
Standard Deviation Based Impulse Noise

Filter

Major Project submitted in partial fulfillment of the

requirements for the award of degree of

Master of Technology

In

Information Systems

Submitted by:

Shreya Arora

(15/IS/2010)

Under the Guidance of:

Dr. O. P. Verma

Department of Information Technology

Delhi Technological University

Bawana Road, Delhi – 110042

(2010-2012)

i

Certificate

This is to certify that Ms. Shreya Arora (15/IS/2010) has carried out the major project titled

“Standard Deviation Based Impulse Noise Filter” as a partial requirement for the award of

Master of Technology degree in Information Systems by Delhi Technological University.

This work is an authentic piece of work carried out and completed under my supervision and

guidance during the academic session 2010-2012. The matter contained in this report has not

been submitted elsewhere for the award of any other degree.

(Project Guide)

Dr. O. P. Verma

Head of Department

Department of Information Technology

Delhi Technological University

Bawana Road, Delhi-110042

ii

Acknowledgement

I would like to express my heartfelt thanks to my guide, Prof. O.P. Verma, for his guidance,

support, and encouragement during the course of my master study at the Delhi Technological

University, Delhi. I am especially indebted to him for teaching me both research and writing

skills, which have proven to be beneficial for my current research and future career. Without

his endless efforts, knowledge, patience, and answers to my numerous questions, this

research would have never been possible. The experimental methods and results presented in

this thesis have been influenced by him in one way or the other. I would like to thank sir, for

his constructive criticism without which this project would not have been possible. It has

been a great honor and pleasure for me to be able to work under his supervision.

I humbly extend my words of gratitude to other faculty members of this department for

providing their valuable help and time whenever it was required.

Shreya Arora

Roll No. 15/IS/2010

M.Tech (Information Systems)

E-mail: shreya_arora@ymail.com

iii

Abstract

In the field of Digital Image Processing, noise removal plays a very crucial role. The output

of any image processing algorithm will depend greatly on the quality of the image sent as

input. Many images during acquisition, transmission and processing get corrupted by impulse

noise. Thus impulse noise removal becomes an important pre processing step for image

processing.

Impulse noise usually corrupts only some pixels, leaving a few pixels uncorrupted. Therefore

impulse noise removal is normally a two step process. The first step involves classifying the

image pixels into corrupted and uncorrupted pixels. The second step deals with restoration of

these corrupted pixels.

This study introduces a novel approach for impulse noise removal, typically in the range of

10% to 80% noise density. The proposed scheme is a double stage filter, which removes

impulse noise based on heuristic calculations of neighboring pixels. In the first stage,

“Detector”, the pixels are identified as noisy or noise-free using distance calculations on the

neighboring pixels. An adaptive threshold is used to classify these pixels. Once the pixels are

identified to be noisy “Filtering” is performed on the noisy pixels. During filtering the image

pixels are assigned weight values and the final restoration is done using a weighted median.

In order to evaluate the performance of this proposed filter “A Novel Approach for Salt and

Pepper Noise Removal based on Heuristic Analysis of Neighboring Pixels” (SPHN), various

test images were used. The performance of the SPHN filter is also compared with several

other popular techniques. It has been found that not only does the proposed filter work well

on a variety of images but also produces results which are significantly better than many

popular techniques.

iv

Contents

Certificate i

Acknowledgement ii

Abstract iii

List of Figures v

List of Tables vii

List of Abbreviations and Symbols viii

1 Introduction 1

1.1 Preliminaries 2

1.2 Problem Formulation and Thesis Organization 8

2 Noise 10

2.1 Types of Noise in images 10

2.2 Literature Survey 14

2.3 Performance Measures 19

3 The Proposed Algorithm for Impulse Noise Removal 21

3.1 The Proposed Technique 21

3.2 Algorithm 24

3.3 Illustration 26

3.4 Flow Chart of the proposed Algorithm 28

3.5 Summary 29

4 Simulations, Results and Comparison 30

5 Conclusions and Future Work 52

v

References 54

List of figures

Fig No. Title Page No.

1.1 Digital Image 1

1.2 Pixel values in a Binary Image 3

1.3 Indexed Image with corresponding colormap entries 4

1.4 Grayscale Image with corresponding pixel entries 4

1.5 Truecolor Image with corresponding pixel entries 5

1.6 Image Lena(Dark) and corresponding Histogram 6

1.7 Image Lena(Contrast Enhanced) and corresponding Histogram 7

2.1 Image (Cameraman) contaminated by 10% Salt and Pepper Noise 11

2.2 Gaussian distribution 12

2.3 Image (Cameraman) contaminated with Gaussian noise with zero

mean and variance 0.05

13

2.4 Image (Cameraman) contaminated with Speckle Noise 13

3.1 The direction used to calculate the distances. 22

3.2 Illustration of the proposed algorithm. 26

3.3 Flow chart of the proposed algorithm (SPHN) 28

4.1 Test images (a) Cameraman (b) Peppers (c) Pirate (d) Lena (e)

Baboon

32

4.2 Image Cameraman corrupted with 30% noise and its corresponding

denoised image

33

4.3 Image Cameraman corrupted with 40% noise and its corresponding

denoised image

34

4.4 Image Cameraman corrupted with 50% noise and its corresponding

denoised image

35

4.5 Image Peppers corrupted with 30% noise and its corresponding

denoised image

36

4.6 Image Peppers corrupted with 40% noise and its corresponding

denoised image

37

4.7 Image Peppers corrupted with 40% noise and its corresponding 38

vi

denoised image

4.8 Image Pirate corrupted with 30% noise and its corresponding

denoised image

39

4.9 Image Pirate corrupted with 40% noise and its corresponding

denoised image

40

4.10 Image Pirate corrupted with 50% noise and its corresponding

denoised image

41

4.11 Image Lena corrupted with 30% noise and its corresponding

denoised image

42

4.12 Image Lena corrupted with 40% noise and its corresponding

denoised image

43

4.13 Image Lena corrupted with 50% noise and its corresponding

denoised image

43

4.14 Image Baboon corrupted with 30% noise and its corresponding

denoised image

45

4.15 Image Baboon corrupted with 40% noise and its corresponding

denoised image

46

4.16 Image Baboon corrupted with 40% noise and its corresponding

denoised image

47

4.17 Comparison graph of PSNR and MSE at different noise densities for

‘Lena’ image

50

4.18 Restoration results of different methods in restoring corrupted image

“Lena.” (a) corrupted image with 30% impulse noise, (b) SDOD, (c)

ASWM (d) FSM (e) SM (f) CWM (g) NAFSM (h) EEPA(i) SPHN

51

vii

List of Tables

Table No. Title Page No.

4.1 PSNR and MSE values for various test images at varying noise

intensities for the proposed algorithm (SPHN)

30

4.2 Comparisons of Restoration Results in PSNR (dB) for Seven

Reference Algorithms Corrupted By Varying Noise Intensities for

Test Image “Lena”

48

4.3 Comparisons of Restoration Results in PSNR (dB) for Seven

Reference Algorithms Corrupted By Varying Noise Intensities for

Test Image “Lena”

49

viii

List of Abbreviations and Symbols

Abbreviations

SPHN A Novel Approach for Salt and Pepper Noise Removal based on

Heuristic Analysis of Neighboring Pixels

SPN Salt and Pepper Noise

RVIN Random Valued Impulse Noise

SM Standard Median Filter

CWM Center Weighted Median Filter

ACWM Adaptive Centre Weighted Median Filter

SWM Switching Median Filter

TSM Tri-State Median Filter

DWM Directional Weighted Median Filter

MSWM Modified Switching Median Filter

AM Adaptive Median Filter

PSM Progressive Switching Median Filter

MSM Multi-State Median Filter

PSNR Peak signal to Noise Ratio

MSE Mean Squared Error

Symbols

X Noisy Image

Y Restored Image

i distance of i
th

 pixel from the central pixel

ip i
th

 pixel

 central pixel in the 3×3 window

avg
 Average of all the distances i

 Global Maxima of the image

 Repetition Operator

1

Chapter 1: Introduction

Image processing is one of the most rapidly growing areas in the computer world today. New

advances in technology and decrease in the price of mass storage devices have lead to people

switching from analog imaging to digital imaging. Classic fields like medicine, film and

video production, photography, remote sensing and security monitoring produce huge

volumes of data every day.

