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Abstract 

In the field of Digital Image Processing, noise removal plays a very crucial role. The output 

of any image processing algorithm will depend greatly on the quality of the image sent as 

input. Many images during acquisition, transmission and processing get corrupted by impulse 

noise. Thus impulse noise removal becomes an important pre processing step for image 

processing. 

Impulse noise usually corrupts only some pixels, leaving a few pixels uncorrupted. Therefore 

impulse noise removal is normally a two step process. The first step involves classifying the 

image pixels into corrupted and uncorrupted pixels. The second step deals with restoration of 

these corrupted pixels. 

This study introduces a novel approach for impulse noise removal, typically in the range of 

10% to 80% noise density. The proposed scheme is a double stage filter, which removes 

impulse noise based on heuristic calculations of neighboring pixels. In the first stage, 

“Detector”, the pixels are identified as noisy or noise-free using distance calculations on the 

neighboring pixels. An adaptive threshold is used to classify these pixels. Once the pixels are 

identified to be noisy “Filtering” is performed on the noisy pixels. During filtering the image 

pixels are assigned weight values and the final restoration is done using a weighted median. 

In order to evaluate the performance of this proposed filter “A Novel Approach for Salt and 

Pepper Noise Removal based on Heuristic Analysis of Neighboring Pixels” (SPHN), various 

test images were used. The performance of the SPHN filter is also compared with several 

other popular techniques. It has been found that not only does the proposed filter work well 

on a variety of images but also produces results which are significantly better than many 

popular techniques.   
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Chapter 1: Introduction 

Image processing is one of the most rapidly growing areas in the computer world today. New 

advances in technology and decrease in the price of mass storage devices have lead to people 

switching from analog imaging to digital imaging. Classic fields like medicine, film and 

video production, photography, remote sensing and security monitoring produce huge 

volumes of data every day. 

Digital image processing is primarily concerned with extracting useful information from 

images. It can be defined as the process of receiving and analyzing visual images by a digital 

computer [1].  

An image may be described as a two-dimensional function I. 

( ,  )I f x y           (1.1) 

Where x and y are spatial coordinates. Amplitude of f at any pair of coordinates (x, y) is 

called intensity I or gray value of the image. When spatial coordinates and amplitude values 

are all finite, discrete quantities, the image is called digital image [2]. 

 

 

 

 

A gray scale image is represented as a single 2-D array; however a color image is represented 

as three 2-D arrays, one for each color(R, G, B). 

Fig. 1.1: Digital Image [2] 
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Digital images often get corrupted, degraded during acquisition, transmission of images. An 

image thus has to be processed before further use. Digital image processing amongst other 

areas deals with image restoration. Image restoration is the removal or reduction of 

degradations that are incurred while the image is being obtained [3].  Degradation could be a 

result of blurring or noise. Blurring is a form of bandwidth reduction of the image caused by 

the imperfect image formation process such as relative motion between the camera and the 

original scene or by an optical system that is out of focus [4]. In addition to blurring, the 

images can be corrupted by noise. There are several techniques that insert noise in images 

depending on how the image is created. For example: If the image is a scanned photograph, 

noise can be inserted due to the film grain noise or scanner itself. Noise can also be 

introduced due to the electronic transmission media or the equipment used for gathering the 

noise [1]. 

There are primarily three levels where image processing algorithms are required. The first 

level is the lowest level; here the data is usually raw unprocessed noisy data. The techniques 

employed here are usually denoising and edge detection. At the next level are the algorithms 

which use low level results for further processing like segmentation and edge linking. At the 

highest level are algorithms which try to extract meaningful information from the data at 

hand, like optical character recognition and handwriting recognition. 

1.1 Preliminaries 

An image as defined above is a two dimensional function ( ,  )I f x y . Each distinct 

coordinate in the image is called a picture element or pixel. The nature of each element is 

dependent on the type of image.  
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1.1.1 Types of Images 

a. Binary Images 

In a binary image, each pixel assumes one of only two discrete values: 0 or 1 

interpreted as black and white respectively. A binary image is stored as a logical array 

of 0s and 1s [5]. 

 

b. Indexed Images 

An indexed image consists of an array and a colormap matrix. The pixel values in the 

array are direct indices into a colormap. By convention, this documentation uses the 

variable name X to refer to the array and map to refer to the colormap. 

The colormap matrix is an m-by-3 array of class double containing floating-point 

values in the range [0, 1]. Each row of map specifies the red, green, and blue 

components of a single color. An indexed image uses direct mapping of pixel values 

to colormap values. The color of each image pixel is determined by using the 

corresponding value of X as an index into map. 

The relationship between the values in the image matrix and the colormap depends on 

the class of the image matrix. If the image matrix is of class single or double, it 

normally contains integer values 1 through p, where p is the length of the colormap. 

The value 1 points to the first row in the colormap, the value 2 points to the second 

row, and so on. If the image matrix is of class logical, uint8 or uint16, the value 0 

Fig 1.2: Pixel Values in a Binary Image [5] 
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points to the first row in the colormap, the value 1 points to the second row, and so on 

[5]. 

 

c. Grayscale Image 

A grayscale image (also called gray-scale, gray scale, or gray-level) is a data matrix 

whose values represent intensities within some range. MATLAB stores a grayscale 

image as an individual matrix, with each element of the matrix corresponding to one 

image pixel. 

The matrix can be of class uint8, uint16, int16, single, or double. While grayscale 

images are rarely saved with a colormap, MATLAB uses a colormap to display them. 

For a matrix of class single or double, using the default grayscale colormap, the 

intensity 0 represents black and the intensity 1 represents white [5].  

