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CHAPTER 1 
INTRODUCTION AND LITERATURE REVIEW 

 

As the world becomes more and more industrialized in order to enable the ever-growing 

population live life in a more comfortable manner, the demand for electricity is witnessing a 

steep rise. At the same time, the availability of land is making the right-of-way a serious concern, 

such that it is becoming difficult to establish bigger transmission lines. The decreasing fuel 

supply has put the onus on the engineers to find ways in order to harness the existing capacity in 

a better way.  

 

Series capacitive compensation is the most commonly used method of increasing the power 

transmitted, as it helps by reducing the inductive reactance of the line in contention [1]. As it is 

not complex and easiest means for transmission line power capability enhancement, it has been 

used extensively for the same. But it is known to cause an associated problem with the 

possibility of subsynchronous resonance (SSR) [2]. This phenomenon can be quite dangerous 

and can potentially lead to permanent damage of the shaft of the turbine-generator used, an 

occurrence that was first noted in Mojave, USA in 1980 [3] The complex mechanical system 

involved in power generation gives rise to many possible modes of oscillation, and thus it is 

critical that such a situation is avoided for the healthy operation of the power system. 

 

IEEE has established benchmark models for the study of SSR [4-5], and over the years, a lot of 

work has been done and many methods have been devised in order to mitigate the SSR 

condition. Early strategies suggested the use of filters and other static devices [6], but they are 

seen to be effective only for particular cases and values of the system [7]. Other methods include 

dissipating the energy during resonance in resistor banks and phase shifters [8]. The use of 

Power system stabilizers and their tuning has been studied [9-10] and shown to have a limited 

positive effect [11]. Stored magnetic energy usage has been published in [12], while utilizing an 

induction machine damping unit (IMDU) was devised in [13-14]. 
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Post this, with the evolution of FACTS technologies by EPRI [15], a new dimension to power 

enhancement was witnessed. FACTS controllers are power electronic based devices which can 

influence transmission system voltage, currents, impedances and/or phase angle in a fast and 

often continuous manner. Apart from increasing the amount of power transfer, the devices can 

help in improving the stability of the system [16-18]. Thus, when today’s large scale systems 

need the FACTS push in order to satisfy the power needs, it is only reasonable that solutions to 

problems like SSR are found in the use of these FACTS devices itself.     

 

FACTS devices are of two types – thyristor based and voltage sourced converter based [19]. 

While TCR, TCSC, etc are of the former type, the latter include devices such as SSSC, 

STATCOM and UPFC. The first probable method of a FACTS device used to mitigate SSR was 

the use of NGH scheme [20]. A shunt scheme involved the use of Static VAR compensators, 

both by itself and in conjunction with PSS [21-23], and the use of STATCOM, another advanced 

shunt device, has also been studied [24]. But shunt devices are not widely preferred for power 

enhancement due to the complexities of their placement in the system. SSSC has also been 

studied for its use in the SSR mitigation [25]. FACTS devices have also been employed in wind 

farms to solve the SSR problem [26] 

 

The thyristor controlled series capacitor has been investigated for its usefulness in this regard[27-

28], and was found to be a most versatile device in this context, as it involves the modulation of 

the inherent series capacitance in the line through various control schemes [29-30]. Moreover, 

series devices have been reported to be more effective than shunt ones in controlling SSR. 

Studies have shown that TCSC can be useful for this [31-35], and there are several real-time 

installations that incorporate the mitigation of SSR in their design principle [36-39].  

 

This work analyzes the occurrence of SSR in the IEEE first benchmark model SMIB system in 

SIMULINK environment, and investigates its mitigation using a PSS and a TCSC. The results of 

the different feedback signals and appropriate controller configurations are presented to provide 

a comparative study of the analysis carried out. 
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CHAPTER 2 
SSR AND COMMONLY USED COUNTERMEASURES 

 

The electrical power system comprises electricity generating stations, transmission lines and 

distribution systems apart from various other controlling equipment for their own working and 

also to co-ordinate all of the above. The generating stations comprising turbines and generators 

convert the available mechanical energy, present in the form of water pressure or steam pressure 

into corresponding electrical energy. This generated electrical energy is then transmitted to the 

distribution stations through the transmission lines and network. Thus, the transmission lines 

form power transmission links between the load centres and the generating stations, which are 

commonly situated large distances apart due to various technical and economical considerations. 

 

2.1 Role of Transmission lines 

 

The role of transmission lines is extremely critical in the effective functioning of a power system. 

The transmission line plays an important role in transmitting electrical energy from the 

generating stations to the load centers. In other words they may be viewed as the roads of the 

power system that helps the subject (power/electricity) reach the destination (load) from the 

source (generating station). The transmission network is by far the most expensive part of the 

transmission network. It is essential to have a well developed, high capacity transmission system 

to make it economic and feasible to transmit large blocks of electrical energy over long 

distances. It would be definitely better, if the same amount of electrical energy is transmitted 

over a transmission line having lesser installation cost or the power transmission capability of an 

existing transmission line is increased. 

 
Any transmission line is made up of material that has both resistive and reactive characteristics. 

The reactance can be both capacitive and inductive, while the resistance is a function of the 

material by which the line is made. The formula governing the resistance is given by, 

 
R =  ρl

a
                                                                                                                         (2.1) 
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Where, 

𝜌𝜌 = Resistivity of the line material 

L = length of the line 

A = area of cross section of the line 

 
The inductance of the line is due to the existence of the magnetic lines of force around the 

conductors, while shunt capacitance (or conductance), which is quite negligible, is due to the 

relation of the line power flow with respect to the ground. Thus, the inductive reactance plays the 

dominant role in the power transmission line, leading to an effective decrease in the amount of 

power transferred as and when the inductance of the line increases.  

 

The power transfer equation of a power system can be given as [1] 

𝑃𝑃 =  𝐸𝐸 𝑉𝑉
𝑋𝑋

 sin 𝛿𝛿                                                                                                                           (2.2) 

     

Where, 

E – Voltage at generating end (Volts) 

V – Voltage at receiving end (Volts) 

X – Reactance of the line (ohms) 

𝛿𝛿 - Angular difference between E and V or the load angle (degrees) 

 

From the above equation, it is inferred that the net power transfer can be increased by: 

 

1. Increasing E and V i.e sending and receiving end voltages, or 

2. Increasing 𝛿𝛿 i.e. the load angle, or 

3. Decreasing X i.e. net reactance of the transmission line 

 
Though all the above are theoretically possible and to some extent practically feasible, there are 

limitations associated with them. If the voltage levels are increased to an extremely high value, 

the cost of the insulator goes up by an exorbitant amount. Also, it is then imperative to construct 

more robust power transmission towers. By considering the option of the load angle, we see that 
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it can be increased only upto a certain level, as beyond that, there is a risk of the system going 

into instability. 

 

2.2 System compensation using series capacitors 

 

From the above conclusions, it can be understood that the only practically feasible solution over 

a broad range is the decrease in the effective reactance. As the usual line reactance is inductive, 

which is conventionally considered as positive, we can decrease the reactance by including a 

series capacitive reactance, which can be treated as negative. 

 

Xeff = Xline + (-Xc)                       (2.3) 
 
When series compensating capacitors are used to aid the power transmission and increase its 

levels, a particular phenomenon of variance in the transient torque frequency occurs. The 

transient torque frequency, following a disturbance, can be seen to vary from 0 to 120 Hz i.e. 

from the subsynchronous frequency range of 0 – 60 Hz for the positive sequence components, to 

60 - 120 Hz called supersynchronous torque. This broad spectrum of frequency indicates that 

under certain system conditions it may be possible to directly excite the natural frequencies of 

the mechanical systems. 

 

2.3 Mechanical components in the power system 

 

The rotor of a turbo‐generator is a very complex mechanical system. The generator rotor is 

connected to the last turbine of a group of turbines and the exciter is connected to the rotor at the 

end. The various sections are coupled together with the help of interconnecting shafts. The rotor 

of the turbo‐generator may itself be over a 100 feet in length and may weigh several hundred 

tons. With a number of smaller components forming a part of the entire system as a whole, the 

system possesses several modes of torsional oscillations that can be excited due to various 

reasons. 
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2.4 Possibilities of Shaft Damage 

 

When a massive turbo‐generator unit as discussed above is connected to a power system, system 

switching events such as fault occurrence, fault clearance, incorrect synchronizing and reclosing 

and live switching which generally occurs independent of subsynchronous resonance conditions 

will have the effect on turbo‐generator shafts. Events such as high-speed reclosing consequently 

decay the fatigue life of the shafts.  

 

Apart from this scenario, it was noticed that sustained oscillation below the fundamental system 

frequency can be caused by series capacitive compensation. This phenomenon, called 

Subsynchronous resonance, though first reported in the late 1930s [2], came into prominence 

only in the 1970s, after two specific incidents of turbo‐generator shaft failure occurred at Mojave 

Generating station in USA [3]. Investigations showed that the interactions between a series 

capacitor compensated line, oscillating at the natural or subharmonic resonant frequency, and the 

mechanical system connected to the line set in torsional mechanical oscillation can result in 

negative damping, with the electrical and mechanical oscillations increasing steadily with time.  

  

2.5 Subsynchronous Resonance (SSR) 

 

Resonance in general is defined as the relatively large selective response of an object or system 

that vibrates in step (in phase) with an externally applied force. Resonance for electrical systems 

is defined as the enhancement of the response of a physical system to a periodic excitation when 

the excitation frequency is equal to a natural frequency of the system. Resonance, therefore, 

implies a periodic phenomena such as vibration, and two oscillators, one driven at or near its 

resonant frequency and the other driving as an externally applied force. 

 

The IEEE definition of subsynchronous oscillation is as follows:  

 

“Subsynchronous oscillation is an electric power system condition where the electric network 

exchanges significant energy with a turbine-generator at one or more of the natural frequencies 
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of the combined system below the synchronous frequency of the system following a disturbance 

from equilibrium” 

 

Electrical power generation involves interaction between the electrical and mechanical energies 

coupled through the generator. It follows that any change in the electric power system results in a 

corresponding reaction/response from the mechanical system and vice versa. Slow-changing load 

translates to a slow-changing mechanical torque on the rotor shaft, which in turn, is matched by a 

slow-changing rotor angle to new steady-state angle between the rotor and the stator along with 

adjustment in the mechanical power input to the rotor through the turbines. Major disturbances 

such as faults and fault clearing result in large transient torques on the mechanical system.  

 

A typical rotor of a large turbine-generator consists of several rotating masses. The rotor masses 

and coupling shafts form a spring-mass system which has intrinsic modes of torsional natural 

frequencies which are mostly below the synchronous frequency. There are many modes of 

torsional oscillations for a multi-mass-spring system, in addition to a zero mode by which the 

entire mass-spring system oscillates as a rigid body.  

 
 
 
 
 
 

HP     IP          LP      Gen            XT         RL     XL    XC 
 

Fig 2.1 Series compensated single machine infinite bus system. 
 
 

A single machine infinite bus system with the series capacitor compensated transmission line 

shown in Figure 2.1 will have a resonance frequency fe given by [11] 

𝑓𝑓𝑒𝑒 = 𝑓𝑓0�
𝑋𝑋𝐶𝐶

𝑋𝑋′′+𝑋𝑋𝐿𝐿+𝑋𝑋𝑇𝑇
= 𝑓𝑓0�

𝑋𝑋𝐶𝐶
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡

                                                                                                 (2.4) 

 
Where, 
 
 f0 is system nominal frequency (Hz)  

''X is sub-transient reactance of the generator (pu)  
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TX  is transformer leakage reactance (pu) 

LX  is transmission line inductive reactance (pu)  

CX  is the capacitive reactance (pu) 

 

It is often possible that the electrical resonant frequency is close to one of the compliments of 

torsional oscillation frequency (i.e.) f0 - fm. In such a situation, the torsional mode of oscillation 

gets excited, and sub-synchronous oscillations can originate to lead to disastrous consequences. 

Also, for each of the modes, there exists a separate resonant frequency, leading to possibilities of 

multiple resonances depending on the level of compensation used.  

Currents of resonant frequency (fe) in the electrical system give rise to rotor current of frequency 

fr as indicated in the equation. 

 
fr = f0 ± fe           (2.5) 
 
The armature currents induce an RMF in the armature, and frequency of rotor body currents 

induced by this field is governed by the relative velocity between the armature field and the 

rotor. Positive sequence components of stator current produce rotor current at sub synchronous 

frequency fr = f0 - fe. Negative sequence components of the stator current produce rotor current at 

supersynchronous frequency fr = f0 + fe. The sub‐synchronous electrical frequency and 

subsynchronous torque frequency (i.e.) f0 ‐ fe , are said to be complimentary because they add to 

unity on the base of the fundamental frequency f0. 

 
2.6 Types of SSR 

 

SSR can be induced in the system either by self-excitation or by external means (faults). The 

subsynchronous frequency current entering the generator terminals produces subsynchronous 

frequency terminal voltage components. These voltage components may sustain the currents to 

produce self excitation. The self excitation can be classified into Induction generator effect and 

Torsional interaction, whereas the third type, Torque amplification, is only due to an external 

disturbance [11]. All three are briefly described below. 
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2.6.1 Induction generator effect 

As the rotating MMF produced by the subsynchronous frequency armature current moves as a 

speed slower than the speed of the rotor, the resistance of the rotor viewed from the armature 

terminals is seen as negative, and thus the slip of the machine viewed as an IG is negative. When 

this negative resistance exceeds the sum of the armature and network resistance at a resonant 

frequency, there will be self excitation. 

 

2.6.2 Torsional interaction 

Generator rotor oscillations at a torsional mode frequency, fn, induce armature voltage 

component of subsynchronous and super‐synchronous frequency (fe). The armature voltage 

frequency components are related to the torsional made frequency by the equation, 

 
fen= f0 ± fn           (2.6) 

 

When fen is close to fer, the subsynchronous frequency voltage is phased to sustain the 

subsynchornous torque. If the component of sub‐synchronous torque in phase with rotor velocity 

deviation equals or exceeds the inherent mechanical damping torque of the rotating system, the 

system will become self excited. This interaction between the electrical and mechanical system 

can lead to SSR. 