Digital image processing is primarily concerned with extracting useful information from

images. It can be defined as the process of receiving and analyzing visual images by a digital

computer [1].

An image may be described as a two-dimensional function I.

(,)I f x y (1.1)

Where x and y are spatial coordinates. Amplitude of f at any pair of coordinates (x, y) is

called intensity I or gray value of the image. When spatial coordinates and amplitude values

are all finite, discrete quantities, the image is called digital image [2].

A gray scale image is represented as a single 2-D array; however a color image is represented

as three 2-D arrays, one for each color(R, G, B).

Fig. 1.1: Digital Image [2]

2

Digital images often get corrupted, degraded during acquisition, transmission of images. An

image thus has to be processed before further use. Digital image processing amongst other

areas deals with image restoration. Image restoration is the removal or reduction of

degradations that are incurred while the image is being obtained [3]. Degradation could be a

result of blurring or noise. Blurring is a form of bandwidth reduction of the image caused by

the imperfect image formation process such as relative motion between the camera and the

original scene or by an optical system that is out of focus [4]. In addition to blurring, the

images can be corrupted by noise. There are several techniques that insert noise in images

depending on how the image is created. For example: If the image is a scanned photograph,

noise can be inserted due to the film grain noise or scanner itself. Noise can also be

introduced due to the electronic transmission media or the equipment used for gathering the

noise [1].

There are primarily three levels where image processing algorithms are required. The first

level is the lowest level; here the data is usually raw unprocessed noisy data. The techniques

employed here are usually denoising and edge detection. At the next level are the algorithms

which use low level results for further processing like segmentation and edge linking. At the

highest level are algorithms which try to extract meaningful information from the data at

hand, like optical character recognition and handwriting recognition.

1.1 Preliminaries

An image as defined above is a two dimensional function (,)I f x y . Each distinct

coordinate in the image is called a picture element or pixel. The nature of each element is

dependent on the type of image.

3

1.1.1 Types of Images

a. Binary Images

In a binary image, each pixel assumes one of only two discrete values: 0 or 1

interpreted as black and white respectively. A binary image is stored as a logical array

of 0s and 1s [5].

b. Indexed Images

An indexed image consists of an array and a colormap matrix. The pixel values in the

array are direct indices into a colormap. By convention, this documentation uses the

variable name X to refer to the array and map to refer to the colormap.

The colormap matrix is an m-by-3 array of class double containing floating-point

values in the range [0, 1]. Each row of map specifies the red, green, and blue

components of a single color. An indexed image uses direct mapping of pixel values

to colormap values. The color of each image pixel is determined by using the

corresponding value of X as an index into map.

The relationship between the values in the image matrix and the colormap depends on

the class of the image matrix. If the image matrix is of class single or double, it

normally contains integer values 1 through p, where p is the length of the colormap.

The value 1 points to the first row in the colormap, the value 2 points to the second

row, and so on. If the image matrix is of class logical, uint8 or uint16, the value 0

Fig 1.2: Pixel Values in a Binary Image [5]

4

points to the first row in the colormap, the value 1 points to the second row, and so on

[5].

c. Grayscale Image

A grayscale image (also called gray-scale, gray scale, or gray-level) is a data matrix

whose values represent intensities within some range. MATLAB stores a grayscale

image as an individual matrix, with each element of the matrix corresponding to one

image pixel.

The matrix can be of class uint8, uint16, int16, single, or double. While grayscale

images are rarely saved with a colormap, MATLAB uses a colormap to display them.

For a matrix of class single or double, using the default grayscale colormap, the

intensity 0 represents black and the intensity 1 represents white [5].

Fig 1.3: Indexed Image with colormap entries [5]

Fig 1.4: Grayscale Image with corresponding pixel entries [5]

5

d. Truecolor Image

A truecolor image is an image in which each pixel is specified by three values — one

each for the red, blue, and green components of the pixel's color. MATLAB store

truecolor images as an m-by-n-by-3 data array that defines red, green, and blue color

components for each individual pixel. Truecolor images do not use a colormap. The

color of each pixel is determined by the combination of the red, green, and blue

intensities stored in each color plane at the pixel's location.

Graphics file formats store truecolor images as 24-bit images, where the red, green,

and blue components are 8 bits each. This yields a potential of 16 million colors. The

precision with which a real-life image can be replicated has led to the commonly used

term truecolor image.

A truecolor array can be of class uint8, uint16, single, or double. In a truecolor array

of class single or double, each color component is a value between 0 and 1. A pixel

whose color components are (0, 0, 0) is displayed as black, and a pixel whose color

components are (1, 1, 1) is displayed as white. The three color components for each

pixel are stored along the third dimension of the data array. For example, the red,

green, and blue color components of the pixel (10,5) are stored in RGB(10,5,1),

RGB(10,5,2), and RGB(10,5,3), respectively [5].

Fig 1.5: Truecolor Image with corresponding pixel entries [5]

6

1.1.2 Image Statistics

a. Histogram

The histogram of the gray scale image is a graph indicating the number of times a

gray level exists in the image. The histogram of a digital image with gray levels in the

range [0, L-1] is a discrete function

()k kh r n (1.3)

where

kr is the kth gray level and

kn is the number of pixels in the image having gray level kr .

It is common practice to normalize a histogram by dividing each of its values by the

total number of pixels in the image, denoted by n.

Thus, a normalized histogram is given by:

() k
k

n
p r

n
 for k=0, 1, p , L-1 (1.4)

Here ()kp r gives an estimate of the probability of occurrence of gray level kr . The sum

of all components of a normalized histogram is equal to 1[2].

A great deal of information can be inferred from the histogram of the image:

 In a dark image, the histogram is cluttered at the lower end

 In a uniformly bright image, the histogram is cluttered at the upper end.

 In a well contrasted image, the histogram is spread out across the intensity

levels.

Fig 1.6 (a): Image Lena (Dark)
Fig 1.6 (b): Corresponding Histogram

The peaks are concentrated at the lower end

7

b. Mean

Image mean is the average pixel value of an image. For an image f(x, y) denoted as f,

the mean x can be given by the following equation:

1 1

0 0

1
[] (,)

Y X

y x

x f f x y
YX

 

 

  (1.5)

The mean of a grayscale image is the measure of average brightness or average

intensity.

c. Variance and Standard Deviation

The image variance, 2 gives an estimate of the spread of pixel values around the

image mean. The variance of an image f can be calculated using the following:

2 2[] [[]]f x f x f   (1.6)

1 1

2

0 0

1
((,) [])

Y X

y x

f x y x f
YX

 

 

 

2
1 1 1 1

0 0 0 0

1 1
(,) (,)

Y X Y X

y x y x

f x y f x y
YX YX

   

    

 
   

 
 

The variance can also be expressed as:

2 2 2[] [] []f x f x f   (1.7)

2
1 1 1 1

2

0 0 0 0

1 1
(,) (,)

Y X Y X

y x y x

f x y f x y
YX YX

   

   

   
    
   

 

Fig 1.6 (b): Corresponding Histogram

The peaks are distributed over the entire range

Fig 1.7 (a): Image Lena (Contrast

enhanced)

8

The standard deviation  is the measure of dispersion of data. Lower value of

standard deviation means less dispersion, i.e. values are similar, and a larger value

indicates high dispersion. Standard deviation  is simply the square root of variance,

i.e. 2

d. Entropy

The histogram of an image is a probability distribution of pixel values. For a gray

scale image with z levels the histogram can be denoted as p (z). The entropy for

image f can thus be expressed as:

1

2

0

() () log ()
Z

z

H f p z p z bits




 
 (1.8)

When all intensities have equal frequency, the value of entropy attains its maximum

value which is equal to 2log z . Entropy measures the information content of an image.

