulin isoform (encoded by different genes) 

in response to external conditions that affect microtubule stability. There are several examples of 

this response; the most recent is the overexpression of β- tubulin isoform III (β III) following 

exposure to microtubule stabilizing agents such as paclitaxel [19-23]. Table 1 identifies the 

distribution of β-tubulin isoforms in normal human cells. Current antitubulin drugs bind to all of 
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these isoforms, having only slight preference for one over another [24,25]. For example, the 

vinca alkaloids bind best to β II [24] providing an explanation as to their efficacy in leukemia 

and Hodgkin’s lymphoma, since these cancerous cells express β II while normal lymphocytes do 

not [26]. It is to be noted that cancerous cells seem to express a variety of tubulin isoforms and 

are not limited to those expressed in the noncancerous cells from which they are derived [27]. 

Therefore, a drug that is highly specific for an isoform that is found within a cancerous cell could 

preferentially affect only those cells, while not harming significantly noncancerous cells. To 

examine the molecular properties of tubulin isoforms and the effect that they have on 

microtubule dynamics and drug interactions, we earlier performed a search of both the SWISS-

PROT and Entrez protein databases [28]. We identified a total of eight β-tubulin isoforms. 

Following the identification of 83 individual protein sequences, corresponding only to β-tubulin, 

a ClustalW alignment was performed [29]. The alignments between the isoforms of β-tubulin 

were unambiguous due to the highly conserved amino acid sequences between these proteins. 

This alignment resulted in the filtering of both duplicates and fragmentary sequences and 

produced a final set of unique sequences, from which eight distinct subtypes were classified, 

generally based on their overall amino acid sequence and specifically their carboxy terminal tail 

sequence [28-32]. Of the eight subtypes, βI(GI:338695) contained two additional isoforms (gi: 

18088719, 338695). The βII isoform contained additional two sequences (gi: 4507729, 

29788768) that carried differences in their carboxy terminal tail, however, class βIIa may 

actually correspond to a pseudogene [30]. In addition to the two βII tubulin genes, we also 

identified three additional proteins (gi: 27227551, 49456871, 7441369) that carry minor 

substitutions within the coding sequence. The βIII tubulin isoform (gi: 50592996) also contained 

two additional proteins (gi: 62897639, 1297274). Two-class βIV tubulin genes (gi:21361322, 
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135470) differ only in their carboxy terminal tail sequences. The class βV (gi: 14210536) and 

βVI (gi: 62903515) are unique in their sequences. The class βVII tubulin gene family (gi: 

55770868) contains additional two proteins (gi: 1857526, 12643363) that show slightly greater 

sequence variability than any of the other β-tubulin isoforms. Finally, the βVIII tubulin gene (gi: 

42558279) is also unique in its sequence and has yet to be officially classified [16]. 

 

 

Isoform Organ of expression Cellular expression 

   

β_I constitutive most cells 

β_II brain, nerves, muscle; rare elsewhere restricted to particular cell types 

β_III Brain,testis, colon (very slight amounts) 
neurons only sertoli cells epithelial cells 

only 

β_IVa brain only neurons and glia 

β_IVb constitutive (not as widespread as β_I) high in ciliated cells, lower in others 

β_V unknown Unknown 

β_VI blood, bone marrow, spleen erythroid cells, platelets 

β_VII brain Unknown 

 

Table 1. Tissue Distribution of β-tubulin Isoforms in Normal Cells 

 

 

3.2. Modeling of structure of β-tubulin isoforms 

 

The presence of both numerous tubulin structures and multiple tubulin isoform sequences offers 

a unique opportunity to apply homology modeling and create a library of human β-tubulin 

isoforms, from which we can determine their key biochemical characteristics. Following the 

solution of the three-dimensional structure of a protein, it becomes possible to use homology 

modeling to predict the structure of a protein that has a similar sequence. Homology modeling 

utilizes several structural motifs from template proteins and pieces them together to form a final 

model. A scoring function assesses both the sequence identity between the target sequence and 

template and the overall quality of the template that is being considered. The scores are ranked 
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and the fold with the best score is assumed to be the one adopted by the target sequence. The 

tubulin structure co-crystallized with colchicine (PDB ID:1SA0; resolution 3.5 A) was used as 

template for homology modeling of the β-tubulin isoforms using PRIME (version 4.5) 

(Schrodinger Inc.). The quality of the resulting models was then investigated, using two software 

packages: WHAT_CHECK and PROCHECK. 

 

3.3. Noscapine and its binding site 

 

Noscapine is a non-narcotic, phthalide isoquinoline alkaloid derived from the opium poppy 

Papaver somniferum. It arrests mammalian cell cycle with intact bipolar microtubules spindles in 

mitosis even at high concentrations [35,36,37]. Noscapine binds tubulin dimer with a 1:1 

stoichiometry [35] and alters the auto-fluorescence and circular dichroism spectrum of tubulin 

suggesting an alteration of the secondary structure of tubulin upon binding and arrests the 

mammalian cells at mitosis [35]. During the onset of mitosis, tubulin subunits assemble and 

disassemble vigorously to make the attachment between kinetochores of chromosomes and the 

plus ends of microtubules [38]. Physical tension is generated across kinetochore pairs following 

attachment to kinetochores and is probably regulated by the combined action of MT dynamics 

and MT motors within the vicinity of kinetochores [39,40,41]. The careful real time observation 

of individual polymerizing MTs in vitro and tracking the plus end growth over time revealed that 

noscapine affected MT-dynamics primarily by increasing the amount of time MTs spent in an 

attenuated pause state rather than engaging into active depolymerization and repolymerization. 

As a result, noscapine treatment reduced the tension generated across the kinetochore pairs as 

well as reduced the number of MTs attached to each pair of kinetochore [37]. During mitosis, 

spindle assembly checkpoint (SAC) prevents the onset of anaphase until all the chromosomes are 

correctly attached with MTs and proper tension is applied to the chromosomes [39]. Owing to its 
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effect on MT dynamics, noscapine reduces tension as well as the number, therefore fails to 

deactivate the spindle assembly checkpoint, and the active checkpoint is responsible for the 

sustained mitotic arrest [37,42]. Noscapine docks onto β-tubulin near the interface with its 

dimerization partner, α- tubulin [43]. This study showed the presence of an empty space around 

position-9 of noscapine and that can accommodate small chemical moieties such as 

electronegative halogen atom (e.g. Cl-, Br-). The study suggested that addition of chemical 

moiety in the empty space might confer additional electrostatic interactions and hence enhanced 

biological activity [44]. In this study, we have taken the co-crystal structure of tubulin 

complexed with colchicine (PDB ID:1SA0) from Bos taurus for docking studies. It has been 

identified that colchicine also binds between α- and β-tubulin molecules within the heterodimer 

itself [45]. The binding site for colchicine was shown to be at the interface between α- and β-

tubulin. 

 

3.4. Ligand preparation 

 

The structural derivatives of noscapine as shown in Table 2, were built from the scaffold 

structure of noscapine (Figure 2) and substitution of functional groups as mentioned in Table 1. 

We used Maestro-molecular builder for building the scaffold and structural derivatives. LigPrep 

[46] was used for final preparation of ligands. LigPrep is a utility of Schrodinger software suit 

that combines tools for generating 3D structures from 1D (Smiles) and 2D (SDF) representation, 

searching for tautomers and steric isomers and performing a geometry minimization of ligands. 

The ligands were energy minimized using Macromodel module of Schrodinger with default 

parameters and applying molecular mechanics force fields (MMFFs). Truncated Newton 

Conjugate Gradient (TNCG) minimization method was used with 500 iterations and convergence 

threshold of 0.05 kJ/mol. 
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Sl. No. Ligand Structure 

 

1. 

 

Noscapine 

 

 
2. Nitro-noscapine 
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3. 

 

Amino-noscapine 

 
4. Azido-noscapine 
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5. 

 

Folate-noscapine 

 
6. Bromo-noscapine 

 

 

Table 2. Noscapine and its structural derivatives used in the study 
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3.5. Docking of the ligands 

 

The Glide program [47] was used for docking study. The Glide docking algorithm performs a 

series of hierarchical searches for locations of possible ligand affinity within the binding site of a 

receptor. A rough positioning and scoring algorithm is applied during the initial search step, 

followed by torsional energy optimization on an OPLS-AA non-bonded potential energy grid for 

enduring candidate poses. The pose conformations of the very best candidates are of MTs 

attached to each pair of kinetochore. It is further refined by using Monte Carlo sampling. 

Selection of the final docked pose is accomplished using a Glide score, which is a model energy 

function that combines empirical and force field based terms. The Glide score is a modified and 

extended version of the ChemScore function [46]. All the ligands were docked to the tubulin 

isoforms using Glide 4.0. After ensuring that protein and ligands are in correct form for docking, 

the receptor-grid files were generated using grid-receptor generation program by selecting the 

colchicine binding site, using van der Waals scaling of the receptor at 0.4. The default size was 

used for the bounding and enclosing boxes. The ligands were docked initially using the “standard 

precision” method and further refined using “xtra precision” Glide algorithm. For the ligand 

docking stage, van der Waals scaling of the ligand was set at 0.5. Out of the 50,000 poses that 

were sampled, 4,000 were taken through minimization (conjugate gradients 1,000) and the 30 

structures having the lowest energy conformations were further evaluated for the favorable Glide 

docking score. A single best conformation for each ligand was considered for further analysis. 

 

3.6. Molecular Mechanics and Free Energies of Binding 

 

After obtaining preferable binding structure from docking simulation, the complex was partially 

minimized by relaxing ligand and atoms of side chains that are within 7A
o
 away from the ligand 
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while all other atoms were fixed. Bimolecular Association with Energetics (eMBrAcE) 

developed by Schrodinger was used for physics based rescoring procedure [48]. The eMBrAcE 

(MacroModel v9.1) program calculates binding energies between ligands and receptors using 

molecular mechanics energy minimization for docked conformations. eMBrAcE applies multiple 

minimizations, during which each of the specified pre-positioned ligand is minimized with the 

receptor. For each ligand, the protein-ligand complex (Elig-prot), the free protein (Eprot), and 

the free ligand (Elig) were all subjected to energy minimization in implicit solvent (generalized 

Born) [48,50]. It uses traditional molecular mechanics (MM) methods to calculate ligand-

receptor interaction energies (Gele and GvdW), with a Gaussian smooth dielectric constant 

function method [51] for electrostatic part of solvation energy and solvent-accessible surface for 

the nonpolar part of solvation energy. A conjugate gradient minimization protocol was used in 

all minimization. 

