

1 | P a g e

Cost based Graphical Vertical Fragmentation in Relational

Database

A Dissertation Submitted in partial fulfillment of the requirement

For the Award of degree of

MASTER OF TECHNOLOGY

In

Software Engineering

By

Kushal Verma

 (Roll No. 05/SWE/2010)

Under the Guidance of

Dr. Rajni Jindal

(Associate Professor and Project Guide)

Delhi Technological University

Department of Computer Engineering

Delhi Technological University

July – 2012

2 | P a g e

CERTIFICATE

This is to certify that project entitled “Cost based graphical vertical fragmentation in relational

database” has been completed by Kushal Verma, Roll No. 05/SWE/2010 in the partial

fulfillment of the requirement for the award of degree of Master of Technology in Software

Engineering.

This work is carried out by him under my supervision and support. This is a beneficial work in

the field of large scale distributed Database.

Dr. Rajni Jindal

Associate Professor & Project Guide

 (Dept. of Computer Engineering)

Delhi Technological University

Bawana Road, Delhi- 110042.

3 | P a g e

ACKNOWLEDGEMENT

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my

learned supervisor Dr. Rajni Jindal (Associate Professor of Computer Engineering Dept., Delhi

Technological University) for her precious guidance, encouragement and patient reviews. Her

continuous inspiration only has made me complete this dissertation. All of them kept on boosting

me time and again for putting an extra ounce of effort to realize this work.

I am also thankful to Prof. Dr. Daya Gupta, Head of the Department, Computer

Engineering, Delhi Technological University, Delhi for the motivation and inspiration that

triggered me for the thesis work.

I would also like to thank the staff members and my colleagues who were always there at

the need of the hour and provided with all the help and facilities, which I required for the

completion of my thesis work.

Finally I am also thankful to my classmates and my family members for their

unconditional support and motivation during this work.

Kushal Verma

Master of Technology

(Software Engineering)

Dept. of Computer Engineering

Delhi Technological University

Bawana Road, Delhi -110042

4 | P a g e

Table of contents

Certificate 2

Acknowledgement

Table of contents

Figure index

Table index

3

4

5

6

Abstract 7

1. Problem definition 8

 1.1 Overview 8

 1.2 Related work and motivation 9

 1.3 Solution flow 9

 1.4 Organization of dissertation 11

2. Distributed database 12

 2.1 Introduction 12

 2.2 Fragmentation 13

 2.3 Allocation 15

 2.4 Advantages of distributed database 16

 2.5 Disadvantages of distributed database 17

3. Graphical approach for VF 18

 3.1 Definitions 18

 3.2 Algorithm 19

 3.3 Example 20

 3.4 Step by step solution 21

 3.5 Advantages

3.6 Disadvantages

25

25

4. Heuristic approach for VF 26

 4.1 Notations and Definitions 27

 4.2 Algorithm

4.3 Example

4.4 Advantages

29

29

31

5. Cost based graphical partitioning 32

 5.1 Notations and definitions

5.2 Proposed algorithm

5.3 Example

5.4 Step by step solution

33

34

34

35

6. Implementation 42

7. Conclusion and future work

7.1 Conclusion

7.2 Future work

47

47

48

References 49

Source code 50

5 | P a g e

Figure Index

Figure No. Figure Caption Page No.

1. Solution Flow 10

2. Step by step solution flow 10

3. Distributed database 13

4. Hybrid fragmentation 14

5. Fragmentation and allocation 15

6. Enclosed and enclosing cycle 19

7. Graphical method for VF 21

8. Graphical method for VF 35

9. Home screen 42

10. Select matrices 43

11. Computed attribute request matrix 43

12. Computed attribute pay matrix 44

13. Allocation of attributes 44

14. Computed fragment request matrix 45

15. Computed fragment pay matrix 45

16. Allocation of fragments 46

6 | P a g e

Table Index

Table No. Table Caption Page No.

1. Attribute usage matrix 20

2. Attribute affinity matrix 21

3. Attribute usage frequency matrix 29

4. Attribute request matrix 30

5. Transaction cost factor matrix 30

6. Attribute pay matrix 31

7. Attribute allocation 31

8. Attribute usage matrix 34

9. Attribute affinity matrix 35

10. Attribute usage frequency matrix 39

11. Fragment request matrix 40

12. Transaction cost factor matrix 40

13. Fragment pay matrix 40

14. Fragment allocation 40

7 | P a g e

Abstract

In a distributed database environment, query processing heavily depends upon locality of the

requested data at the query site. When relations are vertically fragmented, data locality can be

improved significantly since the fragments can be replicated flexibly without replication

incurring overwhelming update cost.

Vertical partitioning clusters attributes of a relation to generate fragments suitable for subsequent

allocation over a distributed platform. Partitioning is also important for centralized and web

databases because data items that are mostly accessed together should reside in the same

fragment. The target is to minimize the execution time of user applications.

In this thesis we use graphical and heuristic approach for vertical fragmentation scheme for the

DDBMS to allocate the fragments generated by the graphical approach. In our proposal where

allocation is handled along with Fragmentation, Fragmentation will be done by using graphical

approach and then using the cost model of heuristic approach, these fragments will be allocated.

Input consists of a set of relations, together with information about the important transactions on

the proposed database. It is not necessary to collect information about 100% of transactions.

According to 80-20 rule [2], 20% of heavily used transactions account for the 80% of database

activity. Hence we provide information about 20% of heavily used transaction.

8 | P a g e

CHAPTER 1

Problem

Definition

1.1 Overview

Now a day’s size of databases is so huge that it’s almost impossible to keep all the data at

one place. Even the organizations are spreading their businesses all around the world,

which will create bottleneck problem with that single database server. Many large

organizations of different types have a history of separate business units developing and

maintaining independent customer databases. Typically these legacy systems have been

developed autonomously and use a variety of data structures and identifiers to record

personal information. In addition, these databases are often ‘owned and operated’ by

separate functional units within the organization. Consequently, the personal information

an organization holds about individuals will be fragmented across a number of databases

using a variety of different data structures. This makes accessing and collating personal

information difficult and time-consuming. Rarely in these cases is there a unified and

consolidated view of the information an organization holds about an individual.

Now, the design of distributed database is an optimization problem and the resolution of

several sub problems such as data fragmentation (horizontal, vertical, and hybrid), data

allocation (with or without redundancy), optimization and allocation of operations

(request transformation, selection of the best execution strategy, and allocation of

operations to sites). There are some different approaches to solve each problem, so this

means that the design of the distributed databases becomes cumbersome. There are many

9 | P a g e

researches connected to the data fragmentation and they are presented both in the case of

relational database and in the case of object-oriented database. Here we present a new

technique for graphical partitioning approach for vertical fragmentation in distributed

databases, especially to solve the problem of allocation in distributed databases.

1.2 Related Work & Motivation

The concept of using fragmentation and allocation of data as means of improving the

performance of database management systems has often emerged in the literature. Most

of the past research considers either horizontal fragmentation schemes or vertical

fragmentation schemes [1] [2] [4] [5] [6].