 

2.6.3 Shaft Torque Amplification 

System disturbances resulting from switching in the network tend to excite oscillatory torques on 

the generator rotor. The transient torque might have many components, ranging from 

subsynchornous to even multiple of the fundamental frequency. Thus, torques may be induced in 

the shafts following a system disturbance which are much larger than those developed as a result 

of three phase fault in an uncompensated system. This is due to the resonance effect and the fact 

that the torsional mode damping in a turbine generator rotor system has been observed to be 

extremely low. This effect is referred to as shaft torque amplification. 
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2.7 How Torsional fatigue can lead to shaft damage 

 

Fatigue damage is the process of increasingly localized permanent structural change occurring in 

the shaft material subject to conditions which produce fluctuating stresses and strains at some 

points and which may culminate in cracks of complete fracture after a sufficient number of 

fluctuations. In some systems where the total damage can result in huge secondary problems, 

even the initiation of a crack is termed as potentially dangerous. Fatigue is not a one-time 

occurrence but a cumulative process. It is not until all the fatigue life is used up that an 

observable defect such as a crack will be obtained. Hence, for example, if a shaft system is 

inspected and no cracks are identified following a severe torsional duty, as the majority of the 

shaft fatigue life may have been consumed. A few relatively minor disturbances in the future 

may then initiate a crack and lead to a gross failure. 

 

2.8 Traditional methods to overcome SSR  

 

Use of shunt compensators do not result in electrical resonant frequencies below the synchronous 

frequency, but rather in supersynchronous frequencies, which can even aid the damping of the 

oscillations. But shunt compensation cannot be an effective replacement of series compensation, 

as the latter is economical and the placement of series capacitors in the line does not adversely 

affect the working of the overall system.  

 

In order to avoid the system oscillation at the subsynchronous frequencies, another solution that 

was considered was that of designing machines such that the lowest torsional mode frequency is 

greater than the synchronous frequency. But such a design is not feasible, and changes in the 

system with upgrades and additional equipment will anyway make it redundant. 

 

Another documented method is that of using a highly nonlinear metal oxide resistor in parallel 

with the capacitor [11]. During normal operation, very less current flows through the resistor, 

while during fault, it provides a parallel path and the voltage across the capacitor reaches a 

saturation level.  
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Static blocking filters can be used in series with the generator step up transformer winding on the 

neutral end of the transformer high voltage winding [6]. It is usually a three-phase filter made up 

of separate filters connected in series. Each section of the filter is a high Q, parallel resonant 

circuit tuned such that it blocks the current corresponding to the torsional mode. However, the 

tuning of the filter is affected by changes in the system frequency and temperature sensitivity of 

the filter capacitor. This along with the problem of huge space requirement and increased 

insulation level of the generator transformer make the static blocking filter a less preferred 

option. 

 

Bypass damping filter is most suitable in countering the induction generator effect as it is 

capable of introducing significant positive resistance in the circuit for subsynchronous oscillation 

frequencies upto 90% of the system frequency. But the filter is most effective only at lower 

frequencies, and the effect is negligible at higher frequencies [11] 

 

Other methods devised include usage static phase shifters [8] and magnetic stored energy [12]. 

An Induction Machine Damping Unit (IMDU) has also been developed in order to mitigate the 

SSR phenomenon [13-14]. 

 

Apart from the above, two of the more prominent methods in eliminating SSR are discussed 

briefly in the following pages. 

 

2.8.1 NGH Damping scheme 

This scheme was conceptualized by N.G.Hingorani and first employed at Southern California 

Edison’s Lugo substation in USA in 1984 [20]. It is seen that if a sinusoidal voltage of 

fundamental frequency is combined with a DC voltage, some half cycles are longer than the 

nominal period, and this is observed to be true for any combination of a base signal of 

fundamental frequency with DC and subsynchronous frequencies. Thus the NGH scheme 

involves the dissipation of capacitor charges whenever the measured half cycle period exceeds 

the nominal time period. For this, a resistor is inserted across the capacitor through thyristor 

switches, and the thyristor ceases to conduct whenever the capacitor voltage reaches zero. 

Though the scheme is known to be advantageous and less cumbersome as it does not require any 
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feedback signals, some undamping can result for certain torsional modes that are off-tune (not 

due to the electrical resonance)   

 

2.8.2 Power system stabilizers (PSS) 

The dynamic stability of a system can be improved by providing suitably tuned power system 

stabilizers on selected generators to provide damping to critical oscillatory modes. The PSS will 

introduce a component of electrical torque in phase with generator rotor speed deviations 

resulting in damping of low frequency power oscillations in which the generators are 

participating. The input to stabilizer signal may be one of the locally available signal such as 

changes in rotor speed, rotor frequency, accelerating power or any other suitable signal.  

 

It has been seen that PSS can be used to damp out system oscillations [9-10]. When it becomes 

apparent that the action of some voltage regulators could result in negative damping of the 

electromechanical oscillations below the full power transfer capability, PSS were introduced as a 

means to enhance damping through the modulation of the generator excitation so as to extend the 

power transfer limit. In power system applications, the oscillation frequency may be as low as 

0.1 Hz between 2 areas, to perhaps 5 Hz in smaller units oscillating in local mode. 

 

 

 

 

 

 

Fig 2.2 PSS configuration 
 

This stabilizing signal is compensated for phase and gain to result in adequate component of 

electrical torque that results in damping of rotor oscillations and thereby enhance power 

transmission and generation capabilities. The parameters of the PSS used in the system have 

been studied by various methods, but it was observed that it is not a very effective means of 

oscillation mitigation, especially in large multimachine systems [11]  
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Though most modern generator systems come equipped with a PSS, it has been observed that it 

alone is not sufficient to damp out the oscillations, and is some cases may even introduce some 

components that aid them. Thus, FACTS controllers, a new concept that enhances power 

transmission capability and can provide transient and dynamic stability, are gaining momentum 

in usage in the modern power systems, and are discussed in the following chapter.  
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CHAPTER 3 
FACTS CONTROLLERS 

 

Flexible AC Transmission systems (FACTS) are a modern power electronic group of devices 

that aim in helping alleviate the growing power needs. The FACTS technology was initiated by 

the EPRI in the 1980’s to improve controllability of power over existing transmission corridors 

[15], and they play a principal role in enhancing the capability of the AC systems. Those FACTS 

devices that have an integrated control function are known as FACTS Controllers, and they are 

capable of controlling the interrelated line parameters. They also look after other variables that 

govern the operation of transmission systems, be it the impedances, voltage, current or the phase 

angle.  

 

3.1 Classification of FACTS controllers 

 

FACTS controllers can be broadly classified as follows: 

• Series controllers 

• Shunt controllers 

• Combined series-series controllers 

• Combined series-shunt controllers 

 

3.1.1 Series controllers 

Series controllers are used to inject voltage in series with the line, and can be a variable 

capacitive or inductive reactance, or a power electronics based variable source of main 

frequency. In most cases the voltage is in phase quadrature with the current, and thus the power 

transfer is reactive. Any other phase relationship will lead to real power transfer as well. 

Examples can be static synchronous series compensator (SSSC) and Thyristor-Controlled Series 

Capacitor (TCSC). 
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3.1.2 Shunt controllers 

These are similar to the series controllers, with the difference being that they inject current into 

the system at the point of connection. Examples include the Thyristor switched capacitor (TSC), 

thyristor controlled reactor (TCR), Static VAR compensator (SVC) and the Static synchronous 

compensator (STATCOM). 

 

3.1.3 Combined series-series controllers 

This can be a combination of separate series controllers, which are controlled in a co-ordinated 

manner, or it can be a unified controller, where separate series controllers provide independent 

series reactive compensation for each line, but exchange power between each other as well. An 

example of this is the Interline Power flow controller (IPFC). 

 

3.1.4 Combined series-shunt controllers 

This is similar to the combined series-series controllers, but one or more device is connected in 

shunt. An example is the Unified power flow controller (UPFC). 

Some of the commonly used devices are briefly described in the following pages. 

 

3.2 Thyristor-Switched Capacitor (TSC) 

 

 

 

 

 

 

 

 

 

 

Fig 3.1 Thyristor-Switched Capacitor 
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A thyristor-switched capacitor (TSC) consists of a fixed capacitor C, a bidirectional thyristor 

switch SW, and a comparatively small surge-limiting reactor L as shown in Figure 3.1. It can be 

considered as operating such that it switches a capacitor in or out of the system. Thus, there is 

only a binary action, and no firing angle control takes place. The TSC can be disconnected at 

zero current by prior removal of the thyristor-gating signal. 

  

3.3  Thyristor-Controlled Reactor (TCR) 

 

A thyristor-controlled reactor (TCR) consists of a fixed reactor of inductance L and a 

bidirectional thyristor switch, as shown in Figure 3.2 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 Thyristor-Controlled Reactor (TCR) 

 

The current through the reactor can be controlled from zero to a maximum by varying the firing 

angle of the thyristor. Thus it can be observed that the admittance can be varied by varying the 

firing angle of conduction of the thyristors.   
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3.4 Static VAR Compensator (SVC) 

 

If a system employs either TCR or TSC, it would lead to a compensation of only either the 

inductive component in the former, or only the capacitive component in the latter. But it is often 

desirable to have both types of compensation, and this is where a static VAR compensator (SVC) 

is helpful. A SVC consists of TCRs in parallel with one or more TSCs, as can be seen in figure 

3.3. The reactive elements are connected to the high voltage system through a step-down 

transformer. Thus, TCR and TSC can in fact be called subsets of the larger SVC scheme.  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Fig 3.3 Static VAR Compensator (SVC) 

 

3.5 Static Synchronous Compensator (STATCOM) 

 

A Static Synchronous Compensator (STATCOM) can be considered as an advanced form of 

SVC. It can be a voltage-sourced or a current-sourced converter, and is connected in shunt to the 

system. Based on whether it has an energy source or not, a STATCOM can be shown to be 

capable of both real and reactive power transfer. 
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Fig 3.4 Static Synchronous Compensator (STATCOM) 

 

3.6 Static Synchronous Series compensator (SSSC) 

 

 

 

 

 

 

 

 

 

 

Fig 3.5 Static Synchronous Series Compensator (SSSC) 

 

This device is operated without any external energy source, and the output voltage is in 

quadrature with the line current, used for the purpose of increasing or decreasing the overall 

reactive voltage drop across the line, thus controlling the flow of electrical power. The SSSC is 

one of the most important FACTS devices, and can be both voltage-sourced and current-sourced 

based.  
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3.7 Thyristor-Switched Series Capacitor (TSSC) 

 

 

 

 

 

 

 

Fig 3.6 Thyristor-Switched Series Capacitor (TSSC) 

 

A thyristor-switched series capacitor (TSSC) consists of a number of capacitors in series, each 

shunted by a switch composed of two anti-parallel thyristors as shown in fig 3.6. A capacitor is 

inserted in the transmission line by turning ’off’ the thyristors, and it is bypassed by turning ’on’ 

the thyristor switch. The equivalent capacitance, for  C1 = C2 …..= C1 is: 

             Ceq= C/n           if n Thyristor switches are switched off 

             Ceq= 0               if all the Thyristor switches are switched on 

 

3.8 Thyristor-Controlled Series Capacitor (TCSC) 

 

 

 

 

 

 

 

Fig 3.7 Thyristor-Controlled Series Capacitor (TCSC) 

 

The thyristor controlled series capacitor can be viewed as an improvement to the TSC scheme, 

which provides only a binary control of the capacitor. Though the former is connected in shunt, 

in the TCSC, which is operated in series with the line, a capacitor in parallel with a TCR model 
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generates a continuous variable reactance in the line. Thus, this smooth control can be leveraged 

to provide series compensation of the desired level.  

 

Though various FACTS devices have been seen to provide beneficial results in the field of SSR 

mitigation, it has been observed that as modern power systems demand the increasing usage of 

series compensation, the TCSC, with its simple structure and concept of variable reactance, can 

be one of the most effective in solving SSR problems. The following chapter will provide a 

detailed analysis of the TCSC operation, characteristics and control structure, leading to an 

understanding of how it can help in alleviating the SSR phenomenon. 
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CHAPTER 4 

THYRISTOR CONTROLLED SERIES CAPACITOR  

4.1 Introduction 

 

The basic thyristor controlled series capacitor scheme was proposed in 1986 by Vithayathil as a 

means of rapid adjustment of network impedance [19]. The TCSC is composed of a series-

compensating capacitor in parallel with a thyristor-controlled reactor. A TCSC is a series-

controlled capacitive reactance that can provide continuous control of power on the ac line over a 

wide range. The scheme is shown in figure 4.1 

 

 

 

 

 

 

 

Fig 4.1 TCSC scheme 

 

The principle of variable-series compensation is to increase the voltage across a fixed capacitor 

(FC) in a series compensated line through appropriate variation of the firing angle, α. Thus the 

TSSC can be assumed to be a special case of the TCSC, as it operates in a purely on/off manner. 

The basic operating principle behind the TCSC is that it can provide a continuously variable 

capacitor by means of partially canceling the effective compensating inductive reactance of the  

thyristor-controlled reactor.  

 

However, a practical TCSC module also includes protective equipment normally installed with 

series capacitors. A metal-oxide varistor (MOV), essentially a nonlinear resistor, is connected 

across the series capacitor to prevent the occurrence of high-capacitor over- voltages. Not only 

does the MOV limit the voltage across the capacitor, but it allows the capacitor to remain in 
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circuit even during fault conditions and helps improve the transient stability. Also installed 

across the capacitor is a circuit breaker, CB, for controlling its insertion in the line. In addition, 

the CB bypasses the capacitor if severe fault or equipment-malfunction events occur. A current-

limiting inductor, Ld, is incorporated in the circuit to restrict both the magnitude and the 

frequency of the capacitor current during the capacitor-bypass operation. An actual TCSC 

system usually comprises a cascaded combination of many such TCSC modules, together with a 

fixed-series capacitor, CF. This fixed series capacitor is provided primarily to minimize costs. 

 

The World’s first TCSC was installed in 1992 in Kayenta substation, Arizona, [36] and it helped 

improve the transmission capacity by around 30%  

 

4.2 TCSC modes of operation  

 

There are essentially three modes of TCSC operation: 

• Bypassed Thyristor Mode 

• Blocked Thyristor Mode 

• Partially Conducting Thyristor Mode or Vernier mode 

 

4.2.1 Bypassed Thyristor Mode 

In the bypassed mode, the thyristors are made to fully conduct with a conduction angle of 180º. 

Gate pulses are applied as soon as the voltage across the thyristors reaches zero and becomes 

positive, resulting in a continuous current flow through the thyristor valves.  

Thus, in this mode, the TCSC module behaves like a parallel capacitor-inductor combination. 

However, the net current through the entire module remains inductive, as the susceptance of the 

reactor is chosen to be always greater than the capacitor. 

 

4.2.2 Blocked Thyristor mode 

This mode is also called waiting mode, the firing pulses to the thyristor valves are completely 

blocked. If the thyristors are in conduction and a blocking mode is suddenly given, the thyristors 

turn off as soon as the current in them reaches a zero crossing. The TCSC module is thus 
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effectively modified to a fixed series capacitor, and the net series reactance is nearly purely 

capacitive.  