The eMBrAcE calculation was performed using the Ligand & Structure-Based Descriptors 

(LSBD) application of the Schrodinger software package. This calculation was applied to the 

ligand-receptor complex structures obtained from Glide docking. 
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Chapter 4 

RESULTS AND DISCUSSION 
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In forming the initial model for the α/β-tubulin heterodimer, only one type of α –tubulin subunit 

was used throughout the simulations and was taken from the RCSB Protein Data Bank with the 

PDB identifier 1SA0[46]. The 8 human β -tubulin isoforms used in the calculations were 

obtained from Huzil et al. [49,52]. The α- and β-monomers were then joined together to form the 

8 α/β-tubulin dimers. The coordinates of all the missing hydrogen atoms in the PDB structures 

were added using the PRIME program. The geometry of each system was optimized by energy 

minimization to refine the structure as well as to relieve any bad contacts among atoms due to 

the creation of hydrogen atom coordinates. 

The original crystal structure of tubuline-colchicine complex (PDB ID: 1SA0) was used to 

validate the Glide-XP docking protocol. This was done by moving the co-crystallized colchicines 

ligand outside of active site and then docking it back into the active site. The RMSD was 

calculated for each configuration in comparison to the co-crystallized colchicine and the value 

was found to be in between 0.02–0.85 A°. This revealed that the docked configurations have 

similar binding positions and orientations within the binding site and the docking protocol 

successfully reproduces the crystal tubulin-colchicine complex. After validation of docking 

protocol the noscapine and its structural derivatives were docked into the colchicines binding site 

of tubulin isoforms. 

 I II III IV V VI VII VIII 

Azido -2.782 -1.684 -1.790 -2.808 -2.425 -1.092 -2.431 -1.092 

Nitro -2.671 -1.390 -1.712 -1.918 -1.942 -1.030 -2.391 -1.030 

Amino -1.618 -0.697 -1.785 -0.820 -0.629 0.149 -0.810 0.149 

Bromo -1.380 -0.351 -0.479 -1.28 -0.131 -0.152 -0.213 -0.152 

Folate -1.734 0.346 -3.599 0.139 -3.438 -0.833 -1.022 -0.695 

 

Table 3. Calculated ΔΔGGlide score for Noscapine and its structural derivatives in 8 α/β-Tubulin Dimers. 
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 I II III IV V VI VII VIII 

Azido -23.64 -58.82 -24.55 -0.9 -22.35 -36.49 -90.18 -36.49 

Nitro -34.78 -42.42 -13.86 2.58 23.85 -28.7 -45.88 -28.7 

Amino -11.06 -23.11 -24.59 -34.35 -2.91 -29.87 -31.05 -29.87 

Bromo -8.04 -30.16 1.33 -23.52 -18.63 -45 -58.36 -45 

Folate -174.95 -112.43 -136.15 -149.86 -118.28 -117.47 -187.51 -203.34 

 

Table 4. Calculated ΔΔGGvdw for Noscapine and its structural derivatives in 8 α/β-Tubulin Dimers. 

 

 I II III IV V VI VII VIII 

Azido -390.71 -502.79 -487.76 -405.94 -8.45 -45.28 -560.96 -45.28 

Nitro -98.48 -196.18 -92.4 -65.94 155.1 -62.74 -69.79 -62.74 

Amino -126.78 -224.17 -119.52 -39.95 -198.47 299.91 -61.48 299.91 

Bromo -130.88 -135.21 -152.73 -40.81 -237.38 179.34 -161.75 179.34 

Folate -171.25 -643.21 -617.92 -612.13 -302.66 -193.09 -623.77 -480.09 

 

Table 5. Calculated ΔΔGGele for Noscapine and its structural derivatives in 8 α/β-Tubulin Dimers. 

 

 

Tables 3, 4 and 5 show the calculated changes in the binding free energies with respect to 

noscapine which was used as a reference point for all the molecules when used as a replacement 

for noscapine for the 8 α/β-tubulin isoforms that were used in the study. The ΔΔGide score, 

ΔΔGvdw and ΔΔGele with negative values correspond to analogues that are more strongly bound 

to the α/β-tubulin dimers than noscapine, while those with positive values correspond to those 

that are less strongly bound to them. The binding mode of all these analogues with all 8 α/β- 

tubulin isoforms is shown in Figure 3. The results of the simulations indicate that there are 

compounds that potentially could be superior substitutes for noscapine. It has been found that, 

the compound azido-noscapine is the best among the compounds studied as it shows that it is 

more strongly bound to all isoforms with respect to noscapine followed by nitro-noscapine, 

amino-noscapine, bromo-noscapine and folate-noscapine on the basis of Glide score. However, 

the analogue folate-noscapine shows better electrostatic interaction with tubulin isoforms 
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followed by azido-noscapine, bromo-noscapine, amino-noscapine and nitro-noscapine. Similarly 

the analogue folate-noscapine shows better van der Waal interaction with tubulin isoforms 

followed by azido-noscapine, bromo-noscapine, amino-noscapine and nitro-noscapine. This 

revealed that all the noscapine analogues bind efficiently with all 8 types of tubulin isoforms and 

could be having better therapeutic indices. 
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Figure 3. Ligplot showing interacting residues between the noscapine analogues and the different isoforms of β-

tubulin. 
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         Chapter 5 

CONCLUSION 
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The estimated values of ΔΔGGlide score and ΔΔGbind presented in this study, can serve as a 

first of the many steps in designing, testing, and identifying specific chemotherapeutic 

compounds for targeting specific tubulin isoforms that are over expressed in cancer cells. The 

ultimate goal of cancer research is to develop a drug or treatment regimen that will target only 

cancer cells and will target them absolutely. The significance of microtubules as a target for 

chemotherapeutic treatments is outlined in a review by Jordan and Wilson [53]. They emphasize 

the importance of understanding the underlying mechanistic processes of these drugs when they 

bind to the target protein. While it is clear that a substantial amount of experimental work has to 

be done on obtaining kinetic data for drug binding to each β-tubulin isoform, the presence of 

minor variations within the structure of β-tubulin isoforms may provide us with an initial starting 

point for the development of novel drugs, or the derivatization of existing drugs that have 

increased specificity. This study provided an attempt in this direction by investigating diversity 

within a specific group of noscapine derivatives. We are encouraged by the results showing a 

degree of specificity for each tubulin isoform exhibited by the panel of the designed noscapine 

derivatives. We expect that these results will be supported by in vitro experiments. This type of 

approach, when brought to a successful completion, may eventually allow us to develop 

secondary treatments for cancer cell lines that have developed drug resistance, due to mutations 

or altered expression levels, as a result of standard chemotherapy treatments. We are aware of 

the existence of various mutations affecting the amino acid sequence of β-tubulin. Many of these 

mutations are somatic and develop within the tumor site. A number of common mutations have 

been identified to occur in the colchicine binding site and they may lead to the development of 

drug resistance over the course of chemotherapy. To overcome this complication, we intend to 

calculate the binding affinities of these tubulin mutants for the noscapine derivatives discussed in 
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this study and select the optimized structures for the particular over expressed mutant which 

could eventually result in better cure outcomes. 
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ABSTRACT 

 
The field of protein structure prediction and modeling has long been researched and a number of 

softwares have been made available for the same. Although this field is promising, obtaining a 

model with the same accuracy as a crystal structure is still an unsolved problem and the 

refinement problem is holding back the performance of many softwares. Thus, the structure 

refinement of a rough model, to bring it closer to the native structure remains a major challenge. 

Work on this area has been ongoing for many decades and various methodologies have been 

used, but no method has emerged as a clear winner. Two major problems were identified in the 

modeled structures, one being that of loop optimization, as loops are the most variable regions of 

the protein which generally do not match the template and therefore, require special attention. 

The other one deals with the presence of steric clashes in the modeled structures, especially the 

ones obtained using multiple templates for modeling different regions of the protein in the form 

of patches. In this project, a computational protocol has been developed to tackle the above 

mentioned problems using ab initio modeling for loop optimization and a final molecular 

dynamics simulation on the modeled protein structures. This protocol helped decrease the RMSD 

and remove the steric clashes that are present in the predicted models thereby making them 

physically plausible.  

 

 

 

Key words: structure refinement, loops, clashes, RMSD 



 

B.1 

 

Chapter 1 

INTRODUCTION 
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Proteins are macromolecules that play a very important role in the functioning of living 

organisms. They are responsible for catalyzing and regulating biochemical reactions, 

transporting molecules, and they form the basis of structures such as skin, hair, and tendon. They 

are polymeric chains that are built from monomers called amino acids. Proteins are made up of 

20 amino acids formed in different combinations [1].  

 

Structural organization of proteins- They form four different levels of structural organization 

which can be classified into primary, secondary, tertiary and quaternary as represented in   

Figure 4. Primary structure is defined as the linear sequence of amino acids in a polypeptide 

chain. The secondary structure refers to certain regular geometric figures of the chain. Tertiary 

structure results from long range contacts within the chain and quaternary structure is the 

organization of protein subunits or 2 or more independent polypeptide chains [2]. The Secondary 

structure of a protein is characterized by regular elements such as alpha helices (α helices), Beta 

sheets (β sheets) and irregular elements such as Beta bulges, tight turns and random coils [3]. 

Alpha helices, Beta sheets and Turns are the three common secondary structures in proteins and 

the segment of polypeptide which cannot be classified into these three are grouped into the 

category of Loops [4].  