Shamkant B. Navathe, K Karlapalemand M. Ra proposed a mixed fragmentation

methodology by means of graphical approach to both HF and VF in [5]. This uses the

graphical approach using partitioning algorithm given in [1] for both horizontal and

vertical partitioning. This is not a cost model hence it does not deal with the problem of

allocation. Allocation of fragments to sites would normally involve a cost model. To the

best of our knowledge no such hybrid fragmentation approach exists that performs

fragmentation and allocation simultaneously. Our emphasis in this paper is a cost based

graphical partitioning approach for VF. We have developed a cost model that addresses

the problem of allocation in distributed databases. Our methodology uses the modified

formulae of heuristic approach [6] for vertical fragmentation by H. Ma, KD Schewe and

M. Kirchberg. By combining both of these techniques we can do the allocation of

fragments. This allows us to allocate the fragments computed by the graphical

partitioning approach. We will discuss this in detail in later chapters.

1.3 Solution Flow

The complete distributed database design is a three step process, namely: initial design,

application of design and redesign. Initial design consists of selecting fragmentation and

allocation algorithms. Second and third step are iterative processes that depends upon

logical and physical changes in the distributed database environment.

Input consists of a set of relations, together with information about the important

transactions on the proposed database. It is not necessary to collect information about

100% of transactions. According to 80-20 rule [4], 20% of heavily used transactions

account for the 80% of database activity. Hence we provide information about 20% of

heavily used transaction. Input to the fragmentation techniques is defines as follows:

10 | P a g e

 Schema information includes relations, attributes, attribute sizes.

 Information on transactions includes frequency and attributes usage.

Figure 1: Solution Flow

After gathering input, next is the fragmentation which is done using graphical approach.

After generating the fragments from the above approach next is the allocation, for which

cost based model is used. The fragments will be allocated to the site where its cost is

lesser than the other sites, and cost is nothing but the transaction delay.

Figure 2: Step by step solution flow

11 | P a g e

1.4 Organization of Dissertation

The rest of this thesis is organized as follows. In chapter 2, we have presented literature

review for distributed databases. It describes the various distributed databases design

techniques.

Chapter 3 We will explain Graphical approach using graph partitioning algorithm that

partition the relation using attribute affinity. We presented an example to explain the

above technique.

Moving to chapter 4 we will explain heuristic approach for VF that uses an attribute

usage matrix and cost model. We presented an example to explain the above technique.

In chapter 5 we introduce how to perform allocation of the fragments generated by the

graphical partitioning approach. We present the proposed algorithm and an example to

explain the above technique.

In chapter 6 we have shown the screen shots of the tool which implements all these

approaches.

Finally we conclude with a short summary and the future modifications of the proposed

methodology in chapter 7.

12 | P a g e

CHAPTER 2

Distributed

Databases

In the previous chapter we discussed about our approach and motivation behind our

work. This chapter explains the various aspects of a distributed database design problem,

advantages and disadvantages of distributed databases.

2.1 Introduction

A distributed database is a database that is under the control of a central database

management system (DBMS) in which storage devices are not all attached to a common

CPU. It may be stored in multiple computers located in the same physical location, or

may be dispersed over a network of interconnected computers. Collections of data in a

distributed database can be distributed across multiple physical locations. A distributed

database can reside on network servers on the Internet, on corporate intranets or

extranets, or on other company networks. Primary concern of distributed database system

design is to making fragmentation of the relations in case of relational database or classes

in case of object oriented databases, allocation and replication of the fragments in

different sites of the distributed system, and local optimization in each site.

The fragmentation and allocation of databases improves database performance at end-

user worksites. We can influence communication costs, load balancing and availability

by fragmenting a relation and allocating it accordingly using an optimized approach.

13 | P a g e

Fragmentation decomposes a relation into smaller, disjunctive fragments. These

fragments are distributed across nodes or may be replicated. Replication involves using

specialized software that looks for changes in the distributive database. Once the changes

have been identified, the replication process makes all the databases look the same. The

replication process can be very complex and time consuming depending on the size and

number of the distributive databases. This process can also require a lot of time and

computer resources. On the other hand allocation deals with keeping the fragments at the

sites where they are required most. Assigning fragments to sites in the computer network

depends upon communication cost and transaction information. Using a cost model we

can efficiently minimize the cost of remote access and avoid bottleneck problem.

Figure 3 : Distributed Databases

The design of distributed databases is an optimization problem requiring solutions to

following two problems:

 Designing the fragmentation of global relations

 Designing the allocation of fragments to the sites of communication network

2.2 Fragmentation

Distributed processing on database management systems (DBMS) is an efficient way of

improving performance of applications that manipulate large volumes of data. This may

be accomplished by removing irrelevant data accessed during the execution of queries

14 | P a g e

and by reducing the data exchange among sites, which are the two main goals of the

design of distributed databases. The main reasons of fragmentation of the relations are to

 increase locality of reference of the queries submitted to database

 improve reliability and availability of data and performance of the system,

balance storage capacities and minimize communication costs among sites

Fragmentation is a design technique to divide a single relation or class of a database into

two or more partitions such that the combination of the partitions provides the original

database without any loss of information. This reduces the amount of irrelevant data

accessed by the applications of the database, thus reducing the number of disk accesses.

Fragmentation can be horizontal, vertical or mixed/hybrid.

 Horizontal fragmentation (HF) allows a relation or class to be partitioned into

disjoint tuples or instances.

 Vertical fragmentation (VF) allows a relation or class to be partitioned into

disjoint sets of columns or attributes except the primary key.

 Combination of horizontal and vertical fragmentations to grid or mixed or

hybrid fragmentations (MF) are also proposed, which have properties of both.

To perform hybrid fragmentation we can perform HF first and then VF (HV

fragmentation) or vice versa (VH fragmentation) as shown in the figure 4. Final

result is independent of the order of HF and VF.

(a) (b)

Figure 4 : Hybrid fragmentation (a) HV fragmentation & (b) VH fragmentation

The problem of fragmenting the database is difficult one in itself and variety of

approaches exist for fragmenting the database. Many approaches for vertical and

horizontal have been researched before. Some of them are graphical approaches that

consider predicate affinity [5] or attribute affinity [1] to form clusters. A mixed

fragmentation technique [5] uses graphical approach for both HF and VF for creating grid

15 | P a g e

cells. In this thesis we propose a new type of Graphical Fragmentation method which

uses cost model for allocation of fragments generated by the graphical approach. It uses

query frequency and cost of a query to calculate attribute locality precedence for HF [9].

For VF it uses cost of allocating a particular attribute to particular site on the basis of

transaction information [7].

2.3 Allocation

Allocation is the process of assigning the fragments of a database on the sites of a

distributed network. When data is allocated, it may either be replicated or maintained as a

single copy. The replication of fragments improves reliability and efficiency of read-only

queries but increase update cost.

