

i

Major Project Report

On

FUZZY IMPULSE NOISE REMOVAL IN VIDEO SEQUENCES

USING BACTERIAL FORAGING ALGORITHM

 Submitted in partial fulfillment of the requirements

For the award of the degree of

Master of Technology

In

Information Systems

Submitted By:

 TULIKA BANSAL

 Roll No. 17/ISY/2K10

Under the Guidance of

Dr. O. P. Verma

(HOD, IT Department)

 Department of Information Technology

DELHI TECHNOLOGICAL UNIVERSITY

Bawana Road, Delhi-110042

2010-2012

ii

CERTIFICATE

This is to certify that the work contained in the thesis titled “Fuzzy Impulse Noise Removal In

Video Sequences Using Bacterial Foraging Algorithm” is an original piece of work which has

been carried out by Tulika bansal (17/ISY/2K10) under my supervision. This work has not

been submitted elsewhere for a degree.

Dr. O.P.Verma

HOD (IT Dept.)

Department of Information Technology

Delhi Technological University, Delhi

June 2012

iii

ABSTRACT

This thesis presents a new optimized fuzzy filter for denoising of color video sequences

corrupted with random impulse noise. Optimization is done using Bacteria Foraging Algorithm

(BFA). RGB color model is used to represent the frames of the color video. Two successive

steps of filtering are used to remove the noise from the video. The first step detects the noisy

pixels along with the amount of noise present and are then corrected using the median of the

noise-free pixels. The output of the first step acts as an input to the second filtering step and

further refines the result to give the final output. The filter presented in this paper is a 3D spatio-

temporal filter that considers spatial, temporal as well as the color information. A pixel in one

color component is compared with its neighboring pixels within the same frame, with the

corresponding pixels in neighboring frames and also with the pixels in other two color

components. Six fuzzy membership functions are defined which are then applied to a fuzzy rule.

The fuzzy rule decides whether the given pixel is noisy or noisefree. Mean Square Error (MSE)

is used as an objective function, which is optimized using the bacterial foraging algorithm to

learn the parameters of membership functions. Finally, the correction term for each color

component of each frame is calculated which is added to the original noisy frame component to

remove the noise. Only noisy pixels are corrected while the noisefree pixels are left untouched.

The experimental result on several color video sequences proves that the impulse noise is

efficiently removed by the proposed fuzzy filter.

iv

Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. O.P.Verma for giving me an

opportunity to work with him and for his advice, encouragement and constant support. I wish to

thank him for extending me the greatest freedom in deciding the direction and scope of my

research. It has been both a privilege as well as a rewarding experience working with him.

I would also like to thank all my friends and colleagues here at Delhi Technological University

for their valuable comments and suggestions, many of which have been vital to this work.

Furthermore, I want to thank the faculty of Department of Information Technology and the staff

for providing me the means to complete my degree.

I would like to thank my parents for their love, sacrifice, understanding, encouragement and

support. I am forever indebted to them for all that they have given me. Finally, special thanks to

my brother for his love, affection and help.

TULIKA BANSAL

Roll No. 17/ISY/2K10

M.Tech (Information Systems)

Department of Information Technology

Delhi Technological University

Bawana Road, Delhi-110042

v

CONTENTS

List of Figures vii

List of Tables viii

1. INTRODUCTION 1

1.1 Noise . 2

1.2 Prior Work in Video . 3

1.3 Motivation and Proposed Work . 6

1.4 Thesis Outline . 7

2. FUZZY LOGIC 8

2.1 Introduction to fuzzy set . 9

2.2 Fuzzy sets in Image Processing . 10

2.3 Fuzzy Inference System (FIS) . 11

3. PROPOSED APPROACH 13

3.1 Impulse Noise . 14

3.2 Filtering Steps . 15

3.2.1 First Filtering Step . 15

3.2.2 Second Filtering Step . 32

4. OPTIMIZATION USING BACTERIA FORAGING 37

4.1 Evolutionary Algorithms . 38

4.2 Brief overview of Classical Bacteria Foraging Optimization Algorithm . . . 39

4.3 Parameter Training For Noise Removal With Bacterial Foraging 40

4.4 Initialization Of Parameters . 41

4.5 Effect on MSE after Optimization . 42

4.6 Effects of Parameter Variation . 44

vi

5. RESULTS AND DISCUSSION 47

5.1 Similarity Measure Space . 48

5.2 Comparison to Other State-of-the-Art Filters . 48

6. CONCLUSION AND FUTURE WORK 57

6.1 Conclusion . 58

6.2 Future Work . 59

References 60

vii

List of Figures

2.1 Fuzzy Image Processing [40] . 11

3.1 A scheme for computation of Median of the noise-free pixels [3] 18

3.2 The membership function µb of the fuzzy set Big . 19

3.3 The membership function µ(Kr) . 22

3.4 The membership function µ(D) . 22

3.5 The membership function µter(ω) for the fuzzy set terminal 23

3.6 The membership function µ(R1) . 25

3.7 The membership function µ(R2) . 25

3.8 The membership function µ(kr) . 28

3.9 The membership function µ(kg) . 28

3.10 The membership function µ(kb) . 28

3.11 The membership function µ(R1) . 30

3.12 The membership function µ(G1) . 30

3.13 The membership function µ(B1) . 30

3.14 The membership function µb(ζrg) . 34

3.15 The membership function µb(ζrb) . 34

3.16 The membership function µ(R11) . 35

3.17 The membership function µ(R21) . 35

3.18 Plot between MSE v/s initial values parameters . 46

5.1 PSNR results for the different methods 53

5.2 30th frame of the “Tennis” sequence . 54

5.3 30th frame of the “Bus” sequence . 55

5.4 30th frame of the “Salesman” sequence . 56

viii

List of Tables

4.1 Value of MSE and membership function parameters without optimization 43

4.2 Optimized Value of membership function parameters and the effect of bacterial foraging

optimization on MSE . 43

1

CHAPTER 1

INTRODUCTION

2

1.1 Noise

The signal is the planned, ordered information and important part of the data that we want to

measure. Noise on the other hand is the unwanted, unexpected and unstructured

information. Noise is random information and unpredictable variations in the measured signal.

The term noise usually means an undesirable random disturbance conflicting with the desired

signal.

Image noise is a random, unwanted variation in brightness or color information in an image. It

is undesirable and extraneous information that results in wrong pixels values. Image noise can

originate in film grain, or in electronic noise in the input device (scanner or digital camera)

sensor and circuitry, or in the unavoidable shot noise of an ideal photon detector. Incorrect

image acquisition and transmission are the major two factors responsible for introduction of

noise in images.

Although there are many types of image noises [1-2], Gaussian noise and salt-and-pepper noise

are the major two. The current work focuses on removal of salt-and-pepper noise from videos

using fuzzy filter. Fuzzy filters provide promising result in image-processing tasks that cope

with some drawbacks of classical filters. Fuzzy filter is capable of dealing with vague and

uncertain information. Sometimes, it is required to recover a heavily noise corrupted image

where a lot of uncertainties are present and in this case fuzzy set theory is very useful. Each

pixel in the image is represented by a membership function and different types of fuzzy rules

that considers the neighborhood information or other information to eliminate filter removes the

noise with blurry edges but fuzzy filters perform both the edge preservation and smoothing [3].

Salt and pepper noise is a form of noise typically seen on images. It represents itself as

randomly occurring white and black pixels. An image containing salt-and-pepper noise will

have dark pixels in bright regions and bright pixels in dark regions. This type of noise can be

caused by analog-to-digital converter errors, bit errors in transmission, etc. For images

corrupted by salt-and-pepper noise, the noisy pixels can take only the maximum and the

minimum values in the dynamic range. An effective noise reduction method for this type of

noise involves the usage of a median filter or a contra harmonic mean filter. Salt and pepper

3

noise creeps into images in situations where quick transients, such as faulty switching, take

place.

For removing noise from images, a number of fuzzy filters have been used in the past [4]. These

include FIRE filters [5-6], hybrid filters [7-10], fuzzy vector directional filters [11], fuzzy

median filters [12], and fuzzy stack filters [13] to name a few.

The mean filter or the average filter helps in smoothing operations. It suppresses the noise that is

smaller in size or any other small fluctuations in the image. Smoothing or averaging operation

blurs the image and does not preserve the edges. These are not used in removing noise spikes.

Adaptive weighted mean filter is similar to mean filter where the gray level is replaced by a

weighted average of the gray values. Weights are calculated from the gray-level difference. If

this difference exceeds a certain threshold, then the pixel is a noise pixel. Adaptive Weiner filter

replaces the center value of the pixel by sum of the local mean value and a fraction of contrast,

where this fraction depends on the local estimation of the variance [14]. Median filter is found to

be the most effective non linear filter for removing impulse noise but for higher noise level,

median filters lead to loss of details and lead to blurring [15]. Although multistate median filter

[16], and adaptive median filters [17] provided solution to the drawback of median filters but

these filters were also not able to provide satisfactory results at higher noise level.

1.2 Prior Work in Video

In this work we focus on removal of impulse noise from the video frames. However a number

of techniques have been developed in past to remove noise from image sequences, most of them

are either unable to provide desirable results or provide results only with low noise presence.

In this section we present an overview of the existing approaches for image sequence denoising.

A comparison between different methods is given in terms of their framework, denoising

performance and complexity.

With the advance in technology, capturing of videos has become much easier in today‟s time

but there are still a number of factors due to which impulse noise gets introduced into the

4

frames of the videos. Unprofessional acquisition and imperfect transmission are the major two

factors which lead to noise introduction in to the video frames. Presence of noise in image

sequences does not only hampers its visual quality but also effects the performance of a number

of processing tasks to be performed on video such as coding, analysis or interpretation [18].

Therefore, filtering algorithms are necessary to remove the noise from the frames as well as to

improve the performance of these processing tasks.

Spatial filters take into account only the current frame and remove noise from it independent of

the neighboring frames. The static filters are obtained by extending the 2D image filter support

to the 3D time-space support. We call them static because they do not take into account the

dynamic character of image sequences. A drawback of this approach is that the strong temporal

correlation in image sequences is not used. In addition, temporally inconsistent results may be

obtained, causing annoying artifacts. An advantage is that additional motion blurring is avoided.

Although purely spatial methods for image sequence filtering will be often used in hardware

implementations, they are hardly reported in scientific literature. The most classical example is

the arithmetic mean. Mean filter averages all the pixels in the neighborhood of the current pixel

and thus results in blurring of the edges as well as blurring of the moving regions. Furthermore,

it removes many details. Lee [19] statistical correction performs a more conservative estimate

when a large variance of the mean is observed. As a consequence, the edges and boundaries

between moving regions are kept noisy. The neighborhood (or sigma) filters [20, 21] avoid the

blurring effect of the mean filter. Neighborhood filters are based on the assumption that pixels

belonging to a same region have a similar grey level value. Therefore, one should restrict the

average to pixels with a small grey level difference with the one in restoration. The

neighborhood filter is a better denoising tool than Lee‟s correction. It maintains sharp

boundaries, since it averages pixels belonging to the same region as the reference pixel.