 

 

Fig 1.3: Indexed Image with colormap entries [5] 

Fig 1.4: Grayscale Image with corresponding pixel entries [5] 
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d. Truecolor Image 

A truecolor image is an image in which each pixel is specified by three values — one 

each for the red, blue, and green components of the pixel's color. MATLAB store 

truecolor images as an m-by-n-by-3 data array that defines red, green, and blue color 

components for each individual pixel. Truecolor images do not use a colormap. The 

color of each pixel is determined by the combination of the red, green, and blue 

intensities stored in each color plane at the pixel's location. 

Graphics file formats store truecolor images as 24-bit images, where the red, green, 

and blue components are 8 bits each. This yields a potential of 16 million colors. The 

precision with which a real-life image can be replicated has led to the commonly used 

term truecolor image. 

A truecolor array can be of class uint8, uint16, single, or double. In a truecolor array 

of class single or double, each color component is a value between 0 and 1. A pixel 

whose color components are (0, 0, 0) is displayed as black, and a pixel whose color 

components are (1, 1, 1) is displayed as white. The three color components for each 

pixel are stored along the third dimension of the data array. For example, the red, 

green, and blue color components of the pixel (10,5) are stored in RGB(10,5,1), 

RGB(10,5,2), and RGB(10,5,3), respectively [5]. 

 
Fig 1.5: Truecolor Image with corresponding pixel entries [5] 
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1.1.2 Image Statistics 

a. Histogram 

The histogram of the gray scale image is a graph indicating the number of times a 

gray level exists in the image. The histogram of a digital image with gray levels in the 

range [0, L-1] is a discrete function 

( )k kh r n          (1.3) 

where  

kr  is the kth gray level and   

kn  is the number of pixels in the image having gray level kr .  

It is common practice to normalize a histogram by dividing each of its values by the 

total number of pixels in the image, denoted by n.  

Thus, a normalized histogram is given by: 

( ) k
k

n
p r

n
  for k=0, 1, p , L-1      (1.4) 

Here ( )kp r gives an estimate of the probability of occurrence of gray level kr . The sum 

of all components of a normalized histogram is equal to 1[2]. 

A great deal of information can be inferred from the histogram of the image: 

 In a dark image, the histogram is cluttered at the lower end 

 In a uniformly bright image, the histogram is cluttered at the upper end. 

 In a well contrasted image, the histogram is spread out across the intensity 

levels. 

                          

 

Fig 1.6 (a): Image Lena (Dark) 
Fig 1.6 (b): Corresponding Histogram 

The peaks are concentrated at the lower end 
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b. Mean 

Image mean is the average pixel value of an image. For an image f(x, y) denoted as f, 

the mean x can be given by the following equation: 

1 1

0 0

1
[ ] ( , )

Y X

y x

x f f x y
YX

 

 

         (1.5) 

The mean of a grayscale image is the measure of average brightness or average 

intensity. 

c. Variance and Standard Deviation 

The image variance, 2  gives an estimate of the spread of pixel values around the 

image mean. The variance of an image f can be calculated using the following: 

2 2[ ] [ [ ]]f x f x f          (1.6) 

   
1 1

2

0 0

1
( ( , ) [ ])

Y X

y x

f x y x f
YX

 

 

   

   

2
1 1 1 1

0 0 0 0

1 1
( , ) ( , )

Y X Y X

y x y x

f x y f x y
YX YX

   

    

 
   

 
   

The variance can also be expressed as: 

2 2 2[ ] [ ] [ ]f x f x f         (1.7) 

   

2
1 1 1 1

2

0 0 0 0

1 1
( , ) ( , )

Y X Y X

y x y x

f x y f x y
YX YX

   

   

   
    
   

   

Fig 1.6 (b): Corresponding Histogram 

The peaks are distributed over the entire range 

Fig 1.7 (a): Image Lena (Contrast 

enhanced) 
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The standard deviation  is the measure of dispersion of data. Lower value of 

standard deviation means less dispersion, i.e. values are similar, and a larger value 

indicates high dispersion. Standard deviation  is simply the square root of variance, 

i.e. 2  

d. Entropy 

The histogram of an image is a probability distribution of pixel values. For a gray 

scale image with z levels the histogram can be denoted as p (z).  The entropy for 

image f can thus be expressed as: 

1

2

0

( ) ( ) log ( )      
Z

z

H f p z p z bits




 
            (1.8) 

When all intensities have equal frequency, the value of entropy attains its maximum 

value which is equal to 2log z . Entropy measures the information content of an image. 

 

1.2  Problem Formulation and Thesis Organization 

The basic aim of this thesis is the estimation of uncorrupted image from the corrupted or 

noisy image without loss of information. This process is also referred to as “denoising”. 

The technique used for denoising plays a major role in the quality of the resultant 

uncorrupted image. In this thesis a number of popular denoising techniques have been 

studied and each is implemented in Matlab 7.9[8]. Each method is compared in terms of 

its visual and quantitative performance. To evaluate the performance of denoising 

techniques, high quality standard test images such as “Lena”, “Cameraman”, “Pepper”, 

“Pirate” and “Baboon” were taken, and some noise was added to them. This noisy image 

became the input to the denoising algorithms. To quantify the performance parameters 

such as Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE) were used.  
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The rest of the thesis is organized as follows. Chapter 2 discusses the various noise types 

and presents a survey of various techniques available for denoising Impulse Noise in 

images. Chapter 3 introduces the proposed impulse noise removal algorithm “A Novel 

Approach for Salt and Pepper Noise Removal based on Heuristic Analysis of Neighboring 

Pixels” (SPHN). Chapter 4 presents the comparative study of popular denoising 

techniques along with the proposed filter (SPHN). It also tabulates the PSNR and MSE of 

these techniques. It further discusses the future scope of the work presented in the thesis.  
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Chapter 2: Noise 

In everyday language we use the word noise to mean unwanted sound. In physics and analog 

electronics noise means any unwanted addition to the signal. In other words noise can be 

defined as any quantity that disrupts the normal functioning of the system. 