 

Loops are the structural elements which connect two secondary structures comprising the core 

and are important for the overall three dimensional structure and function of proteins [5].  

Despite their short length, loops are of major importance. Without loops many proteins cannot 

fold into compact structures. They are commonly located on the surface of the protein and 

therefore may be involved in binding or recognition of other molecules. They do not contribute 
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much to protein stability but may be important for protein specific function and for interaction 

with other components of the cell. They vary widely in both sequence and size, even between 

two closely related homologous proteins [6]. Correct prediction of loops structure is considerably 

more difficult than the geometrically regular structures like alpha helices and beta strands. 

Figure 4. Basic architecture of proteins representing primary, secondary and tertiary structure (adapted from 

http://www.press.uillinois.edu/epub/books/brown/ch6.html) 

 

Large scale study of proteins, their structures and functions is known as proteomics. In the 

1970s, when researchers all over the world were creating databases of proteins based on the 

techniques like two-dimensional gel electrophoresis and relatively modern methods like mass 

spectrometry [7, 8], the term proteomics was coined. Today, it refers to a procedure that 

http://www.press.uillinois.edu/epub/books/brown/ch6.html
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characterizes large sets of proteins which is only possible due to the large amount of human 

genome sequence available [9]. It basically deals with the protein structures and functions as 

well as protein-protein interactions. A subsidiary of proteomics which has emerged now and is of 

great interest to researchers is that of Structural Genomics [10]. It involves methodologies such 

as X-ray crystallograppy, NMR (Nuclear Magnetic Resonance), cryo-EM (electron microscopy) 

which are facilitating in acquiring angstrom-level knowledge of protein structure. The three 

dimensional structure of proteins is required for understanding the biological role, functional 

annotation and mechanism of molecular recognition. With the sharp escalation in the amount of 

genomic data available, there is an immediate need for elucidation of the three dimensional 

structure of proteins [11]. Sequence determines the protein structure which leads to knowledge. 

Insights into the protein structure give way to applications in many different areas of biology and 

medicine with the help of studies of protein-protein interactions. 

The difference between the number of known protein sequences and the number of known 

protein 3-D structures is referred to as the sequence gap. The proliferation of genome sequencing 

projects is rapidly widening this gap [12]. The number of available structures for known protein 

sequences is limited to a meager 15%. Currently there are 36 complete eukaryotic genomes, 

1695 complete prokaryotic genomes and 2683 complete viral genomes in the National Center for 

Biotechnology Information (NCBI) database [13, 14]. In comparison, the number of structures 

deposited in Protein Data Bank (RCSB) [15] as on 22 July 2011 was 74,601 as compared to the 

530264 sequences available in the 2011_07 release of the UniProtKB/Swiss-Prot protein 

knowledgebase database [16]. Numbers of eukaryotic, prokaryotic and viral proteins with 

experimentally known structures, clustered based on <30% sequence similarity in PDB, are 

8031, 8048 and 1013 respectively. This clearly demonstrates the high rise in the sequence-
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structure gap, which necessitates computational aids. It has been estimated that the generation of 

an experimental protein structure costs, on average, between U.S. $250,000 and $300,000. 

Improved methods in structure prediction, therefore, hold the promise of shifting some of the 

cost burden from experimentalists to (relatively) cheap computations, allowing experimentalists 

to focus on those structures of particular interest. The field of protein structure prediction has 

been revolutionized ever since the first homology model was predicted in 1969 by Browne et al. 

[17]. A lot of structural genomics initiatives have also taken place world wide, the biggest one 

being that by the National Institutes of Health at nine centers through the Protein Structure 

Initiative (PSI) in 2000 [18]. It started with the aim to determine the 3D structure of all proteins 

which could be achieved by, organizing known protein sequences into families, selecting family 

representatives as targets, solving the 3D structure of targets by X-ray crystallography or NMR 

spectroscopy and finally building models for other proteins by homology to solved 3D structures. 

In 2008, the PSI launched the Structural Genomics Knowledgebase to make the fruits of their 

work available to the society. Over the years, this initiative has greatly increased the number of 

submissions made to the PDB and has also helped in broadening the knowledge and 

understanding of protein structure and function [19]. Alongside this, developed another initiative 

in the form of a biannual competition, the Critical Assessment of Protein Structure Prediction 

(CASP) competition, which challenged the homology modeling community to validate their 

programs in truly blind tests [20]. These experiments aim at establishing the current state of the 

art in protein structure prediction, identifying what progress has been made, and highlighting 

where future effort may be most productively focused. The CASP competition has spurred a lot 

of research into homology modeling, and the ninth CASP meeting showed that this work is 

slowly but steadily leading to better models. Currently, the tenth CASP competition is going on, 
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which promises to provide insight into the latest developments in the area of protein structure 

prediction. 

1.1. Protein Structure Prediction 

The field of protein structure prediction concerns itself with the generation of models of protein 

structures that approximate the true, native protein structure as accurately as possible. These 

methods are intended to augment, or even replace, the experimental determination of a protein 

structure in cases where the structure is either highly derivative (such as a protein with a close 

relative of known structure) or experimentally difficult to obtain (as with integral membrane 

proteins). With the help of the large PDB library as well as the number of unique SCOP [21, 22] 

defined folds, predicting the structure of single domain proteins has been made possible. 

Together PDB and sophisticated computer modeling approaches will enlarge the scope of 

modelable proteins [23]. Traditionally, computational protein structure prediction methods can 

be divided into three categories: comparative modeling or homology modeling (CM or HM), 

threading or fold recognition and ab initio methods. Although, now they are broadly classified 

into two basic categories: template based modeling and template free modeling. 

(i). Template Free Modeling 

The free modeling category was introduced in CASP7 (2006) as a replacement for the historic 

“Ab initio” category which does not use any information from the known structures. The ab 

initio methods are used to predict the structures of proteins which do not have any sequence or 

structural similarity with data in PDB, making them most difficult methods for protein structure 

prediction [24]. The ab initio methods have, in general, failed to predict reliable protein 

structures which calls for need for improvisation. Nevertheless, they still perform impressively 
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for filling the gaps/loops or for unaligned regions in proteins with low template similarity [25] 

which has been seen in the CASP8 results. The new and improved free modeling category 

includes fragment based recombination, hybrid methods that combine multiple methods for 

sequence comparison and ab initio methods. In simper terms, the free modeling structures 

demonstrate a lack of sequence detectable templates and exhibit difficulties for structure 

prediction. Thus, the predictors are free to do whatever they can do to model structures of this 

category. 

   (ii). Template Based Modeling 

Earlier attempts to compute the structure of an amino acid sequence using nothing else but a 

complete ab intio approach had very little success rate [26]. However, using information from 

the databases to model structures has made CM and fold recognition methods routine for protein 

structure prediction. In CM, an all-atom model for a target protein is predicted based on the 

alignment with a template of known 3D structure. The reliability of the prediction is based on the 

sequence similarity as well as evolutionary relationship. Threading goes slightly beyond the CM 

[27]. Threading is based on the principle that there are a limited number of folded protein 

structures in comparison to the number of sequences. It is used to identify distinctly related 

template sequences in the PDB, which are skipped in CM template search [28]. Threading 

method does a thorough scan of the databases to search for homologous as well as analogous 

proteins that adopt similar folds without any evolutionarily relationship [25]. 

The original concept of threading was introduced to calculate the potential of a structure to fit to 

a sequence, unlike the CM, which fits a sequence to a structure. Similarly, fold recognition term 

was used to compare a target sequence with a library of known folds and score based on energy 
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as well as different scoring methods [29]. With the increasing popularity of the threading and 

fold recognition methods, ‘threading’ became a common name for these methods. Today the 

method of CM and threading are grouped together under the name of “Template based 

modeling” (TBM). The workflow of the steps involved in template based modeling has been 

represented in Figure 5 and the detailed description of the protocol has also been given in the 

next few pages. 

(a). Homolog (Template) Detection and Target-Template Alignment 

The initial step in TBM is based on the hypotheses that the amino acid sequence determines the 

native conformation of a protein, by Afinsen [30] and also that if the query sequence has high 

sequence identity (>30%) to the structure, the homology detection is quite straightforward which 

is usually done by comparing the query sequence with all the sequences of the structures in the 

PDB [31]. This can easily be achieved simply with dynamic programming method [32] and its 

derivatives [33–34]. The most popular software is BLAST that searches sequence databases for 

optimal local alignments to the query. The BLAST program functions very well for alignment of 

sequences with high similarities. But when the sequence identity is well below 30%, homology 

hits from BLAST are not reliable. A number of alternative strategies including template 

consensus sequences [35-36] and profile analysis [37–39] have been developed. All these 

approaches, based on either multiple sequence or structure alignments, are more sensitive 

because the consensus sequences are better representative of the sequence family, and the profile 

reflects the conserved structural or functional preferences. 
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Figure 5. Workflow of TBM adapted from- 

http://www.scielo.org.za/scielo.php script=sci_arttext&pid=S0038-23532008000100001&lng=en 

 

In the past several years, profile methods have emerged as the primary approach in distant 

homology detection. Position-specific profile search methods such as PSI-BLAST [40] and 

http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S0038-23532008000100001&lng=en


 

B.10 

 

Hidden Markov Models (HMMs) [41], as implemented in the SAM [42] and HMMER 

(http://hmmer.wustl.edu) packages, have vastly improved the accuracy of sequence alignments 

and have extended the boundaries of detectable sequence similarity. Sequence profiles methods, 

e.g. PSI-BLAST, start from performing a pair-wise search of the database. The significant 

alignments are then used by the program to construct a position specific score matrix (PSSM). 

This matrix replaces the query sequence in the next round of database searching. The procedure 

may be iterated until no new significant alignments are found. This method of iterative profile 

generation helps in detection of remote sequence homologs [43]. 

Although a major goal of the profile analysis has been remote homolog detection, an important 

side benefit has been significant improvement in alignment quality, even at levels of sequence 

identity for which pairwise alignment methods are known not to work. This, in turn, has had a 

positive impact on the starting alignments used in homology modeling, and thus has the potential 

to extend the applicability of homology modeling to increasingly lower levels of sequence 

similarity. Also, there are a number of publicly available tools in this area. 