Unfortunately, this method fails when the standard deviation of the noise exceeds the contrast of

edges. The neighborhood filter does not blur the image as it averages only pixels with a similar

grey level but many isolated noisy points are still visible. All of the three above mentioned

classes of static filters are not adapted to the removal of local artifacts such as the “dirt and

sparkle”. The mean filter reduces these artifacts because it averages all the pixels inside the

spatiotemporal support. The cost of this reduction is the blurring of boundaries and details.

Since the mean performed at local artifacts has a large variance, the Lee statistical correction

5

performs a more conservative estimate and keeps the original values. Thus, it maintains dirt and

sparkle. Since the neighborhood filters average pixels with a similar grey level value, they also

keep these artifacts. The median filter [22] chooses the median value, that is, the value which

has exactly the same number of grey level values above and below in a fixed neighborhood.

This filter is optimal for the removal of impulse noise on images. This algorithm is able to

reduce the additive noise and to remove as well dirt and sparkle. The median filter preserves the

main boundaries, but it tends to remove the details and to blur the boundaries of moving

regions. The median filter preserves the edges and at the same time reduces the noise and the

local artifacts. However, the result is blurred because of the poor adaptation to movement. In all

these spatial filters, the temporal correlation between the neighboring frames is ignored and

hence is not a good approach for removing noise from a video. Even the most advanced spatial

denoisers, such as Wiener [23] and wavelet filtering [24], cannot deliver good video denoising

results. Therefore pure spatial denoisers methods are not appropriate for video. Temporal filters

woks only on the temporal correlation and neglect the spatial correlation. Spatiotemporal filters

are those filters which take into account both the spatial as well as temporal correlation and

remove noise from a video by considering current frame as well as previous and next frame. A

survey of several temporal and spatio-temporal filtering schemes to reduce the noise in image

sequences can be found in [18]. Filtering schemes are applied on the video depending on the

static and dynamic nature of image sequences. Denoising techniques need to take care of the

difference between the noisy pixels and motional pixels while removing noise from a video.

Averaging temporal pixels to smooth the impulse noise works fine in case of non moving

objects and non moving scenes but produces blurring effects and ghosting artifacts in presence

of moving objects and moving scenes. Adaptive algorithms and the motion compensation are

the two techniques that take care of the dynamic nature of video sequences and are used to

avoid this blurring effect. Adaptive algorithms implicitly take into account the motion

assumption in the design of the method. Motion compensation algorithms compute motion

estimation as a preprocessing step. A brief description of these techniques is explained in [25].

The adaptive filters [26-28] are designed specifically to deal with image sequences and take into

account the possibility of a motion. The aim of these filters is to avoid the blurring effect where

motion occurs. Adaptive filters take into account the dynamic character of image sequences but

do not compute explicitly the optical flow. Adaptive filters may also be preferred when speed is

6

required or the sequence is highly corrupted. The motion compensated filters [29] estimate

explicitly the motion of the sequence by a motion estimation algorithm. The motion

compensation filters have a high computational cost and the accuracy of motion estimation

algorithms decreases with noise. However, when dealing with moderated noise, motion

compensation filter are usually preferred. In fact, many papers dealing with adaptive filters

conclude that motion compensation is required to overcome the temporal artifacts. The

availability of accurate motion estimation is crucial for the performance of the motion

compensation filters.

The first filters for video denoising were single resolution filters. These were often some well-

known 2D filters extended to a spatio-temporal neighborhood. Some examples are the 3D

KNN-filter [30-32] and the 3D threshold averaging filter [20, 32], which try to preserve the

details by averaging only over the k nearest neighbors (KNN) and the neighbors lying within a

certain distance from the given pixel value respectively. More recent extensions of these filters,

that are made more adaptive to a local spatio-temporal neighborhood are e.g. the motion and

detail adaptive KNN-filter [33] and the multiple lass averaging filter [34, 35]. Another well-

known single resolution method is the 3D rational filter [36], where the filtered output for a

pixel is determined as a rational function of the grey values in a spatio-temporal neighborhood.

Other recent single resolution filters can e.g. be found in [37, 38]. Both filters take into account

pixels from neighboring frames in the averaging, which not necessarily are the pixels at the

same spatial position, but the estimated corresponding objet pixels which possibly have been

displaced due to motion between frames.

1.3 Motivation and Proposed Work

Most of the filters developed for video are 2-D spatial filters that filter each of the frames of the

video successively. They consider only one frame at a time and remove the noise. However by

considering only one frame at a time they neglect the temporal relation between frames of the

video. This thesis presents a spatio- temporal filter that removes the noise from the video using

fuzzy logic. The filter calculates the degree with which the pixel is noisy and removes the noise

from it accordingly. Hence, only the noisy pixels are corrected and uncorrupted pixels are left

7

untouched. Since the filter removes noise from the color video, only spatial and temporal

information are not enough, color information in other bands is required as well. Hence, the

noise is corrected by considering the current frame, the neighboring frames and the values from

the other color components. The six membership functions namely; Big, Dissimilar, Terminal,

High, Variant and Temporal are defined. Big, Dissimilar and Terminal membership function

gives spatial information about a given pixel. High, Variant and Temporal membership function

give temporal information about the pixel. A Fuzzy rule is then applied on each pixel to check

whether it is noisy or noise-free. If the pixel is found to be noisy, it is replaced by the median

value of the noise-free pixels in their neighborhood otherwise it is not changed. The unique

characteristic feature of this filter to exploit the spatial correlation and temporal correlation

along with color components in a 2 step process makes it work even with high impulse noise

presence. Since only noisy pixels are changed and noise free pixels are left untouched, blurring

is minimized. The parameters involved are optimized using the Bacteria Foraging Algorithm to

provide with best results. We show the video denoising performance in terms of peak signal-to-

noise ratio (PSNR) and the experimental results on several videos proved the efficacy of this

fuzzy filter as compared to other well known video filters.

1.4 Thesis Outline

Chapter 2 gives a short overview of the basic concepts in fuzzy set theory and fuzzy sets in

image processing. Chapter 3 then presents the definition of the impulse noise, which is

considered in this paper, an algorithm to compute the median and the proposed spatio-temporal

filtering steps to reduce the impulse noise. Parameter training using Bacteria Foraging and

parameter initialization is described in chapter 4. Chapter 4 also presents the value of

parameters obtained after the optimization and describes the effect of parameter variation.

Results and discussion and comparison with other filters are presented in chapter 5. Finally,

conclusions and future work are given in chapter 6.

8

CHAPTER 2

FUZZY LOGIC

9

2.1 Introduction to fuzzy set

The term fuzzy means vagueness. Fuzziness occurs when the boundary of a piece of information

is not clear cut. The basic idea of the fuzzy set theory is that an element belongs to a fuzzy set

with a certain degree of membership. Thus, a proposition is not either true or false, but may be

partly true (or partly false) to any degree. Classical set theory or crisp theory allows the

membership of elements in the set in binary terms – an element either belongs to or does not

belong to the set. Classical set is a set with crisp boundary. They do not reflect the nature of

human concepts and thoughts which tends to be abstract and imprecise. The flaw comes from the

sharp transition between inclusion and exclusion in the set. Fuzzy set is a set without a crisp

boundary. Transition from „belong to a set‟ to „not belong to a set‟ is gradual and smooth.

Classical set has precise questions and precise answers whereas in fuzzy logic, the questions are

not precise so, the answers cannot be given by classical set theory. The answers are also

imprecise and can be given by fuzzy logic. Fuzzy sets have introduced by Lotfi A. Zadeh (1965)

[39] as an extension to the classical notion of set.

The essential characteristics of fuzzy logic as founded by Zadeh Lotfi are as follows.

 In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning.

 In fuzzy logic everything is a matter of degree.

 Any logical system can be fuzzified.

 In fuzzy logic, knowledge is interpreted as a collection of elastic or, equivalently , fuzzy

constraint on a collection of variables

Fuzzy logic uses the whole interval between 0 (false) and 1 (true) to describe human reasoning.

In fuzzy sets, the smooth transition is characterized by membership functions that give fuzzy set

flexibility. A fuzzy set is any set that allows its members to have different degree of membership,

called membership function, in the interval [0, 1]. Membership function maps each element of a

set to a membership grade between 0 and 1 to express the degree to which the element belongs to

the set.

Fuzzy systems are very useful in two general contexts:

10

1. In situations involving highly complex systems whose behaviors are not well understood.

2. In situations where an approximate, but fast, solution is warranted.

2.2 Fuzzy sets in Image Processing

The concept of fuzzy logic has been extended in recent years to image processing by Hamid

Tizhoosh and others at the Pattern Analysis and Machine Intelligence (PAMI) research group at

the University of Waterloo (Waterloo, ON, Canada). There are various techniques for processing

an image such as linear scaling, optical methods, digital processing and fuzzy techniques.

Processing techniques such as linear scaling, optical methods have not been able to handle the

disturbances occurring in processing an image. Fuzzy techniques used in processing an image

have evolved as the most efficient solution for this problem. These techniques with fuzzy sets

give much-improved image compared to the others.

Fuzzy image processing is the collection of different fuzzy approaches to image

processing. These approaches understand, represent and process the images, their segments and

features as fuzzy sets. The representation and processing depend on the selected fuzzy technique

and on the problem to be solved.

Fuzzy set theory and fuzzy logic provide powerful tools to represent and process human

knowledge in form of fuzzy if-then rules. Image processing poses many problems owing to

imprecise and uncertain data, activities and results. However, randomness is not only the cause

of this uncertainty, inherent ambiguity and vagueness of image data also contributes to this

uncertainty. Beside randomness, which can be managed by probability theory three other kinds

of imperfection in image processing are grayness ambiguity, geometrical fuzziness, and vague

knowledge of image features.

Three main stages necessary to perform image processing using fuzzy logic are:

1. Image Fuzzification

2. Modification of membership values

3. Image Defuzzification

11

Figure 2.1 Fuzzy Image Processing [40]

Image Fuzzification is used to modify the membership values of a specific data set or image.

After the image data are transformed from gray-level plane to the membership plane using

fuzzification, appropriate fuzzy techniques modify the membership values. This can be a fuzzy

clustering, a fuzzy rule-based approach, or a fuzzy integration approach. Decoding of the results,

called defuzzification, then results in an output image. The main power of fuzzy image

processing is in the modification of the fuzzy membership values.

