Optimization of Milling Duration of SBT Nanocrystalline Ferroelectric Ceramic

A Dissertation Submitted towards the Partial Fulfilment of Award of Degree of

MASTER OF TECHNOLOGY In NANO SCIENCE AND TECHNOLOGY

Submitted by MANISH DWIVEDI 2K10/NST/09

Under the Supervision of Dr. Mohan Singh Mehata Assistant Professor DEPARTMENT OF APPLIED PHYSICS

DELHI TECHNOLOGICAL UNIVERSITY (Formerly Delhi College of Engineering)

Bawana Road, Shahabad Daulatpur, Delhi – 110042 July-2012

CERTIFICATE

This is to certify that the dissertation on the topic entitled **"Optimization of Milling Duration of SBT Nanocrystalline Ferroelectric Ceramic"** has completed the work by Mr. Manish Dwivedi (2K10/NST/09) carried out under my supervision in partial fulfilment of the requirement towards the degree of Master of Technology (M.Tech.) in Nano Science and Technology of Department of Applied Physics, Delhi Technological University, New Delhi.

Supervisor

Dr.Mohan Singh Mehata Assistant Professor Head of Department Department of Applied Physics Department of Applied Physics Delhi Technological University Delhi Technological University Delhi Date: /07/2012 Date: /07/2012

ACKNOWLEDGEMENT

I am deeply grateful to **Dr. R .K. SINHA**, Head of Department (Applied Physics), Delhi Technological University for his support and encouragement in carrying out this project work in the Department of Applied Physics.

I wish to express my deep sense of gratitude to my project guide, **Dr. Mohan Singh Mehata**, of Department of Applied Physics for his valuable guidance and suggestions at all stages of this work. I am also very grateful to **Ms. Sugandha Miglani**, Research Scholar of Department of Applied Physics for her help at the time of making sample and obtaining result and discussion, and her constructive criticism of this approach to the problems during the course of this work helped me to a great extent in bringing this work to its present state.

> MANISH DWIVEDI 09/NST/2K10 M.Tech.2nd year Nano Science & Technology Department Of Applied Physics Delhi Technological University Delhi Date: /07/2012

ABSTRACT

Nanocrystalline ferroelectric ceramics are important electronic materials having a wide range of scientific and industrial applications such as high dielectric constant capacitors, piezoelectric transducers, pyroelectric sensors, non volatile ferroelectric random access memories, etc. It is well known that performance of any material is closely related to its synthesis process. The methods of synthesis of ferroelectric powders play a significant role in determining the microstructural, electrical and optical properties of these materials. In the present work, nanocrystalline specimens of Strontium Bismuth Tantalate (SBT) ferroelectric ceramics has been synthesized by two technique 1) Solid State reaction Method 2)Mechanical activation process using a high energy planetary ball mill. The powders has been milled for different milling durations (5, 10, 20 hours, etc.), keeping the milling speed fixed at 300 rpm. Microstructural characterizations were performed using X-ray diffraction, scanning electron microscopy. Detailed dielectric study as a function of temperature has been carried out. The observed results have been explained in terms of increased number of grain boundaries due to the reduction of granular size. In the present work, milling hours has been optimized to get enhanced microstructure and dielectric constant of the prepared specimen

CONTENT

(1) Introduction P	age No.
1.1 Dielectrics	. 1
1.1.1 General properties of dielectrics	2
1.1.1.1 Dielectric Polarization	2
1.1.1.2 Dielectric constant and dielectric loss	6
1.2 Ferroelectricity	10
1.2.1 General Properties of ferroelectrics	10
1.2.1.1 Crystal Symmetry	. 10
1.2.1.2 Spontaneous polarization and Pyroelectric	
Effect	10
1.2.1.3 Ferroelectric Domains	. 11
1.2.1.4 Hysteresis Loop	12
1.2.1.5 Curie temperature and phase transition	13
1.2.2 Application of ferroelectric materials	. 13
1.2.3 Type of Ferroelectric materials	. 15
1.2.3.1 Perovskites	15
1.2.3.2 Tungsten Bronze type Compounds	16
1.2.3.3 Bismuth Layer Structured Ferroelectrics	17
1.2.3.4 Lithium Niobate and Tantalate	. 18
1.3 Strontium bismuth tanatalate, SrBi₂Ta₂O₉	. 19
(2) Experimental Techniques	
2.1 Composition Prepared	. 21
2.2 Experimental Procedure	21

2.2.1 Solid State Reaction Method	21
2.2.2 Mechanical Activation Method	22
2.3 Experimental Technique used for Characterization	23
2.3.1 XRD	23
2.3.2 SEM	. 24
2.3.3 LCR Meter	26
2.3.4 Ball Milling	28
2.3.5.Hysteresis Measurement of Multilayer Ceramic Capacitor	
Using Sawyer Tower Circuit	29
(3) Results and Discussion	
3.1 Optimization of milling duration	31
3.2 Structural Characterization	32
3.2.1 Solid State Reaction Technique	32
3.2.2 Mechanical Activation Technique	33
3.3 Electrical Characterization	
3.3.1 Dielectric Studies	40
3.3.1.1Dielectric Constant	40
3.3.1.2 Dielectric Loss	43
3.3.2 Ferroelectric Studies	45
(4) Conclusions	47
(5) References	48

LIST OF FIGURES

Figure 1.1: Parallel plate capacitor under DC field	7
Figure 1.2: Loss tangent vector diagram	9
Figure 1.3: Hysteresis loop	12
Figure 1.4: Peroskites structure	15
Figure 1.5: Schematic diagram showing a projection of the tungsten-bronze structure	16
Figure 1.6: Structure of Ferroelectric LiNbO ₃ and LiTaO ₃	18
Figure 1.7: bismuth layered oxide SBT structure	20
Figure 2.1: Block diagram of Solid State Reaction Technique	21
Figure 2.2: Block Diagram of Mechanical Activation Technique	22
Figure 2.3: Scanning Electron Microscope	24
Figure 2.4: Essential Parts of Scanning Electron Microscopy	26
Figure 2.5: Measurement of unknown impedance using LCR Meter	27
Figure 2.6: hysteresis loop	29
Figure 2.7: Block Diagram of Sawyer Tower Circuit	29
Figure 3.1: XRD patterns of polycrystalline SBT sample	32
Figure 3.2: SEM image of the synthesized SBT sample	33
Figure 3.3: XRD pattern of sample of SBT milled for 5, 10, 20 hours	35
Figure 3.4: SEM micrograph of sample of SBT milled for 5, 10 & 20hours	36
Figure 3.5: SEM micrographs of nanocrystalline SBT sample sintered at 1150°C	37
Figure 3.6 : SEM micrographs of sintered samples (1100 [°] C) milled at different milling hours	39
Figure 3.7: temperature dependence of dielectric constant (ε_r) at 100 KHz	41
Figure 3.8: dielectric constant values as compared to polycrystalline SBT sample	42
Figure 3.9: variation of dielectric loss as a function of temperature	44
Figure 3.10: P-E hysteresis loops for all the samples	45