1.2 Problem Formulation and Thesis Organization

The basic aim of this thesis is the estimation of uncorrupted image from the corrupted or

noisy image without loss of information. This process is also referred to as “denoising”.

The technique used for denoising plays a major role in the quality of the resultant

uncorrupted image. In this thesis a number of popular denoising techniques have been

studied and each is implemented in Matlab 7.9[8]. Each method is compared in terms of

its visual and quantitative performance. To evaluate the performance of denoising

techniques, high quality standard test images such as “Lena”, “Cameraman”, “Pepper”,

“Pirate” and “Baboon” were taken, and some noise was added to them. This noisy image

became the input to the denoising algorithms. To quantify the performance parameters

such as Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) were used.

9

The rest of the thesis is organized as follows. Chapter 2 discusses the various noise types

and presents a survey of various techniques available for denoising Impulse Noise in

images. Chapter 3 introduces the proposed impulse noise removal algorithm “A Novel

Approach for Salt and Pepper Noise Removal based on Heuristic Analysis of Neighboring

Pixels” (SPHN). Chapter 4 presents the comparative study of popular denoising

techniques along with the proposed filter (SPHN). It also tabulates the PSNR and MSE of

these techniques. It further discusses the future scope of the work presented in the thesis.

10

Chapter 2: Noise

In everyday language we use the word noise to mean unwanted sound. In physics and analog

electronics noise means any unwanted addition to the signal. In other words noise can be

defined as any quantity that disrupts the normal functioning of the system.

Image noise is any random variation in the brightness and intensity information in images.

Noise can be introduced in the images during their acquisition, transmission, storage or

retrieval. Thus the fundamental problem in image processing is noise removal. The nature of

the noise removal algorithm depends on the type of noise in the image.

2.1. Types of Noise in Images

2.1.1. Impulse Noise

Fat-tail distributed or "impulsive" noise is sometimes called salt-and-pepper noise or

spike noise [2]. Impulsive noise consists of relatively short duration of “on/off” noise

pulses which are caused by a variety of sources, such as switching noise, adverse

channel environments in a communication system etc. An impulsive noise filter can

be used for enhancing the quality and intelligence of noisy signals, and for achieving

robustness in pattern recognition and adaptive control systems [6].

In an image corrupted by impulse noise, some pixels are noisy while others remain

unaffected by noise. The pixels are affected by some probability as shown in Eq. 2.1

and 2.2. In case of colored images either all or one or two of its components can be

corrupted with impulse noise.

In case of Salt & Pepper Noise (SPN) or Fixed Valued Impulsive Noise, the noisy

pixel value will be equal to either nmin (0) or nmax (255), whereas for Random Valued

11

Impulsive Noise (RVIN) the noisy pixel value can be any value in the range nmin to

nmax.

Salt and Pepper noise can be mathematically represented as in 2.1 :


,

 255

, 1-i j

zero or with probability p

i j x with probability py  (2.1)

where
,i jy represents the noisy image pixel, p is the total noise density of impulse

noise and
,i jx represents the uncorrupted image pixel.

Random Valued impulse noise can be mathematically represented as in 2.2:

 ,

,

, 1-
i j

i j

n with probability p

i j x with probability py  (2.2)

where
,i jn is the gray level of the noisy image.

Figure 2.1 shows an image (Cameraman) contaminated by 10% Salt and Pepper

Noise.

2.1.2. Gaussian Noise

Gaussian noise is a form of additive noise. Additive noise is governed by the rule in

equation 2.3. (,) (,) (,)w x y s x y n x y  (2.3)

where:

Impulse noise

Fig 2.1(a): Original Image (Cameraman)

Fig 2.1(b): Image (Cameraman)

contaminated by 10% Salt and Pepper Noise

12

(,)s x y is the original signal, (,)n x y is noise introduced into the original signal to

produce corrupted image (,)w x y and (,)x y is the pixel location.

Gaussian noise is evenly distributed over the signal [7]. This means that each pixel in

the corrupted image is the sum of its original value and the random Gaussian

distributed noise value.

Gaussian noise is so named because the noise follows a Gaussian distribution curve,

which is a bell shaped curve given by equation 2.4

2

2
()

2

2

1
()

2

g m

F g e 

 

 

 (2.4)

Where g is the gray level, m is the mean or average of the function and  standard

deviation of the noise. The Graph of the Gaussian distribution is a bell shaped curve,

as shown in figure 2.2.

Figure 2.3 shows image (Cameraman) corrupted by Gaussian noise with zero mean

and variance equal to 0.05.

Fig 2.2: Gaussian distribution

13

2.1.3. Speckle Noise

Multiplicative Noise or speckle noise is a signal dependent form of noise whose

magnitude is related to the value of the original pixel [8]. Speckle noise is

encountered in some imaging applications such as ultrasound imaging and synthesis

aperture radar (SAR) imaging. The speckle noise is a signal dependent noise; this

means that if the intensity of pixel is high then the noise intensity is also high.

It is given according to the equation 2.5.

() (). ()SNn t t S t (2.5 a)

or, (,) (.) (,). (,)SNX m n X m n m n X m n  (2.5 b)

where ()t is random variable and ()S t is the magnitude of the signal.

An image when corrupted by Speckle Noise appears as shown in figure 2.4.

Fig 2.3(a): Original Image (Cameraman) Fig 2.3(b): Image (Cameraman) contaminated with

Gaussian noise with zero mean and variance 0.05

Fig 2.4(a): Original Image (Cameraman) Fig 2.4(b): Image (Cameraman) contaminated with

Speckle Noise

14

2.2. Literature Survey

Images are often contaminated by a variety of noises. The efficiency of image

processing algorithms greatly depends on the quality of the images provided as input.

Low quality, corrupted images lead to bad results. Thus noise removal becomes an

essential pre processing step for any image processing algorithm. Several noise removal

techniques have been proposed in the scientific literature. Impulse noise is one of the

most common types of noise found to contaminate images. Impulse noise removal

techniques can be broadly classifies into Linear and Non Linear methods.

Linear Filters are the simplest type of filters; they apply the denoising algorithms to all

image pixels irrespective of whether the pixel being processed is noisy or noise-free.

Non Linear filters, however, first classify pixels into noisy and noise-free pixels,

applying the denoising technique to only the noisy pixels. Thus Non Linear filters

generally provide better results. Linear filters cause blurring of fine image details such

as textures and edges, due to indiscriminate filtering; non linear filters are thus better

suited due to their improved performance in terms of noise removal and edge/ detail

preservation.

One of the earliest types of filters proposed is the Moving Average Filter [2], the Mean

Filter [2] and the Median Filter [2]. These filters form the basis of several techniques.

 Moving Average Filter[2]

The Moving Average Filter involves a sliding window of size (2K+1) × (2K+1),

where K varies from 1 to n. this window scans the entire image row wise and

column wise, each time replacing the value of the central pixel with the average of

all the pixels within the window.