2.3 Fuzzy Inference System (FIS)

Fuzzy inference system (FIS) is a method, based on the fuzzy theory, which maps the

input values to the output values. The mapping mechanism is based on Membership

Functions, Logical Operations and If-Then Rules. A Fuzzy Inferencing System (FIS) is one that

uses fuzzy sets to make decisions or draw conclusions. Fuzzy inference systems have been

successfully applied in fields such as automatic control, data classification, decision analysis,

expert systems, and computer vision. Because of its multidisciplinary nature, fuzzy inference

systems are associated with a number of names, such as fuzzy-rule-based systems, fuzzy expert

Image

Fuzzification

Expert Knowledge

Membership

Modification

Image

Defuzzification

Fuzzy set and

fuzzy logic

Input

image

Output

image

12

systems, fuzzy modeling, fuzzy associative memory, and fuzzy logic controllers, and simply (and

ambiguously) fuzzy systems. The typical scheme consists of the following steps:

1. Fuzzificaton

2. Applying rules

3. Logic sum and defuzzyfication

The two most commonly used fuzzy inference systems are Mamdani-type and Sugeno-type.

Mamdani-type was proposed in 1975 by Ebrahim Mamdani [41] as an attempt to control a steam

engine and boiler combination by synthesizing a set of linguistic control rules obtained from

experienced human operators. Mamdani„s effort was based on Lotfi Sade„s 1973 paper on fuzzy

algorithms or complex systems and decision processes [42]. The most fundamental difference

between Mamdani-type FIS and Sugeno-type FIS is in the way the crisp output is generated from

the fuzzy inputs. While Mamdani-type FIS uses the technique of defuzzification of a fuzzy

output, Sugeno-type FIS uses weighted average to compute the crisp output. But Sugeno has

better processing time since the weighted average replace the time consuming defuzzification

process. Mamdani-type inference expects the output membership functions to be fuzzy sets while

Sugeno-type systems can be used to model any inference system in which the output

membership functions are either linear or constant.

Mamdani method is widely accepted for capturing expert knowledge. It allows us to describe the

expertise in more intuitive, more human-like manner. However, the expressive power and

interpretability of Mamdani output is lost in the Sugeno - FIS since the consequents of the rules

are not fuzzy. Mamdani-type FIS is not computationally efficient whereas Sugeno method is

computationally efficient and works well with optimization and adaptive techniques, which

makes it very attractive in control problems, particularly for dynamic non linear systems. Due to

the interpretable and intuitive nature of the rule base, Mamdani-type FIS is widely used in

particular for decision support application. Other differences are that Mamdani FIS has output

membership functions whereas Sugeno FIS has no output membership functions. Mamdani FIS

is less flexible in system design in comparison to Sugeno FIS as latter can be integrated with

ANFIS tool to optimize the outputs [43].

13

CHAPTER 3

PROPOSED APPROACH

14

3.1 Impulse Noise

The proposed work is intended for the color video corrupted by random impulse noise. This

implies that a pixel of a given color component is corrupted with noise by some probability p.

The neighboring pixels of the given color component as well as pixels of the other color

component can be noisy or noisefree independent of this pixel. Mathematically, noisy sequence

fn is obtained as follows:

(, , ,), 1
(, , ,)

(, , ,),

o

n

f x y z t with probability p
f x y z t

N x y z t with probability p



 
 
 

 (1)

Where

p is the probability between [0,1] with which a pixel component value is noisy,

 fn is the noisy sequence,

fo is the original (noisefree) sequence,

N(x, y, z, t) is the noise value of the pixel,

fo(x, y, z, t) is the original noisefree value of the pixel.

(x, y) corresponds to the pixel location, z corresponds to one of the three color component and t

corresponds to the frame number. For e.g. f(x, y, 1, t) corresponds to the red component of pixel

at x
th

 row and y
th

column in the current frame t. z=1, 2, 3 for Red, Blue and Green components

respectively. This notation is followed throughout the thesis.

A color video comprises of subsequent colored frames. A colored frame can be represented in

one of the several color models such as RGB, CMY, YUV, CMYK, HSV, HLS and CIE. Each

industry that uses color employs the most suitable color model. For e.g. YUV or YCbCr are

used in video systems, RGB is used in computer graphics etc. In the current work, RGB color

15

model is used to represent the frames of the color video. The importance of this color model is

that it relates very closely to the way that the human eye perceives color.

3.2 Filtering steps

The impulse noise from the video frames is removed in 2 successive steps of filtering. The first

step detects the noisy pixels along with the amount of noise present and are then corrected using

the median of the noise-free pixels. The output of the first step acts as an input to the second

filtering step and further refines the result to give the final output. The degree of noise is

calculated by using a fuzzy rule which requires calculation of six fuzzy membership functions.

Most of the filters developed for video are 2D filters that filter each of the frames of the video

successively. They consider only one frame at a time and remove the noise. However by

considering only one frame at a time they neglect the temporal relation between frames of the

video. The filter presented in this thesis is a 3D filter that considers spatial, temporal as well as

the color information. A pixel in one color component is compared with its neighboring pixels

within the same frame, with the corresponding pixels in neighboring frames and also with the

pixels in other 2 color components. Comparison is done by using fuzzy membership functions

and then applying a fuzzy rule which decides whether the given pixel is noisy or noisefree. The

six membership functions are used in this work are- Big, Dissimilar, Terminal, High, Variant

and Temporal. Big, Dissimilar and Terminal membership function give spatial information

about a given pixel. High, Variant and Temporal membership function give temporal

information about the pixel.

3.2.1 First Filtering Step

The primary objective of first step is detection and correction of noisy pixels. The noisy pixels

are detected in this step along with the amount with which the pixels are corrupted. After

16

detection, the noisy pixels are corrected by using the median of the noisefree pixels present in

the neighborhood.

Fuzzy Rule

Consider one color component, say red component of the current frame t in noisy video. The

degree of noise present in a pixel at location (x, y) is achieved by the following fuzzy rule:

Rule 1:

IF ((ǀ f (x,y,1,t) - med (x,y,1,t) ǀ is Big) AND (the degree of similarity of this central pixel

f(x,y,1,t) to its neighboring pixel in the same frame t is Dissimilar) AND (the central pixel is

Terminal) AND ((either the difference between the pixel f(x,y,1,t) in the current frame t and

the corresponding pixel f (x,y,1,t-1) in the previous frame t-1 is High) OR (the difference

between the pixel f(x,y,1,t) in the current frame and the corresponding pixel f(x,y,1,t+1) in the

next frame t+1 is High)) AND (the degree of similarity of this central pixel f(x,y,1,t) to its

neighboring pixels in the previous frame t-1 is Variant) AND ((|f(x,y,1,t)-f(x,y,1,t-1)| is big

positive) AND (either |f(x,y,2,t)-f(x,y,2,t-1)| is big positive) OR (|f(x,y,3,t)-f(x,y,3,t-1)| is big

positive))) THEN this pixel f(x,y,1,t) is noisy.

This rule is of the Mamdani fuzzy model type. Mathematically the degree of noise present in the

red component of a pixel at location (x, y) in the current frame t is evaluated as:

N1(x,y,1,t)= min{ µb(D (x,y,1,t)), µd(Kr, D(x,y,1,t), µter(x, y, 1, t), µh(x, y, 1, t), µv(x,y,1,t),

µtem(x, y, 1, t) } (2)

Where

 µb, µd, µter, µh, µv, and µtem are six membership functions that represent the six fuzzy sets Big,

Dissimilar, Terminal, High, Variant and Temporal respectively.

17

D is the difference between the central pixel and the median of the noise-free pixels in the

neighborhood of a window. Mathematically,

      , ,1, | , ,1, , ,1, |D x y t f x y t med x y t  (3)

Similarly the difference for other 2 color components is calculated by replacing 1 in the above

equation by 2 and 3. This is followed throughout the thesis.

 Algorithm to compute the median []:

However not all the pixels in the neighborhood of the pixel under interest are taken to compute

the median, only the noise-free pixels are taken and their median is computed to modify the

noisy pixel under interest. Median is computed separately for each color component. For

obtaining the median of noise free pixels, an algorithm proposed in [3] is used. The Algorithm

is as follows:

Step 1) Take a window of size 3X 3 centered on the currently processed pixel of the noisy frame.

Step 2) Arrange the pixels of the window as a vector. Sort the vector in the increasing order and

obtain the median of the sorted vector.

Step 3) Compute the difference between each window pixel and the median calculated above.

Step 4) Arrange all the window pixels having the differences less than or equal to a parameter δ1

into a vector.

Step 5) Sort the new vector and obtain the median (med) of the sorted vector.

18

Figure 3.1 A scheme for computation of Median of the noise-free pixels [3]

P1 P2 P3

P4 P5 P6

P7 P8 P9

d1 d2 d3

d4 d5 d6

d7 d8 d9

Image

Arrange all the pixels of the window as vector

Calculate the median (M)

Calculate the difference between M and pixel value of window, here

Arrange all pixels of window that have di ≤ δ1 in a new vector and

calculate the median (med) of it

19

A. Big fuzzy set

A pixel with more noise will have bigger difference with the median value. This is defined by

the membership function b µb. µb is used to represent a fuzzy set “Big”, that indicates how big

the difference is. After calculating the difference D, µb is calculated for each color component

as:

2

1

1 2
2 1

b

1

1, (, ,1,)

(, ,1,)
((, ,1,)) , (, ,1,)

0, (

α

α
α α

α α

,1, α,)

D x y t

D x y t
D x y t D x y t

D x y t

 
 

 
   

 










 (4)

The parameters α1 and α2 in the above equation is obtained by applying bacteria foraging. The

membership function µb of the fuzzy set “Big” is depicted in figure 3.2 below.

Figure 3.2: The membership function µb of the fuzzy set Big.

B. Dissimilar fuzzy set

K in equation (2) is the number of neighborhood pixels in the current frame that are similar to

the given pixel. The more the number of similar pixels, the less the chances of given pixel being

noisy. For this, a similarity criterion is used to decide whether the given pixel is similar to its

neighborhood pixels or not. Also if we want to find the similarity of a red component of a pixel,

0

0.5

1

α1 α2

µb(D)

D

20

we will find its interaction with other 2 color components as well to ascertain the extent of

similarity.

For the red component

To find the similarity of the red component of a pixel at (x, y) with its neighboring pixels at

(x+i, y+j), we have to find the following differences.