Image noise is any random variation in the brightness and intensity information in images. 

Noise can be introduced in the images during their acquisition, transmission, storage or 

retrieval. Thus the fundamental problem in image processing is noise removal. The nature of 

the noise removal algorithm depends on the type of noise in the image. 

2.1. Types of Noise in Images 

2.1.1. Impulse Noise 

Fat-tail distributed or "impulsive" noise is sometimes called salt-and-pepper noise or 

spike noise [2]. Impulsive noise consists of relatively short duration of “on/off” noise 

pulses which are caused by a variety of sources, such as switching noise, adverse 

channel environments in a communication system etc. An impulsive noise filter can 

be used for enhancing the quality and intelligence of noisy signals, and for achieving 

robustness in pattern recognition and adaptive control systems [6].  

In an image corrupted by impulse noise, some pixels are noisy while others remain 

unaffected by noise. The pixels are affected by some probability as shown in Eq. 2.1 

and 2.2. In case of colored images either all or one or two of its components can be 

corrupted with impulse noise. 

In case of Salt & Pepper Noise (SPN) or Fixed Valued Impulsive Noise, the noisy 

pixel value will be equal to either nmin (0) or nmax (255), whereas for Random Valued 
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Impulsive Noise (RVIN) the noisy pixel value can be any value in the range nmin to 

nmax.  

Salt and Pepper noise can be mathematically represented as in 2.1 : 


,

  255         

,           1-i j

zero or with probability p

i j x with probability py       (2.1) 

where 
,i jy represents the noisy image pixel, p is the total noise density of impulse 

noise and 
,i jx represents the uncorrupted image pixel. 

Random Valued impulse noise can be mathematically represented as in 2.2: 

 ,

,

       

,        1-
i j

i j

n with probability p

i j x with probability py        (2.2) 

where 
,i jn is the gray level of the noisy image. 

Figure 2.1 shows an image (Cameraman) contaminated by 10% Salt and Pepper 

Noise. 

           

 

2.1.2. Gaussian Noise 

Gaussian noise is a form of additive noise. Additive noise is governed by the rule in 

equation 2.3. ( , ) ( , ) ( , )w x y s x y n x y       (2.3) 

where: 

Impulse noise

Fig 2.1(a): Original Image (Cameraman) 

Fig 2.1(b): Image (Cameraman) 

contaminated by 10% Salt and Pepper Noise  
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( , )s x y  is the original signal, ( , )n x y is noise introduced into the original signal to 

produce corrupted image ( , )w x y  and ( , )x y  is the pixel location. 

Gaussian noise is evenly distributed over the signal [7]. This means that each pixel in 

the corrupted image is the sum of its original value and the random Gaussian 

distributed noise value. 

Gaussian noise is so named because the noise follows a Gaussian distribution curve, 

which is a bell shaped curve given by equation 2.4 

2

2
( )

2

2

1
( )

2

g m

F g e 

 

 

       (2.4) 

Where g is the gray level, m is the mean or average of the function and  standard 

deviation of the noise. The Graph of the Gaussian distribution is a bell shaped curve, 

as shown in figure 2.2. 

 

 

Figure 2.3 shows image (Cameraman) corrupted by Gaussian noise with zero mean 

and variance equal to 0.05. 

Fig 2.2: Gaussian distribution 
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2.1.3. Speckle Noise 

Multiplicative Noise or speckle noise is a signal dependent form of noise whose 

magnitude is related to the value of the original pixel [8]. Speckle noise is 

encountered in some imaging applications such as ultrasound imaging and synthesis 

aperture radar (SAR) imaging.  The speckle noise is a signal dependent noise; this 

means that if the intensity of pixel is high then the noise intensity is also high.  

It is given according to the equation 2.5.  

( ) ( ). ( )SNn t t S t         (2.5 a) 

or, ( , ) ( . ) ( , ). ( , )SNX m n X m n m n X m n       (2.5 b) 

where ( )t is random variable and ( )S t is the magnitude of the signal. 

An image when corrupted by Speckle Noise appears as shown in figure 2.4. 

     

 

 

Fig 2.3(a): Original Image (Cameraman) Fig 2.3(b): Image (Cameraman) contaminated with 

Gaussian noise with zero mean and variance 0.05 

Fig 2.4(a): Original Image (Cameraman) Fig 2.4(b): Image (Cameraman) contaminated with 

Speckle Noise 
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2.2. Literature Survey 

Images are often contaminated by a variety of noises. The efficiency of image 

processing algorithms greatly depends on the quality of the images provided as input. 

Low quality, corrupted images lead to bad results. Thus noise removal becomes an 

essential pre processing step for any image processing algorithm. Several noise removal 

techniques have been proposed in the scientific literature. Impulse noise is one of the 

most common types of noise found to contaminate images. Impulse noise removal 

techniques can be broadly classifies into Linear and Non Linear methods.  

Linear Filters are the simplest type of filters; they apply the denoising algorithms to all 

image pixels irrespective of whether the pixel being processed is noisy or noise-free. 

Non Linear filters, however, first classify pixels into noisy and noise-free pixels, 

applying the denoising technique to only the noisy pixels. Thus Non Linear filters 

generally provide better results.  Linear filters cause blurring of fine image details such 

as textures and edges, due to indiscriminate filtering; non linear filters are thus better 

suited due to their improved performance in terms of noise removal and edge/ detail 

preservation.  

One of the earliest types of filters proposed is the Moving Average Filter [2], the Mean 

Filter [2] and the Median Filter [2]. These filters form the basis of several techniques.  