The problem of allocating data in a distributed database system has an important impact

upon the performance and reliability of the system as a whole. The aim is to store the

fragments closer to where they are more frequently used in order to achieve best

performance.

So, one key principle in distribution design is to achieve maximum locality of data and

applications. Since, distributed databases enable more sophisticated communication

between sites; the major motivation for developing a distributed database is to reduce

communication by allocating data as close as possible to the applications which use them.

Thus in a well-designed distributed database 90 percent of the data should be found at the

local site, and only 10 percent of the data should be accessed on a remote site. A poorly

designed data allocation can lead to inefficient computation, high access cost and high

network loads. Various approaches have already evolved for allocation of data in

Figure 5 : Fragmentation and Allocation

16 | P a g e

distributed database. In most of these approaches, data allocation has been proposed prior

to the design of a database depending on some static data access patterns and/or static

query patterns. In a static environment, where the access probabilities of nodes to

fragments never change, a static allocation of fragments provides the best solution.

However, in a dynamic environment where these probabilities change over time, the

static allocation solution would degrade the database performance.

2.4 Advantages of Distributed Databases

There are multiple advantages of DDB over a CDB. Few of them are listed below from

[9].

 Management of distributed data with different levels of transparency.

 Increase reliability and availability.

 Easier expansion.

 Reflects a proper organizational structure — database fragments are located in the

departments which they relate to.

 Local autonomy — a department can control the data about them (as they are the

ones familiar with it.)

 Protection of valuable data — if there were ever a catastrophic event such as a

fire, all of the data would not be in one place, but distributed in multiple locations.

 Improved performance — data is located near the site of greatest demand, and the

database systems themselves are parallelized, allowing load on the databases to be

balanced among servers. (A high load on one module of the database won't affect

other modules of the database in a distributed database.)

 Economics — it costs less to create a network of smaller computers with the

power of a single large computer.

 Modularity — systems can be modified, added and removed from the distributed

database without affecting other modules (systems).

 Reliable transactions - Due to replication of database.

 Hardware, OS, N/w, Fragmentation, DBMS, Replication and Location

Independence.

 Continuous operation…

 Distributed Query processing.

 Distributed Transaction management.

 Single site failure does not affect performance of system. All transactions follow

A.C.I.D. property: a-atomicity, the transaction takes place as whole or not at all;

c-consistency, maps one consistent DB state to another; i-isolation, each

transaction sees a consistent DB; d-durability, the results of a transaction must

17 | P a g e

survive system failures. The Merge Replication Method used to consolidate the

data between databases.

2.5 Disadvantages of Distributed Databases

There some disadvantages of a DDB. Few of them are listed below from [9].

 Complexity — extra work must be done by the DBAs to ensure that the

distributed nature of the system is transparent. Extra work must also be done to

maintain multiple disparate systems, instead of one big one. Extra database design

work must also be done to account for the disconnected nature of the database —

for example, joins become prohibitively expensive when performed across

multiple systems.

 Economics — increased complexity and a more expansive infrastructure means

extra costs.

 Security — remote database fragments must be secured, and they are not

centralized so the remote sites must be secured as well. The infrastructure must

also be secured (e.g., by encrypting the network links between remote sites).

 Difficult to maintain integrity — in a distributed database, enforcing integrity

over a network may require too much of the network's resources to be feasible.

 Inexperience — distributed databases are difficult to work with, and as a young

field there is not much readily available experience on proper practice.

 Lack of standards — there are no tools or methodologies yet to help users convert

a centralized DBMS into a distributed DBMS.

 Database design more complex — besides of the normal difficulties, the design of

a distributed database has to consider fragmentation of data, allocation of

fragments to specific sites and data replication.

 Additional software is required.

 Operating System should support distributed environment.

 Concurrency control: it is a major issue. It is solved by locking and time

stamping.

18 | P a g e

CHAPTER 3

Graphical

Approach for VF

Vertical Partitioning is the process of subdividing the attributes of a relation into groups,

creating fragments. Vertical partitioning is used to store the most closely accessed

attributes in the primary memory. During distributed database design, fragments are

allocated and replicated at different sites that improve the performance of transaction

processing. For better performance, fragments must be closely matched with the

transaction requirements.

In this approach we consider AAM as a complete graph called affinity graph. This

method was proposed by S. B. Navathe and M. Ra for VF in [1]. It uses Attribute

Affinity Matrix. Then it forms linearly connected tree & form cycles out of that [12].

Each cycle would be considered as a separate partition. For algorithm refer to section 4.2.

.

3.1 Definitions

 Cycle completing edge denotes edges that would complete a cycle.

 Cycle connecting edge denotes edges that connect two cycles or partitions.

 Every node in a cycle is called Cycle node.

 End Nodes are the end points of linearly connected tree. Only two end nodes

exist in a linearly connected tree.

19 | P a g e

 When a cycle encloses any smaller cycle, then the smaller cycle is called

Enclosed Cycle and bigger cycle is called Enclosing cycle. For Example, as

shown in the figure 11 cycle ABCDA is enclosing cycles and the cycle BCDB is

enclosed cycle.

Figure 6 : Enclosed and Enclosing Cycle

3.2 Algorithm

First of all create affinity graph of the attributes. Note: that AAM is itself an adequate

data structure to represent this graph. Algorithm for partitioning the graph by forming

linearly connected tree and cycles later on is as follows:

1. Start from any node

2. Select an edge which satisfies the following conditions:

a) Go to step 5 if all nodes are used for tree construction

b) It should be linearly connected to the tree already constructed.

c) It should have the largest value among the possible choices of edges at each

end of the tree. Note that if there are several largest values, anyone can be

selected.

3. When the next selected edge form a cycle and it does not connect to the cycle

node of any cycle except the enclosed cycle.

a) Mark this edge as cycle-completing edge but this edge is not considered as

part of the tree and end nodes remain the same.

b) If this cycle encloses any cycle whose cycle-completing edge have low or

equal affinity than this edge then

(i) remove the cycle-completing tag from the edge of enclosed cycle and

(ii) remove the cycle separating tag from the edge that have it inside the

enclosing cycle so formed.

c) Go to step 2.

4. When the next edge selected does not form a cycle

a) Change the end node to the next node to which this edge is connected.

B

C

D

A

20 | P a g e

b) If the first node of this edge is cycle node then mark this edge as cycle-

connecting edge.

c) Go to step 2.

5. When all the nodes get traversed & become a part of the tree.

a) Choose the non-selected edge from the any non-cycle node with the highest

affinity & go to step 3.

b) Then mark the selected-edge connecting this cycle with the rest of the graph

as cycle-separating edge.

6. Separating out cycles.

a) Choose the cycle completing-edge with highest affinity and complete the

cycle. If the cycle so formed contains a cycle-separating edge then ignore this

cycle. Keep doing this until we get all the nodes as part of some cycle.