The differences between red and green component and that between red and blue components

are computed as follows:

     rgd x, y, t f x, y, 1, t f x, y, 2, t  (5)

     rbd x, y, t f x, y, 1, t f x, y, 3, t  (6)

Similarly the differences between red and green components and that between red and blue

components of the neighboring pixels (x+i, y+j) are calculated as:

     rgd x i, y j, t f x i, y j, 1, t f x i, y j, 2, t        (7)

     rbd x i, y j, t f x i, y j, 1, t f x i, y j, 3, t        (8)

The second differences of the above pair-wise differences are computed from the following

equation:

     rg rg rgx i, y j, t d x i, y j, t d x, y, t       (9)

     rb rb rbx i, y j, t d x i, y j, t d x, y, t       (10)

We also need the differences between the neighboring pixels and the central pixel of the same

color component in the window given by:

     r x i, y j, t f x i, y j, 1, t f x, y, 1, t       (11)

21

Now the red component of a pixel at location (x,y) in the current frame is considered similar to

that at (x+i, y+j) in the same current frame t if the differences Δrg(x+i, y+j, t), Δrb(x+i, y+j, t)

and Δr(x+i, y+j, t) as calculated in equation (9), (10) and (11) respectively are less than the

parameter δ2. This parameter δ2 is again obtained by applying bacteria foraging.

Consider a window of size w × w (say 3×3). Then i and j in equation (7), (8), (9), (10) and (11)

will range from -1 to +1. There will be total 9 pixels in the window including the central pixel.

K is the number of similar pixels (excluding the central pixel) in the window. That is, K is the

number of neighborhood pixels that are similar to the central pixel. In the window of size 3×3,

K will range from 0 to 8. More are the number of similar pixels in the neighborhood; less will

be the chances of central pixel being noisy. This number K is decided by comparing differences

calculated in Equations (9), (10) and (11) with parameter δ2.

Now if Δrg(x+i, y+j, t), Δ rb(x+i, y+j, t) and Δr(x+i, y+j, t) are each less than a parameter δ2 we

say that condition A meets, then

(, ,) 1,
(, ,)

(, ,),

r

r

r

K x y t condition Ameets
K x y t

K x y t otherwise

 
  
 

 (12)

A pixel with high number of similar neighborhood pixels and whose value is close to the

median will be more likely to be noisefree. This is defined by the membership function µd. µd is

used to represent a fuzzy set “dissimilar”, that indicates the degree of similarity of the central

pixel to its neighborhood pixels. After calculating the difference Dif and the number of similar

pixels for the central pixel in a window of size w × w (taking 3×3 here), µd is calculated for each

color component as:

         d r rK , D x, y, 1, t max K x, y, t , D x, y, 1, t µ µ µ (13)

Where membership function µ (Kr) and µ (D(x, y, 1, t)) are depicted in figures 3.3 and 3.4

below respectively.

22

Figure 3.3: The membership function µ(Kr)

Figure 3.4: The membership function µ(D)

Here D(x, y, 1, t) is same as that calculated in equation (3) and max operator used is the

Cartesian co-product. Therefore if a pixel has more than half pixels similar in the window and

its value is close to the median, then it can be considered as a noise-free pixel.

C. Terminal fuzzy set

0

0.5

1

0 1 2 3 4 5 6 7 8

µ(Kr)

Kr

0

0.5

1

δ2

µ(Dif)

Dif

23

Now Let us take a window of size w× w (say 3×3). There are 9 pixels in this window, if we

arrange these nine pixels in increasing order of their intensity; we will get 2 terminal pixels and

one median pixel. The 2 terminal pixels are denoted by fmin having the smallest value in the

window and fmax having the highest value in the window respectively and median pixel is

denoted by fmed. The closer the value of central pixel to these terminal values fmin and fmax, the

higher its probability of being noisy and the closer the value of the pixel to fmed, the higher its

probability of being noisefree. This is defined by the third membership function µter. µter is used

to represent a fuzzy set “terminal”. µter is calculated for each color component as:

min max

min
min

min

max
max

max m

1,

,

()

,

0,

med

med

ter

med

ed

med

f or f

f
f f

f f

f
f f

f f

f

   
 


  

 
   

  
 
 

  

 (14)

Where ω represents the pixel value of given color component of the given frame.

The membership function for the fuzzy set Terminal is shown below in figure 3.5:

Figure 3.5: The membership function µter(ω) for the fuzzy set terminal

Till now we have only focused on the color and spatial information. But since we are removing

noise from a color video, we also need to take care of the temporal information. If we want to

calculate the degree of noise present in a component of a pixel in one frame, we need to

0

0.5

1

fmin fmed fmax

µter(ω)

ω

24

consider its neighboring frames (previous and next frame) too. Therefore the next three

membership functions µh, µv, and µtem are used to calculate the degree of noise present in a

component of the pixel in one frame by comparing the current frame with its neighboring

frames.

D. High fuzzy set

A noisy pixel component in one frame will not only have high difference with its corresponding

component neighboring pixels in the same frame but also with corresponding component of the

pixel at the same spatial location in the previous or next frame. This concept is used in obtaining

the fuzzy set “high” defined by the membership function µh. That is, if a component (let us say

Red) of a pixel at (x,y) in the current frame (t) has a high positive difference with either the

corresponding component(Red) of a pixel at the same spatial location (x,y) in the previous

frame (t-1) or with the corresponding component(Red) of a pixel at the same spatial location

(x,y) in the next frame (t+1),it will be considered as High. The parameters γ1 and γ2 are again

obtained by applying bacteria foraging.

Let,

   1R f x, y, 1, t f x, y, 1, t 1  

   2R f x, y, 1, t f x, y, 1, t 1  

Then µh is calculated for red color component as:

        h 1 2x, y, 1, t max R x, y, 1, t , R x, y, 1, tµ µ µ (15)

Where membership function µ (R1(x, y, 1, t)), and µ (R2(x, y, 1, t)) are depicted in figures 3.6

and 3.7 below respectively and max operator used is the Cartesian co-product.

25

Figure 3.6: The membership function µ(R1)

Figure 3.7: The membership function µ(R2)

E. Variant fuzzy set

For the red component

To find the similarity of the red component of a pixel at (x, y) in the current frame (t) with

corresponding component of the pixel at the same spatial location (x, y) in the previous frame

(t-1), we have to find the following differences.

0

0.5

1

γ1 γ2

µ(R1)

R1

0

0.5

1

γ1 γ2

µ(R2)

R2

26

The difference between a pixel component in the current frame (t) and the corresponding

component of the pixel at the same spatial location in the previous frame (t-1) are computed as

follows:

     1R x, y, t f x, y, 1, t f x, y, 1, t 1   (16)

     1G x, y, t f x, y, 2, t f x, y, 2, t 1   (17)

     1B x, y, t f x, y, 3, t f x, y, 3, t 1   (18)

Similarly the differences between neighboring pixels (x+i, y+j) of the pixel component in the

current frame (t) and that between the neighboring pixels (x+i, y+j) of the corresponding

component of the pixel at the same spatial location in the previous frame (t-1) are calculated as:

     rd x i, y j, t f x i, y j, 1, t f x i, y j, 1, t 1         (19)

     gd x i, y j, t f x i, y j, 2, t f x i, y j, 2, t 1         (20)

     bd x i, y j, t f x i, y j, 3, t f x i, y j, 3, t 1          (21)

The second differences of the above pair-wise differences are computed from the following

equation:

     3 r 1R x i, y j, t d x i, y j, t R x, y, t       (22)

     3 g 1G x i, y j, t d x i, y j, t G x, y, t       (23)

     3 b 1B x i, y j, t d x i, y j, t B x, y, t      (24)

If the given pixel component at (x, y) in the current frame is similar to the corresponding pixel

component at the same spatial location(x, y) in the previous frame, then the neighborhood pixels

27

(x+i, y+j) of the pixel component in the current frame will also be similar to the neighboring

pixels (x+i, y+j) of the corresponding component of the pixel at the same spatial location in the

previous frame. We take a window of size w × w (say 3×3) and find such number of

neighborhood pixels around the given pixel which are similar to the neighboring pixels of the

corresponding component of the pixel at the same spatial location in the previous frame. We

call this number as k as used in equation number (2). That is, k is the number of neighborhood

pixels (x+i, y+j, t) in the current frame that are similar to corresponding neighborhood pixels

(x+i, y+j, t-1) in the previous frame for the same color component. In the window of size 3×3, k

will range from 0 to 8. This number k is calculated for each color component separately by

using the parameter δ2. This parameter δ2 is same as that used before. For the Red component,

3 2(, ,) 1, (,)
(, ,)

(, ,),

r

r

r

k x y t R x i y j
k x y t

k x y t otherwise

     
  
 

 (25)

More are the number of similar neighborhood pixels; more are the chances of central pixel in

current frame being similar to the corresponding pixel in the previous frame and hence less will

be the chances of central pixel being noisy. A pixel with high number of such similar

neighborhood pixels for the same color component and for at least one of the other 2 component

can be considered as noisefree. This is defined by the membership function µv. µv is used to

represent a fuzzy set “variant”, that indicates the degree of similarity of the central pixel in the

current frame to its corresponding pixel at the same spatial location in the previous frame. After

calculating the number of similar pixels for the central pixel in a window of size w × w (taking

3×3 here), µv is calculated for red color component as:

         , , 1, , , v r g bµ x y t min µ k max µ k µ k (26)

For simplicity we have used kr for kr (x, y, 1, t), kg for kg (x, y, 1, t) and kb for kb (x, y, 1, t) .

These membership function µ (kr (x, y, 1, t)), µ (kg (x, y, 1, t)) and µ (kb(x, y, 1, t)) are depicted

in figures 3.8, 3.9 and 3.10 below respectively. Max operator used is the Cartesian co-product

and min operator used is the Cartesian product.

28

Figure 3.8: The membership function µ(kr)

Figure 3.9: The membership function µ(kg)

Figure 3.10: The membership function µ(kb)

0

0.5

1

0 1 2 3 4 5

µ(kr)

kr

0

0.5

1

0 1 2 3 4 5

µ(kg)

kg

0

0.5

1

0 1 2 3 4 5

µ(kb)

kb

29

F. Temporal fuzzy set

The sixth membership function µtem in equation number (2) represents a fuzzy set “Temporal”

that takes into account the temporal as well as the color information at a time to find the degree

of noise present in the pixel. As we know from equation number (16), (17) and (18), the

difference between a pixel component in the current frame (t) and the corresponding component

of the pixel at the same spatial location in the previous frame (t-1) are computed as follows:

     1R x, y, t f x, y, 1, t f x, y, 1, t 1  

     1G x, y, t f x, y, 2, t f x, y, 2, t 1  

     1B x, y, t f x, y, 3, t f x, y, 3, t 1  

 For the red component, µtem is calculated as,

         1 1 1, , 1, , , temµ x y t min µ R max µ G µ B (27)

Again for simplicity we have used R1 for R1 (x, y, 1, t), G1 for G1 (x, y, 1, t) and B1 for B1 (x, y,

1, t).