, ,2
(,)

1

(2 1)
i j u v

u v S

Y X
K 




 (2.6)

15

where:

X is the noisy image, Y is the restores image and S represents the sliding window.

It performs is poorly in terms of both visual and quantitative results.

 Standard Median (SM) Filter[2]

The Median filter is one of the most popular filters. It is very easy to implement

and also relatively affective. The main functioning of the filter is same as the

average filter but here the central pixel in the window is replaced by the median of

all the neighboring pixels within the window.

, (,) ,()i j u v S u vY Median X (2.7)

Several types of median filters based on the window size have been implemented.

Some of the most common window sizes in use are: (3×3) and (5×5).

However both the averaging filter and the median filter face some serious drawbacks.

These filters cause the blurring of edges and other fine image details and are effective at

only low noise densities. At noise densities exceeding 50% the output images of these

filters show loss of details.

The classical median filter paved a way for the development of several other filters.

These modified forms of the median filter attempt to remove the drawbacks faced by

the median filter. Some of the popular median based filtering techniques are weighted

median (WM) filter [9], center weighted median (CWM) filter [10],adaptive centre

weighted median (ACWM) filter[11],switching median [SWM] filter [12], tri-state

median (TSM) filter [13], directional weighted median (DWM) filter [14], modified

switching median (MSWM) filter [15], adaptive median (AM) filter [16] ,progressive

switching median (PSM) filter [17] and multi-state median (MSM) filter [18].

16

 Weighted Median (WM) Filter[9] and Centre Weighted Median (CWM) Filter[10]

The WM filter is an extension of the Standard Median filter, in the WM filter

Brownrigg modified the SM filter to include certain weighing parameters, based on

which the filtering was performed. The CWM filter is an extension of WM filter,

which gives more weight to the centre values within the window. The CWM filter

allows certain degree of control over the smoothing behavior typical to median

filters through the weights that can be set. This technique uses two steps. It first

classifies the pixels into noisy and noise-free and in the second step it performs the

filtering operation only on the corrupted pixels.

 Adaptive Centre Weighted Median (ACWM) Filter[11]

It devises a novel adaptive operator, which forms estimates based on the

differences between the current pixel and the outputs of centre-weighted median

(CWM) [10] filter with varied centre weights. This filter designs an adaptive

operator which detects the impulse noise corrupted pixels by using the difference

between the outputs of the CWM filter and the current pixel. The filtering

operation consists of replacing the corrupted pixel with the median.

 Tri-State Median (TSM) Filter [13]

This filter has been proposed to enable noise suppression while preserving image

details. Tri-State Median filter incorporates both the Standard Median filter [2] and

the Centre Weighted Median filter [10] in order to make an informed decision

about the pixel under consideration. In order to classify the pixel into corrupted and

uncorrupted pixels, the TSM filter compares the outputs of the SM filter and CWM

filter with the current pixel to reach a tri-state decision. The switching is controlled

by a threshold, which ultimately affects the performance.

17

 Directional Weighted Median (DWM) Filter [14]

Directional Weighted Median Filter uses a detector based on the differences

between the central pixel and the pixels along the four main directions. It uses the

weighted differences in a 5×5 window and finds the minimum value. This

minimum weighted directional difference is compared to a fixed threshold based

on which the pixel is classified as noisy or noise-free. In the filtering stage it

assigns weights to the pixels of the four directions based on the standard deviation

of these directions and replaces the corrupted pixel with the weighted median. This

algorithm when performed iteratively is suited for highly corrupted images.

 Adaptive Median (AM) Filter [16]

The adaptive median filter (AMF) [16] uses a varying window size in order to be

able to remove noise. It uses the two major decisions, one involving detection of

corrupted pixels and the other decision is to check whether the correct value of the

median has been reached and hence whether or not to increase the window size. If

the value of the median calculated is less than the minimum pixel value or greater

than the maximum pixel value within the window, then this median is termed as

incorrect and hence the window size is increased. The window size is increased till

we obtain the correct median or the upper limit for size is reached.

 Progressive Switching Median (PSM) Filter [17]

The progressive switching median filter is a two phase filter; in the first phase,

detection of corrupted pixels take place using a fixed window size of 3×3. In the

second phase the corrupted pixels are replaced by the median value calculated

similar to the AM filter [16].

18

 Multi-State Median (MSM) Filter [18]

This filter presents a generalized framework of median based switching schemes. It

uses threshold to switch among a group of CWM filters [10] having different

centre weights.

Several other filters like “A New Adaptive Switching Median (ASWM) filter [19],

Fuzzy Switching Median (FSM) filter [20] and Noise Adaptive Fuzzy Switching

Median (NAFSM) Filter [21] are also based on the standard median[2] filter.

ASWM proposed by Smail et al, calculates the weighted mean and weighted

standard deviation to filter out impulse noise. Fuzzy switching median (FSM) filter

[20] and noise adaptive fuzzy switching median (NAFSM) filter [21], use fuzzy

reasoning along with SM filter to carry out impulse noise removal. These filters are

an improvement over the standard median filter, but have various shortcomings

like large computation time, poor denoising in high density noise, loss of image

details, blurring of edges etc.

Apart from these classical filtering techniques, fuzzy filters are another important

class of filters. Fuzzy filters are realized by means of simple fuzzy rules that define

some type of noise. several fuzzy filters have been proposed, such as Fuzzy

Inference Rules by Else action (FIRE) filters by Russo [22]-[26]. Due to good

performance of FIRE filters, these have been used by several authors such as Ville

[27]. A multilevel fuzzy filter was developed by Russo [28], which involves three

cascaded blocks of FIRE Filters. Jiu [29] also proposed a multilevel filter in fuzzy

domain.

A number of other techniques such as those that utilize histograms of the images

have also been proposed [30]-[33]. Another class of filters [34]-[37], use neural

networks along with fuzzy rules for the purpose of denoising.

19

There are a number of techniques available for the removal of impulse noise in

images, but the purpose here is not to provide an exhaustive list of all techniques

available but to provide a brief introduction of some of them. The selection of the

technique depends on the characteristics of the image processing algorithm to be

followed. The selection can be based on a variety of factors such as the quantitative

measures like Peak signal to Noise Ratio (PSNR) and Mean Squared Error (MSE),

the time taken by the technique to produce the desired results, the noise density of

the corrupted image.

2.3. Performance Measures

The metric used for evaluating and comparing the performances of different filters are

defined below:

a. Mean Squared Error (MSE) :

In statistics, the mean squared error (MSE) of an estimator is one of many ways to

quantify the amount by which an estimator differs from the true value of the

quantity being estimated.

For image processing, it is the cumulative squared error between the restored and

the original image. A lower value of MSE means lesser error. It can be defined as

in 2.8.

   
3

2

1 1 1

, , , ,

(,)
3

L M

z x y

I x y z f x y z

MSE f I
L M

  

  


 



 (2.8)

Where

L, M are the Image dimensions

I(x, y, z) = the pixel values of restored image

 f(x, y, z) = the pixel values of original image

20

b. Peak Signal To Noise Ratio (PSNR) :

PSNR is the measure of peak error and estimates the quality of the reconstructed

image with respect to the original image. A higher value of PSNR indicates better

reconstruction. It can be mathematically defined as in 2.9:

1
(,) 10log

(,)
PSNR f I

MSE f I

 
  

  (2.9)

c. Subjective or Qualitative Measure :

Along with the quantitative measure namely MSE and PSNR, it is important to

take under consideration the subjective performance i.e. the image quality

performance measure subjective assessment is also required. The visual quality is

related to the preference and judgement of the observer or the performance of an

operator for some specific task. However perceptual quality evaluation is not a

deterministic process.