 Moving Average Filter[2] 

The Moving Average Filter involves a sliding window of size (2K+1) × (2K+1), 

where K varies from 1 to n. this window scans the entire image row wise and 

column wise, each time replacing the value of the central pixel with the average of 

all the pixels within the window.  

, ,2
( , )

1

(2 1)
i j u v

u v S

Y X
K 




       (2.6) 
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where: 

X is the noisy image, Y is the restores image and S represents the sliding window. 

It performs is poorly in terms of both visual and quantitative results. 

 Standard Median (SM) Filter[2] 

The Median filter is one of the most popular filters. It is very easy to implement 

and also relatively affective. The main functioning of the filter is same as the 

average filter but here the central pixel in the window is replaced by the median of 

all the neighboring pixels within the window. 

, ( , ) ,( )i j u v S u vY Median X       (2.7) 

Several types of median filters based on the window size have been implemented. 

Some of the most common window sizes in use are: (3×3) and (5×5). 

However both the averaging filter and the median filter face some serious drawbacks. 

These filters cause the blurring of edges and other fine image details and are effective at 

only low noise densities. At noise densities exceeding 50% the output images of these 

filters show loss of details. 

The classical median filter paved a way for the development of several other filters. 

These modified forms of the median filter attempt to remove the drawbacks faced by 

the median filter. Some of the popular median based filtering techniques are weighted 

median (WM) filter [9], center weighted median (CWM) filter [10],adaptive centre 

weighted median (ACWM) filter[11],switching median [SWM] filter [12], tri-state 

median (TSM) filter [13], directional weighted median (DWM) filter [14], modified 

switching median (MSWM) filter [15], adaptive median (AM) filter [16] ,progressive 

switching median (PSM) filter [17] and multi-state median (MSM) filter [18]. 
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 Weighted Median (WM) Filter[9] and Centre Weighted Median (CWM) Filter[10] 

The WM filter is an extension of the Standard Median filter, in the WM filter 

Brownrigg modified the SM filter to include certain weighing parameters, based on 

which the filtering was performed. The CWM filter is an extension of WM filter, 

which gives more weight to the centre values within the window. The CWM filter 

allows certain degree of control over the smoothing behavior typical to median 

filters through the weights that can be set. This technique uses two steps. It first 

classifies the pixels into noisy and noise-free and in the second step it performs the 

filtering operation only on the corrupted pixels.  

 Adaptive Centre Weighted Median (ACWM) Filter[11] 

It devises a novel adaptive operator, which forms estimates based on the 

differences between the current pixel and the outputs of centre-weighted median 

(CWM) [10] filter with varied centre weights.  This filter designs an adaptive 

operator which detects the impulse noise corrupted pixels by using the difference 

between the outputs of the CWM filter and the current pixel. The filtering 

operation consists of replacing the corrupted pixel with the median. 

 Tri-State Median (TSM) Filter [13] 

This filter has been proposed to enable noise suppression while preserving image 

details. Tri-State Median filter incorporates both the Standard Median filter [2] and 

the Centre Weighted Median filter [10] in order to make an informed decision 

about the pixel under consideration. In order to classify the pixel into corrupted and 

uncorrupted pixels, the TSM filter compares the outputs of the SM filter and CWM 

filter with the current pixel to reach a tri-state decision. The switching is controlled 

by a threshold, which ultimately affects the performance. 
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 Directional Weighted Median (DWM) Filter [14] 

Directional Weighted Median Filter uses a detector based on the differences 

between the central pixel and the pixels along the four main directions. It uses the 

weighted differences in a 5×5 window and finds the minimum value. This 

minimum weighted directional difference is compared to a fixed threshold based 

on which the pixel is classified as noisy or noise-free. In the filtering stage it 

assigns weights to the pixels of the four directions based on the standard deviation 

of these directions and replaces the corrupted pixel with the weighted median. This 

algorithm when performed iteratively is suited for highly corrupted images. 

 Adaptive Median (AM) Filter [16] 

The adaptive median filter (AMF) [16] uses a varying window size in order to be 

able to remove noise. It uses the two major decisions, one involving detection of 

corrupted pixels and the other decision is to check whether the correct value of the 

median has been reached and hence whether or not to increase the window size. If 

the value of the median calculated is less than the minimum pixel value or greater 

than the maximum pixel value within the window, then this median is termed as 

incorrect and hence the window size is increased. The window size is increased till 

we obtain the correct median or the upper limit for size is reached. 

 Progressive Switching Median (PSM) Filter [17]  

The progressive switching median filter is a two phase filter; in the first phase, 

detection of corrupted pixels take place using a fixed window size of 3×3. In the 

second phase the corrupted pixels are replaced by the median value calculated 

similar to the AM filter [16]. 
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 Multi-State Median (MSM) Filter [18] 

This filter presents a generalized framework of median based switching schemes. It 

uses threshold to switch among a group of CWM filters [10] having different 

centre weights. 

Several other filters like “A New Adaptive Switching Median (ASWM) filter [19], 

Fuzzy Switching Median (FSM) filter [20] and Noise Adaptive Fuzzy Switching 

Median (NAFSM) Filter [21] are also based on the standard median[2] filter. 

ASWM proposed by Smail et al, calculates the weighted mean and weighted 

standard deviation to filter out impulse noise. Fuzzy switching median (FSM) filter 

[20] and noise adaptive fuzzy switching median (NAFSM) filter [21], use fuzzy 

reasoning along with SM filter to carry out impulse noise removal. These filters are 

an improvement over the standard median filter, but have various shortcomings 

like large computation time, poor denoising in high density noise, loss of image 

details, blurring of edges etc. 