These membership function µ (R1 (x, y, 1, t)), µ (G1 (x, y, 1, t)) and µ (B1 (x, y, 1, t)) are

depicted in figures 3.11, 3.12 and 3.13 below respectively. Max operator used is the Cartesian

co-product and min operator used is the Cartesian product.

30

Figure 3.11: The membership function µ(R1)

Figure 3.12: The membership function µ(G1)

Figure 3.13: The membership function µ(B1)

0

0.5

1

γ1 γ2

µ(R1)

R1

0

0.5

1

γ1 γ2

µ(G1)

G1

0

0.5

1

γ1 γ2

µ(B1)

B1

31

Thus, using equation number (4), (13), (14), (15), (26) and (27) and applying them in equation

number (2), we will get N1(x,y,1,t), that is :

N1(x,y,1,t)= min{ µb(D (x,y,1,t)), µd(Kr, D(x,y,1,t), µter(x, y, 1, t), µh(x, y, 1, t), µv(x,y,1,t),

µtem(x, y, 1, t) }

Since the fuzzy rule is of the Mamdani fuzzy model type, the AND operator is used to

implement the “minimum” operation. As we know N1(x, y, 1, t) is the degree of noise present in

the red component of a pixel at location (x, y) in the current frame (t). Its value should be zero

for the noisefree pixel and for the noisy pixel; it should have some value between 0 and 1.

Correction Term

Correction term is a term which is added to the original value of the pixel to make it noise free.

So if the pixel is already noisefree the correction term will be zero otherwise for noisy pixel,

correction term will have some positive or negative value. The correction term for the red

component is computed as:

      1f x, y,1, t (, ,1,) x med x, y,1, t – f x, y,1, tN x y t  (28)

Thus if a pixel is noise free the degree of noise present in it will be zero and hence the

correction term will be zero and for extremely noisy pixel(N1=1), the value of correction term is

equal to the difference between the median (med) of noise free pixels in the neighborhood and

the value of the pixel itself.

This correction term obtained is then added to the original value of the pixel. The uncorrupted

pixels are left untouched and highly corrupted pixels are replaced by the median value of the

noisefree pixels in their neighborhood. Other pixels having average noise density are modified

according to the degree of noise present in them. Thus the result of first filtering step is:

     1f x, y,1, t f x, y,1, t f x, y,1, t   (29)

32

3.2.2 Second Filtering Step

Now the result of the first filtering step acts as an input to the second filtering step to give the

final output. This step refines the output of first filtering step by taking into account the

interactions among the color components of the same frame as well as the interaction of the

given frame with its previous frame as well as next frame.

The objective of second filtering step is detection and correction of residual noisy pixels. The

noisy pixels are detected along with the amount with which they are corrupted. After detection,

the noisy pixels are corrected by using the median of the noisefree pixels present in the

neighborhood.

Again in the second filtering step, the degree of noise is calculated by using a fuzzy rule.

Consider one color component, say red component of the current frame t in the resulting video

of the first step f1. The degree of noise present in a pixel at location (x, y) is achieved by the

following fuzzy rule:

Fuzzy Rule 2:

IF (ǀ f1 (x,y,1,t) - f1 (x,y,2,t) ǀ is Big) AND (ǀ f1 (x,y,1,t) - f1 (x,y,3,t) ǀ is Big) AND ((either the

difference between the pixel f 1 (x,y,1,t) in the current frame t and the corresponding pixel f 1

(x,y,1,t-1) in the previous frame t-1 is High) OR (the difference between the pixel f 1 (x,y,1,t)

in the current frame and the corresponding pixel f 1 (x,y,1,t+1) in the next frame t+1 is High))

THEN this pixel f1(x,y,1,t) is noisy.

This rule is of the Mamdani fuzzy model type. Mathematically the degree of noise present in the

red component of a pixel at location (x, y) in the current frame t is evaluated as:

       2 , , 1, { (, ,), (, ,), , , 1, }b rg b rb hN x y t min µ x y t µ x y t µ x y t  (30)

Where

33

 µb and µh are the same membership functions used above that represent the fuzzy sets “Big”

and “High” respectively.

ζrg is the difference between red and green component and ζrb is the difference between red and

blue components and are computed as follows:

     1 1 , , f x, y, 1, t f x, y, 2, trg x y t   (31)

     1 1 , , f x, y, 1, t f x, y, 3, trg x y t   (32)

After calculating these differences, we will compute fuzzy membership value µb by comparing these differences with parameters β1 and β2. The

values of these 2 parameters are obtained through bacteria foraging.

 

 

 
 

 

2

1

1 2
2 1

1

1, , ,

, ,
(, ,) , , ,

0, , ,

rg

rg

b rg rg

rg

x y t

x y t
µ x y t x y t

x y t




 



  
 

 
    

  
  
 




 (33)

 

 

 
 

 

2

1

1 2
2 1

1

1, , ,

, ,
(, ,) , , ,

0, , ,

rb

rb

b rb rb

rb

x y t

x y t
µ x y t x y t

x y t




 



  
 

 
    

  
   




 (34)

The membership functions µb(ζrg) and µb(ζrb)of the fuzzy set “Big” is depicted in figure 3.14 and

3.15 below respectively.

34

Figure 3.14: The membership function µb(ζrg)

Figure 3.15: The membership function µb(ζrb)

Now Let,

   11 1 1R f x, y, 1, t f x, y, 1, t 1  

   21 1 1R f x, y, 1, t f x, y, 1, t 1  

Then µh is calculated for red color component as:

        h 11 21x, y, 1, t max R x, y, 1, t , R x, y, 1, tµ µ µ
 (35)

0

0.5

1

β1 β2

µb(ζrg)

ζrg

0

0.5

1

β1 β2

µb(ζrb)

ζrb

35

Where membership function µ (R11(x, y, 1, t)), and µ (R21(x, y, 1, t)) are depicted in figures 3.16

and 3.17 below respectively and max operator used is the Cartesian co-product.

Figure 3.16: The membership function µ(R11)

Figure 3.17: The membership function µ(R21)

Again the fuzzy rule is of the Mamdani fuzzy model type, the AND operator is used to

implement the “minimum” operation. As we know N1(x, y, 1, t) is the degree of noise present in

the red component of a pixel at location (x, y) in the current frame (t). Its value should be zero

for the noisefree pixel and for the noisy pixel; it should have some value between 0 and 1.

 The correction term for the red component is computed as:

      2 1 1f x, y,1, t (, ,1,) x med x, y,1, t – f x, y,1, tN x y t  (36)

0

0.5

1

γ1 γ2

µ(R11)

R11

0

0.5

1

γ1 γ2

µ(R21)

R21

36

This correction term obtained is then added to the original value of the pixel. The uncorrupted

pixels are left untouched and highly corrupted pixels are replaced by the median value of the

noisefree pixels in their neighborhood. Other pixels having average noise density are modified

according to the degree of noise present in them. Thus the result of second filtering step is:

     2f x, y,1, t f x, y,1, t f x, y,1, t   (37)

37

CHAPTER 4

OPTIMIZATION USING BACTERIA FORAGING

38

 4.1 Evolutionary Algorithms

Optimization techniques may follow different approaches. Traditional analytical optimization

techniques require enormous computational efforts, which grow exponentially as the problem

size increases. An optimization method that requires moderate memory and computational

resources and yet produces good results is desirable. Recently, optimization techniques inspired

by biology behaviours, known as bio-mimetic optimization algorithms, have obtained more and

more attention [44]. Bio-inspired optimization methods are computationally efficient

alternatives to analytical methods. Evolutionary Algorithms such as Genetic Algorithms (GAs)

[45-50], Particle Swarm Optimization (PSO) [51-53], and Ant Colony Optimization (ACO) [54-

58], are some popular multidimensional optimization techniques. Bio-mimetic optimization

algorithms are developed from simulation the evolutionary process and the behaviours of

biology. They are population-based (each member stands for a biology individual), and

initialized with a population of individuals. They utilize the direct information "fitness" instead

of individual‟s ability to adapt to the environment. These individuals are manipulated over

many generations by ways of mimicking social behaviour of biology, in an effort to find the

optima. The advantage of evolutionary algorithms compared to other optimization methods is

their “black box” character that makes only few assumptions about the underlying objective

functions. Furthermore, the definition of objective functions usually requires lesser insight to the

structure of the problem space than the manual construction of an admissible heuristic. EAs

therefore perform consistently well in many different problem categories. In comparison with

other optimization algorithms, bio-mimetic optimization algorithms have the following

characteristics:

1) The individual components are distributed and autonomous, there is no central control, and

the fault of an individual cannot influence solving the whole problem, these characteristics

ensure this kind of algorithms has better robustness.

2) The manner of achieves individual collaboration though not directly information

communication make sure of the expansibility of the algorithm.

3) They don‟t demand to meet the requirement of differentiability, convexity and other

conditions for mathematical description of the problem.

39

4) Because of concerns merely with basic mathematical operations, therefore, they are simple

and easy to be implemented on computer.

Natural selection tends to eliminate animals with poor foraging strategies and favour the

propagation of genes of those animals that have successful foraging strategies, since they are

more likely to enjoy reproductive success. After many generations, poor foraging strategies are

either eliminated or shaped into good ones. This activity of foraging led the researchers to use it

as optimization process. Based on the researches on the foraging behaviour of E. coli bacteria,

Prof. K. M. Passino proposed a new evolutionary computation technique known as Bacterial

Foraging Optimization Algorithm (BFOA) [59, 60]. In BFOA, the foraging (methods for

locating, handling, and ingesting food) behaviour of E. coli bacteria is mimicked.

4.2 Brief overview of Classical Bacteria Foraging Optimization Algorithm

Bacteria Foraging is a bacterial-derivative based optimization algorithm proposed by passino

[59]. BFOA [61-63] exploits the foraging behaviour of bacteria to solve the real-world

optimization problems. The BFO is a non-gradient optimization problem inspired by the

foraging strategy of the E.Coli bacteria. Foraging is the method of locating, handling and

ingesting the food. Bacteria seek to minimize the effort spent per unit time in foraging or we can

say bacteria seek to maximize the energy obtained per unit time spent during foraging. An

objective function is the cost function or the effort spent by the bacteria during foraging. In the

beginning, there will be as many solutions as the number of bacteria. Out of many bacteria

engaged in foraging (several solution paths), some come out successful in achieving an

optimum cost (an optimum solution). The foraging strategy of E. coli bacteria is mainly

governed by four processes: chemo taxis, swarming, reproduction, and elimination and dispersal

[64]. Chemo taxis stage is the movement stage of bacteria achieved through swimming and

tumbling. Swimming is the process of movement in the same direction as the previous step and

Tumbling is the process of movement in an absolutely different direction from the previous one.