3.3 Example

We will explain the application of this algorithm with the help of an example. First of all

we consider an attribute usage matrix as shown in the table 1, which specifies which

attributes are used in which transaction and frequency of transaction.

Table 1 : Attribute Usage Matrix

Trans \ Attr A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

T1 35 0 0 0 35 0 35 0 0 0 35 35

T2 0 50 50 0 0 0 0 0 50 0 0 50

T3 0 0 25 25 0 25 0 0 0 25 0 0

T4 0 35 0 0 0 0 35 0 35 0 35 0

T5 25 25 25 0 0 0 25 25 25 0 0 25

T6 25 0 25 0 25 0 0 25 0 0 25 0

T7 0 0 25 0 0 0 0 25 0 0 0 25

T8 0 0 15 15 0 15 0 0 15 15 15 0

Table 2 shows the attribute affinity matrix for above attribute usage matrix. Affinity of

two attributes is the sum of frequencies of the transactions which access both of these two

attributes. Attribute affinity matrix represents the affinity graph. We will apply modified

graph partitioning algorithm on this graph and form subsets of attributes. Resultant subset

of attributes defines the fragments.

21 | P a g e

Table 2 : Attribute Affinity Matrix

Attr\Attr A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 85 25 50 0 60 0 60 50 25 0 60 60

A2 25 110 75 0 0 0 60 25 110 0 35 75

A3 50 75 165 40 25 40 25 75 90 40 40 100

A4 0 0 40 40 0 40 0 20 15 40 15 0

A5 60 0 25 0 60 0 35 25 0 0 60 35

A6 0 0 40 40 0 40 0 0 15 40 15 0

A7 60 60 25 0 35 0 95 25 60 0 70 60

A8 50 25 75 20 25 0 25 75 25 0 25 50

A9 25 110 90 15 0 15 60 25 125 15 50 75

A10 0 0 40 40 0 40 0 0 15 40 15 0

A11 60 35 40 15 60 15 70 25 50 15 110 35

A12 60 75 100 0 35 0 60 50 75 0 35 135

3.4 Step by Step Solution

Now we will describe the complete solution of given example graphically using our

modified graph-partitioning algorithm. Complete step by step solution is shown in the

figure 17.

Figure 7 : Graphical Method for VF

1 2

A5 A5 A1 60

22 | P a g e

3 4

5

A5 A1 60

A7

60

A11

70

A5 A1 60

A7

60

A11

70

A5 A1 60

A7

60

A9

50

A2

110

A3

75

23 | P a g e

6

7

Next edge A5-A11 is cycle-completing edge.

Hence A11-A9 becomes a cycle separating

edge.

60

A11

70

A5 A1 60

A7

60

A9

50

A2

110

A3

75

A12

100

60

A11

70

A5 A1 60

A7

60

A9

50

A2 110

A3

75

A12

100

A8

50

A4

20

A10

40

A6

40

24 | P a g e

8

9

60

A11

70

A5 A1 60

A7

60

A9

50

A2 110

A3

75

A12

100

A8

50

A4

20

A10

40

A6

40

90

20

60

A11

70

A5 A1 60

A7

60

A9 A2 110

A3

75

A12

A8

50

A4

20

A10

40

A6

40

90

20

25 | P a g e

The resulting vertical fragments are:

1) (A1, A5, A7, A11)

2) (A2, A3, A9)

3) (A4, A6, A8, A10, A12)

3.5 Advantages

We summarize the major advantages of this method over the previous approaches:

1. There is no need for iterative binary partitioning. The major weakness of iterative

binary partitioning discussed in the [2] is that at each step two new problems are

generated increasing the complexity.

2. The complexity of the approach is O(n
2
) as opposed to O(n

2
log(n)) of the [2]

approach.

3.6 Disadvantages

Although the overall process is very effective one but it also has some drawbacks. It suits

centralized databases, as it does not address the problem of allocation of fragments to

different sites. In our thesis we proposed cost model for the allocation of these fragments

to overcome this disadvantage.

26 | P a g e

CHAPTER 4

Heuristic

Approach for VF

In last section we discussed graphical partitioning algorithm for VF using attribute

affinities. There are many other algorithms proposed in the literature using attribute

affinities. Fragmentation, allocation and replication are database distribution design

techniques that aim at improving the system performance. Among the two fragmentation

techniques, vertical fragmentation is often considered more complicated than horizontal

fragmentation, because the huge number of alternatives makes it nearly impossible to

obtain an optimal solution to the vertical fragmentation problem. Therefore, we can only

expect to find out a heuristic solution. Often fragmentation and allocation are considered

separately, disregarding that they are using the same input information to achieve the

same objective, i.e. improve the overall system performance. Here we discuss vertical

fragmentation and allocation simultaneously in the context of the relational model. The

core of our approach is a heuristic approach to vertical fragmentation, which uses a cost

model and is targeted at globally minimizing these costs. This algorithm was proposed by

Hui Ma, Klaus-Dieter Schewe and Markus Kirchberg in [4].

We will incorporate all query information, including the site information, by using a

simplified cost model for VF. Doing this way, we can obtain vertical fragmentation and

fragment allocation simultaneously with low computational complexity and resulting

high system performance.

27 | P a g e

4.1 Notations and Definitions
We now define some terms that will be used in our discussion.

 Assume a relation R = {a1, . . . , an} being accessed by a set of queries Qm = {Q1, .

. .,Qj, . . . Qm} with frequencies f1, . . . , fm, respectively.

 To improve the system performance, relation R is vertically fragmented into a set

of fragments {F1, . . ., Fu, . . . , Fv}, each of which is allocated to one of the

network nodes N1, . . .,Nh, . . . , Nk. Note that the maximum number of fragments is

k, i.e.,v ≤ k.

 We use λ(Qj) to indicate the site that issues query Qj and use Aj = {ai|fji = fj} to

indicate the set of attributes that are accessed by Qj, with fji as the frequency of the

query Qj accessing attributes ai. Here, fji = fj if the attribute ai is accessed by Qj.

Otherwise fji = 0.

Input to this cost model for optimal vertical fragmentation is:

 Frequency of queries that access the object. When the same query is issued at

different sites it is treated as different queries.

 The subset of attributes used by queries.

 The size of each attribute of the object.

 The site that issue the queries.

To record the above input information we introduce Attribute Usage Frequency Matrix

(AUFM) which is similar to AUM. Each row represents one query Qj; the head of

column is the set of attributes of a relation E. In addition, there are two columns with one

column indicating the site that issues the queries and the other indicating the frequency of

the queries. The values on a column indicate the frequency fji of the query Qj that use the

corresponding attributes ai grouped by the site that issues queries. Note that we treat the

same query at different sites as different queries. Doing this way we only need one matrix

to record all the information rather than two matrices, Attribute Usage Matrix and Access

Matrix that are used in our previous approach. Subsequently, the following up calculation

is easy to be formulated.