(b). Model Building 

After the identification of the template (or templates), the next step is model generation. There 

are different methods which can be employed for model building, including rigid body assembly 

[44–47], segment matching [48], spatial restraint satisfaction method [49]. Rigid body assembly 

model, builds a model by assembling rigid bodies obtained from the target-template alignment. 

In this, all the templates are rotated and translated into a common frame of reference initially. 

Templates structures are then superimposed and a residue by residue correspondence is 

established. An initial framework is calculated by averaging coordinates of the structurally 

http://hmmer.wustl.edu/
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conserved regions in the templates. The main chain coordinates of the template showing 

maximum sequence similarity in the core region are used directly to generate core region in the 

target model. For identical side chains, coordinates of the template are used directly and for 

variable side chains rotamer libraries are used. If the side chains and loop regions differ, these 

are generated by scanning database of the known protein structures for loops which are 

compatible with the target core region. The final model is refined to remove steric clashes using 

energy minimization or molecular dynamics simulations [50-54]. Swiss Model [55] and 3D 

JIGSAW [56] use rigid modeling approach for model building. In the segment matching method, 

the target sequence is split into short segments and each segment is matched with the databases 

to generate independent models of the segments. These segments are fitted into the growing 

target chain until the atomic coordinates for all the residues are generated. The final model is 

refined using energy minimization. This method is implemented in the SEGMOD/ENCAD [57, 

58]. In the last method, a 3D model is obtained by satisfying the spatial restraints derived from 

the alignment. Spatial restraints of the protein conformation are derived from the databases and 

are based on secondary-structure packing, distance geometry, hydrophobicity, stereo chemical 

properties, NMR experiments etc. A final model is generated by minimizing these restraints. 

MODELLER software uses this methodology [49, 50]. The accuracy of the generated model 

depends largely on the sequence similarity and the target-template alignment. 

(c). Model Refinement 

This step of TBM is extremely important yet difficult task as the accuracy of model prediction 

can be greatly improved at this step. The main focus at this stage is to improve the side chain and 

loop conformations. Loops are usually the most variable regions of a structure where insertion 

and deletion often occur. When the sequence identity is above 40%, errors in the homology 
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structure mainly comes from side chains; when the sequence identity is between 30–40%, loops 

and side chains become most problematic. 

The most common approach to solve the problem of side chain packing is to iteratively search 

the rotamer libraries for a combination of side chain conformations which are energetically 

favorable. These rotatmer libraries are compiled from the known structures and the resolution of 

the libraries has increased with the availability of more experimental structures [59-61]. Various 

approaches such as simulated annealing, monte carlo search, molecular dynamics refinement and 

mean field optimization have been used for conformational searching. Lately, improvements in 

side chain prediction are contributed mainly from better energy scoring functions and molecular 

dynamics simulations. 

Loop modeling is another major problem which various researchers worldwide are trying to 

address for many years now. Loops are the most variable regions in a protein structure. They are 

the regions which are often different in the template and the target sequence and therefore 

require special attention. The two main approaches used for loop sampling are ab inito modeling 

and database search. Database driven methods involve searching known protein structure for 

segments having similar topological constraints. On the other hand, ab initio method involves 

sampling of the loop conformational space and selecting the best conformations based on energy 

scoring functions. 

 

A popular approach for model refinement is to perform molecular dynamics simulations. Several 

attempts have been made in the past to refine models. For example Lee et al. were able to refine 

and select a near native model (1.8 Å Cα RMSD) starting from a 2.8 Å RMSD model among 
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Rosetta de novo models using molecular dynamics simulations with an explicit solvent and MM-

PBSA free energy function [62]. Lu et al. was able to refine ab intio models of 30 proteins using 

a combination of short MD simulations and scoring using knowledge based potentials [63]. 

Various groups used methods such as knowledge based functions for model selection along with 

MD [64], all atom force field optimization for model refinement [65], replica exchange 

molecular dynamics simulations (REMD) with Born solvent model [66-68] and temperature 

dependent REMD [69]. Very recently Zhang et al. used fragment guided MD for model 

refinement in CASP9 [70]. An alternative to MD simulations for refinement are the Monte Carlo 

simulations. Misura and Baker devised a refinement protocol consisting of low resolution step 

followed by high resolution step. In addition to these methods for model refinement, various 

other servers and protocols are available for model refinement. 

(d). Model Assessment 

Once a model is built and refined using various strategies the next step is model quality 

assessment. Errors are inevitable especially when a structure is built using a template which may 

or may not completely resemble the target. Most of the TBM methods do not provide much 

information on the quality of the predictions. The choice of selecting the best model and deciding 

the suitability of the model is always left to the user. Further, it depends on the application. 

Models of high accuracy (models with >70% sequence identity) are generally used in drug 

design projects while low accuracy models (<50% sequence identity) have greater alignment 

errors and have limited utility. Several approaches have been developed in the recent past to 

verify the model quality in terms of global and local accuracy and the residue specific local 

qualities when experimental structure is not available. The Protein Structure Analysis ProSA is a 

widely used tool for evaluating structures. It calculates a z score indicating the quality of the 
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model. The z-score measures the deviation of the total energy of the model with respect to 

energy distribution of random conformations [71-72]. Due to the bias of the z-scores on the 

protein size, various other size independent methods have been developed. These include 

methods based on stereochemistry, energy, statistical potentials and machine learning 

approaches. The major and commonly used estimator for protein model quality is the sequence 

similarity of the predicted model with the known structure. Other methods include scoring based 

on (a) fragment comparison in combination with a statistical potential [73], (b) distance 

constraints extracted from alignments of known structures [74], (c) all atom energy based scoring 

[75] and (d) template based scoring. 

Template based scoring refers to template modeling scoring function TM-score. TM-Score 

extends the MaxSub and Global distance test (GDT) approaches to calculate a score for 

accessing model quality. Global Distance test score counts the number of Cα pairs with distance 

of 1, 2, 4 and 8Å after superimposition. MaxSub identifies maximum substructure within a 

distance limit of < 3.5 Å. Unlike MaxSub and GDT score TM-score counts residue pairs using 

Leviit-Gerstein weights [76]. Protein pairs with TM score >0.5 are mostly in same fold whereas 

pairs with TM score < 0.5 do not have the same fold [77]. Another method for model quality 

assessment is QMEAN. QMEAN is a composite scoring function i.e. a linear combination of six 

structural descriptors torsion angle potential, solvation potential, distance dependent interaction 

based potentials, terms describing agreement of predicted and calculated secondary structure and 

solvent accessibility. The QMEAN score ranges from 0 to 1 with higher values referring to more 

reliable models [78-81]. Other methods for quality assessment include Verify-3D [82-83], 

WHAT-IF [84] and PROCHECK [85]. A plethora of algorithms for model quality assessment 

are available ever since CASP7 when for the first time quality assessment was treated as a 
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separate category [86]. Together, these algorithms allow a more detailed view of the models for 

its potential applications. Although a number of quality assessment parameters are available as 

shown above, Global Distance Test Total Score (GDT_TS) remains the predominant one, and is 

used in determining the best predictions in the CASP scenario. Alongside this, Root Mean 

Square Deviation (RMSD) is also considered to be an important parameter. 

 

1.2. Bhageerath and Bhageerath-H for Protein Structure Prediction 

Bhageerath [87-91] is an energy based software suite for predicting tertiary structures of small 

globular proteins. The protocol comprises eight different modules which uses physicochemical 

properties of proteins and ab initio methodology to predict five candidates for the native from the 

input query sequence. The methodology has been validated on 80 small globular proteins with < 

100 amino acids. For each of these proteins a structure within 3-7Å RMSD (root mean square 

deviation) from the native is predicted within few minutes to hours on a 280 processor cluster 

(~2 Teraflops of computing capacity). In this project, this software suite has been used for the ab 

initio loop optimization in the modeled protein structures. 

 

Bhageerath-H [92] is a homology ab initio hybrid server for protein tertiary structure prediction. 

The protocol identifies regions having local sequence similarity with database to generate 3D 

fragments which are patched with ab initio modeled fragments to put together complete structure 

of proteins. The Bhageerath-H methodology has been validated on 115 CASP 9 targets. For each 

of these cases, structures were predicted excluding native and close native homologs as 

templates. In each case, a structure within 7Å rmsd from native has been obtained. In this 
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project, the modeled protein structures which have been used for protein structure refinement, 

are obtained using the Bhageerath-H software suite. Thus, it serves as the starting point for the 

project.  

Other notable softwares for TBM which participate in CASP are provided in Table 6. 

 

Software Method URL 

3D-JIGSAW 

(version 3.0) [56] 
Comparative modeling http://bmm.cancerresearchuk.org/~populus/ 

HHPred [93] Comparative modeling http://toolkit.tuebingen.mpg.de/hhpred 

Phyre2[94] 
De novo and template 

based 

http://www.sbg.bio.ic.ac.uk/phyre2/html/page.c

gi?id=index 

Pcons.net[95] Meta Server http://pcons.net/ 

Robetta [96] 
Ab initio and comparative 

modeling 
http://robetta.bakerlab.org/ 

MUFOLD [97] Hybrid 
http://gene.rnet.missouri.edu/dbselect/predictio

n.php 

YASARA [98] Comparative modeling http://www.yasara.org/homologymodeling.htm 

RAPTOR [99] Threading 
http://www.bioinformaticssolutions.com/raptor

-overview 

http://bmm.cancerresearchuk.org/~populus/
http://toolkit.tuebingen.mpg.de/hhpred
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://pcons.net/
http://robetta.bakerlab.org/
http://gene.rnet.missouri.edu/dbselect/prediction.php
http://gene.rnet.missouri.edu/dbselect/prediction.php
http://livepage.apple.com/
http://livepage.apple.com/
http://livepage.apple.com/
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SWISS-MODEL [55] Comparative modeling 
http://swissmodel.expasy.org/workspace/index.

php?func=modelling_simple1 

I-TASSER [100,70,99] Threading 
http://zhanglab.ccmb.med.umich.edu/I-

TASSER/ 

QUARK [101] Ab initio http://zhanglab.ccmb.med.umich.edu/QUARK/ 

Modeller [101] Comparative Modeling http://salilab.org/modeller/ 

TASSER [102, 103] Meta Server 
http://cssb.biology.gatech.edu/skolnick/webser

vice/TASSER/index.html 

 

Table 6. Table listing various softwares for TBM, participating in CASP. 