 

4.2.3 Partially Conducting Thyristor Mode or Vernier Mode 

This mode is of utmost interest in SSR studies, as it allows the TCSC to behave either as a 

continuously controllable capacitive reactance or, on the other ends, a continuously controllable 

inductive reactance. This is achieved by varying the thyristor-pair firing angle in the appropriate 

range. But due to the characteristics of the TCSC, there is no smooth transition between the two 

modes, as resonant regions exist in between.  

 

This mode can be classified into two types – the capacitive vernier control mode, and the 

inductive vernier control mode. In the former, the thyristors are fired when the capacitor voltage 

and capacitor current have opposite polarity. This condition causes a TCR current that has a 

direction opposite to the capacitor current, resulting in a loop current flow in the TCSC 

controller.  

 

The working of the parallel LC circuit determines the impedance of the TCSC.  The impedance 

of the TCSC as a function of the delay angle α [19] is illustrated by equation 4.1  

𝑋𝑋𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶(α) = XC𝑋𝑋𝐿𝐿(α)
𝑋𝑋𝐿𝐿(α)− XC

                                                                                                            (4.1) 

Where, the inductive reactance as a function of α is given as, 

𝑋𝑋𝐿𝐿(α) =  𝑋𝑋𝐿𝐿  𝜋𝜋
𝜋𝜋−2α− sin α

                                                                                                           (4.2) 

Where, 𝑋𝑋𝐿𝐿 ≤  𝑋𝑋𝐿𝐿(α) ≤  ∞ 

𝑋𝑋𝐿𝐿 from equation is ωL and the delay angle α is measured from the crest of the capacitor  voltage 

or the zero crossing of the line current.  As the impedance of the controllable reactor is varied 

from its maximum (infinity) to its minimum (ωL), the minimum capacitive compensation is 

increased by XTCSCmin = XC = 1
𝑤𝑤𝐶𝐶

.  Thus, the degree of series capacitive compensation is 

increased.  When XC = 𝑋𝑋𝐿𝐿(α), the impedance  of the TCSC becomes infinite.  Thus, the TCSC 
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has two operating ranges; one is when αClim ≤ α ≤ π/2, where the TCSC is in capacitive mode.  

The other range of operation is 0 ≤ α ≤ αLlim, where the TCSC is in inductive mode.  

 

4.2 Analysis of TCSC 

 

For consideration of mitigation of SSR study, the analysis of the TCSC operating in Vernier 

Mode is carried out. The independent variable is the transmission line current, and it is taken as 

an external current source for simplification. The line current is assumed to be sinusoidal, which 

is true in the majority of the cases [19] 

 

The current through the fixed capacitor, C, is expressed as, 

 

𝐶𝐶 𝑑𝑑𝑉𝑉𝐶𝐶
𝑑𝑑𝑡𝑡

=  𝑖𝑖𝑇𝑇(𝑡𝑡) −  𝑖𝑖𝑇𝑇(𝑡𝑡).𝑎𝑎                                                                                                       (4.3) 

The term ‘a’ is employed as a switching variable, and its value is 1 when the thyristor valves are 

conducting, while it is taken as 0 (so only 1st term exists) when the thyristor valves are blocked. 

Now, the thyristor valve current, 𝑖𝑖𝑇𝑇(𝑡𝑡) is described as, 

𝐿𝐿 𝑑𝑑𝑖𝑖𝑇𝑇
𝑑𝑑𝑡𝑡

=  𝑣𝑣𝐶𝐶 .𝑎𝑎                                                                                                                  (4.4) 

And the line current, 𝑖𝑖𝑇𝑇(𝑡𝑡) is given by the relation, 

𝑖𝑖𝑇𝑇(𝑡𝑡) =  𝐼𝐼𝑚𝑚 cos𝑤𝑤𝑡𝑡                                                                                                                      (4.5) 

The solution of the above equations lies in the knowledge of the instants of switching. In 

equidistant firing pulse control, most frequently used because of balanced TCSC operation, the 

thyristors are switched on twice during each cycle of line currents, say at instants 𝑡𝑡1 and 𝑡𝑡2, 

𝑡𝑡1 =  − 𝛽𝛽
𝑤𝑤

   and 𝑡𝑡2 =  −𝜋𝜋−𝛽𝛽
𝑤𝑤

                                                                                                        (4.6) 

Here, 𝛽𝛽 is termed as the angle of advance. It can also be expressed as,  

𝛽𝛽 =  𝜋𝜋 −  𝛼𝛼 ; 0 < 𝛽𝛽 <  𝛽𝛽𝑚𝑚𝑎𝑎𝑚𝑚  
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The thyristor, modeled as a switch, can be assumed to turn off at the below instances, 

𝑡𝑡3 = 𝑡𝑡1 +  𝜎𝜎
𝑤𝑤

  and  𝑡𝑡4 = 𝑡𝑡2 + 𝜎𝜎
𝑤𝑤

                                                                                                  (4.7) 

Where 𝜎𝜎 is the conduction angle, and is the same in both the cycles of conduction. Also, 

𝜎𝜎 = 2𝛽𝛽                                                                                                                                       (4.8) 

By solving the above equations, the steady state thyristor current, 𝑖𝑖𝑇𝑇  is given as, 

𝑖𝑖𝑇𝑇  (𝑡𝑡) =  𝑘𝑘2

𝑘𝑘2− 2
 𝐼𝐼𝑚𝑚𝑎𝑎𝐼𝐼 (cos𝑤𝑤𝑡𝑡 −  cos 𝛽𝛽

cos 𝑘𝑘𝛽𝛽
 cos𝑤𝑤𝑟𝑟𝑡𝑡)                                                                      (4.9) 

Where, 

- 𝛽𝛽 ≤ wt ≤ 𝛽𝛽 

𝑤𝑤𝑟𝑟 =  1
√𝐿𝐿𝐶𝐶

  

𝑘𝑘 =   𝑤𝑤𝑟𝑟
𝑤𝑤

=  � 1
𝑤𝑤𝐿𝐿

 1
𝑤𝑤𝐶𝐶

=  �𝑋𝑋𝐶𝐶
𝑋𝑋𝐿𝐿

     

In the above relation of k, 𝑋𝑋𝐶𝐶  is the nominal reactance of the fixed capacitor of the TCSC alone. 

Now, the steady state capacitor voltage at the instant wt = -β is expressed by,  

𝑣𝑣𝐶𝐶1 =  𝐼𝐼𝑚𝑚 𝑋𝑋𝐶𝐶
𝑘𝑘2− 1

 (sin𝛽𝛽 − 𝑘𝑘 cos𝛽𝛽 tan𝑘𝑘𝛽𝛽)                                                                                    (4.10) 

At wt = β, iT = 0, and the capacitor voltage is given by, 

𝑣𝑣𝐶𝐶  (wt = β) = 𝑣𝑣𝐶𝐶1 = -𝑣𝑣𝐶𝐶2                                                                                                          (4.11) 

The capacitor voltage then becomes, 

𝑣𝑣𝐶𝐶(𝑡𝑡) =  𝐼𝐼𝑚𝑚 𝑋𝑋𝐶𝐶
𝑘𝑘2− 1

 (− sin𝑤𝑤𝑡𝑡 − 𝑘𝑘 cos 𝛽𝛽
cos 𝑘𝑘𝛽𝛽

 sin𝑤𝑤𝑟𝑟𝑡𝑡)                                                                          (4.12) 

𝑣𝑣𝐶𝐶(𝑡𝑡) =  𝑣𝑣𝐶𝐶2 + 𝐼𝐼𝑚𝑚𝑋𝑋𝐶𝐶  (sin𝑤𝑤𝑡𝑡 −  sin𝛽𝛽)                                                                                   (4.13) 

Because of the nonsinusoidal nature of the capacitor voltage, the fundamental component, 𝑣𝑣𝐶𝐶𝐶𝐶is 

obtained as, 
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𝑉𝑉𝐶𝐶𝐶𝐶 =  4
𝜋𝜋

 ∫ 𝑣𝑣𝐶𝐶(𝑡𝑡) sin𝑤𝑤𝑡𝑡  𝑑𝑑(𝑤𝑤𝑡𝑡)
𝜋𝜋
2

0                                                                                              (4.14) 

The equivalent TCSC reactance is now computed as a ratio of 𝑣𝑣𝐶𝐶1. 

The effective impedance of the TCSC works out to be, 

𝑋𝑋𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 =  𝑉𝑉𝐶𝐶𝐶𝐶
𝐼𝐼𝑚𝑚

=  𝑋𝑋𝐶𝐶 −  𝑋𝑋𝐶𝐶2

𝑋𝑋𝐶𝐶− 𝑋𝑋𝐿𝐿
 2𝛽𝛽+ sin 2𝛽𝛽

𝜋𝜋
+  4𝑋𝑋𝐶𝐶2

𝑋𝑋𝐶𝐶− 𝑋𝑋𝐿𝐿
 (cos 𝛽𝛽)2

(𝑘𝑘2− 1)
 (𝑘𝑘 tan 𝑘𝑘𝛽𝛽− tan 𝛽𝛽)

𝜋𝜋
                              (4.15) 

When expressing this relation on pu of 𝑋𝑋𝐶𝐶 , the net reactance is given as, 

𝑋𝑋𝑛𝑛𝑒𝑒𝑡𝑡 =  1 −  𝑋𝑋𝐶𝐶
𝑋𝑋𝐶𝐶− 𝑋𝑋𝐿𝐿

 2𝛽𝛽+ sin 2𝛽𝛽
𝜋𝜋

+  4𝑋𝑋𝐶𝐶
𝑋𝑋𝐶𝐶− 𝑋𝑋𝐿𝐿

 (cos 𝛽𝛽)2

(𝑘𝑘2− 1)
 (𝑘𝑘 tan 𝑘𝑘𝛽𝛽− tan 𝛽𝛽)

𝜋𝜋
                                              (4.16) 

Writing it in terms of the conduction angle,  

𝑋𝑋𝑛𝑛𝑒𝑒𝑡𝑡 = 1 −  𝑋𝑋𝐶𝐶
𝑋𝑋𝐶𝐶− 𝑋𝑋𝐿𝐿

 𝜎𝜎+ sin 𝜎𝜎
𝜋𝜋

+ 4𝑋𝑋𝐶𝐶
𝑋𝑋𝐶𝐶− 𝑋𝑋𝐿𝐿

 (cos 𝜎𝜎/2)2

(𝑘𝑘2− 1)
 (𝑘𝑘 tan 𝑘𝑘𝜎𝜎/2− tan 𝜎𝜎/2)

𝜋𝜋
                                          (4.17) 

As the TCSC is primarily used as a capacitive device, the above derivation assumes a positive 

sign for the fixed capacitance. While implementing in conventional network studies, this is to be 

reversed. 

The variation of the per unit TCSC reactance (𝑋𝑋𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶/𝑋𝑋𝐶𝐶) as a function of the firing angle is 

given in figure 4.2. It can be seen that a parallel resonance is created between the XL and XC at 

the fundamental frequency, corresponding to the firing angles 𝛼𝛼𝑟𝑟𝑒𝑒𝑠𝑠 , given by 

𝛼𝛼𝑟𝑟𝑒𝑒𝑠𝑠 =  𝜋𝜋 − (2𝑚𝑚− 1)
𝜋𝜋𝑤𝑤
2𝑤𝑤𝑟𝑟

 

Or, in terms of the advance angle, 

𝛽𝛽𝑟𝑟𝑒𝑒𝑠𝑠 =  (2𝑚𝑚 − 1)
𝜋𝜋𝑤𝑤
2𝑤𝑤𝑟𝑟
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Fig 4.2 TCSC Reactance Vs Firing Angle Characteristics 

It is to be noted that different resonances can be inducted into the TCSC characteristics, but this 

can be avoided by a proper selection of the parameter k. An example to be noted is the TCSC 

installation at Kayenta [36], where choosing L = 0.0068 H across the 177 µF capacitor results in 

only one resonant point at 143º, while if L = 0.0043 H, it would lead to resonance at both 101º 

and 160º, which results in extremely high impedance profile with a substantial drop in the 

voltage. To avoid this, limits on the firing angle can be implemented, with the most commonly 

occurring resonant point being 145º. A sample single resonance point characteristics of the 

TCSC is shown in figure 4.2. It is understood that the Vernier operation helps in the 

enhancement of the TCSC reactance, whether inductive or capacitive, and does not work in the 

other way of reactance reduction.  

 

4.3 TCSC Control schemes 

 

To control the TCSC operations, two models are used in practice, as described below. 
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4.3.1 Variable Reactance model 

The variable reactance TCSC model is the simpler of the two, and directly varies the reactance 

provided by the TCSC using feedback signals from the system under consideration. A sample 

illustration is shown in figure 4.3 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.3 TCSC as a variable capacitive reactance 

4.3.2 Firing angle control model 

This is the more advanced model and it directly the TCSC reactance–firing angle characteristic, 

given in the form of a nonlinear relation. The reference parameter can be the line current, voltage 

or the power, and the scheme is modified correspondingly. The basic structure is shown in fig. 

The line parameter is sensed and compared with the reference value. This error signal is then fed 

through appropriate gain stages, and then through a linearization block, that helps convert the 

impedance signal into an equivalent firing angle value. This is then converted into a pulse signal 

using a firing pulse generator, which is used to fire the thyristors that are part of the TCSC [29-

30] 
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Fig 4.4 TCSC Firing angle control scheme 

4.4 Advantages of TCSC: 

 

The usage of TCSC has various definite advantages, such as: 

• Rapid and continuous control of transmission line series compensation level 

• Damping of power swings from local and inter-area oscillations. 

• Voltage support, as the TCSC in conjunction with series capacitors can generate reactive 

power that increases with line loading, aiding regulation of local network voltages and 

alleviation of voltage instability. 

 

Over the years, apart from enhancing the power transmission capability, it was noted that the 

TCSC can prove to be an efficient device to provide damping of electromechanical oscillations, 

and can thus be a means of series compensation and counter SSR. The benefits with regards to 

SSR mitigation has been well documented [31-35], and many TCSC installations have been 

made to this effect[36-39].  
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In the following chapters, the IEEE first benchmark model will be used to simulate SSR 

phenomenon. The mitigation of the SSR occurrence will be carried out using a conventional 

method (PSS), and then a TCSC designed for this specific purpose will be simulated. 
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CHAPTER 5 
SYSTEM MODELLING FOR SSR STUDY 

 

For the analysis of SSR phenomenon and its mitigation, the IEEE 1st benchmark model [4] will 

be utilized. This consists of an SMIB system with a series capacitor in order to provide enhanced 

power transfer capability. The system is represented in figure 5.1, and its parameters are given in 

Appendix 1. 

 

 

 

 

 

 

 

Fig 5.1 IEEE 1st Benchmark model 

 

In order to carry out the simulation, each of the components (i.e.) machine, transmission line and 

series capacitance are modeled individually in the following pages, and then the final 

SIMULINK model is realized by combining all of them.   