From one site each attribute is requested by multiple queries. The request of an attribute

at a site h is the sum of frequencies of all queries at the site h accessing the attribute. It

can be calculated with the formula below:

requesth(ai) = ∑
 () ji ………...…………………………….(4.1)

Let fji be the frequency of a query accessing an attribute ai and li be the length of this

attribute. The need of this attribute at a site h is calculated with the following formula:

28 | P a g e

needh(ai) = li * ∑
 () ji …………………………………….(4.2)

needh(ai) = li * request(ai) ……………………………………………(4.3)

Finally, a term pay to measure the costs of allocating a single attribute to a network node.

The pay of allocating an attribute ai to a site h measures the costs of accessing attribute ai

from all queries at the other sites h` which is different from h. It can be calculated using

the following formula:

payh(ai) = ∑
 h`(ai) * chh` ……………………(4.4)

Note that the cost factor chh’ = 0, if h = h’.

In distributed databases, costs of queries are dominated by the cost of data transportation

from a remote site to the site that issues the queries. To compare different vertical

fragmentation scheme we would like to compare how it affect the transportation costs.

Taking the simplified cost model we now analyze the relationships between cost, the pay

and the request. We compute the following formulae:

costh(ai) = ∑
 h`(ai) * chh` ……………….....…..……(4.5)

 = li * ∑
 h`(ai) * chh` ………...…..…(4.6)

costh(ai) = li * payh(ai) ……………………..……………...……..…….(4.7)

The above formula give rise to two alternative heuristics for the allocation of an attribute

ai (i = 1, . . . , n).

 The first heuristic allocates ai to a network node Nw such that payw(ai) is minimal,

i.e., we choose a network node in such a way that the total transport costs for all

queries arising from the allocation are minimized.

 The second heuristic allocates ai to a network node Nw such that requestw(ai) is

maximal. i.e., we choose the network node with the highest request of the

attribute ai. This guarantees that there is no transportation cost associated with

data of attribute ai for those queries that need the data of ai most frequently. In

addition, the availability of data of attribute ai will be maximized.

29 | P a g e

4.2 Algorithm

Taking the first heuristic we perform vertical fragmentation with the following steps. We

do not distinguish read and write queries. Take the most frequently used 20% queries Qn.

1. Optimize all the queries and construct an AUFM for each relation based on the

queries.

2. Calculate the request at each site for each attribute to construct an Attribute

request matrix using equation (4.1).

3. Calculate the pay at each site for each attribute to construct an attribute pay matrix

using equation (4.4).

4. Cluster all attributes to the site which has the lowest value of the pay.

5. Attach the primary key to each fragment.

4.3 Example

We take the example problem used in previous chapter to illustrate how this approach

works. Firstly, we take the Attribute Usage Matrix and Attribute Access Matrix to

construct an AUFM grouped by site that issues the queries. The AUFM is shown in Table

3.

Table 3 : Attribute Usage Frequency Matrix

Site Query Frequency a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

1

1

1

1

1

1

1

T1

T2

T4

T6

T5

T7

T8

10

10

10

10

5

5

5

10

0

0

10

5

0

0

0

10

10

0

5

0

0

0

10

0

10

5

5

5

0

0

0

0

0

0

5

10

0

0

10

0

0

0

0

0

0

0

0

0

5

10

0

10

0

5

0

0

0

0

0

10

5

5

0

0

10

10

0

5

0

5

0

0

0

0

0

0

5

10

0

10

10

0

0

5

10

10

0

0

5

5

0

2

2

2

2

2

2

T2

T1

T5

T7

T6

T8

20

15

10

10

5

5

0

25

10

0

5

0

20

0

10

0

0

0

20

0

10

10

5

5

0

0

0

0

0

5

0

25

0

0

5

0

0

0

0

0

0

5

0

25

10

0

0

0

0

0

10

10

5

0

20

0

10

0

0

5

0

0

0

0

0

5

0

25

0

0

5

5

20

25

10

10

0

0

30 | P a g e

3

3

3

3

3

3

3

T3

T4

T2

T5

T6

T7

T8

15

15

10

5

5

5

3

0

0

0

5

5

0

0

0

15

10

5

0

0

0

15

0

10

5

5

5

3

15

0

0

0

0

0

3

0

0

0

0

5

0

0

15

0

0

0

0

0

3

0

15

0

5

0

0

0

0

0

0

5

5

5

0

0

15

10

5

0

0

3

15

0

0

0

0

0

3

0

15

0

0

5

0

3

0

0

10

5

0

5

0

4

4

4

4

4

4

4

T2

T3

T4

T5

T6

T7

T8

10

10

10

5

5

5

2

0

0

0

5

5

0

0

10

0

10

5

0

0

0

10

10

0

5

5

5

2

0

10

0

0

0

0

2

0

0

0

0

5

0

0

0

10

0

0

0

0

2

0

0

10

5

0

0

0

0

0

0

5

5

5

0

10

0

0

5

0

0

2

0

10

0

0

0

0

2

0

0

10

0

5

0

2

10

0

0

5

0

5

0

Secondly, we compute the request using equation (4.1) for each attribute at each site and

get the Attribute request Matrix shown in Table 4.

Table 4 : Attribute request Matrix

Site a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

1 25 25 25 5 25 5 25 30 20 5 35 30

2 30 30 45 5 40 5 25 40 35 5 25 55

3 10 30 23 18 10 18 20 35 18 18 23 20

4 10 25 22 12 10 12 15 30 17 12 17 20

Thirdly, assuming we have been given the values of transportation cost factors in Table 5.

We can now calculate the pay of each attribute at each site by putting the values of the

request given in Table 4 and values of cost factors given in Table 5 in equation (4.4).

Table 5 : Transportation Cost Factors

Site 1 2 3 4

1 0 10 25 20

2 10 0 20 15

3 25 20 0 15

4 20 15 15 0

The resultant attribute pay matrix is shown in Table 6.

31 | P a g e

Table 6 : Attribute pay Matrix

Attribute 1 2 3 4 5 6 7 8 9 10 11 12

pay1(ai) 950 1550 1685 610 1150 610 1100 1925 1310 610 1285 1800

pay2(ai) 850 1475 1290 640 850 640 1125 1750 1015 640 1415 1300

pay3(ai) 1125 1350 1605 355 1325 355 1100 1700 1255 355 1280 1850

pay4(ai) 1100 1400 1520 445 1250 445 1175 1725 1195 445 1420 1725

Finally, for each attribute we compare all the pay at all sites to find the minimal one. We

subsequently allocate attribute ai to the site with minimal pay. The allocation of attributes

to sites is shown in Table 7.

Table 7 : Attribute Allocation

Attribute ai 1 2 3 4 5 6 7 8 9 10 11 12

Site Nj 2 3 2 3 2 3 1 3 2 3 3 2

Therefore, relation R has been fragmented into two fragments with F1 = {a1, a3, a5, a9,

a12} F2 = {a2, a4, a6, a8, a10} and F3 = {a7} , which have been allocated to site 2, 3 and 1

respectively.