21

Chapter 3: The Proposed Algorithm for Impulse Noise

Removal

Noise Removal is an important aspect of image processing. Impulse noise occurs due to

errors in the communication channel, and hence is one of the most commonly found noise

types afflicting images. The most important challenge faced when denoising an image

corrupted by impulse noise is to preserve the image details and prevent blurring. Impulse

noise, unlike Gaussian noise is not evenly distributed over the image. Thus, in an image

corrupted by impulse noise, we can find several corrupted pixels along with several

uncorrupted ones. Thus it is of paramount importance to not only be able to filter out the

noise but to be able to detect pixels corrupted by noise.

A number of impulse noise removal techniques have already been proposed in the scientific

community, some of which were described in the previous chapter. This chapter presents a

new algorithm for removal of impulse noise in images “A Novel Approach for Salt and

Pepper Noise Removal based on Heuristic Analysis of Neighboring Pixels” (SPHN). This

scheme works in two stages, the first stage identifies the noisy and noise-free pixels using the

distance measures. The second stage restores the noisy pixel by first assigning weights to the

pixels and finally replacing the noisy value with weighted median.

3.1 The Proposed Technique

SPHN is a double stage filter; the first stage identifies the noisy and noise-free pixels, the

second stage performs filtering only on the noisy pixels. Not subjecting the noise-free pixels

to filtering process helps preserve fine details and avoids blurring. The details of the two

stages are as follows:

22

A. Detection Stage:

In the detection stage the corrupted image X is subjected to a 3×3 window Wi,j centered at

pixel xi,j. The current pixel is compared to the maximum and minimum values lmax and lmin

respectively within the current window; if the pixel is equal to either of the two values it is a

noisy candidate.

 min , max

, min , max

,
i j

i j i j

noise free if l x l

i j noise candidate if x l or x lx
  

 
 (3.1)

where:

max
l

= local maxima within the current window

min
l = local minima within the current window

Once identified as a noise candidate it is important to ascertain that the pixel is an isolated

maximum or minimum value i.e. noise, and not a part of any edges. To do this, calculate the

distance of all pixels in the window with the central pixel as below

(i iabs p  
 (3.2)

where:

i = distance of i
th

 pixel from the central pixel

ip = i
th

 pixel

 =central pixel in the 3×3 window

Next we calculate the average
avg of all the distances i

By comparing this average distance
avg with the global maxima , we can classify are pixel

into noisy or noise free according to equation 3.3

 (

,
avgNoisy Pixel if of

i j Noise Free otherwisex
    

 (3.3)

23

If according to Eq. 3.3 pixel is noisy, we process it further.

The next step is to find the value of pixels
1 2 p and p in the neighborhood  having the least

distance i (from) and calculate their average
avg .

Finally we classify the pixel as noisy or noise-free according to equation 3.4.

 (

,
avgNoisy Pixel if of

i j Noise Free otherwisex
    

 (3.4)

If the central pixel is noisy it undergoes the filtering stage, else if it is noise-free no further

processing is needed.

B. Filtering Stage:

When the noisy pixels are identified, they are subjected to filtering.

In the filtering stage the first step is to calculate the mean i of pixels in all directions 1 (L to

R), 2 (T to B), 3 (TL to BR) and 4 (TR to BL).

Next the distance of each pixel ip from its mean i is calculated. Now the average of the

distances
iavg for each direction i as shown in figure 3.1 is calculated.

The next step is to assign weights (1 8 w to w). Pixels in the direction with minimum
iavg gets

highest weight (4). Pixels in the direction of second minimum
iavg gets weight 3. Similarly

we assign weights 2 and 1 to directions with 3
rd

 and 4
th

 minimum
iavg respectively.

L R

 T

 B

TL

 BR

 TR

BL

Fig. 3.1: The direction used to calculate the distances.

24

After assigning the weights the restoration of the corrupted pixels is done according to Eq.

3.5

  ,

, ,

,

,

i

i j

i j i j

i j

median w x if x is noisy

i j x if x is noise freey


 (3.5)

where:

iw = weight assigned to the pixel

 = repetition operator

3.2 Algorithm

The proposed filter (SPHN) has been presented in the previous section; it can be summarized

as below:

Detection Stage:

1. Subject the corrupted image X to a 3×3 window Wi,j centered at pixel xi,j.

2. Compare the current pixel xi,j to the maximum and minimum values lmax and lmin

respectively within the current window; the pixel is classified as a noise candidate or a

noise-free pixel according to equation (3.1).

3. Now in order to ascertain that the noise candidate is indeed a noisy pixel and not an edge

pixel, calculate the distance of all pixels in the window with the central pixel according

to Eq. 3.2

4. The next step is to calculate the average
avg of all the distances i .

5. In order to segregate noise-free pixels from noisy pixels we compare the average distance

avg with the global maxima . The classification of noisy and noise free pixels is done

according to Eq. 3.3. Further processing is done on the noisy pixel.

6. The next step is to find the value of pixels 1 2 p and p in the neighborhood  having the

least distance i (from) and calculate their average
avg .

7. Finally the pixel is classified as noisy or noise-free according to equation 3.4.

25

The pixels identified as noisy pixels are subjected to the filtering stage.

Filtering Stage:

1. In the filtering stage the first step is to calculate the mean i of pixels in all directions 1

(W to E), 2 (N to S), 3 (NW to SE) and 4 (NE to SW).

2. Next the distance of each pixel ip from its mean i is taken and corresponding average

iavg
 calculated as shown in figure 3.1 is calculated.

3. Next the weights (
1 8 w to w) are assigned. Pixels in the direction with minimum

iavg gets

highest weight (4). Pixels in the direction of second minimum
iavg gets weight 3.

Similarly we assign weights 2 and 1 to directions with 3
rd

 and 4
th

 minimum
iavg

respectively.

4. After assigning the weights the restoration of the corrupted pixels is done according to

Eq. 3.5

Section 3.3 illustrates the algorithm with the help of an example and section 3.4 gives its

detailed Flow Chart.

26

3.3 Illustration

3.3.1 The Detector

219 255 13

220 220

230 222 221

219 13

Noisy input

image

Local maxima maxl

&

Local minima minl

Employ a 3×3 window

Centre pixel ()
Calculate the distance of all

pixels in the window with the

central pixel
(i iabs p  

Calculate the

average
avg of all

the distances

Is

 (avg of     

avg =200

200>115

 /2=128

90% of =115

Is maxl 

Or

minl  ?

If condition not satisfied

then, is noise free

116>115

 /2=128

90% of =115

Is

 (avg of     

If condition not satisfied

then, is noise free

Noisy pixel

If condition not satisfied

then, is noise free  =0

1p =13

2p =219

avg =116

Find value of neighbors with least

distance and calculate average
avg


=Global

Maxima

Fig 3.2: Illustration of the proposed algorithm.

a) The detector

27

3.3.4 The Filter

220

(L)

0 220

(R)

 255

(T)

 0

 222

(B)

219

(TL)

 0

 221

(BR)

 13

(TR)

 0

230

(BL)

220

(L)

0 220

(R)

 255

(T)

 0

 222

(B)

219

(TL)

 0

 221

(BR)

 13

(TR)

 0

230

(BL)

L

(wt=4)

0 R

(wt=4)

 T

(wt=2)

 0

 B

(wt=2)

TL

(wt=3)

 0

 BR

(wt=3)

 TR

(wt=1)

 0

BL

(wt=1)

Calculate the mean of pixels in all directions.

