EXPERIMENTAL INVESTIGATION AND STATISTICAL ANALYSIS OF VARIOUS PARAMETERS IN SYNERGIC MIG WELDING OF 304L STAINLESS STEEL

Submitted by:

SHANTI LAL MEENA

(Roll No. : **11/PRD/2010**) Mechanical Engineering Department

In partial fulfillment of the requirement of the degree of

MASTERS OF TECHNOLOGY

in

Production Engineering

Under the guidance of:

Dr. QASIM MURTAZA

Mr. M.S. NIRANJAN

Associate Professor

Assistant Professor

Department of Mechanical Engineering

Department of Mechanical Engineering DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering) Bawana Road, New Delhi June 2012

i

CERTIFICATE

Date:-____

This is to certify that report entitled "Experimental investigation and statistical analysis of various parameters in synergic MIG welding of 304L stainless steel" by Mr. Shantilal Meena is the requirement of the partial fulfillment for the award of Degree of Master of Technology (M. Tech.) in Production Engineering at Delhi Technological University. This work was completed under our supervision and guidance. He has completed his work with utmost sincerity and diligence. The work embodied in this project has not been submitted for the award of any other degree to the best of my knowledge.

Dr. QASIM MURTAZA	Mr. M.S. NIRANJAN
(Associate Professor)	(Assistant Professor)
Department of Mechanical Engineering	Department of Mechanical Engineering
DTU Delhi	DTU Delhi

ACKNOWLDGEMENT

To achieve success in any work, guidance plays an important role. It makes us put right amount of energy in the right direction and at right time to obtain the desired result. I express my sincere gratitude to my guides, **Dr. QASIM MURTAZA**, Associate Professor and **Mr. M.S. NIRANJAN**, Assistant Professor, Mechanical Engineering Department for giving valuable guidance during the course of this work, for their ever encouraging and timely moral support. Their enormous knowledge always helped me unconditionally to solve various problems.

I am greatly thankful to **Dr. B.D. PATHAK**, Professor and Head, Mechanical Engineering Department, Delhi Technological University, for his encouragement and inspiration for execution of the this work. I express my feelings of thanks to the entire faculty and staff, Department of Mechanical Engineering, Delhi Technological University, Delhi for their help, inspiration and moral support, which went a long way in the successful completion of my report work.

SHANTI LAL MEENA

(Roll No. - 11/PRD/10)

ABSTRACT

The experimental study is carried out to analyze effect of various welding parameters such as Welding current, Welding speed, plate thickness and gas flow rate, on bead geometry features such as, bead reinforcement height, bead width and bead penetration of synergic MIG through voltage transients for 304L stainless steel. Various thicknesses (i.e. 3mm, 6mm, 8mm, 12mm, and 16mm) are taken with 75% Argon and 25% CO₂ as the shielding gas. The mechanical strength of welds is influenced by the composition of metal, weld bead geometry and shape relationship. The study of weld bead geometry and shape relationship is important as these dimensions and ratios decide the load bearing capacity of weldments.

The design of experiment was prepared on the basis of 4 factors, 5 levels using Design of expert software. Response Surface Methodology was used to develop the mathematical models co-relating the process parameters with the bead geometry features. To identify the mode of metal transfer and the moment in which the transfer occurs is based on an oscillographical analysis of voltage (voltage versus time) by using Digital Signals Oscilloscope (DSO) with Synergic MIG machine. With the use of oscilloscope, it is possible to observe the format of the voltage traces produced by welding processes. For instance, during short-circuiting transfer, when the droplet is starting its development, voltage oscillates around a mean value but tends to zero when the drop touches the pool (short circuit).

iv

Metallurgical investigations determine the variation of micro hardness across the weld metal zone, heat affected zone and the base metal. Knoop's micro hardness is carried out to determine the hardness values of the metal at various zones. Also the microstructure of the resultant welded metal was co-related with the process variables.

Keywords: Synergic MIG Welding, Bead Geometry, Digital Signals Oscilloscope, Response Surface Methodology, Weld Metallurgy, Micro Hardness,

CONTENTS

TOPIC	PAGE NO.
Certificate	ii
Acknowledgement	iii
Abstract	iv
Contents	vi
List of figures	х
List of tables	xiii
List of symbols	xiv
Chapter 1: Introduction	1-4
1.1 Introduction	1
1.2 Motivation and Objective	3
1.3 Statement of the Problem	3
1.4 Plan of Investigation	4
Chapter 2: Literature review	5-14
2.1 Introduction	5
Chapter 3: Theory and Experimentation	15-49
3.1 MIG Welding	15
3.1.1 Introduction	15
3.1.2 Synergic MIG Welding	17
3.1.3 Mechanism of metal transfer	18
3.1.4 Selection and design weld	20
3.1.5 Weld bead geometry	20
3.1.6 Stainless steel and welding	23