 

 

 

 

 

 

 

 

 

http://swissmodel.expasy.org/workspace/index.php?func=modelling_simple1
http://swissmodel.expasy.org/workspace/index.php?func=modelling_simple1
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://zhanglab.ccmb.med.umich.edu/QUARK/
http://salilab.org/modeller/
http://cssb.biology.gatech.edu/skolnick/webservice/TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/TASSER/index.html
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Protein structure refinement is a very challenging problem and we wish to tackle it by 

developing a novel protocol which helps in refining the tertiary structure of proteins predicted by 

the Bhageerath-H software.  

The main objectives are to obtain clash free structures with the side chains and loops correctly 

modeled, making the structure feasible in the biomolecular environment and therefore achieving 

protein structure refinement. 

For accomplishing the aforementioned goals, the employment of ab initio loop optimaization and 

molecular dynamics simulations is considered.  
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Chapter 3 

MATERIALS AND METHODS  
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3.1. Ab initio modeling for loop optimization 

In the process of protein structure refinement, ab initio modeling was carried out on the longer 

loops, end loops and missing secondary structural regions using the Bhageerath Software Suite. 

The ab initio protocol helped in conformational sampling of these problematic regions in the 

modeled protein structures which are responsible for the drift of the model from the native. 

 

Bhageerath Software Suite 

Bhageerath [87-91] is an energy based software suite for narrowing down the search space of 

tertiary structures of small globular proteins. It is a web-enabled tool and is freely accessible at 

http://www.scfbio-iitd.res.in/bhageerath.40 . Bhageerath protocol comprises of eight different 

computational modules that form an automated pipeline as represented in Figure 6.  

 The amino acid sequence is taken as an input. The software first predicts the secondary 

structure (helix/strand/loop) of the input amino acid sequence. 

 In the second module, an atomic-level extended structure using the secondary structure 

information is created. 

 In the third module, Bhageerath does a systematic sampling of the conformational space 

of loop dihedrals and generates a large number of trial structures. The number of trial 

structures generated is 128
(n−1)

 where ‘n’ is the number of secondary structural elements 

and ‘n − 1’ is the number of loops/junctions between the secondary structural units. 

 These structures are generated by choosing seven dihedrals from each of the loops (three 

at both ends and one dihedral from the middle of the loop) and sampling two 

conformational states for each dihedral. 

http://www.scfbio-iitd.res.in/bhageerath.40
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Figure 6. Workflow of the protocol followed by Bhageerath software suite (adapted from 

http://nar.oxfordjournals.org/content/34/21/6195.full.pdf) 

 The generated trial structures are screened in the fourth module through persistence 

length, radius of gyration, topological distinctness of generated structures, inter-atomic 

distance and Cα loop distance filters [88], developed for the purpose of reducing the 

number of improbable candidates. 

 The resultant structures are refined by the fifth module by a Monte Carlo sampling in 

dihedral space to remove steric clashes and overlaps involving atoms of main chain and 

side chains. 

 In module six, energy of the structures is minimized, for further optimization of the side 

chains. 

 In module seven, ranking of the structures using all atom energy based empirical scoring 

function [104] and subsequent selection of the 100 lowest energy structures is done. 

http://nar.oxfordjournals.org/content/34/21/6195.full.pdf
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 In module eight, structures selected in the previous module are reduced to five using 

solvent accessible surface areas (SASA) [105]. 

 

The software gives five candidate structures for the input amino acid sequence as the output. 

Figure 7 shows the screenshots of the Bhageerath software suite. 
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Figure 7. Screenshots of Bhageerath ( URL: http://www.scfbio-iitd.res.in/bhageerath/index.jsp ) 

 

Bhageerath methodology was used for the ab initio sampling of the loop regions of the modeled 

structures. The protocol was used for refinement of the longer loops, end loops and missing 

secondary structural regions. For our analysis, we took the CASP9 dataset. The CASP9 dataset 

comprises of the target systems which were used in the CASP9 competition which took place in 

the year 2010. A CASP9 like scenario was created where in the structures for each of the target 

http://www.scfbio-iitd.res.in/bhageerath/index.jsp
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systems were modeled using proteins which were available before the start of CASP9 

competition. This was primarily carried out to exclude the natives and any other structures which 

bearing homology with the target. This ensured that the structures modeled using Bhageerath-H 

(which were taken as an input for our ab initio protocol) were unbiased.  

The CASP9 dataset consists of a total of 115 targets out of which we have considered 60 target 

proteins of varying length and complexity for our analysis. The detailed methodology for ab 

initio modeling using Bhageerath software suite has been described below. 

1. 60 proteins from the CASP9 dataset were considered for structure refinement so as to 

derive structures with better RMSD out of the 115 target dataset.  

2. The models for these 60 CASP9 targets were obtained using Bhageerath-H software 

suite. 

3. For each of the modeled protein structure, secondary structure information was obtained 

using Stride [106]. Stride is a program that extracts the secondary structural elements in 

proteins from their atomic coordinates based on the secondary structural definitions given 

by X-ray crystallography and protein NMR methods.  

4. The problematic regions of the proteins, which form the basis for deviation of the 

modeled structure from that of the native, were identified by manual visualization using 

PyMOL. 

5. These regions were then classified into four categories- 

a. Longer loops: Loops with length of more than 5 residues were considered as long 

loops. 

b. End loops: Loops present either at the beginning of the modeled protein structure 

or at the end, containing more than 2 residues, were classified as end loops. 
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c. Missed Strand: Comparison of the secondary structures for protein models 

predicted by Bhageerath-H (using PSIPRED* on back end) and Stride* was done. 

The regions which were predicted to be strands by Bhageerath-H alone or Stride 

alone, showing mismatch between their predictions were classified as missed 

strands. Strands missed in the 3D modeled protein structure were considered as 

long loops and were modeled accordingly. 

d. Missed Helix: Comparison of the secondary structures for protein models 

predicted by Bhageerath-H (using PSIPRED* on back end) and Stride* was done. 

The regions which were predicted to be helices by Bhageerath-H alone or Stride 

alone, showing mismatch between their predictions were classified into the 

missed helix category. A missed helix in the modeled structure, with length more 

than 4 residues, was forced to form a helix using a helix formation algorithm. 

Contrastingly, forcing the formation of helix might have an adverse effect on the 

structure. So, in another step, the missing helices were considered as loops and 

modeled as long loops. 

6. Each of these loop regions were modeled using Bhageerath methodology. For each loop 

128 structures were generated although, for very long loops (>10 residues) the number of 

structures generated for each loop were increased from 128 to 1024 (2
10

).  

*[NOTE: PSIPRED – It is a protein secondary structure prediction server which predicts the 

protein secondary structures from the input amino acid sequence. STRIDE – It is a secondary 

structure assignment program which gives the protein secondary structure information from the 

input PDB data]  
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For a final refinement of the structures obtained, a simulation protocol was developed using 

Molecular Dynamics. This step is extremely important as the 3D modeled structures of proteins 

often contain numerous clashes in the backbone as well as side chain atoms. In order to refine the 

structure and model a naturally feasible structure, we need to get rid of such clashes that make 

the modeled protein structure highly unstable.   

MD simulations have provided extremely high resolution spatial and temporal data, enhancing 

knowledge and understanding of the protein folding mechanism. Now-a-days, simulations of 

biologically relevant processes, with atomistic accuracy on timescales beyond microsecond are 

possible due to advances in software and hardware. In this project, we have exploited ability of 

compute power for carrying out computationally expensive MD simulations using the AMBER 

software package (version 10). 
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3.2. Assisted Model Building with Energy Refinement (AMBER) for MD 

simulations 

AMBER is a family of force fields for molecular dynamics of biomolecules originally developed 

by the late Peter Kollman's group at the University of California, San Francisco. AMBER is also 

the name for the molecular dynamics software package that simulates these force fields. 

The functional form of AMBER force field is: 

 

 The first term represents the energy between covalently bonded atoms or the bond stretch 

energy. 

 The second term represents the energy due to the geometry of electron orbitals involved 

in covalent bonding or the bond angle energy. 

 The third term represents the energy for twisting a bond due to bond order (e.g. double 

bonds) and neighboring bonds or lone pairs of electrons or the torsional energy. 

 The fourth term represents the non-bonded energy between all atom pairs, which can be 

decomposed into Van der Waals and electrostatic energies respectively. 

The AMBER software suite consists of a number of programs out of which the following were of 

particular importance to this project: 

1. LEaP: LEaP is a program that provides for basic model building and Amber coordinate 

and parameter/topology input file creation. 
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2. SANDER: Simulated Annealing with NMR-Derived Energy Restraints 

This program allows for NMR refinement based on NOE-derived distance restraints, 

torsion angle restraints, and penalty functions based on chemical shifts and NOESY 

volumes. 

3. pmemd: This program is an extensively-modified version of the sander program. It was 

designed with parallel processing in mind and has significantly better performance than 

sander when running on more than 8–16 processors. 

 

Molecular dynamics simulations have been used for the final refinement of the modeled protein 

structures. The entire protocol has been described below.  

1. Generation of input files: 

The coordinate and topology files of the modeled protein structure which are to be used as input 

files for the downstream MD simulations are generated using tleap as shown in Figure 8. 

 

Figure 8. Screenshot showing tleap startup window 
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prmtop: This is the parameter/topology file. This defines the connectivity and parameters for our 

current model. This information does not change during the entire simulation as the topology of 

the model remains the same. 

inpcrd: This is the coordinates file. This data is not static and changes during the simulations as 

the coordinates change after each step.  