1

2

3

4

(220 220) / 2 220

(255 222) / 2 239

(219 221) / 2 220

(230 10) / 2 120









  

  

  

  

Pixels in direction with minimum
avg gets the highest weight

For pixels

L,R; wt=4

TL, BR; wt=3

T, B; wt=2;

TR, BL; wt=1

 Finally using these weights; restore the pixel using weighted median.

Fig 3.2: Illustration of the proposed algorithm.

b) The filter

Calculate distance of every pixel from its corresponding

mean and take its average
iavg

avg1

avg2

avg3

avg4

((220 - 220) (220 - 220)) / 2 0

((255- 239) (239 - 222)) / 2 17

((220 - 219) (221- 220)) / 2 1

((120 -10) (230 -120)) / 2 115

  

   

   

   

28

3.4 Flow Chart for the Proposed Algorithm

Fig 3.3: Flow chart of the proposed algorithm (SPHN)

Input Image

Employ a 3×3 window; determine lmax, lmin

Xi,j=lmin

Or

Xi,j=lmax

Calculate the average
avg of all the distances

 (avg of     

Noise-free

Noise candidate yes

no

Noise-free

yes

no

Noisy

Find value of neighbors 1 2 p and p with least

distance (from


) and calculate average
avg

Calculate the mean of pixels in all directions 1

(L to R), 2 (T to B), 3 (TL to BR) and 4

(TR to BL)

Calculate the distance of all pixels in the

window with the central pixel

(i iabs p  

Calculate the Global Maxima for the image

yes

 (avg of     

X

Noise-free
no

29

Where:

lmax = local maxima in the current window
ip = i

th
 pixel

lmin = local minima in the current window
avg = average of all distance values

 = central pixel of the current window  = global maxima for the image

i = distance of pixel I from central pixel avg = average of pixels nearest to central pixel 

1 , 2 , 3 , 4 = mean of pixels in all directions avg = distance average

1 8 w to w = weights assigned to pixels  = repetition operator

3.4 Summary

This chapter presents the proposed SPHN algorithm. This two stage algorithm uses distance

calculations to identify noisy pixels. It then assigns weights to the pixels and finally restores

them using the weighted median.

The advantage of this technique lies within the fact that it does not require any prior

calculations. It uses an adaptive threshold for classifying pixels or restoring them. Moreover

the algorithm is easy to understand and implement.

The next chapter discussed the quantitative and qualitative results for the proposed algorithm

It also compares the SPHN algorithm with existing techniques.

 ,, i ji j median w xy 

Final Image

Assign weights 1 8 w to w to all pixels; Pixels

in the direction with minimum
iavg gets

highest weight

Calculate distance of every pixel from its

corresponding mean and take its average
iavg

X

Fig 3.3 contd.: Flow chart of the proposed algorithm (SPHN)

30

Chapter 4: Simulations, Results and Comparisons

The previous chapter presents a new technique for impulse noise removal based on heuristic

analysis of neighboring pixels. The algorithm uses distance calculations to identify noisy

pixels. It then assigns weights to the pixels and finally restores them using the weighted

median.

To evaluate the performance of the algorithm, high quality standard test images such as

“Lena”, “Cameraman”, “Pepper”, “Pirate” and “Baboon” were taken, and some noise was

added to them. This noisy image became the input to the denoising algorithm. To quantify the

performance, parameters such as Peak Signal to Noise Ratio (PSNR) and Mean Square Error

(MSE) are used. The PSNR and MSE values at noise densities ranging from 10% to 90% for

all the test images have been tabulated in table 4.1.

Type of

image

Noise in %

10 20 30 40 50 60 70 80 90

PSNR(dB)

Peppers 87.84 80.55 77.60 70.95 69.00 66.91 64.40 65.17 65.54

Lena 72.01 71.65 69.70 68.95 66.26 64.03 62.68 62.92 63.33

Baboon 77.13 76.29 69.98 64.90 61.97 60.42 59.70 58.52 60.01

Pirate 85.16 75.62 71.06 68.27 65.85 64.58 61.47 61.53 63.26

Cameraman 69.56 67.42 66.78 65.93 65.67 65.15 63.70 63.71 63.72

MSE

Peppers 0.01 0.05 0.07 0.08 0.09 0.13 0.23 0.19 0.18

Lena 0.03 0.04 0.07 0.08 0.15 0.25 0.35 0.33 0.35

Cameraman 0.07 0.14 0.17 0.18 0.19 0.19 0.27 0.25 0.27

Baboon 0.01 0.02 0.03 0.05 0.07 0.09 0.13 0.12 0.13

Pirate 0.07 0.08 0.09 0.13 0.16 0.22 0.46 0.45 0.47

Table 4.1: PSNR and MSE values for various test images at varying noise intensities for the proposed

algorithm (SPHN)

31

Higher the value of PSNR the better is the restoration performance. Similarly a lower value

of MSE indicates lower error rate.

As can be observed from table 4.1, the proposed SPHN algorithm works well at both high

and low noise densities. It has the highest value of PSNR equal to 87.84 dB for image

“Peppers” at 10% noise. At 10% noise the lowest PSNR of 69.56 dB is observed for image

“Cameraman” From noise density equal to 90 % the PSNR value for “Peppers” is 65.54 and

for “Cameraman” is 63.72 dB. For other images “Baboon”, “Lena” and “Pirate” the PSNR

values at 90% noise are 60.01, 63.33 and 63.26 respectively.

The lowest value of MSE equal to 0.01 is observed at 10% noise for image “Peppers”. For

image “Pirate” and “Cameraman” the MSE value is 0.07. This value increases to 0.18 for

image “Peppers” and 0.47 for “Pirate” and to 0.27 for “Cameraman”. The MSE values for

images “Lena” and “Baboon” vary from 0.03 and 0.01 respectively at 10% noise to 0.30 and

0.13 respectively at 90% noise

Thus it can be concluded that even for a varied selection of images, the proposed algorithm

works well at both high and low noise densities.

The following pages present the noisy as well as denoised images at different noise densities.

Fig 4.1 presents the original test images used. Fig 4.2 shows the test image “Cameraman” at

30 % noise and the corresponding denoised image. Fig 4.3 and Fig 4.4show “Cameraman” at

40% and 50% noise respectively, along with the denoised image. Fig 4.5, 4.6 and 4.7 show

image “Peppers” at 30%, 40% and 50% noise along with denoised images. Fig 4.8, 4.9, 4.10,

4.11, 4.12 and 4.13show images “Lena” and “Pirate” corrupted by 30%, 40% and 50% noise

respectively, along with the denoised image. Fig 4.14, 4.15 and 4.16 show the noise corrupted

and denoised image for “Baboon”.