 

5.1 Mechanical System 

 

5.1.1 Machine modeling 

In order to derive the mathematical equations of the machine [40], an understanding of the 

variation of inductances with the rotor positions will be helpful. Though the MMFs of rotor 

winding are directed along d and q axes, the resultant MMF will vary. Considering the magnetic 

effect of only the phase a current, it is seen that the a phase MMF, denoted by Fa, generates flux 

components,  

𝜑𝜑𝑑𝑑 = 𝑃𝑃𝑑𝑑𝐶𝐶𝑎𝑎 sin𝜃𝜃𝑟𝑟  𝑎𝑎𝑛𝑛𝑑𝑑 𝜑𝜑𝑞𝑞 = 𝑃𝑃𝑞𝑞𝐶𝐶𝑞𝑞 sin𝜃𝜃𝑞𝑞                                                                                    (5.1) 
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The flux linkage of these resolved flux components is given by, 

𝜆𝜆𝑎𝑎𝑎𝑎 = 𝑁𝑁𝑠𝑠𝐶𝐶𝑠𝑠(𝑃𝑃𝑑𝑑+𝑃𝑃𝑞𝑞
2

−  𝑃𝑃𝑑𝑑+𝑃𝑃𝑞𝑞
2

cos 2𝜃𝜃𝑟𝑟)                                                                                          (5.2) 

 

Similarly, the flux linkage due to the b-phase component is given by, 

𝜆𝜆𝑎𝑎𝑏𝑏 = 𝑁𝑁𝑠𝑠𝐶𝐶𝑠𝑠(−𝑃𝑃𝑑𝑑+𝑃𝑃𝑞𝑞
4

−  𝑃𝑃𝑑𝑑−𝑃𝑃𝑞𝑞
2

cos 2(𝜃𝜃𝑟𝑟 −
𝜋𝜋
3

))                                                                            (5.3) 

 

Thus, the self inductance of the stator a phase winding, if the leakage is neglected, is given as, 

𝐿𝐿𝑎𝑎𝑎𝑎 = 𝐿𝐿0 − 𝐿𝐿𝑚𝑚𝑠𝑠 cos 2𝜃𝜃𝑟𝑟                                                                                                              (5.4) 

 

Similarly, the mutual inductance between a and b phases is given as, 

𝐿𝐿𝑎𝑎𝑎𝑎 = 𝐿𝐿𝑎𝑎𝑎𝑎 = −𝐿𝐿0
2
− 𝐿𝐿𝑚𝑚𝑠𝑠 cos 2(𝜃𝜃𝑟𝑟 −

𝜋𝜋
3

)                                                                                     (5.5) 

 

The voltage applied to each of the windings in fig 5. Can be balanced using a resistive drop and a 

differential flux linkage term, which can be represented as below: 

�
𝑣𝑣𝑠𝑠
𝑣𝑣𝑟𝑟� = �𝑟𝑟𝑠𝑠 0

0 𝑟𝑟𝑟𝑟
� �𝑖𝑖𝑠𝑠𝑖𝑖𝑟𝑟

� + 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝛬𝛬𝑠𝑠𝛬𝛬𝑟𝑟

�                                                                                                   (5.6) 

 

In the above relation, the terms of the matrix are in actuality vectors, given below, 

𝑣𝑣𝑠𝑠 = [𝑣𝑣𝑎𝑎 𝑣𝑣𝑏𝑏 𝑣𝑣𝑐𝑐]𝑡𝑡   

𝑣𝑣𝑟𝑟 = [𝑣𝑣𝑓𝑓 𝑣𝑣𝑘𝑘𝑑𝑑 𝑣𝑣𝐼𝐼 𝑣𝑣𝑘𝑘𝑞𝑞 ]𝑡𝑡  

𝑖𝑖𝑠𝑠 = [𝑖𝑖𝑎𝑎 𝑖𝑖𝑏𝑏 𝑖𝑖𝑐𝑐]𝑡𝑡  

𝑖𝑖𝑟𝑟 = [𝑖𝑖𝑓𝑓 𝑖𝑖𝑘𝑘𝑑𝑑 𝑖𝑖𝐼𝐼 𝑖𝑖𝑘𝑘𝑞𝑞 ]𝑡𝑡  

𝑟𝑟𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑎𝑎𝐼𝐼[𝑟𝑟𝑎𝑎 𝑟𝑟𝑏𝑏 𝑟𝑟𝑐𝑐] 

𝑟𝑟𝑟𝑟 = 𝑑𝑑𝑖𝑖𝑎𝑎𝐼𝐼[𝑟𝑟𝑓𝑓 𝑟𝑟𝑘𝑘𝑑𝑑 𝑟𝑟𝐼𝐼     𝑟𝑟𝑘𝑘𝑞𝑞 ] 

𝛬𝛬𝑠𝑠 = [𝜆𝜆𝑎𝑎 𝜆𝜆𝑏𝑏 𝜆𝜆𝑐𝑐]𝑡𝑡  

𝛬𝛬𝑟𝑟 = [𝜆𝜆𝑓𝑓 𝜆𝜆𝑘𝑘𝑑𝑑 𝜆𝜆𝐼𝐼 𝜆𝜆𝑘𝑘𝑞𝑞 ]𝑡𝑡  

 

When expressing parameters in per phase basis, the notations used are as follows, 

rs – stator winding resistance 

rf – d-axis field winding resistance 
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rg – q-axis field winding resistance 

rkd – d-axis damper winding resistance 

rkq – q-axis damper winding resistance 

 

While transforming the stator quantities to the qd0 reference frame attached to the rotor, it is 

seen that the resultant voltage equation is found to be time-invariant. The qd0 transformation is 

applied only to the stator quantities, as the rotor is already along those axes. Let the augmented 

transformation matrix be given as, 

 

𝐶𝐶 = �𝑇𝑇𝑞𝑞𝑑𝑑0(𝜃𝜃𝑟𝑟)
𝑈𝑈
�                                                                                                                  (5.7) 

 

U is a unit matrix, while, 

𝑇𝑇𝑞𝑞𝑑𝑑0(𝜃𝜃𝑟𝑟) = 2
3

 

⎣
⎢
⎢
⎢
⎡cos𝜃𝜃𝑟𝑟 cos(𝜃𝜃𝑟𝑟 −

2𝜋𝜋
3

) cos(𝜃𝜃𝑟𝑟 −
2𝜋𝜋
3

)

sin𝜃𝜃𝑟𝑟 sin(𝜃𝜃𝑟𝑟 −
2𝜋𝜋
3

) sin(𝜃𝜃𝑟𝑟 −
2𝜋𝜋
3

)
1
2

1
2

1
2 ⎦

⎥
⎥
⎥
⎤
                                                              (5.8) 

 

Thus, applying the above relation to the stator quantities, the stator voltage equations become, 

𝑣𝑣𝑞𝑞𝑑𝑑0 = 𝑇𝑇𝑞𝑞𝑑𝑑0𝑟𝑟𝑠𝑠𝑇𝑇𝑞𝑞𝑑𝑑0
−1𝑖𝑖𝑞𝑞𝑑𝑑0 + 𝑇𝑇𝑞𝑞𝑑𝑑0

𝑑𝑑
𝑑𝑑𝑡𝑡
𝑇𝑇𝑞𝑞𝑑𝑑0

−1𝛬𝛬𝑞𝑞𝑑𝑑0                                                                        (5.9) 

 

Taking all phase resistances to be equal, the first term reduces to 𝑟𝑟𝑠𝑠𝑖𝑖𝑞𝑞𝑑𝑑0, while the second term 

can be written as, 

𝑇𝑇𝑞𝑞𝑑𝑑0[� 𝑑𝑑
𝑑𝑑𝑡𝑡
𝑇𝑇𝑞𝑞𝑑𝑑0

−1�𝛬𝛬𝑞𝑞𝑑𝑑0 + 𝑇𝑇𝑞𝑞𝑑𝑑0
−1 𝑑𝑑

𝑑𝑑𝑡𝑡
𝛬𝛬𝑞𝑞𝑑𝑑0]                                                                                (5.10) 

 

Substituting for the transformation matrix, it is seen that the stator voltage equation of now 

becomes, 

𝑣𝑣𝑞𝑞𝑑𝑑0 = 𝑟𝑟𝑠𝑠𝑖𝑖𝑞𝑞𝑑𝑑0 + 𝑤𝑤𝑟𝑟 �
0 1 0
−1 0 0
0 0 0

� 𝛬𝛬𝑞𝑞𝑑𝑑0 + 𝑑𝑑
𝑑𝑑𝑡𝑡
𝛬𝛬𝑞𝑞𝑑𝑑0                                                                    (5.11) 

Where 𝑤𝑤𝑟𝑟  denotes 𝑑𝑑𝜃𝜃𝑟𝑟
𝑑𝑑𝑡𝑡

 in electrical radians/sec. 
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The expression for Electromagnetic torque being developed in the airgap can be derived using 

the component of input power transferred across it. Let the total input power be given by the 

relation, 

𝑃𝑃𝑖𝑖𝑛𝑛 = 𝑣𝑣𝑎𝑎𝑖𝑖𝑎𝑎 + 𝑣𝑣𝑏𝑏𝑖𝑖𝑏𝑏 + 𝑣𝑣𝑐𝑐𝑖𝑖𝑐𝑐 + 𝑣𝑣𝑓𝑓𝑖𝑖𝑓𝑓 + 𝑣𝑣𝐼𝐼𝑖𝑖𝐼𝐼                                                                                   (5.12) 

 

Transforming the input power into the rotor’s qd0 reference frame, eqn becomes, 

𝑃𝑃𝑖𝑖𝑛𝑛 = 3
2
�𝑟𝑟𝑠𝑠�𝑖𝑖𝑞𝑞2 + 𝑖𝑖𝑑𝑑2� + 𝑖𝑖𝑞𝑞

𝑑𝑑𝜆𝜆𝑞𝑞
𝑑𝑑𝑡𝑡

+ 𝑖𝑖𝑑𝑑
𝑑𝑑𝜆𝜆𝑑𝑑
𝑑𝑑𝑡𝑡

+ 𝑤𝑤𝑟𝑟�𝜆𝜆𝑑𝑑𝑖𝑖𝑞𝑞 − 𝜆𝜆𝑞𝑞𝑖𝑖𝑑𝑑�� + 3𝑖𝑖02𝑟𝑟0 + 3𝑖𝑖0
𝑑𝑑𝜆𝜆0
𝑑𝑑𝑡𝑡

+ 𝑖𝑖𝑓𝑓2𝑟𝑟𝑓𝑓 +

𝑖𝑖𝑓𝑓
𝑑𝑑𝜆𝜆𝑓𝑓
𝑑𝑑𝑡𝑡

+ 𝑖𝑖𝐼𝐼2𝑟𝑟𝐼𝐼 + 𝑖𝑖𝐼𝐼
𝑑𝑑𝜆𝜆𝐼𝐼
𝑑𝑑𝑡𝑡

                                                                                                              (5.13) 

 

When terms that are related to the ohmic losses can be eliminated from the above relation, the 

relation for electromechanical power is given as, 

𝑃𝑃𝑒𝑒𝑚𝑚 = 3
2
𝑤𝑤𝑟𝑟(𝜆𝜆𝑑𝑑𝑖𝑖𝑞𝑞 − 𝜆𝜆𝑞𝑞𝑖𝑖𝑑𝑑)                                                                                                         (5.14) 

 

Writing the speed in terms of mechanical radians and deriving the relation for the 

electromechanical torque, 

𝑃𝑃𝑒𝑒𝑚𝑚 = 3
2
𝑃𝑃
2
𝑤𝑤𝑟𝑟𝑚𝑚 (𝜆𝜆𝑑𝑑𝑖𝑖𝑞𝑞 − 𝜆𝜆𝑞𝑞𝑖𝑖𝑑𝑑)                                                                                                    (5.15) 

 

Where P is the number of poles in the machine and wrm is the rotor speed in mechanical radians 

per second. From this, the torque is given as, 

𝑃𝑃𝑒𝑒𝑚𝑚 = 3
2
𝑃𝑃
2

(𝜆𝜆𝑑𝑑𝑖𝑖𝑞𝑞 − 𝜆𝜆𝑞𝑞𝑖𝑖𝑑𝑑)                                                                                                           (5.16) 

 

Now in order to implement the winding equations derived earlier, they are to be written in a form 

that uses voltages as the input and currents as the output quantities. 

 

The inputs for the simulation are the stator abc voltages, excitation voltage and the applied 

mechanical torque to the rotor. 

 

The transformation of the abc to qd0 reference frame for the stator voltages yields, 

𝑣𝑣𝑞𝑞 = 𝑣𝑣𝑞𝑞 𝑠𝑠 cos 𝜃𝜃𝑟𝑟(𝑡𝑡) − 𝑣𝑣𝑑𝑑 𝑠𝑠 sin𝜃𝜃𝑟𝑟(𝑡𝑡) 
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𝑣𝑣𝑑𝑑 = 𝑣𝑣𝑞𝑞 𝑠𝑠 sin𝜃𝜃𝑟𝑟(𝑡𝑡) + 𝑣𝑣𝑑𝑑 𝑠𝑠 cos 𝜃𝜃𝑟𝑟(𝑡𝑡)                                                                                          (5.17)  

 

Here, the relation for 𝜃𝜃𝑟𝑟(𝑡𝑡) =  ∫ 𝑤𝑤𝑟𝑟
𝑡𝑡

0 (𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜃𝜃𝑟𝑟(0) in electrical radians. 