Apart from these classical filtering techniques, fuzzy filters are another important 

class of filters. Fuzzy filters are realized by means of simple fuzzy rules that define 

some type of noise. several fuzzy filters have been proposed, such as Fuzzy 

Inference Rules by Else action (FIRE) filters by Russo [22]-[26]. Due to good 

performance of FIRE filters, these have been used by several authors such as Ville 

[27]. A multilevel fuzzy filter was developed by Russo [28], which involves three 

cascaded blocks of FIRE Filters. Jiu [29] also proposed a multilevel filter in fuzzy 

domain. 

A number of other techniques such as those that utilize histograms of the images 

have also been proposed [30]-[33]. Another class of filters [34]-[37], use neural 

networks along with fuzzy rules for the purpose of denoising. 
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There are a number of techniques available for the removal of impulse noise in 

images, but the purpose here is not to provide an exhaustive list of all techniques 

available but to provide a brief introduction of some of them. The selection of the 

technique depends on the characteristics of the image processing algorithm to be 

followed. The selection can be based on a variety of factors such as the quantitative 

measures like Peak signal to Noise Ratio (PSNR) and Mean Squared Error (MSE), 

the time taken by the technique to produce the desired results, the noise density of 

the corrupted image.  

2.3. Performance Measures 

The metric used for evaluating and comparing the performances of different filters are 

defined below: 

a. Mean Squared Error (MSE) : 

In statistics, the mean squared error (MSE) of an estimator is one of many ways to 

quantify the amount by which an estimator differs from the true value of the 

quantity being estimated.  

For image processing, it is the cumulative squared error between the restored and 

the original image. A lower value of MSE means lesser error. It can be defined as 

in 2.8. 

   
3

2

1 1 1

, , , ,

( , )
3

L M

z x y

I x y z f x y z

MSE f I
L M

  

  


 



   (2.8) 

Where 

L, M   are the Image dimensions 

I(x, y, z) = the pixel values of restored image  

 f(x, y, z) = the pixel values of original image 

 



                                                                                                                                             
 

20 
 

 

b. Peak Signal To Noise Ratio (PSNR) : 

PSNR is the measure of peak error and estimates the quality of the reconstructed 

image with respect to the original image. A higher value of PSNR indicates better 

reconstruction. It can be mathematically defined as in 2.9: 

1
( , ) 10log

( , )
PSNR f I

MSE f I

 
  

        (2.9) 

c. Subjective or Qualitative Measure : 

Along with the quantitative measure namely MSE and PSNR, it is important to 

take under consideration the subjective performance i.e. the image quality   

performance measure subjective assessment is also required. The visual quality is 

related to the preference and judgement of the observer or the performance of an 

operator for some specific task. However perceptual quality evaluation is not a 

deterministic process. 
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Chapter 3: The Proposed Algorithm for Impulse Noise 

Removal 

Noise Removal is an important aspect of image processing. Impulse noise occurs due to 

errors in the communication channel, and hence is one of the most commonly found noise 

types afflicting images. The most important challenge faced when denoising an image 

corrupted by impulse noise is to preserve the image details and prevent blurring. Impulse 

noise, unlike Gaussian noise is not evenly distributed over the image. Thus, in an image 

corrupted by impulse noise, we can find several corrupted pixels along with several 

uncorrupted ones. Thus it is of paramount importance to not only be able to filter out the 

noise but to be able to detect pixels corrupted by noise.  

A number of impulse noise removal techniques have already been proposed in the scientific 

community, some of which were described in the previous chapter. This chapter presents a 

new algorithm for removal of impulse noise in images “A Novel Approach for Salt and 

Pepper Noise Removal based on Heuristic Analysis of Neighboring Pixels” (SPHN). This 

scheme works in two stages, the first stage identifies the noisy and noise-free pixels using the 

distance measures. The second stage restores the noisy pixel by first assigning weights to the 

pixels and finally replacing the noisy value with weighted median. 

 

3.1 The Proposed Technique 

SPHN is a double stage filter; the first stage identifies the noisy and noise-free pixels, the 

second stage performs filtering only on the noisy pixels. Not subjecting the noise-free pixels 

to filtering process helps preserve fine details and avoids blurring. The details of the two 

stages are as follows: 
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A. Detection Stage:  

In the detection stage the corrupted image X is subjected to a 3×3 window Wi,j centered at 

pixel xi,j. The current pixel is compared to the maximum and minimum values lmax and lmin 

respectively within the current window; if the pixel is equal to either of the two values it is a 

noisy candidate. 

 min , max

, min , max

             

,          
i j

i j i j

noise free if l x l

i j noise candidate if x l or x lx
  

 
  (3.1) 

where: 

max
l

= local maxima within the current window 

min
l = local minima within the current window 

Once identified as a noise candidate it is important to ascertain that the pixel is an isolated 

maximum or minimum value i.e. noise, and not a part of any edges. To do this, calculate the 

distance of all pixels in the window with the central pixel as below 

(i iabs p  
  (3.2) 

where: 

i = distance of i
th

 pixel from the central pixel 

ip = i
th

 pixel 

 =central pixel in the 3×3 window 

Next we calculate the average 
avg  of all the distances i  

By comparing this average distance 
avg with the global maxima , we can classify are pixel 

into noisy or noise free according to equation 3.3 

          (

,        
avgNoisy Pixel if of

i j Noise Free otherwisex
    

   (3.3) 
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If according to Eq. 3.3 pixel is noisy, we process it further. 

The next step is to find the value of pixels 
1 2  p and p  in the neighborhood  having the least 

distance i (from ) and calculate their average
avg . 

Finally we classify the pixel as noisy or noise-free according to equation 3.4.