32

(a) (b)

(c) (d)

(e)

Fig 4.1: Test images (a) Cameraman (b) Peppers (c) Pirate (d) Lena (e) Baboon

33

Fig 4.2: Image (a) Cameraman corrupted with 30% noise (b) Corresponding

denoised image

34

Fig 4.3: Image (a) Cameraman corrupted with 40% noise (b) Corresponding

denoised image

35

Fig 4.4: Image (a) Cameraman corrupted with 50% noise (b) Corresponding

denoised image

36

Fig 4.5: Image (a) Peppers corrupted with 30% noise (b) Corresponding

denoised image

37

Fig 4.6: Image (a) Peppers corrupted with 40% noise (b) Corresponding

denoised image

38

Fig 4.7: Image (a) Peppers corrupted with 50% noise (b) Corresponding

denoised image

39

Fig 4.8: Image (a) Pirate corrupted with 30% noise (b) Corresponding denoised

image

40

Fig 4.9: Image (a) Pirate corrupted with 40% noise (b) Corresponding denoised

image

41

Fig 4.10: Image (a) Pirate corrupted with 50% noise (b) Corresponding denoised

image

42

Fig 4.11: Image (a) Lena corrupted with 30% noise (b) Corresponding denoised

image

43

Fig 4.12: Image (a) Lena corrupted with 40% noise (b) Corresponding denoised

image

44

 Fig 4.13: Image (a) Lena corrupted with 50% noise (b) Corresponding denoised

image

45

Fig 4.14: Image (a) Baboon corrupted with 30% noise (b) Corresponding

denoised image

46

Fig 4.15: Image (a) Baboon corrupted with 40% noise (b) Corresponding

denoised image

47

Fig 4.16: Image (a) Baboon corrupted with 50% noise (b) Corresponding

denoised image

48

For the purpose of comparison the several standard techniques such as SDOD [39], ASWM

[19], SM [2] filter, CWM [10] filter, CEF[41] and EEPA [40] were implemented in Matlab

7.9[8], the image “Lena” was provided as input and the outputs were observed.

The PSNR and MSE values of the SPHN filter are compared against the existing algorithms

such as SDOD [39], ASWM [19], SM [2] filter, CWM [10] filter, CEF[41] and EEPA [40] by

varying the noise density from 10% to 90% and are shown in Table 4.2 and Table 4.3.

Noise

in %

PSNR(dB)

SDOD ASWM SM CWM CEF EEPA SPHN

10 25.83 33.9 36.50 36.98 39.05 41.26 72.01

20 25.60 33.57 34.53 35.23 37.56 38.95 71.65

30 25.22 33.02 31.42 32.45 35.42 37.39 69.70

40 25.00 32.22 28.08 29.12 32.87 35.03 68.95

50 25.00 31.29 25.51 26.23 31.95 34.79 66.26

60 24.45 27.95 22.01 23.33 31.15 34.23 64.03

70 24.32 29.26 20.51 20.14 29.90 33.45 62.68

80 24.16 28.27 17.16 18.67 28.75 32.36 62.93

90 24.08 27.36 12.01 13.21 27.63 31.45 63.33

Table 4.2: Comparisons of Restoration Results in PSNR (dB) for Seven Reference Algorithms

Corrupted By Varying Noise Intensities for Test Image “Lena”

49

From the Tables 4.3 and 4.4, it is observed that the performance of the proposed algorithm

(SPHN) is better than the existing algorithms at both low and high noise densities.

The highest PSNR in the table 72.01 dB at 10% noise is for SPHN algorithm. The next in line

is 41.26 dB for EEPA. The proposed filter has the lowest MSE value of 0.03 at 10% noise.

This value increases to 0.35 at 90% noise. It can thus be concluded that the propose SPHN

filter works well on high and low noise density images.

A plot of PSNR and MSE values against noise densities for Lena” image is shown in Fig.

4.17.

Noise

in %

MSE

SDOD ASWM SMF CWMF CEF EEPA SPHN

10 89.90 26.26 26.12 23.78

25.20 30.60 0.03

20 90.23 28.53 45.34 36.12

26.60 32.55 0.04

30 92.55 32.40 90.23 78.34

27.80 37.42 0.07

40 95.05 38.96 118.78 120.53

29.41 45.67 0.08

50 96.12 48.20 235.65 250.68 29.79 57.18 0.15

60 96.78 104.1890 312.45 345.15 30.01 70.60 0.25

70 97.34 77.0421 500.89 511.78 30.76 85.54 0.35

80 98.23 96.6521 825.67 789.68 31.13 100.53 0.33

90 98.65 119.2638 875.12 890.50 31.78 112.26 0.35

Table 4.3: Comparisons of Restoration Results in MSE for Seven Reference Algorithms Corrupted

By Varying Noise Intensities for Test Image “Lena”

50

Fig.4.17 Comparison graph of PSNR and MSE at different noise densities for ‘Lena’ image

51

In order to explore the visual quality, the reconstructed images of different denoising methods

in restoring 30% corrupted image “Lena” is shown in Fig: 4.18

We can see from the plots of PSNR and MSE with Noise % that the SPHN filter works better

than the already existing techniques. Thus observing the visual and quantitative results we

can come to a conclusion that the proposed filter works better from many existing techniques.

noisy image Removed noise Removed noise

Removed noise
Removed noise

Removed noise

Fig 4.18: Restoration results of different methods in restoring corrupted image “Lena.” (a) corrupted image with 30%

impulse noise, (b) SDOD, (c) ASWM (d) SM (e) CWM (f) CEF (g) EEPA

(h) SPHN

(a) (b) (c)

(d) (e) (f)

(g) (h)

52

Chapter 5: Conclusions and Future Work

The basic aim of this thesis is to understand the concept of impulse noise removal and to

design an algorithm which works better than existing techniques. Impulse noise removal is an

important area in the field of digital image processing. It is an important pre processing step

to implement any image processing algorithm.

The first chapter introduces the concept of image processing. It explains in depth about the

types of images, and the operations that can be applied to the images. The second chapter

introduces the concept of noise. It tells about the different types of noise that can affect an

image. Concentrating on impulse noise removal, it enlists a variety of existing techniques that

deal with this area. Next it tells about the performance measures that can be used to

quantitatively study the efficiency of the techniques.

The third chapter presents the proposed filter “A Novel Approach for Salt and Pepper

Noise Removal based on Heuristic Analysis of Neighboring Pixels” (SPHN). It also gives

its algorithm and flow chart. It is a two step algorithm, which uses the distance calculations of

the neighborhood in order to classify noisy and noise-free pixels. In the filtering stage, it

assigns weights to the pixels according to some calculations and an adaptive threshold. It then

filters the noisy pixels using the weighted median.

To analyze the performance the algorithm was implemented using Matlab 7.9[8] and a

number of test images namely “Cameraman”, “Peppers”, “Pirate”, “Lena” and “Baboon”

were used. The fourth chapter analyzes the performance of the proposed filter on various

images at varying noise levels and also compares it with many existing filters. It concludes

that the proposed filter works well at both low and high noise densities and also in

comparison to some popular techniques.

53

This thesis is limited to applying the algorithm on images in gray scale only. In future the

algorithm can also be implemented on color images. Future work can be extended to reduce

the false and miss detection count to improve the detector capability.

54

References

[1]. B. Chanda and D. Dutta Majumder. Digital Image Processing and Analysis. Prentice-

Hall of India, 1st edition, 2002.

[2]. R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison Wesley, 2nd

edition, 1992.

[3]. Castleman Kenneth R, Digital Image Processing, Prentice Hall, New Jersey, 1979.

[4]. Reginald L. Lagendijk, Jan Beimond, Iterative Identification and Restoration of

Images, Kulwer Academic, Boston, 1991.

[5]. Mathworks, 2012, Image Types in the Toolbox

[6]. Saeed V. Vaseghi. Advanced Digital Signal Processing and Noise Reduction. 2
nd

Edition. John Wiley & Sons Ltd.2000

[7]. Scott E Umbaugh, Computer Vision and Image Processing, Prentice Hall PTR, New

Jersey, 1998.

[8]. Matlab 7.9, “Matlab,” http://www.mathworks.com/, 2009.

[9]. D.R.K.Brownrigg “The Weighted median filter,” Commun.ACM, vol.27, no.8, pp.807-

818, Aug 1984.

[10]. T. Chen and H. R. Wu. Adaptive impulse detection using center-weighted median

filters. IEEE Signal Process. Lett., 8(1):1–3, January 2001.