 

Using the relations for 𝑣𝑣𝑞𝑞 𝑠𝑠 and 𝑣𝑣𝑑𝑑 𝑠𝑠, we get, 

𝑣𝑣𝑞𝑞 = 2
3

{𝑣𝑣𝑎𝑎 cos 𝜃𝜃𝑟𝑟(𝑡𝑡) + 𝑣𝑣𝑏𝑏 cos �𝜃𝜃𝑟𝑟(𝑡𝑡) − 2𝜋𝜋
3
� + 𝑣𝑣𝑐𝑐 cos �𝜃𝜃𝑟𝑟(𝑡𝑡) − 4𝜋𝜋

3
�}                                        

𝑣𝑣𝑑𝑑 = 2
3

{𝑣𝑣𝑎𝑎 sin𝜃𝜃𝑟𝑟(𝑡𝑡) + 𝑣𝑣𝑏𝑏 sin �𝜃𝜃𝑟𝑟(𝑡𝑡) − 2𝜋𝜋
3
�+𝑣𝑣𝑐𝑐 sin �𝜃𝜃𝑟𝑟(𝑡𝑡) − 4𝜋𝜋

3
�}                          

𝑣𝑣0 = 1
3

(𝑣𝑣𝑎𝑎 + 𝑣𝑣𝑏𝑏 + 𝑣𝑣𝑐𝑐)            (5.18) 

 

The qd0 voltage equations can be expressed as integral equations of the flux linkages of the 

windings, such that they can be used to solve for the flux linkages, which are expressed as,  

 

ψ𝑞𝑞 = 𝑤𝑤𝑏𝑏 ∫{𝑣𝑣𝑞𝑞 −
𝑤𝑤𝑟𝑟
𝑤𝑤𝑏𝑏
ψ𝑑𝑑 + 𝑟𝑟𝑠𝑠

𝑚𝑚𝑙𝑙𝑠𝑠
(ψ𝑚𝑚𝑞𝑞 − ψ𝑞𝑞)} 𝑑𝑑𝑡𝑡                                                                         

ψ𝑑𝑑 = 𝑤𝑤𝑏𝑏 ∫{𝑣𝑣𝑑𝑑 + 𝑤𝑤𝑟𝑟
𝑤𝑤𝑏𝑏
ψ𝑞𝑞 + 𝑟𝑟𝑠𝑠

𝑚𝑚𝑙𝑙𝑠𝑠
(ψ𝑚𝑚𝑑𝑑 − ψ𝑑𝑑)} 𝑑𝑑𝑡𝑡  

ψ0 = 𝑤𝑤𝑏𝑏 ∫{𝑣𝑣0 −
𝑟𝑟𝑠𝑠
𝑚𝑚𝑙𝑙𝑠𝑠
ψ0} 𝑑𝑑𝑡𝑡                                                                                                       (5.19) 

 

Where ψ𝑚𝑚𝑞𝑞  and ψ𝑚𝑚𝑑𝑑  are the mutual flux linkages of the d and q axes, which when expressed in 

terms of the total flux linkages, can be given as, 

 

ψ𝑚𝑚𝑞𝑞 = 𝑚𝑚𝑀𝑀𝑀𝑀 �
ψ𝑞𝑞

𝑚𝑚𝑙𝑙𝑠𝑠
+ ψ𝑘𝑘𝑞𝑞 ′

𝑚𝑚𝑙𝑙𝑘𝑘𝑞𝑞 ′
�  

ψ𝑚𝑚𝑞𝑞 = 𝑚𝑚𝑀𝑀𝑀𝑀 �
ψ𝑑𝑑
𝑚𝑚𝑙𝑙𝑠𝑠

+ ψ𝑘𝑘𝑑𝑑 ′
𝑚𝑚𝑙𝑙𝑘𝑘𝑑𝑑 ′

+ ψ𝑓𝑓′
𝑚𝑚𝑙𝑙𝑓𝑓 ′

�                                                                                               (5.20) 

 

Where,  
1

𝑚𝑚𝑀𝑀𝑀𝑀
= 1

𝑚𝑚𝑚𝑚𝑞𝑞
+ 1

𝑚𝑚𝑙𝑙𝑘𝑘𝑞𝑞 ′
+ 1

𝑚𝑚𝑙𝑙𝑠𝑠
  

1
𝑚𝑚𝑀𝑀𝑀𝑀

= 1
𝑚𝑚𝑚𝑚𝑑𝑑

+ 1
𝑚𝑚𝑙𝑙𝑘𝑘𝑑𝑑 ′

+ 1
𝑚𝑚𝑙𝑙𝑓𝑓 ′

+ 1
𝑚𝑚𝑙𝑙𝑠𝑠

                                                                                                   (5.21) 
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The winding currents can be thus determined as, 

𝑖𝑖𝑞𝑞 = ψ𝑞𝑞−ψ𝑚𝑚𝑞𝑞

𝑚𝑚𝑙𝑙𝑠𝑠
  

𝑖𝑖𝑑𝑑 = ψ𝑑𝑑−ψ𝑚𝑚𝑑𝑑
𝑚𝑚𝑙𝑙𝑠𝑠

                                                                                                         (5.22) 

 

The torque expression of eqn can also be rewritten as, 

𝑃𝑃𝑒𝑒𝑚𝑚 = 3
2

𝑃𝑃
2𝑤𝑤𝑏𝑏

(ψ𝑑𝑑𝑖𝑖𝑞𝑞 − ψ𝑞𝑞𝑖𝑖𝑑𝑑)                                                                                                      (5.23) 

 

This value of torque is taken positive for motoring operation, while it is treated negative for the 

generating convention. 

 

For the rotor assembly, considering the motoring convention, the net acceleration torque, 

𝑇𝑇𝑒𝑒𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑒𝑒𝑐𝑐 ℎ − 𝑇𝑇𝑑𝑑𝑎𝑎𝑚𝑚𝑎𝑎 , is considered in the direction of the rotor’s rotation. Equating this net 

accelerating torque to the inertial torque, 

𝑇𝑇𝑒𝑒𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑒𝑒𝑐𝑐 ℎ − 𝑇𝑇𝑑𝑑𝑎𝑎𝑚𝑚𝑎𝑎 = 𝐽𝐽 𝑑𝑑𝑤𝑤𝑟𝑟𝑚𝑚 (𝑡𝑡)
𝑑𝑑𝑡𝑡

= 2𝐽𝐽
𝑃𝑃
𝑑𝑑𝑤𝑤𝑟𝑟(𝑡𝑡)
𝑑𝑑𝑡𝑡

                                                                        (5.24) 

 

The rotor angle, δ, is expressed as the angular difference between the rotor’s position in the rotor 

reference frame and the synchronously rotating reference frame, 

𝛿𝛿(𝑡𝑡) = 𝜃𝜃𝑟𝑟(𝑡𝑡) − 𝜃𝜃𝑒𝑒(𝑡𝑡)            (5.25) 

 

The slip speed is given by the relation, 

𝑤𝑤𝑟𝑟(𝑡𝑡) − 𝑤𝑤𝑒𝑒 = 𝑃𝑃
2𝐽𝐽 ∫ (𝑡𝑡0 𝑇𝑇𝑒𝑒𝑚𝑚 + 𝑇𝑇𝑚𝑚𝑒𝑒𝑐𝑐 ℎ − 𝑇𝑇𝑑𝑑𝑎𝑎𝑚𝑚𝑎𝑎 )𝑑𝑑𝑡𝑡        (5.26) 

 

The corresponding equations in the transient and subtransient conditions are given below. 

The Stator winding relations are, 

𝑣𝑣𝑞𝑞 = −𝑟𝑟𝑖𝑖𝑞𝑞 + 𝐸𝐸𝑞𝑞 ′′ − 𝑤𝑤𝑟𝑟𝐿𝐿𝑑𝑑 ′′ 𝑖𝑖𝑑𝑑 + 𝑑𝑑𝑞𝑞
𝑑𝑑𝑡𝑡

        (5.27) 

𝑣𝑣𝑑𝑑 = −𝑟𝑟𝑖𝑖𝑑𝑑 + 𝐸𝐸𝑑𝑑 ′′ − 𝑤𝑤𝑟𝑟𝐿𝐿𝑞𝑞 ′′ 𝑖𝑖𝑞𝑞 + 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

        (5.28) 

Where, 

𝐸𝐸𝑞𝑞 ′′ = �𝐿𝐿𝑑𝑑
′′ −𝐿𝐿𝑙𝑙𝑠𝑠

𝐿𝐿𝑑𝑑 ′ −𝐿𝐿𝑙𝑙𝑠𝑠
� 𝐸𝐸𝑞𝑞 ′ + �𝐿𝐿𝑑𝑑

′ −𝐿𝐿𝑑𝑑 ′′

𝐿𝐿𝑑𝑑 ′ −𝐿𝐿𝑙𝑙𝑠𝑠
�𝑤𝑤𝑟𝑟𝜆𝜆𝑘𝑘𝑑𝑑

′          
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𝐸𝐸𝑑𝑑 ′′ = �𝐿𝐿𝑞𝑞
′′ −𝐿𝐿𝑙𝑙𝑠𝑠

𝐿𝐿𝑞𝑞 ′ −𝐿𝐿𝑙𝑙𝑠𝑠
� 𝐸𝐸𝑑𝑑 ′ + �𝐿𝐿𝑞𝑞

′ −𝐿𝐿𝑞𝑞 ′′

𝐿𝐿𝑞𝑞 ′ −𝐿𝐿𝑙𝑙𝑠𝑠
�𝑤𝑤𝑟𝑟𝜆𝜆𝑘𝑘𝑞𝑞

′          

The rotor winding relations in terms of the torque are given as, 

𝑇𝑇𝑑𝑑0
′ 𝑑𝑑𝐸𝐸𝑞𝑞

′

𝑑𝑑𝑡𝑡
=

𝐸𝐸𝑓𝑓 − 𝑤𝑤𝑟𝑟 �
�𝐿𝐿𝑑𝑑−𝐿𝐿𝑑𝑑 ′ ��𝐿𝐿𝑑𝑑 ′′ −𝐿𝐿𝑙𝑙𝑠𝑠�

�𝐿𝐿𝑑𝑑 ′ −𝐿𝐿𝑙𝑙𝑠𝑠�
� 𝑖𝑖𝑑𝑑 − �1 + �𝐿𝐿𝑑𝑑 ′ −𝐿𝐿𝑑𝑑 ′′ ��𝐿𝐿𝑑𝑑−𝐿𝐿𝑑𝑑 ′ �

�𝐿𝐿𝑑𝑑 ′ −𝐿𝐿𝑙𝑙𝑠𝑠�
2 � 𝐸𝐸𝑞𝑞 ′ + ��𝐿𝐿𝑑𝑑

′ −𝐿𝐿𝑑𝑑 ′′ ��𝐿𝐿𝑑𝑑−𝐿𝐿𝑑𝑑 ′ �

�𝐿𝐿𝑑𝑑 ′ −𝐿𝐿𝑙𝑙𝑠𝑠�
2 �𝑤𝑤𝑟𝑟𝜆𝜆𝑘𝑘𝑑𝑑

′    (5.29) 

𝑇𝑇𝑞𝑞0
′ 𝑑𝑑𝐸𝐸𝑑𝑑 ′

𝑑𝑑𝑡𝑡
=

−𝐸𝐸𝐼𝐼 + 𝑤𝑤𝑟𝑟 �
�𝐿𝐿𝑞𝑞−𝐿𝐿𝑞𝑞 ′ ��𝐿𝐿𝑞𝑞 ′′ −𝐿𝐿𝑙𝑙𝑠𝑠�

�𝐿𝐿𝑞𝑞 ′ −𝐿𝐿𝑙𝑙𝑠𝑠�
� 𝑖𝑖𝑞𝑞 − �1 + �𝐿𝐿𝑞𝑞 ′ −𝐿𝐿𝑞𝑞 ′′ ��𝐿𝐿𝑞𝑞−𝐿𝐿𝑞𝑞 ′ �

�𝐿𝐿𝑞𝑞 ′ −𝐿𝐿𝑙𝑙𝑠𝑠�
2 � 𝐸𝐸𝑑𝑑 ′ + ��𝐿𝐿𝑞𝑞

′ −𝐿𝐿𝑞𝑞 ′′ ��𝐿𝐿𝑞𝑞−𝐿𝐿𝑑𝑑 ′ �

�𝐿𝐿𝑞𝑞 ′ −𝐿𝐿𝑙𝑙𝑠𝑠�
2 �𝑤𝑤𝑟𝑟𝜆𝜆𝑘𝑘𝑞𝑞

′   (5.30)   

𝑇𝑇𝑑𝑑0
′′ 𝑑𝑑𝑘𝑘𝑑𝑑 ′

𝑑𝑑𝑡𝑡
= 𝐸𝐸𝑞𝑞 ′

𝑑𝑑𝑡𝑡
− 𝜆𝜆𝑘𝑘𝑑𝑑

′ − (𝐿𝐿𝑑𝑑 ′ − 𝐿𝐿𝑙𝑙𝑠𝑠)𝑖𝑖𝑑𝑑         (5.31) 

𝑇𝑇𝑞𝑞0
′′ 𝑑𝑑𝑘𝑘𝑞𝑞

′

𝑑𝑑𝑡𝑡
= 𝐸𝐸𝑑𝑑 ′

𝑑𝑑𝑡𝑡
− 𝜆𝜆𝑘𝑘𝑞𝑞

′ − (𝐿𝐿𝑞𝑞 ′ − 𝐿𝐿𝑙𝑙𝑠𝑠)𝑖𝑖𝑞𝑞         (5.32) 

The electromagnetic torque is given by, 

𝑇𝑇𝑒𝑒𝑚𝑚 = − 3
2
𝑃𝑃
2
��𝐸𝐸𝑞𝑞

′′ 𝑖𝑖𝑞𝑞+𝐸𝐸𝑑𝑑 ′′ 𝑖𝑖𝑑𝑑
𝑤𝑤𝑟𝑟

� + �𝐿𝐿𝑞𝑞 ′′ − 𝐿𝐿𝑞𝑞 ′′ �𝑖𝑖𝑑𝑑 𝑖𝑖𝑞𝑞� 𝑁𝑁𝑚𝑚         (5.33) 

Simplifying, 

𝑇𝑇𝑒𝑒𝑚𝑚 = −��𝐸𝐸𝑞𝑞
′′ 𝑖𝑖𝑞𝑞+𝐸𝐸𝑑𝑑 ′′ 𝑖𝑖𝑑𝑑
𝑤𝑤𝑟𝑟/𝑤𝑤𝑏𝑏

� + 𝑤𝑤𝑏𝑏�𝐿𝐿𝑞𝑞 ′′ − 𝐿𝐿𝑞𝑞 ′′ �𝑖𝑖𝑑𝑑𝑖𝑖𝑞𝑞�𝑁𝑁𝑚𝑚         (5.34) 

 

5.1.2 Lumped Mass model 

The shaft of a turbine generator is a complex mechanical assembly of several shaft sections with 

a large number of torsional modes of vibration. Although the complex shaft assembly can be 

represented by a continuum model in which the shaft might be subdivided into minute cylindrical 

sections, it is understood from previous experiences that when the torsional modes are below the 

synchronous frequency, a simpler lumped mass model representation is sufficient. The generally 

used model represents the individual sections connected using weightless springs.  
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Fig 5.2 Lumped mass model 

 

The various turbine sections can be mathematically represented by an equivalent mass spring 

system with their inertia, spring constant and damping. The mechanical system of the generator 

and exciter can be represented in a similar fashion. Inertia is expressed in terms of inertia 

constant H based on rated KVA. The simple second order torque equation in this system of units 

is: 

 
2
𝑤𝑤𝑏𝑏
𝐻𝐻�̈�𝛿 +  𝑀𝑀�̇�𝛿 +  𝐾𝐾𝛿𝛿 = 𝑇𝑇                                                                                                           (5.35) 

 

Where δ is the vector of the angular displacements or twists of the individual disk to a common 

reference, in electrical degrees. Here δ is positive in the direction of rotation of the shaft, and for 

convenience of expressing the terms in Kδ, δ is measured with respect to the first disk in the 

order that above equation is written, such that δ1 = 0. The base angular frequency is wb. The 

externally applied torques are given by the vector T, while H is a diagonal matrix whose 

elements are the inertia constants of the disks, such that H = diag (H1, H2, … Hn).  