          (

,        
avgNoisy Pixel if of

i j Noise Free otherwisex
    

   (3.4) 

If the central pixel is noisy it undergoes the filtering stage, else if it is noise-free no further 

processing is needed. 

B. Filtering Stage:  

When the noisy pixels are identified, they are subjected to filtering.  

In the filtering stage the first step is to calculate the mean i of pixels in all directions 1  (L to 

R), 2 (T to B), 3 (TL to BR) and 4 (TR to BL).  

 

 

Next the distance of each pixel ip  from its mean i is calculated. Now the average of the 

distances 
iavg  for each direction i as shown in figure 3.1 is calculated.  

The next step is to assign weights ( 1 8  w to w ). Pixels in the direction with minimum 
iavg gets 

highest weight (4). Pixels in the direction of second minimum 
iavg gets weight 3. Similarly 

we assign weights 2 and 1 to directions with 3
rd

 and 4
th

 minimum 
iavg  respectively. 

   

L  R 

   

 T  

   

 B  

TL   

   

  BR 

  TR 

   

BL   

Fig. 3.1: The direction used to calculate the distances. 
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After assigning the weights the restoration of the corrupted pixels is done according to Eq. 

3.5 

  ,

, ,

,

                  

,                                       

i

i j

i j i j

i j

median w x if x is noisy

i j x if x is noise freey


   (3.5) 

where: 

iw = weight assigned to the pixel 

 = repetition operator 

3.2 Algorithm 

The proposed filter (SPHN) has been presented in the previous section; it can be summarized 

as below: 

Detection Stage: 

1. Subject the corrupted image X to a 3×3 window Wi,j centered at pixel xi,j.  

2. Compare the current pixel xi,j to the maximum and minimum values lmax and lmin 

respectively within the current window; the pixel is classified as a noise candidate or  a 

noise-free pixel according to equation (3.1). 

3. Now in order to ascertain that the noise candidate is indeed a noisy pixel and not an edge 

pixel, calculate the distance of all pixels in the window with the central pixel according 

to Eq. 3.2 

4. The next step is to calculate the average 
avg  of all the distances i .  

5. In order to segregate noise-free pixels from noisy pixels we compare the average distance 

avg with the global maxima . The classification of noisy and noise free pixels is done 

according to Eq. 3.3. Further processing is done on the noisy pixel. 

6. The next step is to find the value of pixels 1 2  p and p  in the neighborhood  having the 

least distance i (from ) and calculate their average
avg . 

7. Finally the pixel is classified as noisy or noise-free according to equation 3.4. 
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The pixels identified as noisy pixels are subjected to the filtering stage. 

Filtering Stage: 

1. In the filtering stage the first step is to calculate the mean i of pixels in all directions 1  

(W to E), 2 (N to S), 3 (NW to SE) and 4 (NE to SW).  

2. Next the distance of each pixel ip  from its mean i is taken and corresponding average  

iavg
 calculated as shown in figure 3.1 is calculated.  

3. Next the weights (
1 8  w to w ) are assigned. Pixels in the direction with minimum 

iavg gets 

highest weight (4). Pixels in the direction of second minimum 
iavg gets weight 3. 

Similarly we assign weights 2 and 1 to directions with 3
rd

 and 4
th

 minimum 
iavg  

respectively. 

4. After assigning the weights the restoration of the corrupted pixels is done according to 

Eq. 3.5 

Section 3.3 illustrates the algorithm with the help of an example and section 3.4 gives its 

detailed Flow Chart. 
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3.3 Illustration 

3.3.1 The Detector 
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=Global 
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Fig 3.2: Illustration of the proposed algorithm. 

a) The detector 
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3.3.4 The Filter 
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Calculate the mean of pixels in all directions. 
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4
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TR, BL; wt=1 

 

 Finally using these weights; restore the pixel using weighted median. 

 

Fig 3.2: Illustration of the proposed algorithm. 

b) The filter 
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3.4 Flow Chart for the Proposed Algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Fig 3.3: Flow chart of the proposed algorithm (SPHN) 
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Where:  

lmax = local maxima in the current window 
ip = i

th
 pixel 

lmin = local minima in the current window 
avg = average of all distance values 

 = central pixel of the current window   = global maxima for the image 

i = distance of pixel I from central pixel avg = average of pixels nearest to central pixel    

1 , 2 , 3 , 4 = mean of pixels in all directions avg = distance average 

1 8  w to w = weights assigned to pixels  = repetition operator 

 

3.4 Summary 

This chapter presents the proposed SPHN algorithm. This two stage algorithm uses distance 

calculations to identify noisy pixels. It then assigns weights to the pixels and finally restores 

them using the weighted median. 

The advantage of this technique lies within the fact that it does not require any prior 

calculations. It uses an adaptive threshold for classifying pixels or restoring them. Moreover 

the algorithm is easy to understand and implement.  

The next chapter discussed the quantitative and qualitative results for the proposed algorithm 

It also compares the SPHN algorithm with existing techniques. 

 ,,    i ji j median w xy   

Final Image 

Assign weights 1 8  w to w  to all pixels; Pixels 

in the direction with minimum 
iavg gets 

highest weight 

 

Calculate distance of every pixel from its 

corresponding mean and take its average 
iavg  

 

X 

Fig 3.3 contd.: Flow chart of the proposed algorithm (SPHN) 
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Chapter 4: Simulations, Results and Comparisons  

The previous chapter presents a new technique for impulse noise removal based on heuristic 

analysis of neighboring pixels. The algorithm uses distance calculations to identify noisy 

pixels. It then assigns weights to the pixels and finally restores them using the weighted 

median. 