4.4 Advantages of this Approach

The advantages of this heuristic approach for vertical fragmentation and allocation are:

 Except primary-key attributes, there is no overlap among all the vertical

fragments. Therefore, we do not need extra procedure to remove overlaps.

 The change of queries will be reflected by the fragmentation solution. Query

information may reflect the needs to retain attributes from some sites more often

than some other sites. Even though on the affinity graph the cutting edges will be

same.

 The complexity of this approach is low. Let m be the number of queries, n be the

number of attributes, k be the number of network nodes. The complexity of our

approach, which deals with vertical fragmentation and allocation, is O(m * n + k
2

* n), while the complexity of graphical approach is O(n
2
 * m + k

n
) for the whole

design procedure, including building the affinity matrix, vertical fragmentation

and allocation.

 This approach suits the situation that for each relation the number of attributes is

small and the number of queries is big. Usually, the number of queries taken into

consideration is bigger than the number of attributes of a relation.

32 | P a g e

Chapter 5

Cost based

Graphical

Partitioning

We have discussed two fragmentation techniques graphical approach and heuristic

approach of vertical fragmentation in the previous chapters. We also discussed the

problem of allocation in graphical approach. Here we will explain the proposed work of

combining the two approaches of vertical partitioning namely graphical approach and

heuristic approach, to solve the problem of allocation in graphical approach so that it can

also work on the distributed databases.

As we have seen in the graphical approach that we can create the fragments by finding

out the graph cycles. Then we will create the Fragment Request Matrix same as the

Attribute Request Matrix by using the equations of heuristic approach. By using the

Transportation Cost Factor Matrix we will compute the Fragment Pay Matrix as we

computed the Attribute Pay Matrix using the equations of heuristic approach. Finally, for

each fragment we compare all the pay at all sites to find the minimal one. We

subsequently allocate fragment fi to the site with minimal pay in the Fragment

Allocation.

33 | P a g e

5.1 Notations and Definitions

We will propose three new matrices for fragment based cost estimation, namely:

1. Fragment Request Matrix (FRM)

It will contain the information about the fragments’ requests made by the different

sites, the total request made by one site for particular fragment.

2. Fragment Pay Matrix (FPM)

It will contain the information, about the total pay associated with one particular

fragment, if it is allocated to one particular site.

3. Fragment Allocation (FA)

It will contain the site information on which one particular fragment will be

allocated.

From one site each attribute is requested by multiple queries. The request of a fragment at

a site h is the sum of frequencies of all queries at the site h accessing the attributes of that

fragment. It can be calculated with the formula below:

requesth(fri) = ∑ ∑
 ()

 ji ………………………….(5.1)

Let fji be the frequency of a query accessing an attribute ai and li be the length of this

attribute. The need of this fragment at a site h is calculated with the following formula:

needh(fi) = li * ∑ ∑
 ()

 ji ….………………………….(5.2)

needh(fi) = li * request(fi) ……………………………………………(5.3)

Finally a term pay to measure the costs of allocating a single fragment to a network node.

The pay of allocating a fragment fri to a site h measures the costs of accessing all of the

attributes of that fragment fri from all queries at the other sites h` which is different from

h. It can be calculated using the following formula:

payh(fri) = ∑ ∑

 h’() hh` ………(5.4)

Note that the cost factor chh’ = 0, if h = h’.

In distributed databases, costs of queries are dominated by the cost of data transportation

from a remote site to the site that issues the queries.

34 | P a g e

Taking the simplified cost model we now analyze the relationships between cost, the pay

and the request. We compute the following formulae:

costh(fri) = ∑ ∑

 h’ () hh` ………….........(5.5)

 = li * ∑ ∑

 h`(ai) * chh` ….……(5.6)

costh(fri) = li * payh(fri) ………………..…..……………...……..…….(5.7)

All these formulae are the modified formulae of the heuristic approach to apply them on

the fragments.

5.2 Proposed Algorithm:
1. Generate fragments using graphical approach.

2. Optimize all the queries and construct an Attribute Usage Frequency Matrix for

each relation based on the queries.

3. Calculate the request at each site for each fragment to construct a Fragment

Request Matrix using the equation 5.1.

4. Calculate the pay at each site for each fragment to construct a Fragment Pay

Matrix using the equation 5.4.

5. Cluster all fragments to the site which has the lowest value of the pay.

5.3 Example
We will explain the application of this algorithm with the help of an example. First of all

we consider an attribute usage matrix as shown in the table 8, which specifies which

attributes are used in which transaction and frequency of transaction.

Table 8 : Attribute Usage Matrix

Trans \ Attr A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

T1 35 0 0 0 35 0 35 0 0 0 35 35

T2 0 50 50 0 0 0 0 0 50 0 0 50

T3 0 0 25 25 0 25 0 0 0 25 0 0

T4 0 35 0 0 0 0 35 0 35 0 35 0

T5 25 25 25 0 0 0 25 25 25 0 0 25

T6 25 0 25 0 25 0 0 25 0 0 25 0

T7 0 0 25 0 0 0 0 25 0 0 0 25

T8 0 0 15 15 0 15 0 0 15 15 15 0

35 | P a g e

Table 9 shows the attribute affinity matrix for above attribute usage matrix. Affinity of

two attributes is the sum of frequencies of the transactions which access both of these two

attributes. Attribute affinity matrix represents the affinity graph. We will apply graph

partitioning algorithm on this graph and form subsets of attributes. Resultant subset of

attributes defines the fragments.

Table 9 : Attribute Affinity Matrix

Attr\Attr A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 85 25 50 0 60 0 60 50 25 0 60 60

A2 25 110 75 0 0 0 60 25 110 0 35 75

A3 50 75 165 40 25 40 25 75 90 40 40 100

A4 0 0 40 40 0 40 0 20 15 40 15 0

A5 60 0 25 0 60 0 35 25 0 0 60 35

A6 0 0 40 40 0 40 0 0 15 40 15 0

A7 60 60 25 0 35 0 95 25 60 0 70 60

A8 50 25 75 20 25 0 25 75 25 0 25 50

A9 25 110 90 15 0 15 60 25 125 15 50 75

A10 0 0 40 40 0 40 0 0 15 40 15 0

A11 60 35 40 15 60 15 70 25 50 15 110 35

A12 60 75 100 0 35 0 60 50 75 0 35 135

5.4 Step by Step Solution

Now we will describe the complete solution of given example graphically using graph-

partitioning algorithm. Complete step by step solution is shown in the figure 8.

Figure 8 : Graphical Method for VF

1 2

A5 A5 A1 60

36 | P a g e

3 4

5

A5 A1 60

A7

60

A11

70

A5 A1 60

A7

60

A11

70

A5 A1 60

A7

60

A9

50

A2

110

A3

75

37 | P a g e

6

7

Next edge A5-A11 is cycle-completing edge.

Hence A11-A9 becomes a cycle separating

edge.