 

If the angle of the first disk is taken as the reference, the stiffness matrix, K, can be stated as: 

�
𝑘𝑘11 ⋯ 𝑘𝑘1𝑛𝑛
⋮ ⋱ ⋮
𝑘𝑘𝑛𝑛1 ⋯ 𝑘𝑘𝑛𝑛𝑛𝑛

�                                                                                                                      (5.36) 
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Where, in generic terms, kij is the torsional stiffness or spring constant of the portion of the shaft 

connecting masses i and j. It is based on the modulus of rigidity of the material, the section 

modulus, and the length of that portion of the shaft. 

 

To represent the torsional damping between the masses, we use a damping coefficient D, given 

by the matrix: 

�
𝑑𝑑12 +  𝑑𝑑10 ⋯

⋮ ⋱ ⋮
⋯ 𝑑𝑑𝑛𝑛𝑛𝑛

�                                                                                                            (5.37) 

 

Where di0 is the viscous damping of the ith disk to the synchronously rotating reference frame, 

and dij is the viscous damping between the ith and the jth disks.  

 

When considered without the effect of damping, the shaft assembly relation reduces to, 
2
𝑤𝑤𝑏𝑏
𝐻𝐻�̈�𝛿 +  𝐾𝐾𝛿𝛿 = 𝑇𝑇                                                                                                              (5.38) 

Or  

�̈�𝛿 + 𝑤𝑤𝑏𝑏
2
𝐻𝐻−1𝐾𝐾𝛿𝛿 = 𝑤𝑤𝑏𝑏

2
𝐻𝐻−1𝑇𝑇                                                                                                      (5.39) 

 

The matrix based term, 𝑤𝑤𝑏𝑏
2
𝐻𝐻−1, is defined as the torsional system matrix, which is a non-

symmetrical tri-diagonal matrix. Assuming Harmonic motion and ignoring the excitation term, 

the natural (unforced) system becomes, 

 

�𝑤𝑤𝑏𝑏
2
𝐻𝐻−1𝐾𝐾 −  𝜆𝜆𝐼𝐼� 𝛿𝛿 = 0                                                                                                            (5.40) 

  

The characteristic equation is thus the determinant of the matrix equated to zero. The roots of the 

characteristic equation are known as the eigenvalues, which are the square of the natural 

frequencies of the system, wmi. 
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It is to be noted that since the entire shaft assembly rotates as a solid body, it can be called a 

semidefinite system, which are characterized by one or more of the shaft’s natural frequencies 

being equal to zero. For the above case, the mode with the zero natural frequency can be called 

the zero mode of the system. Thus, when n disks are connected by (n-1) flexible shaft sections, 

there will be (n-1) other modes of torsional modes of oscillations besides the zero mode. 

 

By substituting 𝜆𝜆𝑖𝑖  into the natural system equation, we can solve to get the right eigenvector or 

mode shape vector, 𝛿𝛿𝑚𝑚𝑖𝑖    

 

�𝑤𝑤𝑏𝑏
2
𝐻𝐻−1𝐾𝐾 −  𝜆𝜆𝑖𝑖𝐼𝐼� 𝛿𝛿𝑚𝑚𝑖𝑖 = 0  

2𝜆𝜆𝑖𝑖
𝑤𝑤𝑏𝑏
𝐻𝐻𝛿𝛿𝑚𝑚𝑖𝑖 = 𝐾𝐾𝛿𝛿𝑚𝑚𝑖𝑖                                                                                                              (5.41) 

 

Premultiplying by the transpose of the mode-shape vector, 𝛿𝛿𝑚𝑚𝑚𝑚 , we have, 

𝛿𝛿𝑚𝑚𝑚𝑚
𝑡𝑡 2𝜆𝜆𝑖𝑖
𝑤𝑤𝑏𝑏
𝐻𝐻𝛿𝛿𝑚𝑚𝑖𝑖 = 𝛿𝛿𝑚𝑚𝑚𝑚

𝑡𝑡𝐾𝐾𝛿𝛿𝑚𝑚𝑖𝑖                                                                                                     (5.42) 

 

Similar to the above, but interchanging the ith and jth modes, we get, 

𝛿𝛿𝑚𝑚𝑖𝑖
𝑡𝑡 2𝜆𝜆𝑖𝑖
𝑤𝑤𝑏𝑏
𝐻𝐻𝛿𝛿𝑚𝑚𝑚𝑚 = 𝛿𝛿𝑚𝑚𝑖𝑖

𝑡𝑡𝐾𝐾𝛿𝛿𝑚𝑚𝑚𝑚                                                                                                     (5.43) 

 

As both the H and K matrices are known to be symmetric, 

𝛿𝛿𝑚𝑚𝑖𝑖
𝑡𝑡𝐻𝐻𝛿𝛿𝑚𝑚𝑚𝑚 = 𝛿𝛿𝑚𝑚𝑚𝑚

𝑡𝑡𝐻𝐻𝛿𝛿𝑚𝑚𝑖𝑖  𝑎𝑎𝑛𝑛𝑑𝑑 𝛿𝛿𝑚𝑚𝑖𝑖
𝑡𝑡𝐾𝐾𝛿𝛿𝑚𝑚𝑚𝑚 = 𝛿𝛿𝑚𝑚𝑚𝑚

𝑡𝑡𝐾𝐾𝛿𝛿𝑚𝑚𝑖𝑖       (5.44) 

 

Subtracting Eq.5.34 from Eq.5.35 and using relations from Eq.5.36, we get, 
2
𝑤𝑤𝑏𝑏

(𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑚𝑚 )𝛿𝛿𝑚𝑚𝑚𝑚
𝑡𝑡𝐻𝐻𝛿𝛿𝑚𝑚𝑖𝑖 = 0                                                                                                    (5.45) 

 

As the eigenvectors are orthonormal, for 𝜆𝜆𝑖𝑖  not equal to 𝜆𝜆𝑚𝑚 , 

𝛿𝛿𝑚𝑚𝑖𝑖
𝑡𝑡𝐻𝐻𝛿𝛿𝑚𝑚𝑚𝑚 = 0 

And similarly, 

𝛿𝛿𝑚𝑚𝑖𝑖
𝑡𝑡𝐾𝐾𝛿𝛿𝑚𝑚𝑚𝑚 = 0 
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When i=j, 

𝛿𝛿𝑚𝑚𝑖𝑖
𝑡𝑡𝐻𝐻𝛿𝛿𝑚𝑚𝑚𝑚 = 𝐻𝐻𝑚𝑚𝑖𝑖  

𝛿𝛿𝑚𝑚𝑖𝑖
𝑡𝑡𝐾𝐾𝛿𝛿𝑚𝑚𝑚𝑚 = 𝐾𝐾𝑚𝑚𝑖𝑖  

 

Where 𝐻𝐻𝑚𝑚𝑖𝑖  and 𝐾𝐾𝑚𝑚𝑖𝑖 are the generalized inertia and stiffness constants, respectively. 

 

Let Q be a matrix whose columns denote the right eigenvectors of the matrix H-1K, and it can be 

multiplied by an arbitrary constant, like, 

S=QR 

 

Where R is a scaling matrix that is diagonal and of the same order as Q. S or Q are often referred 

to as the modal matrix, because the n columns represent the modes of vibration of the n-disk 

system. Therefore, that corresponding to the frequency of zero is called mode 0, while that for 

the next higher frequency is called mode 1. 

 

The transformation from actual to modal angles can be done by substituting 𝛿𝛿 = 𝑇𝑇𝛿𝛿𝑚𝑚 . So after 

premultiplying the equation 10.124 by transpose of S matrix and using the above substitution, we 

get, 

 
2
𝑤𝑤𝑏𝑏
𝑇𝑇𝑇𝑇𝐻𝐻𝑇𝑇�̈�𝛿𝑚𝑚 + 𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇�̇�𝛿𝑚𝑚 + 𝑇𝑇𝑇𝑇𝐾𝐾𝑇𝑇𝛿𝛿𝑚𝑚 = 𝑇𝑇𝑇𝑇𝑇𝑇                                                                            (5.46) 

 

In the above relation, we can rewrite the terms to make it more compact. So, 𝑇𝑇𝑇𝑇𝐻𝐻𝑇𝑇 = 𝐻𝐻𝑚𝑚 , 

𝑇𝑇𝑇𝑇𝑀𝑀𝑇𝑇 = 𝑀𝑀𝑚𝑚 , 𝑇𝑇𝑇𝑇𝐾𝐾𝑇𝑇 = 𝐾𝐾𝑚𝑚 , and 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑚𝑚 . The subscript m is used to denote the modal 

quantities. So it can now be given as, 

 

�̈�𝛿𝑚𝑚 + 𝑤𝑤𝑏𝑏
2
𝐻𝐻𝑚𝑚−1𝑀𝑀𝑚𝑚�̇�𝛿𝑚𝑚 + 𝑤𝑤𝑏𝑏

2
𝐻𝐻𝑚𝑚−1𝐾𝐾𝑚𝑚𝛿𝛿𝑚𝑚 = 𝑤𝑤𝑏𝑏

2
𝐻𝐻𝑚𝑚−1𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚        (5.47) 

 

Since the above are diagonal matrices, the equations of the modes can be decoupled from one 

another and have a form similar to that derived earlier. Comparing the form of the modal 

equations with the normal second order equation, we can identify that, 
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2𝜁𝜁𝑖𝑖𝑤𝑤𝑚𝑚𝑖𝑖 = 𝑤𝑤𝑏𝑏
2
𝑀𝑀𝑚𝑚𝑖𝑖
𝐻𝐻𝑚𝑚𝑖𝑖

            (5.48) 

Where 𝜁𝜁𝑖𝑖 , the damping factor, is a dimensionless quanity. It is usually defined as the actual 

damping to the critical damping. So when 𝜁𝜁𝑖𝑖<<1, the response will be under-damped.  

 

5.2 Network modeling 

 

To model the transmission line in the system, Park’s transformation is employed for both the 

series RL and shunt capacitance circuits.  

 

5.2.1 Transmission Line 

For the transmission line which is considered made up of RL components, let us denote the line 

resistances of the 3 phases to be ra, rb, rc, while the line inductances are taken as Laa, Lbb, Lcc. The 

mutual inductances are denoted as Lab, Lbc and Lca. Similarly, the ground resistance is taken as rg, 

while the inductance is Lgg. The line to ground voltages of sending end are denoted by vasgs, vbsgs 

and vcsgs, while that of the receiving end are vargr, vbrgr and vcrgr. 

 

The sending end voltage with respect to local ground is given as, 

𝑣𝑣𝑎𝑎𝑠𝑠𝐼𝐼𝑠𝑠 =  𝑖𝑖𝑎𝑎𝑟𝑟𝑎𝑎 +  𝐿𝐿𝑎𝑎𝑎𝑎
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑡𝑡

+ 𝐿𝐿𝑎𝑎𝑏𝑏
𝑑𝑑𝑖𝑖𝑏𝑏
𝑑𝑑𝑡𝑡

+ 𝐿𝐿𝑎𝑎𝑐𝑐
𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑡𝑡

+ 𝐿𝐿𝑎𝑎𝐼𝐼
𝑑𝑑𝑖𝑖𝐼𝐼
𝑑𝑑𝑡𝑡

+ 𝑣𝑣𝑎𝑎𝑟𝑟𝐼𝐼𝑟𝑟 + 𝑣𝑣𝐼𝐼𝑟𝑟𝐼𝐼𝑠𝑠      (5.49) 

 

Using the relation 𝑖𝑖𝐼𝐼 =  −(𝑖𝑖𝑎𝑎 +  𝑖𝑖𝑏𝑏 +  𝑖𝑖𝑐𝑐), the voltage drops across the three phase lines can be 

expressed in matrix form as, 

 

[vS] – [vR] = [R][i] + 𝑑𝑑
𝑑𝑑𝑡𝑡

[L][i]        (5.50) 

 

Where, 

[vS] = �
𝑣𝑣𝑎𝑎𝑠𝑠𝐼𝐼𝑠𝑠
𝑣𝑣𝑏𝑏𝑠𝑠𝐼𝐼𝑠𝑠
𝑣𝑣𝑐𝑐𝑠𝑠𝐼𝐼𝑠𝑠

�;  
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[vR] = �
𝑣𝑣𝑎𝑎𝑟𝑟𝐼𝐼𝑟𝑟
𝑣𝑣𝑏𝑏𝑟𝑟𝐼𝐼𝑟𝑟
𝑣𝑣𝑐𝑐𝑟𝑟𝐼𝐼𝑟𝑟

�; 

[R] = �
𝑟𝑟𝑎𝑎 + 𝑟𝑟𝐼𝐼  𝑟𝑟𝐼𝐼 𝑟𝑟𝐼𝐼
𝑟𝑟𝐼𝐼 𝑟𝑟𝑏𝑏 +  𝑟𝑟𝐼𝐼 𝑟𝑟𝐼𝐼
𝑟𝑟𝐼𝐼 𝑟𝑟𝐼𝐼 𝑟𝑟𝑐𝑐 +  𝑟𝑟𝐼𝐼

� and 

[L] = = �
𝐿𝐿𝑎𝑎𝑎𝑎 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  2𝐿𝐿𝑎𝑎𝐼𝐼  𝐿𝐿𝑎𝑎𝑏𝑏 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  𝐿𝐿𝑏𝑏𝐼𝐼 −  𝐿𝐿𝑎𝑎𝐼𝐼 𝐿𝐿𝑎𝑎𝑐𝑐 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  𝐿𝐿𝑐𝑐𝐼𝐼 −  𝐿𝐿𝑎𝑎𝐼𝐼

𝐿𝐿𝑎𝑎𝑏𝑏 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  𝐿𝐿𝑎𝑎𝐼𝐼 −  𝐿𝐿𝑏𝑏𝐼𝐼 𝐿𝐿𝑏𝑏𝑏𝑏 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  2𝐿𝐿𝑏𝑏𝐼𝐼 𝐿𝐿𝑏𝑏𝑐𝑐 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  𝐿𝐿𝑐𝑐𝑏𝑏 −  𝐿𝐿𝑏𝑏𝐼𝐼
𝐿𝐿𝑐𝑐𝑎𝑎 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  𝐿𝐿𝑎𝑎𝐼𝐼 −  𝐿𝐿𝑐𝑐𝐼𝐼 𝐿𝐿𝑏𝑏𝑐𝑐 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  𝐿𝐿𝑏𝑏𝐼𝐼 −  𝐿𝐿𝑐𝑐𝐼𝐼 𝐿𝐿𝑐𝑐𝑐𝑐 + 𝐿𝐿𝐼𝐼𝐼𝐼 −  2𝐿𝐿𝑐𝑐𝐼𝐼