2. Neutralization of structure: 

This step involves neutralization of the structure explicitly by calculating the charge and 

subsequently, adding the requisite ions. 

3. Solvation in water: 

This step involves solvation of the protein in water as shown in Figure 9. Solvation is done with 

the command "solvateoct" where an octahedral water box is created. For protein molecules, we 

used 8Å buffer of TIP3P water around the protein. The TIP3P water model is the simplest water 

model that treats the water molecule as rigid and relies only on non-bonded interactions. The 

electrostatic interaction is modeled using Coulomb's law and the dispersion and repulsion forces 

using the Lennard-Jones potential. 
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Figure 9. Screenshot of protein molecule surrounded by water molecules 

 

4. Running Minimization and MD in explicit solvent  

Molecular dynamics in explicit solvent is carried out to mimic the real world situation in which 

the protein molecules are surrounded by water molecules. Running MD in vacuum or in implicit 

solvent would not be able to accurately represent the biomolecular systems which exist in a 

solvated environment. Despite the computationally expensive nature of the explicit solvent 

molecular dynamics, it helps in mimicking the real world situation appropriately. 
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Our minimization procedure for solvated protein consists of a two stage approach. In the first 

stage we keep the protein fixed and just minimize the positions of the water and ions. Then in the 

second stage we minimize the entire system. This two stage approach works well when the 

modeled protein structure is far from the equilibrium, and requires multiple steps of 

minimizations. 

Step1: Minimization 1:  

Positional restraints on each of the protein atoms to keep them essentially fixed in the same 

position were applied. Such restraints work by specifying a reference structure which is the 

starting structure, thus, keeping the entire protein (solute) fixed using restraint (RES) command. 

A total of 1000 minimization steps were conducted. We have used two different algorithms to 

carry out the minimization. For the first 500 steps, steepest descent algorithm was used which is 

good for quickly removing the largest strains in the system but converges slowly when close to a 

minima. Thus, for the next 500 steps, the conjugate gradient method was used which is more 

efficient. 

Step2: Minimization 2: 

Now we have minimized the water and ions the next stage of our minimization is to minimize 

the entire system (modeled protein structure along with the water molecules). In this case we run 

2,500 steps of minimization without any restraints. The first 500 steps were done using the 

steepest descent algorithm and the conjugate gradient algorithm for the rest 2000 steps. 
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Step3: Molecular dynamics heating with restraints on solute: 

After successful minimization of the system, the next stage in the equilibration protocol is to 

allow the system to heat up from 0K to 300K. At this stage, we restrained the entire protein as 

otherwise the heating would unfold the whole protein. A short MD was run for 20ps. 

Step4: Molecular Dynamics Equilibration over entire system: 

The equilibration phase is the final step of our molecular dynamics protocol. The temperature is 

maintained at 300K and the simulation is run for 100ps, 200ps, 500ps, 1ns and 5ns successively.  

Cα-Cα Secondary Structural Restraints  

To avoid disruption of the modeled protein structure, we restrained the secondary structures in 

order to maintain the topology.  

So, another set of simulations were carried out where the Cα-Cα distances between the 

secondary structures were calculated. The residues which fall within the 5Å cut-off were kept 

fixed in the backbone using NMR distance restraints at the molecular dynamics equilibration 

stage. 

To obtain an input distance restraint file for imposing the NMR restraints, we need to put the 

restraints in a 7-column file. This file contains 7 columns with the following information for each 

restraint:  

1st_res#   1st_res_name    1st_atom_name    2nd_res#    2nd_res_name    2nd_atom_name  

upper_bound 
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The upper bound distance for each restraint is taken as the actual Cα-Cα distance (which falls 

within the cut-off for example, 5Å in this case) in the modeled protein structure. The program 

used to convert the 7-column file into the AMBER restraint file is makeDIST_RST.   

makeDIST_RST -upb <7 column distance file> -pdb <PDB structure> -rst RST.dist  

The RST.dist is the final restraint file which is read by AMBER during the molecular dynamics 

equilibration phase as an argument in the MD input file. It helps in restraining the backbone of 

the modeled protein structure, so that side chain refinement can take place. Similarly, restraints 

were also imposed with 7Å and 10Å distance cut-offs respectively, in order to restrain the 

structure more aggressively during the simulations. 
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                     Chapter 4 

                  RESULTS AND DISCUSSION 
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Protein structure refinement problem has proven to be a major bottleneck to further 

improvements in structure prediction. Researchers for long have tried solving this problem by 

using techniques that involve either optimization of new potential functions or inclusion of 

contact restraints from homologous proteins.  We decided to test whether ab initio modeling of 

the problematic regions (mainly loops) could help improve the structure and bring it closer to the 

native. On the other hand, we also tried to improve the structures using molecular dynamics 

simulations. We were, in part, successful in our attempts. 

The ab initio modeling protocol was applied to the set of models obtained from Bhageerath-H 

software suite for 60 CASP9 targets. We observed significant improvements in the RMSD of the 

structures from their natives in the systems T0516, T0531, T0538, T0544, T0558, T0559, T0564, 

T0571, T0576, T0581, T0600, T0603, T0606, T0612, T0616, T0618, T0622, T0625, T0635 and 

T0643. Table 7 summarizes the comparison of the RMSD from the native between the 

Bhageerath-H predicted models before ab initio modeling and that after ab initio modeling on 

the respective problematic regions, where the systems showing substantial improvements have 

been highlighted. System T0600, in particular, has shown notable improvement after application 

of the loop optimization protocol. Bhageerath-H along with all the other leading servers (Zhang 

et al, Baker et al), were only able to model structures with approximately 19.4Å RMSD from the 

native. On the other hand after applying the ab initio modeling protocol for loop optimization, 

we were able to build a structure with 4.73Å RMSD from the native. Upon tinkering of the loop 

region present in the Bhageerath-H modeled structure for T0600, the RMSD shows considerable 

improvement. Due to wrong direction of this problematic loop region, the rest of the structure 

was modeled in the exact opposite direction as can be easily seen from Figure 10.  
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Figure 10. Colour scheme: Blue-Native T0600, Red-Bhageerath-H model, Green-Structure after ab inito modeling 

on loop (residues 75-82), Yellow-Loop on which ab initio is done. 

A. Bhageerath-H model for T0600 native superimposed on the native. B. Model obtained after ab initio modeling on 

the loop region superimposed on the native. 
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Therefore, this result clearly demonstrates the high applicability of the ab initio modeling 

protocol in protein structure refinement. In order to avoid the loss the good starting structures (in 

cases where the RMSD from the native increases after ab initio modeling), the initial starting 

structure was retained. 

An important observation is that the ab initio modeling protocol has been helpful in reducing the 

RMSD in cases where the models are far from the native whereas in other cases, where the 

RSMD is 5Å or lower from the native, deriving a lower resolution structure to a further low 

resolution becomes difficult.  

After the entire structure has been modeled, it is extremely important to carry out final 

refinement of the structures so as to remove the steric clashes, optimization of side-chains, bond 

angles, bond lengths and reduce the Ramachandran outliers. We do not expect short MD 

simulations (upto 1-5 ns) to help reduce the RMSD from the native, but we do expect to obtain a 

structure with minimal clashes. We have carried out molecular dynamics simulations restraining 

residues for which the Cα-Cα distances of the secondary structure elements are within 5Å, 7Å 

and 10Å, during the equilibration phase. The restrained simulations have been implemented in 

order to prevent MD to open up the correctly folded regions and therefore, maintain the topology 

of the modeled protein structure. Thus, our motive of using MD simulations on the modeled 

protein structures is to retain their basic topology while reducing the clashes in the structure, 

making it physically plausible. The MD simulations were run for 100ps, 200ps, 500ps, 1ns and, 

for some cases, 5ns.  

The structures then obtained were subsequently validated using Molprobity [107-108], a protein 

structure validation software, the results of which have been summarized in Table 8. After the 
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MD simulations, the structures are free of clashes, with lesser Ramachandran outliers, bad angles 

and bad bonds and greater Ramachandran favored residues. Thus, we were able to generate 

geometrically optimized structures using MD simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

B.40 

 

           Chapter 5 

CONCLUSION AND FUTURE DIRECTIONS 
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Homology or template based modeling has been the most successful method for protein structure 

prediction in the critical assessment of protein structure prediction (CASP) experiments. The 

power of this technique progressively increases as more and more structures are solved by world-

wide structural genomics initiatives. Although efforts in this field are promising, obtaining a 

model with the same accuracy as a crystal structure is still an unsolved problem. Thus, the 

structure refinement of a rough model, to bring it closer to the native structure remains a major 

challenge. Work on structure refinement has been ongoing for many decades, including those 

using Molecular Mechanics (MM) energy minimization, knowledge-based (KB) statistically 

derived potentials among others. During this period many different potentials and a variety of 

simulation methodologies such as energy minimization, molecular dynamics, and replica 

exchange Monte Carlo have been used for structure refinement, but no method has emerged as a 

clear winner. 

In this project, two methodologies have been developed to tackle the protein structure refinement 

problem. The ab initio modeling using Bhageerath software suite on the regions of the protein 

structures that are modeled improperly (end loops, longer loops and missing secondary structural 

regions). This protocol helped decrease the RMSD of the predicted structures with that of their 

corresponding native structures, thereby bringing them closer to their natives. It has been 

demonstrated that in certain cases it has benefited the task tremendously, as in the case of system 

T0600. Secondly, restrained molecular dynamics simulations were applied on the proteins so as 

to improve the overall quality of the modeled structures. Restraints with different distance cut-

offs (5Å, 7Å and 10Å) were used on the proteins in the production phase and encouraging results 

were obtained. 
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Protein structure refinement is a major problem that is holding back the performance of a number 

of structure prediction tools. Although a lot still has to be explored in this field, here we have 

presented here, two protocols for the same cause. We have been successful in part in our efforts. 