	3.1.7 Shielding gases	26
3.2 W	eld metallurgy	27
	3.2.1 Introduction	27
	3.2.2 Weld pool and solidification	27
	3.2.3 Zones in a weld	29
3.3 Re	esponse Surface Methodology	31
	3.3.1 Introduction	31
	3.3.2 Central Composite Design	32
3.4 E>	perimentation	33
	3.4.1 Identification of important process control variables	34
	3.4.2 Selecting the design parameters	34
	3.4.3 Developing the design of experiment	35
	3.4.4 Experimental set up	38
	3.4.5 Experimental procedure	41
3.5 OI	bservations of experiment	42
3.6 Sa	ample preparation	46
Chap	ter 4: Development of mathematical models	49-57
4.1 Cł	hecking adequacy of the model	49
	4.1.1Response: Bead Height	50
	4.1.2 Response: Bead Width	52
	4.1.3 Response: Bead Penetration	54
	4.1.4 Final proposed models	56
	4.1.5 Testing the models	56
Chap	ter 5: Results and discussion	58-79
5.1 Ef	fect of process parameters on metal transfer	58
5.2 Ef	fects of process parameters on reinforcement height	59

5.2.1 Interaction effect of parameters on H	61
5.3 Effects of process parameters on bead width	63
5.3.1 Interaction effect of parameters on W	65
5.4 Effects of process parameters on depth of penetration	67
5.4.1 Interaction effect of parameters on P	69
5.5 Metallurgical analysis	71
5.5.1 Microstructural Analysis	71
5.5.2 Micro hardness analysis	75
CHAPTER 6: Conclusions and Future scope	80-81
6.1 Conclusion	80
6.2 Future scope	81
References	82
Appendix	86

LIST OF FIGURES

Figure 3.1: Fundamental features of the MIG process	15
Figure 3.2: General arrangement of the power source	16
Figure 3.3: Pre-programmable control panel for synergic MIG power source	17
Figure 3.4 Welding current ranges for wire diameter and welding current	19
Figure 3.5: Influence of grain growth rate R and temperature gradient G,	
on the pattern of solidification	29
Figure 3.6: Regions in weldments	29
Figure 3.7 Schematic of the effect of arc voltage Vs arc current	39
Figure 3.8: Schematic of effect of arc voltage vs arc current.	
Drooping characteristic power source	40
Figure 3.9 Experimental set up for Synergic MIG Welding	41
Figure 3.10: Welded plates	42
Figure 3.11: Samples after etching	47
Figure 3.12 Bead geometry after etching	47
Figure 5.1: Reinforcement height Vs welding parameters	59
Figure 5.2: (a) Predicted Vs Actual value for H	60
Figure 5.2: (B) residual Vs Run for H	60

Figure 5.3: Surface and contour plots showing interaction effect of T, S,

G and I on H	62
Figure 5.4: Effect of weld parameters on bead width	63
Figure 5.5: (a) Predicted Vs Actual value for W	64
Figure 5.5 (b) residual Vs Run for W	64
Figure 5.6: Surface and contour plots showing interaction effect of T,	
S, G and I on W	66
Figure 5.7: Effect of weld parameters on depth of penetration	67
Figure 5.8: (a) Predicted Vs Actual value for P	68
Figure 5.9: Surface and contour plots showing interaction effect of	
T, S, G and I on W	70
Figure 5.10: Olympus GX 41 microscope	71
Figure 5.11: Micro structure (200 μ m) at high heat input	73
Figure 5.12: : Micro structure (200 µm) at low heat input	74
Figure 5.13: Omnitech MVH Auto Micro Hardness tester	75
Figure 5.14: Varies points on bead to measure the micro hardness	75
Figure 5.15: micro indentation	76
Figure 5.16: Variation of micro hardness at different regions	78
Figure 5.18: Interaction effect of A and N on P	79
Figure 5.19: Surface and contour plots showing interaction effect	
of A and N on P	80

LIST OF TABLES

Table 3.1: Bead geometry	22
Table 3.2 Properties of stainless steel (a)	25
Table 3.3: Properties of stainless steel (b)	25
Table 3.4: Properties of stainless steel (c)	25
Table 3.5 Design parameters and their limits	35
Table 3.6 Coded values for design	36
Table 3.7 Actual values	37
Table 3.8 Distribution of plate thickness	42
Table 3.9-3.38 Observation table	43
Table 3.39: Recording of responses	47
Table 4.1: ANOVA Design summary	49
Table 4.2: ANOVA for Reinforcement Height	50
Table 4.3: ANOVA for Reinforcement width	52
Table 4.4: ANOVA for Reinforcement depth of penetration	54
Table 4.5: Testing of mathematical model	56
Table 5.1: Micro hardness values at different points	76

LIST OF SYMBOLS

Symbol	Represents	units
Ρ	Bead Penetration	(mm)
W	Bead Width	(mm)
Н	Bead Height	(mm)
G	Gas flow rate	(Volts)
I	Current	(Ampere)
S	Travel Speed	(mm/min)
т	Plate thickness	(mm)

ABBREVIATIONS

CCD	Central Composite Design
RSM	Response Surface Methodology
HAZ	Heat Affected Zone