To evaluate the performance of the algorithm, high quality standard test images such as 

“Lena”, “Cameraman”, “Pepper”, “Pirate” and “Baboon” were taken, and some noise was 

added to them. This noisy image became the input to the denoising algorithm. To quantify the 

performance, parameters such as Peak Signal to Noise Ratio (PSNR) and Mean Square Error 

(MSE) are used. The PSNR and MSE values at noise densities ranging from 10% to 90% for 

all the test images have been tabulated in table 4.1. 

 

Type of 

image 

Noise in % 

10 20 30 40 50 60 70 80 90 

PSNR(dB) 

Peppers 87.84 80.55 77.60 70.95 69.00 66.91 64.40 65.17 65.54 

Lena 72.01 71.65 69.70 68.95 66.26 64.03 62.68 62.92 63.33 

Baboon 77.13 76.29 69.98 64.90 61.97 60.42 59.70 58.52 60.01 

Pirate 85.16 75.62 71.06 68.27 65.85 64.58 61.47 61.53 63.26 

Cameraman 69.56 67.42 66.78 65.93 65.67 65.15 63.70 63.71 63.72 

MSE 

Peppers 0.01 0.05 0.07 0.08 0.09 0.13 0.23 0.19 0.18 

Lena 0.03 0.04 0.07 0.08 0.15 0.25 0.35 0.33 0.35 

Cameraman 0.07 0.14 0.17 0.18 0.19 0.19 0.27 0.25 0.27 

Baboon 0.01 0.02 0.03 0.05 0.07 0.09 0.13 0.12 0.13 

Pirate 0.07 0.08 0.09 0.13 0.16 0.22 0.46 0.45 0.47 

Table 4.1: PSNR and MSE values for various test images at varying noise intensities for the proposed 

algorithm (SPHN) 
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Higher the value of PSNR the better is the restoration performance. Similarly a lower value 

of MSE indicates lower error rate.  

As can be observed from table 4.1, the proposed SPHN algorithm works well at both high 

and low noise densities. It has the highest value of PSNR equal to 87.84 dB for image 

“Peppers” at 10% noise. At 10% noise the lowest PSNR of 69.56 dB is observed for image 

“Cameraman” From noise density equal to 90 % the PSNR value for “Peppers” is 65.54 and 

for “Cameraman” is 63.72 dB. For other images “Baboon”, “Lena” and “Pirate” the PSNR 

values at 90% noise are 60.01, 63.33 and 63.26 respectively. 

The lowest value of MSE equal to 0.01 is observed at 10% noise for image “Peppers”. For 

image “Pirate” and “Cameraman” the MSE value is 0.07. This value increases to 0.18 for 

image “Peppers” and 0.47 for “Pirate” and to 0.27 for “Cameraman”. The MSE values for 

images “Lena” and “Baboon” vary from 0.03 and 0.01 respectively at 10% noise to 0.30 and 

0.13 respectively at 90% noise 

Thus it can be concluded that even for a varied selection of images, the proposed algorithm 

works well at both high and low noise densities. 

The following pages present the noisy as well as denoised images at different noise densities. 

Fig 4.1 presents the original test images used. Fig 4.2 shows the test image “Cameraman” at 

30 % noise and the corresponding denoised image. Fig 4.3 and Fig 4.4show “Cameraman” at 

40% and 50% noise respectively, along with the denoised image. Fig 4.5, 4.6 and 4.7 show 

image “Peppers” at 30%, 40% and 50% noise along with denoised images. Fig 4.8, 4.9, 4.10, 

4.11, 4.12 and 4.13show images “Lena” and “Pirate” corrupted by 30%, 40% and 50% noise 

respectively, along with the denoised image. Fig 4.14, 4.15 and 4.16 show the noise corrupted 

and denoised image for “Baboon”. 
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(a)        (b) 

 

(c)        (d) 

 

(e) 

Fig 4.1: Test images (a) Cameraman (b) Peppers (c) Pirate (d) Lena (e) Baboon 
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Fig 4.2: Image (a) Cameraman corrupted with 30% noise (b) Corresponding 

denoised image 
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Fig 4.3: Image (a) Cameraman corrupted with 40% noise (b) Corresponding 

denoised image 



                                                                                                                                             
 

35 
 

 

 

 

 

 

             

 

 

 

 

 

  

Fig 4.4: Image (a) Cameraman corrupted with 50% noise (b) Corresponding 

denoised image 
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Fig 4.5: Image (a) Peppers corrupted with 30% noise (b) Corresponding 

denoised image 



                                                                                                                                             
 

37 
 

 

 

 

 

 

             

 

  

Fig 4.6: Image (a) Peppers corrupted with 40% noise (b) Corresponding 

denoised image 
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Fig 4.7: Image (a) Peppers corrupted with 50% noise (b) Corresponding 

denoised image 
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Fig 4.8: Image (a) Pirate corrupted with 30% noise (b) Corresponding denoised 

image 
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Fig 4.9: Image (a) Pirate corrupted with 40% noise (b) Corresponding denoised 

image 
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Fig 4.10: Image (a) Pirate corrupted with 50% noise (b) Corresponding denoised 

image 
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Fig 4.11: Image (a) Lena corrupted with 30% noise (b) Corresponding denoised 

image 
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Fig 4.12: Image (a) Lena corrupted with 40% noise (b) Corresponding denoised 

image 
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  Fig 4.13: Image (a) Lena corrupted with 50% noise (b) Corresponding denoised 

image 
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Fig 4.14: Image (a) Baboon corrupted with 30% noise (b) Corresponding 

denoised image 
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Fig 4.15: Image (a) Baboon corrupted with 40% noise (b) Corresponding 

denoised image 
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Fig 4.16: Image (a) Baboon corrupted with 50% noise (b) Corresponding 

denoised image 
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For the purpose of comparison the several standard techniques such as SDOD [39], ASWM 

[19], SM [2] filter, CWM [10] filter, CEF[41] and EEPA [40] were implemented in Matlab 

7.9[8], the image “Lena” was provided as input and the outputs were observed.  