Further on, it is suggested that the molecular dynamics simulations should be run for longer 

durations so that better configurations (with lower RMSD) of the proteins can be generated. 
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APPENDIX I 

Table 7. Table showing the results of ab initio modeling 

System No. of res Model name 
RMSD (before 

ab_initio) 
RMSD (after 

ab_initio) 

T0515 345 TT5565.pdb 1.492 1.583 

T0516 226 TT4413.pdb 2.961 2.434 

T0517 159 model2822_2qs7_Profile0.pdb 6.404 7.395 

T0518 256 model12781_3hbk_ffas2.pdb 8.597 8.633 

T0520 173 model5140_1fx2_ffas6.pdb 2.871 2.809 

T0522 132 model7505_3i4s_ffas2.pdb 0.817 0.817 

T0523 112 model3263_3lyx_ffas2.pdb 2.182 2.868 

T0524 322 model11092_1snz_Profile0.pdb 3.4 4.061 

T0525 205 N23.pdb 3.459 3.427 

T0526 290 model21846_1snz_ffas10.pdb 3.154 5.239 

T0528 371 model8547_3n0w_ffas2.pdb 3.31 5.041 

T0531 65 model577_2dhi_Profile25.pdb 9.005 7.249 

T0532 469 model3985_3ejn_ffas2.pdb 3.406 3.79 

T0538 54 model653_2c9o_Profile93.pdb 1.99 1.577 

T0540 90 model10462_2kd2_ffas2.pdb 5.4 5.436 

T0541 106 model791_3idu_DIR395.pdb 2.18 2.5 

T0544 135 TT746.pdb 10.498 9.464 

T0558 274 N449.pdb 6.222 5.555 

T0559 67 model811_1ku9_Profile18.pdb 2.11 1.898 

T0560 64 model510_2l01_DIR255.pdb 1.557 1.795 

T0564 80 model1008_1wjj.pdb 8.255 7.659 

T0565 287 model11380_3h41_ffas1.pdb 7.428 7.891 

T0566 130 model4703_1usu_Profile0.pdb 2.283 3.578 

T0567 135 model314_1ny6_DIR157.pdb 2.581 2.769 

T0570 237 TT1671.pdb 2.932 2.922 

T0571 315 TT813.pdb 28.308 21.248 

T0576 133 TT2517.pdb 8.254 4.993 

T0580 104 model4000_1iib_Profile0.pdb 1.958 1.958 

T0581 112 TT4302.pdb 9.887 8.305 

T0582 221 TT13202.pdb 5.79 5.68 

T0594 140 model4756_1x53_Profile0.pdb 2.545 5.801 

T0596 174 model5049_3c07_ffas1.pdb 3.551 3.551 

T0600 106 TT5603.pdb 19.402 4.727 

T0601 442 model737_1vpb_Profile1.pdb 1.934 1.833 

T0602 55 N1.pdb 3.834 5.308 

T0603 262 TT3230.pdb 5.791 4.908 

T0605 48 TT1800.pdb 2.052 2.415 

T0606 123 N5.pdb 6.918 5.155 
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System No. of res Model name 
RMSD (before 

ab_initio) 
RMSD (after 

ab_initio) 

T0610 179 TT1057.pdb 3.275 4.009 

T0611 203 TT2374.pdb 1.387 5.927 

T0612 105 TT1680.pdb 6.533 5.913 

T0613 285 model929_3lou_DIR464.pdb 1.512 2.314 

T0615 178 model954_1vj7_Profile0.pdb 5.212 5.131 

T0616 93 TT2110.pdb 7.676 6.335 

T0617 123 TT9998.pdb 2.612 3.096 

T0618 158 N2345.pdb 10.543 7.757 

T0619 101 model4940_1z1b_ffas14.pdb 2.411 2.443 

T0620 299 model5927_3mtc_ffas1.pdb 3.296 4.201 

T0622 121 model5688_2vt3_Profile1.pdb 8.252 5.007 

T0625 231 N485.pdb 9.262 8.284 

T0626 283 model889_3lou_DIR445.pdb 1.772 1.772 

T0632 114 TT2146.pdb 1.332 5.385 

T0634 116 model677_3crn_Profile7.pdb 2.139 2.139 

T0635 182 model125_2r8x_DIR62.pdb 3.056 2.181 

T0636 322 model3180_3euc_ffas8.pdb 3.239 8.089 

T0637 135 TT523.pdb 6.671 6.671 

T0638 218 TT0.pdb 2.575 2.575 

T0640 232 TT2730.pdb 2.722 2.618 

T0641 293 TT3350.pdb 3.07 3.047 

T0643 73 N1274.pdb 6.897 5.486 
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Table 8. Table listing the results of MD simulations after 100ps, 200ps, 500ps, 1ns, (in some 

cases 5 ns) 

Note: The higher the percentile, the better is the accuracy of the structure. 

System 
No. 

of res 
GDT_TS 

RMSD 
(Å) 

Clash 
score 

(percentile) 

Poor 
rotame

rs 
Goal: 
<1% 

Ramach
andran 
outliers 
Goal: 
<0.2% 

Ramach
andran 
favored 
Goal: 
>98% 

MolProbity 
score 

(percentile) 

Residue
s with 
bad 

bonds: 
Goal: 
0% 

Residue
s with 
bad 

angles: 
Goal: 
<0.1% 

T0544 135 25.556 10.498        
Initial (w/o 

MD) 
 25.556 10.498 

1225.23 
(0th per) 

- - - 
4.68 

(0th per) 
- - 

100ps-7A  24.63 10.926 
19.86 (33rd 

per) 
0.0571 0.0236 0.8661 

3 
(23rd per) 

0.0465 0.062 

200ps-7A  22.778 11.319 
18.44 (36th 

per) 
0.0286 0.0236 0.8583 

2.75 
(34th per) 

0.0233 0.0543 

500ps-7A  25.185 11.167 
14.66 

(51st per) 
0.0571 0.0079 0.8661 

2.87 
(28th per) 

0.0155 0.0775 

1ns-7A  25.185 10.907 
16.55 (43rd 

per) 
0.0952 0.0079 0.8425 

3.14 
(18th per) 

0.031 0.062 

5ns-7A  22.593 11.199 
15.13 (49th 

per) 
0.0571 0.0157 0.8425 

2.93 
(26th per) 

0.0465 0.0698 

 

T0616 93 40.86 7.676        
Initial (w/o 

MD) 
 40.86 7.676 

1214.54 
(0th per) 

- - - 
4.67 

(0th per) 
- - 

100ps-
10A 

 37.903 8.422 
4.12 

(96th per) 
0.0761 0.0306 0.8265 

2.56 
(43rd per) 

0.03 0.06 

200ps-
10A 

 37.097 8.768 
4.12 

(96th per) 
0.0543 0.0306 0.8367 

2.44 
(51st per) 

0.07 0.03 

500ps-
10A 

 36.29 8.491 
2.94 

(98th per) 
0.0435 0.0102 0.8265 

2.27 
(61st per) 

0.04 0.06 

1ns-10A  35.484 8.233 
2.35 

(99th per) 
0.0217 0.0408 0.8776 

1.88 
(82nd per) 

0.01 0.03 

 

T0578 156 29.006 11.996        
Initial (w/o 

MD) 
 29.006 11.996 

1240.5 (0th 
per) 

- - - 
4.68 

(1st per) 
- - 

100ps-7A  25.962 12.457 
34.64 (11th 

per) 
0.0211 0.0696 0.7785 

3.03 
(22nd per) 

0.0375 0.1375 

200ps-7A  26.763 12.265 
29.74 (16th 

per) 
0.0352 0.0633 0.8165 

3.09 
(20th per) 

0.025 0.0562 

500ps-7A  26.923 11.944 
25.98 (20th 

per) 
0.007 0.0506 0.8101 

2.62 
(40th per) 

0.0312 0.0688 

1ns-7A  26.442 12.182 
24.85 (22nd 

per) 
0.0352 0.0696 0.7785 

3.06 
(21st per) 

0.0312 0.0938 
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System 
No. 

of res 
GDT_TS 

RMSD 
(Å) 

Clash 
score 

(percentile) 

Poor 
rotame

rs 
Goal: 
<1% 

Ramach
andran 
outliers 
Goal: 
<0.2% 

Ramach
andran 
favored 
Goal: 
>98% 

MolProbity 
score 

(percentile) 

Residue
s with 
bad 

bonds: 
Goal: 
0% 

Residue
s with 
bad 

angles: 
Goal: 
<0.1% 

T0618 158 29.905 10.543        
Initial (w/o 

MD) 
 29.905 10.543 

1161.26 
(0th per) 

- - - 
4.65 

(0th per) 
- - 

100ps-7A  27.848 10.719 
23.57 (23rd 

per) 
0.0629 0.0115 0.8506 

3.13 
(18th per) 

0.0171 0.0686 

200ps-7A  29.747 10.592 
18.86 (36th 

per) 
0.0629 0.0172 0.8506 

3.04 
(21st per) 

0.0229 0.0571 

500ps-7A  29.43 10.683 
17.51 (40th 

per) 
0.0503 0.0287 0.8448 

2.94 
(25th per) 

0.0514 0.0914 

1ns-7A  27.057 10.759 
15.15 (49th 

per) 
0.0629 0.0115 0.8391 

2.97 
(24th per) 

0.04 0.0457 

5ns-7A  25.475 11.514 
15.82 (46th 

per) 
0.044 0.0287 0.8448 

2.86 
(29th per) 

0.04 0.0686 

 

T0564 158 48.75 8.004        
Initial (w/o 

MD) 
80 44.944 8.255 

76.38 
(0th per) 

0.1169 0.0115 0.9425 
3.55 

(8th per) 
0 0.0112 

100ps-7A  44.375 7.89 
0.7 

(99th per) 
0.1053 0.0116 0.907 

2.03 
(74th per) 

0.0682 0.0341 

200ps-7A  42.5 8.151 
3.52 

(97th per) 
0.0658 0.0116 0.8372 

2.44 
(50th per) 