To reach to the optimal path as quickly as possible, it is necessary for the bacterium, which has

searched the high nutrient region, to signal other bacteria. The bacterium which has found such

region signals other bacteria via chemical attractants to swim together. This is achieved in the

40

swarming stage through cell to cell signalling. Now, least healthy bacteria are those which are

in low nutrient region and healthiest bacteria are those which are in high nutrient region. In the

reproduction stage, the least healthy bacteria die and of the healthiest, each bacterium split into

two bacteria, which are then placed in the same location. This makes the population of bacteria

constant. Finally, the Elimination and dispersal stage helps the bacteria from being trapped in a

premature solution point or local optima instead of global optima. There might be a possibility

that bacteria have found a nutrient region which is good enough but not the best. This is the

local optima. To look for new nutrient, some Bacteria from the total set get eliminated and

dispersed with some probability to prevent stagnation.

Among all the evolutionary algorithms, BFA being the latest trend that is efficient in optimizing

parameters of the structures. Nowadays Bacteria Foraging technique is gaining importance in

the optimization problems. Because

• Philosophy says, Biology provides highly automated, robust and effective organism.

• Search strategy of bacteria is salutary (like common fish) in nature.

• Bacteria can sense, decide and act so adopts social foraging (foraging in groups).

Above all, Search and optimal foraging decision-making of animals can be used for solving

engineering problems. To perform social foraging an animal needs communication capabilities

and it gains advantages that can exploit essentially the sensing capabilities of the group, so that

the group can gang-up on larger prey, individuals can obtain protection from predators while in

a group, and in a certain sense the group can forage a type of collective intelligence.

 4.3 Parameter Training For Noise Removal with Bacteria Foraging

Mean Square Error (MSE) is used as an objective function, which is optimized using the

bacterial foraging algorithm to learn the parameters of membership functions. The filtering

action of the proposed filter is dependent on eight parameters α1, α2, δ1, δ2, γ1, γ2, β1 and β2. In

our approach we are training the values of these parameters with the help of bacterial foraging

41

optimization technique. The search space of bacteria foraging technique is eight dimensional

(for eight parameters) and movement of bacteria find the minimum value of Mean Square Error.

Parameter training with the help of bacterial foraging gives different values of parameters for

different noise concentration level; this is in contrast with the given constant values for these

parameters. Mean Square Error is given as

   
23

1 1 1 1
, , , , , ,

(,)
3

N M

t z x y

T
I x y z t f x y z t

MSE f I
N M

   
  


 

   
 (38)

Where I is the original video, f is the filtered video of N X M size. T is the total number of

frames in the video. MSE give the similarity between two videos.

Optimization problem is to find the minima of the MSE so food function for bacterial foraging

is defined as Mean Square Error

Food function, minimumJ MSE (39)

To reduce the complexity, the cell-to-cell attractant function is ignored in swarming. The

selection of the initial parameters of the algorithm, such as the number of iterations and the final

error value, plays a key role in deciding the accurate optimum values in lesser time. These

parameters are not constant for all applications but rather depend on the application.

4.4 Initialization of Parameters

This includes two sets of parameters: the parameters in the original objective function J to be

optimized, i.e., α1, α2, δ1, δ2, γ1, γ2, β1 and β2, and the parameters of the BF entering into J for

facilitating the optimization. However the latter parameters are also optimized in the current

work to give the best possible value for the objective function J. The initialization of the former

will be discussed in the next section, and the initialization of the latter is now taken up.

1. The number of bacteria S = 10.

2. Bacteria Split Ratio Sr= S/2

42

3. The swimming length Ns = 4.

4. The number of iterations in a chemotactic loop Nc is set to 4.

5. The number of reproduction steps Nre is set to 1.

6. The number of elimination and dispersal events Ned is set to 1.

7. The probability of elimination/dispersal Ped is set to 0.25.

8. The location of each bacterium, which is a function of several parameters, i.e., f (Ped, Nb, Nc,

Nre, Ned), is specified by a random number in the range [0–1].

9. Dimension of search space d = 8 (for eight parameters).

Now, the parameters of the BF entering into J for facilitating the optimization - d, Nb, Ns, Nc,

Nre, Ned and Ped, are initialized as described above. After initializing these parameters, the cost

(i.e., objective) function (MSE in our case) is optimized using the Bacteria Foraging algorithm

and finally the optimized parameters - α1, α2, δ1, δ2, γ1, γ2, β1, β2, are calculated.

4.5 Effect on MSE after Optimization

The performance of proposed noise filter is evaluated on test colour video “salesman” with

noise = 10%, 20% and 30%. The parameters α1 = 10.5, α2 = 10.5, δ1 = 5, δ2 = 0.05, γ1 = 20, γ2 =

31, β1 = 11 and β2 = 11 are given as the initial values to the Bacterial foraging algorithm. The

results of the proposed approach are compared in terms of MSE before optimization and after

optimization in Table 4.1 and Table 4.2 respectively.

Table 4.1 and Table 4.2 emphasises the effect of bacterial foraging optimization on the

membership function parameters α1 = 10.5, α2 = 10.5, δ1 = 5, δ2 = 0.05, γ1 = 20, γ2 = 31, β1 = 11

and β2 = 11 for the noise =10%, 20% and 30%. It shows that there is a great difference between

the values of the membership function parameters and MSE before and after the optimisation.

The MSE for 10% noise decreases from 07.0279 to 6.8677 after optimization. This counts to

2.33% variation. However for 20% noise, it is 2.58% since the MSE for 20% noise decreases

from 13.8594 to 13.5110 after optimization. For 30% noise, MSE decreases from 20.9836 to

20.2476 after optimization which means 3.63% variation.

43

Table 4.1: Value of MSE and membership function parameters without optimization

Noise

(%)

Optimized Value of Parameters
MSE before

Optimization α1 α2 δ1 δ2 γ1 γ2 β1 β2

10 10.5 10.5 5 0.05 10.5 31 11 11 07.0279

20 10.5 10.5 5 0.05 10.5 31 11 11 13.8594

30 10.5 10.5 5 0.05 10.5 31 11 11 20.9836

Table 4.2: Optimized Value of membership function parameters and the effect of bacterial

foraging optimization on MSE

Noise

(%)

Optimized Value of Parameters

MSE after

Optimization α1 α2 δ1 δ2 γ1 γ2 β1 β2

10 10.1177 10.2010 5.2060 0.1944 10.0065 30.0293 10.1253 10.6629 6.8677

20 9.8628 10.1108 4.9551 0.0160 10.0416 30.1606 10.3558 10.4988 13.5110

30 10.1668 10.3847 5.0183 0.0975 9.9504 30.0582 10.2088 10.7495 20.2476

44

4.6 Effects of Parameter Variation

We now discuss the effects of varying different parameters of the proposed method namely: S,

Sr, Ns, Ped, Ned, Nre and Nc on the video „salesman‟. The variation of parameters is judged by

Mean Square Error (MSE). It is well known that an optimum value of parameter is the one with

less MSE. The results for various parameters are as shown in Fig. 3.18(a)–(g). We find that Ned,

the elimination dispersal (fig 3.18 b) have no considerable effect on the results, MSE remains

more or less the same but it is minimum at Ned=1therefore we choose Ned =1. Ns, the swim

length (fig 3.18 e) is varied from 0 to 60 and we observe from the plot that MSE decreases first

till Ns =28 after which MSE starts increasing gradually, therefore Ns =28 is found to be a

suitable value for optimization. In Fig 3.18(g) we have taken different values of Sr, the Bacteria

split ratio, from 0.1S to 1S, where S is the number of bacteria. We found that Sr has least MSE

at 0.6S then MSE remains almost constant. Therefore Sr =0.6S is chosen to be a suitable value

for optimization. Change in Nc, the chemotactic step (fig 3.18 d) from 4 to 20 causes MSE to

drop steeply at NC=8 after which MSE remain almost constant, therefore Nc=8 is chosen for

optimization. In Fig 3.18(f), we find that S=16 is found to be a suitable value for optimization.

It may also be noted that though increase in S is favourable here but it adds more burden on

computing resources. Thus, an optimal trade-off has to be found between performance and

resources. In Fig 3.18(a), the probability of elimination dispersal is varied from 0.1 to 1 and we

observe from the plot that MSE remain more or less the same till ped=0.8 at which MSE drops

suddenly and remain constant till ped=1. Therefore from the plot it is found that ped=0.80

would be optimum value for optimization.

45

46

Figure 3.18: Plot between MSE v/s initial values parameters (a) ped (b) Ned (c) Nre (d) Nc (e)

Ns (f) S (g) Sr

47

CHAPTER 5

RESULTS AND DISCUSSION

48

5.1 Similarity Measure

A colour video consisting of T frames and M × N × 3 array of pixel at locations (x, y) may be

viewed as a “stack” of three scale frames corresponding to RGB components. The mean square

error (MSE) is selected as the measure of performance as defined above.

   
23

1 1 1 1
, , , , , ,

(,)
3

N M

t z x y

T
I x y z t f x y z t

MSE f I
N M

   
  


 

   

Where I is the original colour video, f is the noisy video or the filtered video of size N ×M.

Mean Square Error (MSE) gives a similarity measure between two videos. Another similarity

measure is PSNR (peak signal to noise ratio) which is related to MSE as in the following:

 
 
1

, 10log
,

PSNR f I
MSE f I

 
   

 

 (40)

In Equation (38), MSE values are used in the normalized form. For example, if the frame class

is uint8 then it has to be divided by 255*255. To be able to judge the performance of the

proposed method, we will use the peak-signal-to- noise ratio (PSNR) as objective measures of

similarity and dissimilarity between a filtered frame f and the original one I, each containing N

rows and M columns of pixels. Higher the value of PSNR better is the similarity between two

videos.

5.2 Comparison to Other State-of-the-Art Filters

In this section the performance of the proposed method is compared to that of Fuzzy Random

Impulse Noise Removal from Color Image Sequence (FRINRFCIS) [65], video KNNF (K-

nearest neighbour filter) [66], which was implemented using the 3D window; and video alpha

trimmed mean (VATM) filter [66].

49

Fuzzy Random Impulse Noise Removal from Color Image Sequence [65] presented a filtering

framework for color videos corrupted by random valued impulse noise in which the noise is

removed step by step. The detection of noisy color components is based on fuzzy rules in which

information from spatial and temporal neighbors as well as from the other color bands is used.

Detected noisy components are filtered based on block matching where a noise adaptive mean

absolute difference is used and where the search region contains pixels blocks from both the

previous and current frame.