� 

 

The voltage drops across the ground path is geiven by, 

𝑣𝑣𝐼𝐼𝑟𝑟𝐼𝐼𝑠𝑠 =  −𝑣𝑣𝐼𝐼𝑟𝑟𝐼𝐼𝑟𝑟 =  −𝑖𝑖𝐼𝐼𝑟𝑟𝐼𝐼 −  𝐿𝐿𝐼𝐼𝐼𝐼
𝑑𝑑𝑖𝑖𝐼𝐼
𝑑𝑑𝑡𝑡

− 𝐿𝐿𝑎𝑎𝑏𝑏
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑡𝑡

− 𝐿𝐿𝑏𝑏𝐼𝐼
𝑑𝑑𝑖𝑖𝑏𝑏
𝑑𝑑𝑡𝑡

− 𝐿𝐿𝑐𝑐𝐼𝐼
𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑡𝑡

 

          =  𝑟𝑟𝐼𝐼(𝑖𝑖𝑎𝑎 + 𝑖𝑖𝑏𝑏 + 𝑖𝑖𝑐𝑐) + �𝐿𝐿𝐼𝐼𝐼𝐼 − 𝐿𝐿𝑎𝑎𝐼𝐼�
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑡𝑡

+ �𝐿𝐿𝐼𝐼𝐼𝐼 − 𝐿𝐿𝑏𝑏𝐼𝐼�
𝑑𝑑𝑖𝑖𝑏𝑏
𝑑𝑑𝑡𝑡

+ (𝐿𝐿𝐼𝐼𝐼𝐼 − 𝐿𝐿𝑐𝑐𝐼𝐼) 𝑑𝑑𝑖𝑖𝑐𝑐
𝑑𝑑𝑡𝑡

 

                                                                                                               (5.51) 

When we use a uniformly transposed line, 𝑟𝑟𝑎𝑎 =  𝑟𝑟𝑏𝑏 =  𝑟𝑟𝑐𝑐 , 𝐿𝐿𝑎𝑎𝑏𝑏 =  𝐿𝐿𝑏𝑏𝑐𝑐 =  𝐿𝐿𝑐𝑐𝑎𝑎  and 𝐿𝐿𝑎𝑎𝐼𝐼 = 𝐿𝐿𝑏𝑏𝐼𝐼 =

𝐿𝐿𝑐𝑐𝐼𝐼 . Assuming 𝐿𝐿𝑠𝑠 = 𝐿𝐿𝑎𝑎𝑎𝑎 + 𝐿𝐿𝐼𝐼𝐼𝐼 − 2𝐿𝐿𝑎𝑎𝐼𝐼 , 𝐿𝐿𝑚𝑚 = 𝐿𝐿𝑎𝑎𝑏𝑏 + 𝐿𝐿𝐼𝐼𝐼𝐼 − 2𝐿𝐿𝑎𝑎𝐼𝐼 = 𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑎𝑎𝑎𝑎 + 𝐿𝐿𝑎𝑎𝑏𝑏 , 𝑟𝑟𝑠𝑠 = 𝑟𝑟𝑎𝑎 +

𝑟𝑟𝐼𝐼  and 𝑟𝑟𝑚𝑚 = 𝑟𝑟𝐼𝐼 , the resistance and inductance matrixes get simplified to, 

 

[𝑅𝑅] =  �
𝑟𝑟𝑠𝑠 𝑟𝑟𝑚𝑚 𝑟𝑟𝑚𝑚
𝑟𝑟𝑚𝑚 𝑟𝑟𝑠𝑠 𝑟𝑟𝑚𝑚
𝑟𝑟𝑚𝑚 𝑟𝑟𝑚𝑚 𝑟𝑟𝑠𝑠

�  𝑎𝑎𝑛𝑛𝑑𝑑 [𝐿𝐿] =  �
𝐿𝐿𝑠𝑠 𝐿𝐿𝑚𝑚 𝐿𝐿𝑚𝑚
𝐿𝐿𝑚𝑚 𝐿𝐿𝑠𝑠 𝐿𝐿𝑚𝑚
𝐿𝐿𝑚𝑚 𝐿𝐿𝑚𝑚 𝐿𝐿𝑠𝑠

� 

 

The qd0 equations for the uniformly transposed line can be arrived separately by taking into 

account the resistive and inductive drops of the phases. Let us first consider the a-phase resistive 

drop, 

𝑟𝑟𝑠𝑠𝑖𝑖𝑎𝑎 + 𝑟𝑟𝑚𝑚  (𝑖𝑖𝑏𝑏 + 𝑖𝑖𝑐𝑐)                                                                                                                (5.52) 

 

Substituting 𝑖𝑖0 =  (𝑖𝑖𝑎𝑎 +  𝑖𝑖𝑏𝑏 + 𝑖𝑖𝑐𝑐)/3 to get in terms of only a-phase, 

 

(𝑟𝑟𝑠𝑠 −  𝑟𝑟𝑚𝑚)𝑖𝑖𝑎𝑎 +  3𝑟𝑟𝑚𝑚𝑖𝑖0                                                                                                             (5.53) 

 

Expressing ia in terms of the qd0 components, the resistive drop becomes, 
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(𝑟𝑟𝑠𝑠 −  𝑟𝑟𝑚𝑚)(𝑖𝑖𝑞𝑞 cos 𝜃𝜃𝑞𝑞 + 𝑖𝑖𝑑𝑑 sin𝜃𝜃𝑑𝑑 +  𝑖𝑖0) +  3𝑟𝑟𝑚𝑚𝑖𝑖0                                                                   (5.54) 

 

The inductive drop of the a-phase is given as, 

𝐿𝐿𝑠𝑠
𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑡𝑡

+ 𝐿𝐿𝑚𝑚
𝑑𝑑(𝑖𝑖𝑏𝑏+ 𝑖𝑖𝑐𝑐)

𝑑𝑑𝑡𝑡
                                                                                                                (5.55) 

Again getting in terms of only a-phase current, 

(𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚 ) 𝑑𝑑𝑖𝑖𝑎𝑎
𝑑𝑑𝑡𝑡

+  3𝐿𝐿𝑚𝑚
𝑑𝑑𝑖𝑖0
𝑑𝑑𝑡𝑡

                                                                                                        (5.56) 

Writing in terms of the qd0 currents, 

(𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚 ) 𝑑𝑑(𝑖𝑖𝑞𝑞 cos 𝜃𝜃𝑞𝑞+𝑖𝑖𝑑𝑑 sin 𝜃𝜃𝑑𝑑+ 𝑖𝑖0) 
𝑑𝑑𝑡𝑡

+  3𝐿𝐿𝑚𝑚
𝑑𝑑𝑖𝑖0
𝑑𝑑𝑡𝑡

                                                                          (5.57) 

Now applying the qd0 transformation to the voltage across the sending and receiving ends of the 

a-phase, and further equating the coefficients of the cos 𝜃𝜃𝑞𝑞 , sin𝜃𝜃𝑞𝑞  , and constant terms, we 

obtain, 

 
𝑑𝑑𝑣𝑣𝑞𝑞
𝑑𝑑𝑡𝑡

= (𝑟𝑟𝑠𝑠 − 𝑟𝑟𝑚𝑚)𝑖𝑖𝑞𝑞 + (𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚 ) 𝑑𝑑𝑖𝑖𝑞𝑞
𝑑𝑑𝑡𝑡

+ (𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚)𝑖𝑖𝑑𝑑
𝑑𝑑𝜃𝜃𝑞𝑞
𝑑𝑑𝑡𝑡

  

𝑑𝑑𝑣𝑣𝑑𝑑
𝑑𝑑𝑡𝑡

= (𝑟𝑟𝑠𝑠 − 𝑟𝑟𝑚𝑚)𝑖𝑖𝑑𝑑 + (𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚 ) 𝑑𝑑𝑖𝑖𝑑𝑑
𝑑𝑑𝑡𝑡
− (𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚 )𝑖𝑖𝑞𝑞

𝑑𝑑𝜃𝜃𝑞𝑞
𝑑𝑑𝑡𝑡

  

𝑑𝑑𝑣𝑣0
𝑑𝑑𝑡𝑡

= (𝑟𝑟𝑠𝑠 + 2𝑟𝑟𝑚𝑚)𝑖𝑖0 + (𝐿𝐿𝑠𝑠 + 2𝐿𝐿𝑚𝑚) 𝑑𝑑𝑖𝑖0
𝑑𝑑𝑡𝑡

                                                                                     (5.58) 

 

The corresponding voltage drop equation of the same line in the symmetrical components is 

given by, 

∆ �
𝑣𝑣0
𝑣𝑣1
𝑣𝑣2

� = �
𝑧𝑧𝑠𝑠 + 2𝑧𝑧𝑚𝑚

𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑚𝑚
𝑧𝑧𝑠𝑠 − 𝑧𝑧𝑚𝑚

� ∆ �
𝑖𝑖0
𝑖𝑖1
𝑖𝑖2
�                                                                  (5.59) 

 

The qd0 equations of the voltage drops across the line given in the original phase parameters of 

the line are, 

(𝑟𝑟𝑠𝑠 − 𝑟𝑟𝑚𝑚) =  𝑟𝑟𝑎𝑎  

(𝑟𝑟𝑠𝑠 + 2𝑟𝑟𝑚𝑚) =  �𝑟𝑟𝑎𝑎 + 3𝑟𝑟𝐼𝐼� 

(𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚 ) =  (𝐿𝐿𝑎𝑎𝑎𝑎 − 𝐿𝐿𝑎𝑎𝑏𝑏 ) 

(𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑚𝑚 ) =  (𝐿𝐿𝑎𝑎𝑎𝑎 + 2𝐿𝐿𝑎𝑎𝑏𝑏 ) +  3�𝐿𝐿𝐼𝐼𝐼𝐼 − 2𝐿𝐿𝑎𝑎𝐼𝐼 �                                                                    (5.60) 

 



45 
 

If we consider the mutual inductances between the phases and that between the phases and 

ground to be zero,  

𝐿𝐿𝑎𝑎𝑏𝑏 = 𝐿𝐿𝑏𝑏𝑐𝑐 = 𝐿𝐿𝑎𝑎𝑐𝑐 = 0 𝑎𝑎𝑛𝑛𝑑𝑑 𝐿𝐿𝑎𝑎𝐼𝐼 = 𝐿𝐿𝑏𝑏𝐼𝐼 = 𝐿𝐿𝑐𝑐𝐼𝐼 = 0 

 

Then, 𝐿𝐿𝑠𝑠 = 𝐿𝐿𝑎𝑎𝑎𝑎 + 𝐿𝐿𝐼𝐼𝐼𝐼  and 𝐿𝐿𝑚𝑚 = 𝐿𝐿𝐼𝐼𝐼𝐼  

 

Assuming voltage input, the qd0 currents can be obtained by solving the below integral 

equations, 

𝑖𝑖𝑞𝑞 = 1
𝐿𝐿𝑎𝑎𝑎𝑎

∫(𝑣𝑣𝑞𝑞𝑠𝑠 − 𝑣𝑣𝑞𝑞𝑟𝑟 − 𝑤𝑤𝐿𝐿𝑎𝑎𝑎𝑎 𝑖𝑖𝑑𝑑 − 𝑖𝑖𝑞𝑞𝑟𝑟𝑎𝑎)𝑑𝑑𝑡𝑡  

𝑖𝑖𝑑𝑑 = 1
𝐿𝐿𝑎𝑎𝑎𝑎

∫(𝑣𝑣𝑑𝑑𝑠𝑠 − 𝑣𝑣𝑑𝑑𝑟𝑟 + 𝑤𝑤𝐿𝐿𝑎𝑎𝑎𝑎 𝑖𝑖𝑞𝑞 − 𝑖𝑖𝑑𝑑𝑟𝑟𝑎𝑎)𝑑𝑑𝑡𝑡  

𝑖𝑖0 = 1
𝐿𝐿𝑎𝑎𝑎𝑎 +3𝐿𝐿𝐼𝐼𝐼𝐼

∫(𝑣𝑣0𝑠𝑠 − 𝑣𝑣0𝑟𝑟 − 𝑖𝑖0𝑟𝑟𝑎𝑎 + 3𝑟𝑟𝐼𝐼)𝑑𝑑𝑡𝑡                                                                            (5.61) 

 

5.2.2 Shunt Capacitances 

The shunt capacitors have been included in the model in order to develop the terminal voltages 

of the generator. Let the phase to neutral capacitances and the mutual capacitances between the 

phases be such that, 

𝐶𝐶𝑎𝑎𝑏𝑏 = 𝐶𝐶𝑏𝑏𝑐𝑐 = 𝐶𝐶𝑐𝑐𝑎𝑎 = 𝐶𝐶𝑚𝑚 ;𝐶𝐶𝑎𝑎𝑛𝑛 = 𝐶𝐶𝑏𝑏𝑛𝑛 = 𝐶𝐶𝑐𝑐𝑛𝑛  𝑎𝑎𝑛𝑛𝑑𝑑 𝐶𝐶𝑠𝑠 = 𝐶𝐶𝑎𝑎𝑛𝑛 + 𝐶𝐶𝑎𝑎𝑏𝑏  

 

Thus, the equation of the a-phase current can be given as, 

𝑖𝑖𝑎𝑎 = 𝐶𝐶𝑎𝑎𝑛𝑛
𝑑𝑑𝑣𝑣𝑎𝑎𝑛𝑛
𝑑𝑑𝑡𝑡

+ 𝐶𝐶𝑎𝑎𝑏𝑏
𝑑𝑑(𝑣𝑣𝑎𝑎𝑛𝑛 −𝑣𝑣𝑏𝑏𝑛𝑛 )

𝑑𝑑𝑡𝑡
+ 𝐶𝐶𝑎𝑎𝑐𝑐

𝑑𝑑(𝑣𝑣𝑎𝑎𝑛𝑛 −𝑣𝑣𝑐𝑐𝑛𝑛 )
𝑑𝑑𝑡𝑡

        (5.62) 

 

Simplifying, 

𝑖𝑖𝑎𝑎 = (𝐶𝐶𝑎𝑎𝑛𝑛 +  𝐶𝐶𝑎𝑎𝑏𝑏 + 𝐶𝐶𝑎𝑎𝑐𝑐 ) 𝑑𝑑𝑣𝑣𝑎𝑎𝑛𝑛
𝑑𝑑𝑡𝑡

− 𝐶𝐶𝑚𝑚
𝑑𝑑𝑣𝑣𝑏𝑏𝑛𝑛
𝑑𝑑𝑡𝑡

+ 𝐶𝐶𝑚𝑚
𝑑𝑑𝑣𝑣𝑐𝑐𝑛𝑛
𝑑𝑑𝑡𝑡

                                                               (5.63) 