0.0227 0.0682 

500ps-7A  45.312 8.892 
1.41 

(99th per) 
0.0658 0.0349 0.8953 

2.06 
(73rd per) 

0 0.0455 

1ns-7A  46.562 8.469 
0.7 

(99th per) 
0.0526 0.0116 0.8488 

1.94 
(79th per) 

0.0227 0.0455 

5ns-7A  42.812 8.526 
0.7 

(99th per) 
0.0789 0.0116 0.8488 

2.07 
(72nd per) 

0 0.0114 

 

T0622 121 64.256 8.252        
Initial (w/o 

MD) 
 64.256 8.252 

83.64 
(0th per) 

0.0333 0 0.9412 
3.18 

(17th per) 
0 0.0072 

100ps-5A  60.95 8.718 
6.24 

(90th per) 
0.069 0.0152 0.9015 

2.52 
(46th per) 

0.0672 0.0299 

200ps-5A  63.017 8.637 
2.68 

(98th per) 
0.0259 0 0.8712 

1.99 
(76th per) 

0.0373 0.0746 

500ps-5A  61.364 8.6 
3.12 

(98th per) 
0.0431 0.0076 0.9015 

2.13 
(69th per) 

0.0149 0.0597 

1ns-5A  62.19 8.598 
0.45 

(99th per) 
0.0517 0 0.9318 

1.64 
(91st per) 

0.0373 0.0224 

 

T0580 104 80.288 1.958        
Initial (w/o 

MD) 
 80.288 1.958 

83.85 
(0th per) 

0.0706 0.0097 0.9515 
3.37 

(11th per) 
0 0.0286 
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System 
No. 

of res 
GDT_TS 

RMSD 
(Å) 

Clash 
score 

(percentile) 

Poor 
rotame

rs 
Goal: 
<1% 

Ramach
andran 
outliers 
Goal: 
<0.2% 

Ramach
andran 
favored 
Goal: 
>98% 

MolProbity 
score 

(percentile) 

Residue
s with 
bad 

bonds: 
Goal: 
0% 

Residue
s with 
bad 

angles: 
Goal: 
<0.1% 

100ps-5A  73.798 2.343 
4.89 

(94th per) 
0.0976 0.01 0.94 

2.41 
(52nd per) 

0.0392 0.0784 

200ps-5A  71.394 2.571 
3.05 

(98th per) 
0.0488 0 0.93 

2.07 
(72nd per) 

0.0294 0.0686 

500ps-5A  75 2.155 
4.28 

(96th per) 
0.0244 0 0.95 

1.85 
(83rd per) 

0.0196 0.0294 

1ns-5A  79.327 1.977 
0 

(100th per) 
0.0488 0.02 0.94 

1.42 
(97th per) 

0.0392 0.0686 

5ns-5A  76.923 2.554 
1.83 

(99th per) 
0.0122 0.02 0.91 

1.53 
(94th per) 

0.049 0.0784 

 

T0541 106 75 2.181        
Initial (w/o 

MD) 
 75 2.181 

58.45 
(2nd per) 

0.0103 0 0.9519 
2.58 

(42nd per) 
0 0 

100ps-5A  67.689 2.636 
2.59 

(98th per) 
0.0625 0 0.9029 

2.19 
(65th per) 

0.0095 0.1238 

200ps-5A  73.349 2.411 
1.29 

(99th per) 
0.0417 0.0194 0.9417 

1.72 
(88th per) 

0.0762 0.0952 

500ps-5A  75.236 2.294 
1.94 

(99th per) 
0.0521 0.0097 0.9223 

1.98 
(77th per) 

0.0095 0.0381 

1ns-5A  69.104 2.466 
2.59 

(98th per) 
0.0625 0 0.9515 

1.99 
(76th per) 

0.0381 0.1143 

 

T0538 54 86.574 1.994        
Initial (w/o 

MD) 
 86.574 1.994 

54.3 
(3rd per) 

0.0217 0 0.9808 
2.46 

(49th per) 
0 0 

100ps-5A  76.852 2.29 
2.23 

(99th per) 
0.0435 0.0192 0.9423 

1.87 
(82nd per) 

0.037 0.0556 

200ps-5A  76.389 2.229 
0 

(100th per) 
0 0 0.9615 

0.76 
(100th per) 

0.037 0.0185 

500ps-5A  78.704 2.051 
0 

(100th per) 
0.0652 0.0192 0.9615 

1.38 
(97th per) 

0.0556 0.037 

1ns-5A  81.019 1.982 
0 

(100th per) 
0.087 0 1 

1.21 
(99th per) 

0 0.0556 

5ns-5A  84.722 2.452 
0 

(100th per) 
0.0217 0 0.9808 

0.76 
(100th per) 

0.037 0.0556 

 

T0588 381 40.682 7.707        
Initial (w/o 

MD) 
 40.682 7.707 

100.6 
(0th per) 

0.0478 0.0352 0.8794 
3.58 

(7th per) 
0 0.0125 

100ps-5A  37.139 7.974 
3.93 

(96th per) 
0.1 0.0407 0.8142 

2.65 
(39th per) 

0.0228 0.0835 

200ps-5A  36.089 8.131 
3.3 

(97th per) 
0.0788 0.028 0.827 

2.50 
(47th per) 

0.0405 0.0608 
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System 
No. 

of res 
GDT_TS 

RMSD 
(Å) 

Clash 
score 

(percentile) 

Poor 
rotame

rs 
Goal: 
<1% 

Ramach
andran 
outliers 
Goal: 
<0.2% 

Ramach
andran 
favored 
Goal: 
>98% 

MolProbity 
score 

(percentile) 

Residue
s with 
bad 

bonds: 
Goal: 
0% 

Residue
s with 
bad 

angles: 
Goal: 
<0.1% 

500ps-5A  34.186 8.413 
3.62 

(97th per) 
0.0667 0.0204 0.8295 

2.47 
(49th per) 

0.0253 0.0684 

1ns-5A  33.661 8.451 
2.2 

(99th per) 
0.0758 0.0254 0.8422 

2.34 
(56th per) 

0.043 0.0633 

 

T0594 140 81.25 2.545        
Initial (w/o 

MD) 
 81.25 2.545 

61.51 
(2nd per) 

0.0556 0.029 0.9203 
3.31 

(13th per) 
0 0 

100ps-5A  79.821 2.959 
1.40 

(99th per) 
0.041 0.0299 0.8806 

1.92 
(80th per) 

0.0221 0.0441 

200ps-5A  77.321 2.943 
5.76 

(91st per) 
0.041 0.0149 0.9403 

2.18 
(66th per) 

0.0294 0.0809 

500ps-5A  77.679 3.358 
2.21 

(99th per) 
0.0246 0.0224 0.9179 

1.79 
(86th per) 

0.0147 0.0588 

1ns-5A  74.107 3.176 
3.1 

(98th per) 
0.0328 0.0075 0.9179 

1.99 
(76th per) 

0.0294 0.0588 

5ns-5A  72.679 3.705 
2.21 

(99th per) 
0.041 0.0224 0.8731 

2.08 
(72nd per) 

0.0221 0.0294 

 

T0619 101 75 2.411        
Initial (w/o 

MD) 
 75 2.411 

51.92 
(3rd per) 

0.0319 0.0192 0.9615 
2.83 

(30th per) 
0 0 

100ps-5A  68.812 2.989 
1.15 

(99th per) 
0.0667 0.0198 0.9406 

1.85 
(83rd per) 

0.0196 0.0588 

200ps-5A  69.802 2.999 
1.15 

(99th per) 
0.0111 0.0297 0.9406 

1.26 
(99th per) 

0.0196 0.049 

500ps-5A  66.337 3.035 
1.72 

(99th per) 
0.0111 0.0396 0.9109 

1.48 
(96th per) 

0.0392 0.0588 

1ns-5A  65.099 3.516 
1.15 

(99th per) 
0.0444 0.0198 0.9307 

1.76 
(87th per) 

0.049 0.1078 

5ns-5A  66.337 3.398 
1.72 

(99th per) 
0.0222 0.0198 0.901 

1.74 
(88th per) 

0.0098 0.0784 
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APPENDIX II 

 

RMSD: The root-mean-square deviation (RMSD) is the measure of the average distance 

between the atoms (backbone atoms) of superimposed proteins. In the study of globular protein 

conformations, it is used to measure the similarity in three-dimensional structure by the RMSD 

of the Cα atomic coordinates after optimal rigid body superposition. 

 

GDT_TS: The global distance test total score or GDT is a measure of similarity between two 

protein structures with identical amino acid sequences but different tertiary structures. It is most 

commonly used to compare the results of protein structure prediction to the experimentally 

determined structure as measured by X-ray crystallography or protein NMR. The metric is 

intended as a more accurate measurement than the more common RMSD metric, which is 

sensitive to outlier regions created by poor modeling of individual loop regions in a structure that 

is otherwise reasonably accurate.  

GDT_TS measurements are used as major assessment criteria in the production of results from 

the Critical Assessment of Structure Prediction (CASP), a large-scale experiment in the structure 

prediction community dedicated to assessing current modeling techniques and identifying their 

primary deficiencies 

 

CASP: Critical Assessment of Techniques for Protein Structure Prediction is a worldwide 

experiment for protein structure prediction taking place every two years since 1994. It provides 

research groups with an opportunity to test their structure prediction methods and delivers an 

independent assessment of the state of the art in protein structure modeling to the research 

community and software users. 

 

LGA: Local-Global Alignment method is designed to facilitate the comparison of protein 

structures or fragments of protein structures in sequence dependent and sequence independent 

modes. The LGA structure alignment program is available as an online service at 
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http://PredictionCenter.llnl.gov/local/lga and can also be locally installed. Data generated by 

LGA can be successfully used in a scoring function to rank the level of similarity between two 

structures and to allow structure classification when many proteins are being analyzed. The 

GDT_TS and RMSD for all the structures was calculated using LGA program.  

http://predictioncenter.llnl.gov/local/lga