60

A11

70

A5 A1 60

A7

60

A9

50

A2

110

A3

75

A12

100

60

A11

70

A5 A1 60

A7

60

A9

50

A2 110

A3

75

A12

100

A8

50

A4

20

A10

40

A6

40

38 | P a g e

8

9

60

A11

70

A5 A1 60

A7

60

A9

50

A2 110

A3

75

A12

100

A8

50

A4

20

A10

40

A6

40

90

20

60

A11

70

A5 A1 60

A7

60

A9 A2 110

A3

75

A12

A8

50

A4

20

A10

40

A6

40

90

20

39 | P a g e

The resulting vertical fragments are:

1) (A1, A5, A7, A11)

2) (A2, A3, A9)

3) (A4, A6, A8, A10, A12)

Table 10 : Attribute Usage Frequency Matrix

Site Query Frequency a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

1

1

1

1

1

1

1

T1

T2

T4

T6

T5

T7

T8

10

10

10

10

5

5

5

10

0

0

10

5

0

0

0

10

10

0

5

0

0

0

10

0

10

5

5

5

0

0

0

0

0

0

5

10

0

0

10

0

0

0

0

0

0

0

0

0

5

10

0

10

0

5

0

0

0

0

0

10

5

5

0

0

10

10

0

5

0

5

0

0

0

0

0

0

5

10

0

10

10

0

0

5

10

10

0

0

5

5

0

2

2

2

2

2

2

T2

T1

T5

T7

T6

T8

20

15

10

10

5

5

0

25

10

0

5

0

20

0

10

0

0

0

20

0

10

10

5

5

0

0

0

0

0

5

0

25

0

0

5

0

0

0

0

0

0

5

0

25

10

0

0

0

0

0

10

10

5

0

20

0

10

0

0

5

0

0

0

0

0

5

0

25

0

0

5

5

20

25

10

10

0

0

3

3

3

3

3

3

3

T3

T4

T2

T5

T6

T7

T8

15

15

10

5

5

5

3

0

0

0

5

5

0

0

0

15

10

5

0

0

0

15

0

10

5

5

5

3

15

0

0

0

0

0

3

0

0

0

0

5

0

0

15

0

0

0

0

0

3

0

15

0

5

0

0

0

0

0

0

5

5

5

0

0

15

10

5

0

0

3

15

0

0

0

0

0

3

0

15

0

0

5

0

3

0

0

10

5

0

5

0

4

4

4

4

4

4

4

T2

T3

T4

T5

T6

T7

T8

10

10

10

5

5

5

2

0

0

0

5

5

0

0

10

0

10

5

0

0

0

10

10

0

5

5

5

2

0

10

0

0

0

0

2

0

0

0

0

5

0

0

0

10

0

0

0

0

2

0

0

10

5

0

0

0

0

0

0

5

5

5

0

10

0

0

5

0

0

2

0

10

0

0

0

0

2

0

0

10

0

5

0

2

10

0

0

5

0

5

0

Secondly, we compute the request using equation (5.1) for each fragment at each site and

compute the Fragment Request Matrix shown in Table 11.

40 | P a g e

Table 11: Fragment Request Matrix

Site F1 F2 F3

1 110 70 75

2 120 110 110

3 63 71 109

4 52 64 86

Thirdly, assuming we have been given the values of transportation cost factors in Table

12. We can now calculate the pay of each fragment at each site by putting the values of

the request given in Table 11 and values of cost factors given in Table 12 in equation

(5.4).

Table 12: Transportation Cost Factors

Site 1 2 3 4

1 0 10 25 20

2 10 0 20 15

3 25 20 0 15

4 20 15 15 0

The resultant Fragment Pay Matrix is shown in Table 13.

Table 13: Fragment Pay Matrix

Fragment 1 2 3

pay1(fi) 4385 4545 5555

pay2(fi) 4240 3780 4970

pay3(fi) 4830 4210 4615

pay4(fi) 4945 4115 4785

Finally, for each fragment we compare all the pay at all sites to find the minimal one. We

subsequently allocate fragment Fi to the site with minimal pay. The allocation of

fragments to sites is shown in Table 14.

Table 14: Fragment Allocation

Fragment Fi 1 2 3

Site Nj 2 2 3

41 | P a g e

Therefore, the fragments F1 = {a1, a5, a7, a11} F2 = {a2, a3, a9} and F3 = {a4, a6, a8, a10, a12}

have been allocated to site 2, 2 and 3 respectively.

From the example we have seen that we got the fragments using the graphical

partitioning approach, then we applied the cost based model on these fragments

according to the heuristic approach and computed the terms using the modified formulae

of request, cost and pay, and then we allocated the fragments using the pay matrix.

This is how we allocated the fragments computed by the graphical approach to the site

where the cost is lesser than the other sites; cost is nothing but the transaction delay.

42 | P a g e

Chapter 6

Implementation

In this chapter we are showing the screen shots of our tool, which implements the

approaches described in previous chapters. We are using the same example, as we used in

the previous chapters, to run the tool.

Figure: 9 Home screen

43 | P a g e

Figure: 10 Select matrices

Figure: 11 Computed attribute request matrix

44 | P a g e

Figure: 12 Computed attribute pay matrix

Figure: 13 Allocation of attributes

45 | P a g e

Figure: 14 Computed fragment request matrix

Figure: 15 Computed fragment pay matrix

46 | P a g e

Figure: 16 Allocation of fragments

47 | P a g e

Chapter 7

Conclusion &

Future Work

As part of this chapter we conclude our research work with a short summary and also

discuss the future scope of this research work.

7.1 Conclusion

In this research work we have proposed an enhancement to the graphical fragmentation

approach using the modified cost model of heuristic approach for vertical fragmentation.

We also discussed various other fragmentation techniques. The major feature of the

proposed approach is that it incorporates fragmentation of relation on the basis of actual

cost of fragmentation. It takes frequency of transaction as input. Secondly attribute

locality precedence is calculated according to actual frequency of queries.

We also implemented the tool for the proposed methodology, heuristic approach and

graphical approach.

By comparing the allocation result of both the approaches heuristic and our approach for

the example we considered, we saw that the cost of the queries after the allocation is

91550 and 89575 respectively. And for the example of [2] the cost after allocation is

same.

48 | P a g e

Many techniques have been proposed by the researchers using empirical knowledge of

data access and allocation. Most of those techniques are either HF or VF. But they mostly

talk about the fragmentation not the allocation. Few approaches talk about the allocation,

like optimal binary partitioning algorithm [7], which has the complexity O (2
n
) while the

attribute based algorithm has the complexity O (2
m

), where n and m are the number of

transactions and attributes in the system.

Complexity of bond energy algorithm [8] is O (n
2
 + 2

n
). Complexity of graphical

approach [2] with the multi_allocate_n and multi_allocate_r approaches is O (n
2

* m +

k
n
) where k is the no of network nodes. While the complexity of our approach is O (n

2
 +

m*n + k
2
 * n), which is better than the previous approaches. In our approach we have the

advantages of graphical and heuristic approach. To the best of my knowledge no such

cost based graphical fragmentation technique exists.