The video alpha trimmed mean (VATM) filter [66] performs both spacial and temporal filtering

of image sequence by sorting pixels within a 3D window in ascending order and averaging a

certain number of pixels in the window, depending of the optimal parameter value. The α-

trimmed mean filter has to compromise between preservation of spatio-temporal details and

efficient noise removal. In case of average noise levels (p ≈ 10%), at least half of the total

number (N=27) of pixel values have to be averaged for efficient noise removal. However this

will also introduces spatio-temporal blur into the sequence. As the noise level increases,

efficient noise removal will be done at the expense of a higher spatio-temporal blur, further

degrading the sequence structures. In case of medium or fast motion in the processed video

sequence, more than a half of the pixel values, within the 3D sliding window, can belong to an

object different from the one in the current frame. Consequently, considerable motion blur can

be introduced.

Video K-nearest neighbour filter (KNNF) [66] is a non linear filter which sorts pixels within a

3D window, according to their difference with the central pixel‟s value; after that, it averages

the pixels in the window, after weighting them according to their sorting order. Since for the

specific noise type and noise level, the number of pixels considered for the averaging is

constant, the video K-nearest neighbour filter can introduce certain amount of spatial and/or

temporal blurring in case of fine spatial details and/or motion. This happens when there are not

enough pixel values similar to the central pixel one, within the 3D sliding window area.

Specifically, for efficient noise removal, at least half of the pixel values have to be used for

filtering. As a result, in case of medium and fast motion some pixel values (from frames

different from the current one), belonging to the undergoing motion object will also be in the

averaging. Consequently, motion blur will be introduced.

50

We have tested the proposed methods on the following color image sequences : “Salesman”,

“Tennis”, “Bus”, “Foreman”, “Flower”, and “Deadline” for random impulse noise level

ranging from p = 5% to p = 10%. The result of this experiment in terms of PSNR is presented

in fig 5.1. From the figure it can be concluded that the proposed method outperforms all other

methods.

The proposed method outperforms these methods not just in terms of objective measure but also

in visual comparison. Figs. 5.2, 5.3 and 5.4 respectively show for the 30th frame of the

“Tennis” (p = 5%) sequence, 30th frame of the “Bus” (p = 10%) sequence and the 30th frame

of the “Salesman” (p = 20%) sequence, the original frame, the noisy frame and the result

obtained by the different compared methods.

We see that the FRINRFCIS results in very good noise removal, even for high noise levels. At

the cost of this, however, too much detail gets lost (e.g., railing in “Bus”) and the images

become a little blurry. Further, several temporal inconsistencies in non-moving areas can be

detected, especially when they are detailed (e.g., background leaves in “Salesman”).

VATM removes the noise very well. However, too many noise-free pixels are filtered as well,

which results in both spatial and temporal inconsistencies, especially around edges. Further, the

filter also performs less well in the case of motion (e.g., “Salesman” (face), “Tennis” (ball),

“Bus” (car)). Since noisefree pixels are modified along with the noisy pixels, this filter results in

blurring of the overall sequence.

Similarly the KNNF removes the noise very well but introduces certain amount of spatial and/or

temporal blurring in case of fine spatial details and/or motion (e.g., “Salesman” (arms),

“Tennis” (ball), “Bus” (car)). Since a large number of pixels are used for computing the

average, the filter produces blur even for low noise presence.

Finally, the proposed fuzzy filter combines very good detail preservation to very good noise

removal and clearly outperforms all compared filters. The filter benefits very well from the extra

information coming from similar regions in a spatio-temporal neighborhood.

51

(a)

(b)

(c)

52

(d)

(e)

53

(f)

Figure 5.1 PSNR results for the different methods applied on (a) “Salesman” (p = 5%), (b)

“Tennis” (p = 10%), (c) “Bus” (p = 15%), (d) “Foreman” (p = 20%), (e) “Flower” (p = 25%),

(f) “Deadline” (p = 30%).

54

 (a) (b)

 (c) (d)

 (e) (f)

Figure 5.2: 30th frame of the “Tennis” sequence: (a) original, (b) noisy (p=5%), (c)

FRINRFCIS, (d) VATM, (e) KNNF and (f) Proposed.

55

 (a) (b)

 (c) (d)

 (e) (f)

Figure 5.3: 30th frame of the “Bus” sequence: (a) original, (b) noisy (p=10%), (c) FRINRFCIS,

(d) VATM, (e) KNNF and (f) Proposed.

56

 (a) (b)

 (c) (d)

 (e) (f)

Figure 5.4: 30th frame of the “Salesman” sequence: (a) original, (b) noisy (p=20%), (c)

FRINRFCIS, (d) VATM, (e) KNNF and (f) Proposed.

57

CHAPTER 6

CONCLUSION AND FUTURE WORK

58

6.1 Conclusion

In this thesis, we have presented a new filtering framework for color videos corrupted by

random valued impulse noise. In order to preserve the details as much as possible, the noise is

removed step by step. The detection of noisy color components is based on fuzzy rules in which

information from spatial and temporal neighbors as well as from the other color bands is used.

Each of the color bands is filtered separately. However, the fuzzy rules that are used to

determine the noisy and noisefree pixels in each step do now not only require information from

a spatio-temporal neighborhood in the same color band, but exploit also the extra information

that is available from the other color bands. To exploit the temporal information as well as the

spatial information, we developed the technique that not only considers the current frame but

also the previous and next frame. Two fuzzy sub filters are successively used to detect and filter

the random impulse noise. Since a considerable part of the noise has already been filtered in the

first step, the remaining noise is easier to detect in the second step and hence details are well

preserved. Also, more reliable neighbors are used for comparison. The detection phase helps in

determining the noisy pixels and in distinguishing them from the noisefree pixels. In this way,

only noisy pixels are modified and noisefree pixels are left untouched which minimizes the

blurring. Furthermore, only noisefree pixels are used for filtering the noisy pixels. In order to

achieve good detection characteristics of the proposed method, it was necessary to optimize two

types of parameters: the parameters in the original objective function and the parameters of the

Bacteria Foraging entering into the objective function for facilitating the optimization. Both of

the parameters are optimized in the present work. After the optimization, the proposed method

is characterized by excellent results and robustness in the environments with a wide range of the

impulse noise corruption. From the experimental results it can be seen that the proposed filters

result in a very good trade-off between noise removal and detail preservation. They are further

also shown to outperform all other compared state-of-the-art random impulse noise filters. The

experiments show that the proposed method outperforms other state-of-the-art methods both

visually and in terms of objective quality measures such as the PSNR.

59

6.2 Future Work

Image sequences play an important role in today‟s world. They provide us a lot of information.

Videos are for example used for traffic observations, surveillance systems, and autonomous

navigation and so on. Due to bad acquisition, transmission or recording, the sequences are

however usually corrupted by noise, which hampers the functioning of many image processing

techniques. The most common noise types that can be distinguished are impulse noise, additive

noise and multiplicative noise. In the case of impulse noise, a certain percentage of the pixel

grey values or color components are replaced by noise values. Such noise value can be fixed

(usually as the minimum or maximum allowed value: salt and pepper noise) or the result of a

random process (usually with a uniform distribution). If an image is corrupted by additive noise,

then a random value from a given distribution (e.g. a Gaussian distribution) has been added to

each pixel. In the multiplicative noise type, the intensity of the noise value added to a pixel

depends on the intensity of the pixel grey value or color component itself (e.g. speckle noise).

The proposed fuzzy filter is intended for color videos corrupted by random valued impulse

noise and results in a very good trade-off between noise removal and detail preservation. As a

future work we will try to extend this work for the denoising of color video sequences corrupted

with other types of noise found in video application such as such as Gaussian noise and speckle

noise.

Although the present work preserves the detail very well but does not include motion

compensation as a pre-processing step. Motion compensation is a technique used in video

compression, which is already adopted in video filters for additive Gaussian noise, but has not

really found its way to impulse noise video filters yet. Hence, a possible direction for future

work could be an extension of the proposed method to integrate simultaneous motion estimation

technique into the present work.

60

REFERENCES

61

[1] Pawan Patidar, Manoj Gupta, Sumit Srivastava, and Ashok Kumar Nagawat, “Image De-

noising by Various Filters for Different Noise”, International Journal of Computer Applications

(09758887) Volume 9– No.4, November 2010.

[2] Mr.Salem Saleh Al-amri,Dr.Khamitkar S.D, “A comparative study of Removal Noise from

Remote sensing Image”, IJCSI International Journal of Computer Science Issues,Vol.7,Issue

.1,January 2010 32 ISSN (online):1694-0784 ISSN(Print):1694-0814.

[3] Om Prakash Verma, Madasu Hanmandlu, Anil Singh Parihar and Vamsi Krishna Madasu,

“Fuzzy Filters for Noise Reduction in Color Images”, ICGST-GVIP Journal, Volume 9, Issue 5,

September 2009.

[4] Fabrizio Russo, Giovanni Ramponi, “Nonlinear fuzzy operators for image processing”,

Signal Processing, v.38 n.3, p.429-440, Aug. 1994.

[5] A. Taguchi, H. Takashima and Y. Murata, "Fuzzy filters for image smoothing", in Proc.

SPIE Conf. on Nonlinear Image Processing V, San Jose, CA, USA, pp.332-339, February

7-9, 1994,.

[6] A. Taguchi, H. Takashima, F. Russo, "Data Dependent Filtering Using the Fuzzy

Inference", in Proc. IEEE IMTC/95, Waltham, Mass., USA, April 24-26, 1995.

[7] S. Peng and L. Lucke, "Fuzzy filtering for mixed noise removal during image

processing", in Proc. FUZZ-IEEE '94, Orlando, FL, USA, June 26 - 29,1994.

[8] S. Peng and L. Lucke, "Multi-Level Adaptive Fuzzy Filter for Mixed Noise Removal", in

Proc. ISCAS-95, Seattle, Washington, USA, April 1995.

[9] S. Peng and L. Lucke, "An Adaptive Window Hybrid Filter", Proc. IEEE NSIP-95

Workshop, Neos Marmaras, Halkidiki, Greece, June 20-22, 1995.

[10] S. Peng and L. Lucke, "A Hybrid Filter for Image Enhancement", in Proc. IEEE

ICIP-95, October 22-25, 1995, Washington, DC, USA.

62

[11] K. N. Plataniotis, D. Androutsos and A. N. Venetsanopoulos: "Color image

processing using fuzzy vector directional filters", in Proc. IEEE NSIP-95, Neos Marmaras,

Halkidiki, Greece, June 20-22.

[12] V. Chatzis and I. Pitas, "Mean and median of fuzzy numbers", Proc. IEEE NSIP-

95, Neos Marmaras, Halkidiki, Greece, June 20-22, 1995.