 

By substituting to get in terms of only a-phase voltage, 

𝑖𝑖𝑎𝑎 = (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚 ) 𝑑𝑑𝑣𝑣𝑎𝑎𝑛𝑛
𝑑𝑑𝑡𝑡

−  3𝐶𝐶𝑚𝑚
𝑑𝑑𝑣𝑣0
𝑑𝑑𝑡𝑡

                                                                                              (5.64) 

 

Applying the qd0 transformation for both the current and voltage of the a-phase, we get, 
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𝑖𝑖𝑞𝑞 cos 𝜃𝜃𝑞𝑞 +  𝑖𝑖𝑑𝑑 sin𝜃𝜃𝑞𝑞 + 𝑖𝑖0 = (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚 ) 𝑑𝑑
𝑑𝑑𝑡𝑡
�𝑣𝑣𝑞𝑞 cos 𝜃𝜃𝑞𝑞 + 𝑣𝑣𝑑𝑑 sin𝜃𝜃𝑞𝑞 + 𝑣𝑣0� − 3𝐶𝐶𝑚𝑚

𝑑𝑑𝑣𝑣0
𝑑𝑑𝑡𝑡

   (5.65) 

 

Equating the coefficients of the – and constant terms, the qd0 currents are obtained as, 

𝑖𝑖𝑞𝑞 = (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚 ) 𝑑𝑑𝑣𝑣𝑞𝑞
𝑑𝑑𝑡𝑡

+  (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚 )𝑣𝑣𝑑𝑑𝑤𝑤  

𝑖𝑖𝑞𝑞 = (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚 ) 𝑑𝑑𝑣𝑣𝑞𝑞
𝑑𝑑𝑡𝑡

+  (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚 )𝑣𝑣𝑑𝑑𝑤𝑤  

𝑖𝑖0 = (𝐶𝐶𝑠𝑠 − 2𝐶𝐶𝑚𝑚) 𝑑𝑑𝑣𝑣0
𝑑𝑑𝑡𝑡

                                                                                                                (5.66) 

 

Therefore, writing in terms of the original capacitance parameters, 

(𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚) = (𝐶𝐶𝑎𝑎𝑛𝑛 + 3𝐶𝐶𝑎𝑎𝑏𝑏 )  

(𝐶𝐶𝑠𝑠 − 2𝐶𝐶𝑚𝑚) = (𝐶𝐶𝑎𝑎𝑛𝑛 )                                                                                                                (5.67) 

 

The voltage equations in the integral form are given by, 

𝑣𝑣𝑞𝑞 = 1
(𝐶𝐶𝑠𝑠+𝐶𝐶𝑚𝑚 )∫(𝑖𝑖𝑞𝑞 − (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚)𝑣𝑣𝑑𝑑

𝑑𝑑𝜃𝜃𝑞𝑞
𝑑𝑑𝑡𝑡

)𝑑𝑑𝑡𝑡  

𝑣𝑣𝑑𝑑 = 1
(𝐶𝐶𝑠𝑠+𝐶𝐶𝑚𝑚 )∫(𝑖𝑖𝑑𝑑 + (𝐶𝐶𝑠𝑠 + 𝐶𝐶𝑚𝑚 )𝑣𝑣𝑞𝑞

𝑑𝑑𝜃𝜃𝑞𝑞
𝑑𝑑𝑡𝑡

)𝑑𝑑𝑡𝑡  

𝑣𝑣0 = 1
(𝐶𝐶𝑠𝑠−2𝐶𝐶𝑚𝑚 )∫ 𝑖𝑖0𝑑𝑑𝑡𝑡                                                                                                                 (5.68) 

 

5.3 Composite model 

 

A radial network is used to connect the generator and the infinite bus. Though the entire system 

is represented in the rotor reference frame, the infinite bus voltage components have been given 

in the synchronously rotating reference frame, and therefore they are converted to the rotor 

referenced rotating frame using the following transformation, 

 

𝑣𝑣𝑞𝑞 = 𝑣𝑣𝑞𝑞𝑒𝑒 cos 𝛿𝛿 − 𝑣𝑣𝑑𝑑𝑒𝑒 sin 𝛿𝛿  

𝑣𝑣𝑑𝑑 = 𝑣𝑣𝑞𝑞𝑒𝑒 sin 𝛿𝛿 + 𝑣𝑣𝑑𝑑𝑒𝑒 cos 𝛿𝛿         (5.69)                                         
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The composite SIMULINK model based on the relations derived earlier in this chapter is shown 

in figure 5.4 

 
Fig 5.4 SIMULINK model of the test system 

The generator and related masses (rotor, turbines, exciter) are represented by a multimass model, 

which has the excitation voltage and stator voltage components as its inputs. The block has 

internal elements that convert the parameters from the stator reference frame to that of the rotor, 

and also generate the torque, current and speed deviation signals.  

The Shunt capacitances block uses q and d components of currents as its inputs, and is followed 

by the line reactance block, which uses corresponding voltage components as its inputs. The 

series capacitance block that follows this is used to model the effective series capacitive 

reactance in the system, and based on the application, the configuration may be altered, as will 

be seen in the following chapter.   
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CHAPTER 6 

CASE STUDIES AND RESULTS 

The IEEE first benchmark model parameters are loaded into the SIMULINK model developed in 

chapter 5 through a separate MATLAB program.  

As per equation 2.4, the mechanical resonant frequency is derived as a complement of the 

electrical frequency. For the system in consideration, there are 5 modes of resonance, with 

corresponding frequencies of 15.71 Hz, 20.21 Hz, 25.55 Hz, 32.28 Hz and 47.45 Hz. 

The total inductive reactance, comprising of generator, line and transformer reactance, is given to 

be 0.8675 p.u. A capacitive compensation of 0.473 p.u. is added to the system. The 

corresponding electrical resonant frequency is given from equation as: 

𝑓𝑓𝑒𝑒 = 𝑓𝑓0�
𝑋𝑋𝐶𝐶
𝑋𝑋𝐿𝐿𝑇𝑇

 

𝑓𝑓𝑒𝑒 = 60�
0.473

0.8675
 

𝑓𝑓𝑒𝑒 = 44.31 𝐻𝐻𝑧𝑧 

Thus the complement of this electrical resonant frequency is 15.69 Hz, close to 15.71 Hz mode 

that can excite SSR oscillations. 

 

6.1 Simulation of SSR 

In order to simulate the SSR phenomenon, first a fixed capacitor of value 0.473 pu is 

incorporated in series with the transmission line of the system. The results of the speed deviation 

and the LPA-LPB torque are given in figure 6.1  
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Fig 6.1 Simulation of SSR phenomenon 

6.2 System with PSS 

In order to mitigate the occurrence of SSR, a PSS is devised with the shaft speed variation as the 

input signal.  

The main components of the PSS are: 

1) Washout circuit for reset action to eliminate steady offset. Tw can range from 0.5 to 10 
seconds. 

2) Phase compensation stages 
3) Appropriate gain stage 

The system incorporating the PSS is shown in figure 6.2 
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Fig 6.2 System with PSS 

 

Fig 6.3 Results with PSS 

The results with the PSS show a marginal improvement in the response of the system, but 

oscillations still persist at various points and are not completely quenched. Thus, we move on to 

implementing a variable capacitive reactance (TCSC) based on the reactance relation given by 

equation 4.17 
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6.3 System with TCSC 

The fixed capacitor is replaced with a variable capacitive reactance based on the formula of the 

TCSC reactance derived in chapter 4. The initial firing angle is kept at a constant value of 152º, 

such that the effective reactance is capable of exciting the 15.71 Hz subsynchronous mode. To 

mitigate this, a feedback signal is given such that the net conduction angle is modulated, and 

hence the effective reactance does not lead to SSR in the system. 

The series capacitance block which is modified to incorporate the TCSC variable reactance is 

shown in figure 6.4. 

  

Fig 6.4 TCSC Reactance configuration 

Various cases are analyzed with separate feedback signals – shaft speed variation and line 

current. Corresponding parameters of the feedback loop are varied in order to achieve optimum 

results, and they are given sequentially in the following pages. 
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TCSC capacitive reactance with positive speed feedback 

 

Case Study 1: 

Gain: 0.1 

Controller parameters 

Washout - Tw1: 1 

Phase compensation stages - Tw2: 0.2, Tw3: 1 

 

 

Fig 6.5 Results with TCSC (speed feedback) case study 1 
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Case Study 2: 

Gain: 0.1 

Controller parameters 

Washout - Tw1: 1 

Phase compensation stages - Tw2: 0.6, Tw3: 1 

 

 

Fig 6.6 Results with TCSC (speed feedback) case study 2 
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Case Study 3: 

Gain: 0.1 

Controller parameters 

Washout - Tw1: 1 

Phase compensation stages - Tw2: 1, Tw3: 0.8 

 

 

Fig 6.7 Results with TCSC (speed feedback) case study 3 
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TCSC capacitive reactance with negative current feedback 

 

Case Study 1: 

Gain: 0.001 

Controller parameters 

Washout - Tw1: 1 

Phase compensation stages - Tw2: 1, Tw3: 0.4 

 

 

Fig 6.8 Results with TCSC (current feedback) case study 1 
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Case Study 2: 

Gain: 0.1 

Controller parameters 

Washout - Tw1: 1 

Phase compensation stages - Tw2: 0.6, Tw3: 1 

 

 

Fig 6.9 Results with TCSC (current feedback) case study 2 
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Case Study 3:  

Gain: 0.1 

Controller parameters 

Washout - Tw1: 1 

Phase compensation stages - Tw2: 0.2, Tw3: 1 

 

 

Fig 6.10 Results with TCSC (current feedback) case study 3 

 

From the above cases of using a TCSC as a variable reactance, it is seen that the SSR 
phenomenon is sufficiently quenched. Though the intermediate oscillations are seen to be more 
in the case of the current being used as a feedback signal, as the speed deviation might not be 
readily available for use as the supplementary signal, a trade-off has to be made for the same.  
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6.4 System with PSS and TCSC 

Finally, the effect of a TCSC in conjunction with a PSS is observed, and it is seen that the results 

are quite similar to that of using only the TCSC. From this it can be inferred that the effect of a 

TCSC in mitigating the SSR phenomenon is superior as compared to the PSS. 

 

 

Fig 6.11 Results with TCSC and PSS 
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CHAPTER 7 
CONCLUSIONS AND SCOPE FOR FURTHER WORK 

 
In this work, a SIMULINK model is developed in order to analyze and then quench 

subsynchronous resonance (SSR), a potentially fatal phenomenon prevalent in power systems 

due to series compensation. Initially a Power system stabilizer (PSS) is devised for this purpose, 

which is seen to yield limited positive results. Subsequently, a Thyristor-controlled series 

capacitor (TCSC) was developed for the same. Case studies performed with the IEEE first 

benchmark model with different supplementary control signals demonstrate substantial SSR 

mitigation, and establish the effectiveness of a TCSC in overcoming the SSR phenomenon while 

being a capable device for the enhancement of power transmission levels. 

 

With the advancements in the field of power electronics controllers, this work can be expanded 

in order to achieve more optimal results by working towards an advanced firing angle control 

model of the TCSC in the future. 
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APPENDIX A 

 

 

IEEE First Benchmark Model 

A.1 System data 

The system is based on the Navajo project, and thus the base MVA is taken as 892.4 MVA while 
the base voltage is taken as 500 kv for the system parameters. 
 
The parameters of the line (RL, XL), Transformer (XT) and additional reactance between buses 
(Xsys) is tabulated below. 

 

 

 
 

 
 
 

The subtransient generator reactance is 0.1675 pu, while the capacitive compensation is variable. 

A.2 Machine Parameters  

The synchronous machine parameters are taken on a base of 892.4 MVA and 26 kv 

 

 

 

 

 

 

 

 

 

 

Parameter Positive Sequence 

value (pu) 

Zero Sequence  

Value (pu) 

RL 0.02 0.50 
XT 0.14 0.14 
XL 0.50 1.56 
Xsys 0.06 0.06 

Reactance pu Value 
  
dx  1.790 
'dx  0.169 
''dx  0.135 

qx  1.710 
'qx  0.228 
''qx  0.200 

Time Constant Value (seconds) 
'doT  4.300 
''doT  0.032 
'qoT  0.850 
''qoT  0.050 
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A.3 Mechanical Parameters  

The shaft inertia and spring constants of the system are given as follows: 

Mass Shaft Inertia H 

(seconds) 

Spring constant  

K (pu) pu Torque/radian 

EXC  0.0342165   

 GEN-EXC  7277 2.822 
GEN  0.868495   

 LPB-GEN  13168 70.858 
LPB  0.884215   

 LPA-LPB  19618 52.038 
LPA  0.858670   

 IP-LPA  26713 34.929 
IP  0.155589   
 HP-IP  1064 19.303 

HP  0.092897   
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APPENDIX B 

 

 

Park’s transformation 

The Park’s transformation is used regularly to effect three phase to two phase transformation in 

synchronous machine studies. The transformation is of the form, 

 

[𝑖𝑖𝑑𝑑𝑞𝑞0(𝜃𝜃𝑑𝑑)] =
2
3

⎣
⎢
⎢
⎢
⎢
⎡ cos 𝜃𝜃𝑑𝑑 cos(𝜃𝜃𝑑𝑑 −

2𝜋𝜋
3

) cos( 𝜃𝜃𝑑𝑑 +
2𝜋𝜋
3

)

−sin𝜃𝜃𝑑𝑑 − sin(𝜃𝜃𝑑𝑑 −
2𝜋𝜋
3

) − sin(𝜃𝜃𝑑𝑑 −
2𝜋𝜋
3

)

1
2

1
2

1
2 ⎦

⎥
⎥
⎥
⎥
⎤

[𝑖𝑖𝑎𝑎𝑏𝑏𝑐𝑐 ] 

The inverse transformation is given by, 

[𝑖𝑖𝑎𝑎𝑏𝑏𝑐𝑐 ] =

⎣
⎢
⎢
⎢
⎡

cos𝜃𝜃𝑑𝑑 −sin𝜃𝜃𝑑𝑑 1

cos(𝜃𝜃𝑑𝑑 −
2𝜋𝜋
3

) − sin(𝜃𝜃𝑑𝑑 −
2𝜋𝜋
3

) 1

     cos( 𝜃𝜃𝑑𝑑 +
2𝜋𝜋
3

) − sin(𝜃𝜃𝑑𝑑 −
2𝜋𝜋
3

) 1⎦
⎥
⎥
⎥
⎤

[𝑖𝑖𝑑𝑑𝑞𝑞0(𝜃𝜃𝑑𝑑)] 

 

Similarly, for the q component, it can be considered as either leading or lagging the d-axis 

component, and the transformation is correspondingly given for them.  

 

 

 

 

 

 

 

 

 

 

 