The PSNR and MSE values of the SPHN filter are compared against the existing algorithms 

such as SDOD [39], ASWM [19], SM [2] filter, CWM [10] filter, CEF[41] and EEPA [40] by 

varying  the noise density from 10% to 90% and are shown in Table 4.2 and Table 4.3. 

 

 

 

 

 

Noise 

in % 

PSNR(dB) 

SDOD ASWM SM CWM CEF EEPA SPHN 

10 25.83 33.9 36.50 36.98 39.05 41.26 72.01 

20 25.60 33.57 34.53 35.23 37.56 38.95 71.65 

30 25.22 33.02 31.42 32.45 35.42 37.39 69.70 

40 25.00 32.22 28.08 29.12 32.87 35.03 68.95 

50 25.00 31.29 25.51 26.23 31.95 34.79 66.26 

60 24.45 27.95 22.01 23.33 31.15 34.23 64.03 

70 24.32 29.26 20.51 20.14 29.90 33.45 62.68 

80 24.16 28.27 17.16 18.67 28.75 32.36 62.93 

90 24.08 27.36 12.01 13.21 27.63 31.45 63.33 

Table 4.2: Comparisons of Restoration Results in PSNR (dB) for Seven Reference Algorithms 

Corrupted By Varying Noise Intensities for Test Image “Lena” 
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From the Tables 4.3 and 4.4, it is observed that the performance of the proposed algorithm 

(SPHN) is better than the existing algorithms at both low and high noise densities. 

The highest PSNR in the table 72.01 dB at 10% noise is for SPHN algorithm. The next in line 

is 41.26 dB for EEPA. The proposed filter has the lowest MSE value of 0.03 at 10% noise. 

This value increases to 0.35 at 90% noise. It can thus be concluded that the propose SPHN 

filter works well on high and low noise density images. 

A plot of PSNR and MSE values against noise densities for Lena” image is shown in Fig. 

4.17. 

Noise 

in % 

MSE 

SDOD ASWM SMF CWMF CEF EEPA SPHN 

10 89.90 26.26 26.12 23.78 
 

25.20 30.60 0.03 

20 90.23 28.53 45.34 36.12 
 

26.60 32.55 0.04 

30 92.55 32.40 90.23 78.34 
 

27.80 37.42 0.07 

40 95.05 38.96 118.78 120.53 
 

29.41 45.67 0.08 

50 96.12 48.20 235.65 250.68 29.79 57.18 0.15 

60 96.78 104.1890 312.45 345.15 30.01 70.60 0.25 

70 97.34 77.0421 500.89 511.78 30.76 85.54 0.35 

80 98.23 96.6521 825.67 789.68 31.13 100.53 0.33 

90 98.65 119.2638 875.12 890.50 31.78 112.26 0.35 

Table 4.3: Comparisons of Restoration Results in MSE for Seven Reference Algorithms Corrupted 

By Varying Noise Intensities for Test Image “Lena” 
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Fig.4.17 Comparison graph of PSNR and MSE at different noise densities for ‘Lena’ image 
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In order to explore the visual quality, the reconstructed images of different denoising methods 

in restoring 30% corrupted image “Lena” is shown in Fig: 4.18 

 

 

 

 

 

We can see from the plots of PSNR and MSE with Noise % that the SPHN filter works better 

than the already existing techniques. Thus observing the visual and quantitative results we 

can come to a conclusion that the proposed filter works better from many existing techniques. 

  

noisy image Removed noise Removed noise

Removed noise
Removed noise

Removed noise

Fig 4.18: Restoration results of different methods in restoring corrupted image “Lena.” (a) corrupted image with 30% 

impulse noise, (b) SDOD, (c) ASWM (d) SM (e) CWM (f) CEF (g) EEPA 

(h) SPHN 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) 
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Chapter 5: Conclusions and Future Work 

The basic aim of this thesis is to understand the concept of impulse noise removal and to 

design an algorithm which works better than existing techniques. Impulse noise removal is an 

important area in the field of digital image processing. It is an important pre processing step 

to implement any image processing algorithm. 

The first chapter introduces the concept of image processing. It explains in depth about the 

types of images, and the operations that can be applied to the images. The second chapter 

introduces the concept of noise. It tells about the different types of noise that can affect an 

image. Concentrating on impulse noise removal, it enlists a variety of existing techniques that 

deal with this area. Next it tells about the performance measures that can be used to 

quantitatively study the efficiency of the techniques.  

The third chapter presents the proposed filter “A Novel Approach for Salt and Pepper 

Noise Removal based on Heuristic Analysis of Neighboring Pixels” (SPHN). It also gives 

its algorithm and flow chart. It is a two step algorithm, which uses the distance calculations of 

the neighborhood in order to classify noisy and noise-free pixels. In the filtering stage, it 

assigns weights to the pixels according to some calculations and an adaptive threshold. It then 

filters the noisy pixels using the weighted median. 

To analyze the performance the algorithm was implemented using Matlab 7.9[8] and a  

number of test images namely “Cameraman”, “Peppers”, “Pirate”, “Lena” and “Baboon” 

were used. The fourth chapter analyzes the performance of the proposed filter on various 

images at varying noise levels and also compares it with many existing filters.  It concludes 

that the proposed filter works well at both low and high noise densities and also in 

comparison to some popular techniques.  
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This thesis is limited to applying the algorithm on images in gray scale only. In future the 

algorithm can also be implemented on color images. Future work can be extended to reduce 

the false and miss detection count to improve the detector capability. 
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