[13] Pao-Ta Yu and Rong Chung Chen, "Fuzzy Stack Filters - Their definitions, fundamental

properties and application in image processing", in Proc. IEEE NSIP-95, Neos Marmaras,

Halkidiki, Greece, June 20 22.

[14] Tamalika Chaira, Ajoy kumar Raj "Fuzzy image Processing and Applications

withMATLAB" CRC Press 2010.

[15] T A. Nodes and N. C. Gallagher, Jr. “The output distribution of median type filters,” IEEE

Transactions on Communications, COM-32, 1984.

[16] T. Chen and H. R. Wu, “Space variant median filters for the restoration of impulse noise

corrupted images,” IEEE Transactions on Circuits and Systems II, 48 (2001), pp. 784–789.

[17] H. Hwang and R. A. Haddad, “Adaptive median filters: new algorithms and results,”

IEEE Transactions on Image Processing, 4 (1995), pp. 499–502.

[18] J. C. Brailean, R. P. Kleihorst, S. N. Efstratiadis, A. K. Katsaggelos, and R. L. Lagendijk.

“Noise reduction filters for dynamic image sequences : A review”. Proceedings of the IEEE,

83(9):1236–1251, September 1995.

[19] J.S. Lee, ”Digital image enhancement and noise filtering by use of local statistics”, IEEE

Trans. Patt. Anal. Machine Intell., vol. 2, pp. 165-168, 1980.

[20] J.S. Lee, ”Digital image smoothing and the sigma filter”, Computer Vision, Graphics and

Image Processing, vol. 24, pp. 255-269, 1983.

[21] L.P. Yaroslavsky, ”Digital Picture Processing - An Introduction”, Springer Verlag, 1985.

[22] J. Tukey, ”Exploratory Data Analysis”, Addison-Wesley, 1977.

63

[23] A.K. Jain, "Foundimentals of Digital Image Processing", Englewood Cliffs, NJ, Prentice-

Hall, 1989.

[24] C.Q. Zhan and LJ. Karam, "Wavelet-Based Adaptive Image Denoising With Edge

Preservation", Proc. of the IEEE 2003 Int. Conf. on Image Process., MA- L2, Sept. 2003.

[25] Buades, B. Coll, J.M. Morel, "Denoising image sequences does not require motion

estimation," avss, pp.70-74, IEEE Conference on Advanced Video and Signal Based

Surveillance, 2005.

[26] M.B. Alp, and Y. Neuvo, “3-dimensional median filters for image sequence processing”,

IEEE Proc. Int. Conf. Acoustics, Speech, and Signal Proc., vol. 4, pp. 2917-2929, 1991.

[27] G. R. Arce, “Multistage order statistic filters for image sequence processing” IEEE Trans.

Signal Processing, vol 39, pp. 1147-1163, 1991.

[28] A. C. Kokaram, ”Motion Picture Restoration”, PhD thesis, Cambridge University, 1993.

[29] B. Horn and B. Schunck, ”Determining optical flow,” Artif. Intell., Vol. 17, pp. 185-203,

1981.

[30] Davis, L., Rosenfeld, A.: “Noise cleaning by iterated cleaning”. IEEE Trans. on Syst. Man

Cybernet 8, 705-710 (1978).

[31] Mitchell, H., Mashkit, N.: “Noise smoothing by a fast k-nearest neighbor algorithm”.

Signal Processing: Image Communication 4, 227-232 (1992).

[32] Zlokolica, V.: “Advanced nonlinear methods for video denoising”, PhD thesis, chapter 3,

Ghent University, Ghent, Belgium (2006).

[33] Zlokolica, V., Philips, W.: “Motion-detail adaptive k-nn filter video denoising”, Report

(2002), http://telin.ugent.be/~vzlokoli/Report2002vz.pdf.

[34] Zlokolica, V., Pizurica, A., Philips, W.: “Video denoising using multiple class averaging

with multiresolution”. In: García, N., Salgado, L., Martínez, J.M. (eds.) VLBV 2003. LNCS,

vol. 2849, pp. 172-179. Springer, Heidelberg (2003).

http://telin.ugent.be/~vzlokoli/Report2002vz.pdf

64

[35] Zlokolica, V.: “Advanced nonlinear methods for video denoising”, PhD thesis, chapter 5,

Ghent University, Ghent, Belgium (2006).

[36] Cocchia, F., Carrato, S., Ramponi, G.: “Design and real-time implementation of a 3-D

rational filter for edge preserving smoothing”. IEEE Trans. on Consumer Electronics 43(4),

1291-1300 (1997).

[37] Yin, H.B., Fang, X.Z., Wei, Z. and Yang, X.K., “An improved motion-compensated 3-D

LLMMSE filter with spatio-temporal adaptive filtering support”. IEEE Trans. Circuits Syst.

Video Technol. v17 i12. 1714-1727.

[38] Guo, L., Au, O.C., Ma, M. and Liang, Z., “Temporal video denoising based on

multihypothesis motion compensation”. IEEE Trans. Circuits Syst. Video Technol. v17 i10.

1423-1429.

[39] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, June 1965.

[40] Alper Pasha "Morphological image processing with fuzzy logic" Havaclilik ve

uzayteknolojilerl derglsl ocak 2006 cilt 2 sayi 3 (27-34).

[41] Mamdani, E.H. and S. Assilian, "An experiment in linguistic synthesis with a fuzzylogic

controller," International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13,1975.

[42] Zadeh, L.A., "Outline of a new approach to the analysis of complex systems anddecision

processes," IEEE Transactions on Systems, Man, and Cybernetics, Vol. 3, No.1,pp. 28-44, Jan.

1973.

[43] Arshdeep Kaur, Amrit Kaur, ”Comparison of Mamdani-Type and Sugeno-Type Fuzzy

Inference Systems for Air Conditioning System,” International Journal of Soft Computing and

Engineering (IJSCE) , ISSN: 2231-2307, Volume-2, Issue-2, pp. 323 – 325, May 2012 ISSN:

2231-2307, Volume-2, Issue-2, May 2012.

[44] L.N.Decastro, F. J. Von Zuben, and Idea Group Pub et al. “Recent Developments In

Biologically Inspired Computing”. IGI Publishing, Hershey, PA, USA, 2004.

65

[45] D.E. Goldberg, “Genetic algorithms in search, optimization and machine learning”,

Addison-Wesley, Reading, MA, 1989.

[46] Poli R.: “Genetic Programming for Image Analysis”. Proceedings of the First International

Conference on Genetic Programming, 363-368, 1996.

[47] Konstantinos Delibasis , Peter E. Undrill , George G. Cameron, “Designing texture filters

with genetic algorithms: an application to medical images”, Signal Processing, v.57 n.1, p.19-

33, Feb. 1997.

[48] Szostakowski J. “Genetic programming for Image Sequence Filtering”. Proc. International

Conference on Power Electronics and Intelligent Control for Energy Conservation, Warsaw,

2005.

[49] Lukac R., Plataniotis K. N., Smolka B., Venetsanopoulos A.N.: “Color image filtering and

enhancement based genetic algorithms”. Proc. International Symposium Circuits and Systems,

913-916, 2009.

[50] Lee C. S., Guo S. M., Hsu C. Y. (2005) “Genetic-based fuzzy image filter and its

application to image processing”. IEEE Transactions on Systems, Man, and Cybernetics, Part B,

Cybernetics 35(4): 697–711.

[51] Eberhart, R.C., Kennedy, J.: “A new optimizer using particle swarm theory”. In:

Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

Kluwer Academic Publishers, Nagoya, Japan (1995) 39-43.

[52] Shi, Y. and R. Eberhart, 1998. “A modified particle swarm optimizer. Proceeding of the

Congress on Evolutionary Computation”, May 4-9, IEEE Xplore Press, Anchorage, AK, USA,

pp: 69-73.

[53] Kennedy, J. and Eberhart, R. C. “Particle swarm optimization” Proceedings of IEEE

International Conference on Neural Networks Vol. IV, IEEE service center, Piscataway, NJ,

Nov. 27- Dec. 1, 1995, pp. 1942-1948.

66

[54] M. Dorigo and G. Di Caro, “The Ant Colony Optimization meta-heuristic,” in New

Ideas in Optimization, D. Corne et al., Eds., McGraw Hill, London, UK, pp. 11–32, 1999.

[55] M. Dorigo, G. Di Caro, and L.M. Gambardella, “Ant algorithms for discrete

optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, 1999.

[56] M. Dorigo and T. Stutzle, “Ant Colony Optimization”, MIT Press, Cambridge, MA, 2004.

[57] N. Meuleau and M. Dorigo, “Ant colony optimization and stochastic gradient descent,”

Artificial Life, vol. 8, no. 2, pp. 103–121, 2002.

[58] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of

cooperating agents”, Part B: Cybernetics, IEEE Transactions on Systems, Man,

Cybernetics, 1996, Vol. 26, Issue 1, pp. 29–41.

[59] Passino, K.M., 2002. “Biomimicry of bacterial foraging for distributed optimization and

control”. Control Systems Magazine, IEEE 22 (3), 52–67.

[60] Liu, Y., Passino, K.M., 2002. “Biomimicry of social foraging bacteria for distributed

optimization models, principles and emergent behaviors”. J. Optim. Theory Appl. 115 (3), 603–

628.

[61] Hanmandlu M., Verma O. P., Kumar N. K., Kulkarni M. (2009) “A novel optimal fuzzy

system for color image enhancement using bacterial foraging”. IEEE Transactions on

Instrumentation and Measurement 58(8): 2867–2879.

[62] Kim D. H., Abraham A., Cho J. H. (2007) “A hybrid genetic algorithm and bacterial

foraging approach for global optimization”. Information Sciences 177(18): 3918–3937.

[63] Biswas A., Dasgupta S., Das S., Abrahamy A. (2007) “A synergy of differential evolution

and bacterial foraging algorithm for global optimization”. International Journal on Neural and

Mass-Parallel Computing and Information Systems, Neural Network World 17(6): 607–626.

[64] Mishra, S., “A hybrid least square-fuzzy bacteria foraging strategy for harmonic

estimation,” IEEE Trans. Evol. Comput., Vol. 9, No. 1, 61–73, Feb. 2005.

67

[65] Tom Mélange, Mike Nachtegael, Etienne E. Kerre: “Fuzzy Random Impulse Noise

Removal From Color Image Sequences”, IEEE Transactions on Image Processing 20(4): 959-

970 (2011).

 [66] Zlokolica, V., Philips, D., and van de Ville, D.: “A new non-linear filter for video

processing". IEEE Benelux Signal Processing Symp. (SPS-2002), Belgium, March 2002.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kerre:Etienne_E=.html
http://www.informatik.uni-trier.de/~ley/db/journals/tip/tip20.html#MelangeNK11