[11]. S. J. KO and Y. H. Lee, “Center weighted median filters and their applications to image

enhancement,” IEEE Trans. Circuits Syst., vol. 38, pp. 984–993, 1991.

[12]. T. Sun and Y. Nuevo, “Detail preserving median based filters in image processing,”

Pattern Recognition. Lett, vol. 15, pp. 341–347, 1994.

[13]. T. Chen, K. K. Ma, and L. H. Chen, “Tri-state median filter for image denoising,” IEEE

Trans. Image Process., vol. 8, pp. 1834–1838, Dec.1999

55

[14]. Y. Dong and S. Xu, “A new directional weighted median filter for removal of random-

value impulse noise,” IEEE Signal Process. Lett, vol.14, pp. 193–196, Mar. 2007.

[15]. C. C. Kang and W. J. Wang, “Modified switching median filter with one more noise

detector for impulse noise removal,” Int.J.Electron.Commun.No. DOI:

10.1016/j.aeue.2008.08.009, 2008.

[16]. H.Hwang and R.A.Haddad, “Adaptive Median Filters: New Algorithms and Results,”

IEEE Trans. Image Processing, vol.4, no.4, pp.499-502, 1995.

[17]. Z. Wang and D.Zhang, “Progressive Switching Median filter for the removal of

Impulse Noise from Highly corrupted images,” IEEE trans. on circuits and systems part

II: Analog and Digital signal processing, vol.46, no.1, pp.78-80, 1999.

[18]. T. Chen and H. R.Wu. Space variant median filters for the restoration of impulse noise

corrupted images. IEEE Trans. Circuits Syst. II, 48(8):784–789, August 2001.

[19]. Smaïl Akkoul, Roger Lédée, Remy Leconge, and Rachid Harba, “A New Adaptive

Switching Median Filter”, IEEE Signal Processing letters, pp. 587-590. 2010.

[20]. K. K. V. Toh, H. Ibrahim, and M. N. Mahyuddin, “Salt-and-pepper noise detection and

reduction using fuzzy switching median filter,” IEEE Trans. Consumer Electron., vol.

54, no. 4, pp. 1956–1961, Nov. 2008.

[21]. Kenny Kal Vin Toh,”Noise adaptive fuzzy switching median filter for salt-and-pepper

noise reduction” IEEE signal processing letters, VOL. 17, NO. 3 pp 281-244, Mar.

2010.

[22]. Russo, F, “A FIRE filter for detail-preserving smoothing of images corrupted by mixed

noise,” IEEE fuzzy syst., vol.2, pp 1051-1055, July 1997.

[23]. Russo F., Noise Cancellation Using Nonlinear Fuzzy Filters, in: IEEE Instrumentation

and Measurement Technology Conf., 1997,pp.772-777

56

[24]. Russo F., FIRE operators for image processing, in: IEEE Fuzzy Sets and Systems, Vol.

103, 1999, pp. 265-275.

[25]. Russo F. & Ramponi G., A fuzzy filter for images corrupted by impulse noise, in: IEEE

Signal proceedings letters, Vol.3, No. 6, 1996, pp. 168- 170.

[26]. Russo F. & Ramponi G., Removal of impulse noise using a FIRE filter, in: IEEE

Proceedings, 1996, pp. 975-978.

[27]. Kwan H.K., Fuzzy Filters for noise reduction in images, in: Fuzzy Filters for Image

Processing (Nachtegael M., Van der Weken D., Van De Ville D. & Etienne E.E.,

editors), Springer-Verlag, 2002, pp. 25-53

[28]. Russo F. & Ramponi G., A noise smoother using cascade FIRE Filters, in: Proceedings

of the 4th fuzzy-IEEE Conference, 1995, pp. 351-358.

[29]. Jiu J.Y., Multilevel median filter based on fuzzy decision, DSP IC Design Lab E.E.

NTU., 1996.

[30]. Wang J.-H. & Chiu H.-C., HAF: An adaptive fuzzy filter for restoring highly corrupted

images by histogram estimation, in: Proc. Natl. Sci.Counc. ROC (A), Vol. 23, No. 5,

1999. pp. 630-643.

[31]. Khodambashi, S.; Moghaddam, M.E.; “An impulse noise fading technique based on

local histogram processing ”; Signal Processing and Information Technology (ISSPIT),

2009 IEEE International Symposium 2009 , pp 95 – 100.

[32]. Jung-Hua Wang; Wen-Jeng Liu; Lian-Da Lin; “Histogram-based fuzzy filter for image

restoration ”, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions

Volume: 32 Issue: 2, 2002,pp: 230 – 238.

[33]. Yi Wan; Qiqiang Chen; Yan Yang , “Robust Impulse Noise Variance Estimation Based

on Image Histogram”; Signal Processing Letters, IEEE ; 2010 , pp: 485 – 488.

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5407484&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dhistogram+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5407484&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dhistogram+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=990880&openedRefinements%3D*%26sortType%3Dasc_Publication+Year%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dhistogram+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=990880&openedRefinements%3D*%26sortType%3Dasc_Publication+Year%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dhistogram+impulse+noise
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=3477
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=21362
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5424060&openedRefinements%3D*%26sortType%3Dasc_Publication+Year%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D2%26searchField%3DSearch+All%26queryText%3Dhistogram+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=5424060&openedRefinements%3D*%26sortType%3Dasc_Publication+Year%26filter%3DAND%28NOT%284283010803%29%29%26pageNumber%3D2%26searchField%3DSearch+All%26queryText%3Dhistogram+impulse+noise
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=97

57

[34]. Russo F., Nonlinear Filtering of Noisy Images Using Neuro-Fuzzy Operators, 1997, pp:

412-415.

[35]. Yuksel, M.E.; Basturk, A.; Besdok, E.; Yildirim, M.T.; “Detail-preserving restoration

of impulse noise corrupted images by a switching median filter controlled by a neuro-

fuzzy network”; Signal Processing and Communications Applications Conference,

2004 ,pp :87 – 90.

[36]. Yuksel, M.E.; “A hybrid neuro-fuzzy filter for edge preserving restoration of images

corrupted by impulse noise”;IEEE Transactions on image Processing 2006 pp: 928-936.

[37]. Yuksel, M.E.; Besdok, E.; “A simple neuro-fuzzy impulse detector for efficient blur

reduction of impulse noise removal operators for digital images”; IEEE Transactions on

Fuzzy Systems, 2004 , pp: 854 – 865.

[38]. K. K. Singh, A. Mehrotra, Dr. K. Pal, Dr. M.J. Nigam, “A N(8) Detail Preserving

Adaptive Filter for Impulse Noise Removal” in Int. Conf. on Image Imformation

Processing, 2011.

[39]. Ali S. Awad,” Standard Deviation for Obtaining the Optimal Direction in the Removal

of Impulse Noise” IEEE Signal Process. Lett, vol. 18, no.7. pp. 407–410, July 2011.

[40]. P. Y. Chen and C. Y. Lien, “An efficient edge-preserving algorithm for removal of salt-

and-pepper noise,” IEEE Signal.

[41]. Umesh Ghanekar, Awadhesh Kumar Singh, and Rajoo Pandey,” A Contrast

Enhancement-Based Filter for Removal of Random Valued Impulse Noise” IEEE

Signal Process. Lett, vol. 17, no.1. pp. 47–50, Jan. 2010.S

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1338264&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dneuro+fuzzy+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1338264&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dneuro+fuzzy+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1338264&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dneuro+fuzzy+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1608141&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dneuro+fuzzy+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1608141&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dneuro+fuzzy+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1366417&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dneuro+fuzzy+impulse+noise
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=1366417&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3Dneuro+fuzzy+impulse+noise