Using our technique the complexity will be low for allocating the fragments to the site of

a distributed database as fragments are allocated according to their cost and request at the

site. Our technique improves the DDBMS performance significantly by avoiding frequent

remote access and high data transfer.

7.2 Future work

Further extension of our research is in the direction of horizontal fragments allocation

and grid fragmentation and allocation.

Monitoring the effect of change in transaction and change in data over the fragments and

processing of queries. Timing of re-fragmentation is next major decision that depends

upon the change in transaction frequency.

Implementing the other approaches into our tool would be a feature enhancement to our

tool, and we can also show the comparison result of all the approaches for better

judgment.

This research can be extended to support fragmentation in distributed object oriented

databases as well.

49 | P a g e

References

[1] S. B. Navathe and M. Ra, “Vertical partitioning for database design: A graphical

algorithm” in Proceedings of ACM SIGMOD International Conference on Management

of Data, Vol. 14, No. 4, pp. 440-450, 1989.

[2] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. “Vertical Partitioning Algorithms for

Database Design” ACM Transactions on Database Systems, Vol. 9, No. 4, Dec. 1984.

[3] Katja Hose, Ralf Schenkel “Distributed Database Systems, Fragmentation and

Allocation,” Max-Planck-Institute for Informatik, Cluster of Excellence MMCI. October

28, 2010.

[4] Hui Ma, Klaus-Dieter Schewe and Markus Kirchberg, “A Heuristic Approach to Vertical

Fragmentation Incorporating Query Information” in Proc. 7
th

 International Baltic

Conference on Databases and Information Systems (DB & IS), pp 69-76, 2006.

[5] J. Muthuraj, S.Chakravarthy, R. Varadarajan, and S.B.Navathe, “A formal approach to

the vertical partitioning problem in distributed databases design,” in Proc. of Second

International Conference on Parallel and Distributed Information Systems, San Diego,

California, 1993.

[6] E. S. Abuelyaman, “An optimized scheme for vertical partitioning of a distributed

database,” Int. Journal of Computer Science & Network Security, Vol. 8, No. 1, 2008.

[7] B. Niamir, “Attribute partitioning in a Self-Adaptive Relational Database System”, PhD

Dissertation, MIT Lab. for Computer Science, Jan 1978.

[8] W. McCormick, P. Schweitzer and T. White, “Problem Decomposition and Data

Reorganization by a Clustering technique Operations Research,” 20, Sep. 1972.

[9] http://en.wikipedia.org/wiki/Distributed_database

http://en.wikipedia.org/wiki/Distributed_database

50 | P a g e

Source code of the tool

package tables;

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.IOException;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.StringTokenizer;

public class TableCreator {

 private ArrayList<ArrayList<Integer>> aufm;

 private ArrayList<ArrayList<Integer>> arm;

 private ArrayList<ArrayList<Integer>> tcfm;

 private ArrayList<ArrayList<Integer>> apm;

 private ArrayList<ArrayList<Integer>> aam;

 private ArrayList<ArrayList<Integer>> frags;

 private ArrayList<Integer> aa;

 private ArrayList<ArrayList<Integer>> fpm;

 private ArrayList<ArrayList<Integer>> frm;

 private ArrayList<Integer> fa;

 public TableCreator() {

 // TODO Auto-generated constructor stub

 aufm = new ArrayList<ArrayList<Integer>>();

 arm = new ArrayList<ArrayList<Integer>>();

 tcfm = new ArrayList<ArrayList<Integer>>();

 apm = new ArrayList<ArrayList<Integer>>();

 aam = new ArrayList<ArrayList<Integer>>();

 aa = new ArrayList<Integer>();

 frags = new ArrayList<ArrayList<Integer>>();

 fpm = new ArrayList<ArrayList<Integer>>();

 frm = new ArrayList<ArrayList<Integer>>();

 fa = new ArrayList<Integer>();

51 | P a g e

 }

 public ArrayList<String> createAUFM(File input) throws IOException {

 BufferedReader br = new BufferedReader(new FileReader(input));

 String row = null;

 ArrayList<String> column=new ArrayList<String>();

 if(!aufm.isEmpty())

 {

 aufm.removeAll(aufm);

 }

 row=br.readLine();

 StringTokenizer st1 = new StringTokenizer(row, " ");

 while (st1.hasMoreTokens()) {

 column.add(st1.nextToken());

 }

 while ((row = br.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(row, " ");

 ArrayList<Integer> temp = new ArrayList<Integer>();

 while (st.hasMoreTokens()) {

 temp.add(Integer.parseInt(st.nextToken()));

 }

 aufm.add(temp);

 }

 br.close();

 return column;

 }

 public void showAUFM() {

 for (int j = 0; j < aufm.size(); j++) {

 System.out.println(aufm.get(j).toString());

 }

 }

52 | P a g e

 public Object[][] createARM() {

 arm.removeAll(arm);

 int rowno = 0;

 for (int j = 0; j < aufm.size(); j++) {

 if (aufm.get(j).get(0) != rowno) {

 arm.add(aufm.get(j));

 rowno++;

 } else {

 for (int i = 1; i < aufm.get(j).size(); i++) {

 arm.get(rowno - 1).set(i,

 arm.get(rowno - 1).get(i) + aufm.get(j).get(i));

 }

 }

 }

 Object[][] objARMTemp = new Object[arm.size()][arm.get(0).size()];

 for (int i = 0; i < arm.size(); i++) {

 for (int j = 0; j < arm.get(0).size(); j++) {

 objARMTemp[i][j]=arm.get(i).get(j);

 }

 }

 return objARMTemp;

 }

 public void showARM() {

 for (int j = 0; j < arm.size(); j++) {

 System.out.println(arm.get(j).toString());

 }

 }

 public void createTCFM(File input) throws IOException {

 BufferedReader br = new BufferedReader(new FileReader(input));

 String row = null;

53 | P a g e

 if(!tcfm.isEmpty())

 {

 tcfm.removeAll(tcfm);

 }

 while ((row = br.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(row, " ");

 ArrayList<Integer> temp = new ArrayList<Integer>();

 while (st.hasMoreTokens()) {

 temp.add(Integer.parseInt(st.nextToken()));

 }

 tcfm.add(temp);

 }

 br.close();

 }

 public void showTCFM() {

 for (int j = 0; j < tcfm.size(); j++) {

 System.out.println(tcfm.get(j).toString());

 }

 }

 public Object[][] createAPM() {

 if(!apm.isEmpty())

 {

 apm.removeAll(apm);

 }

 for (int j = 0; j < tcfm.size(); j++) {

 ArrayList<Integer> temp = new ArrayList<Integer>();

 temp.add(j+1);

 for (int i = 1; i < arm.get(0).size(); i++) {

 int sum = 0;

 for (int k = 0; k < tcfm.size(); k++) {

 sum += tcfm.get(j).get(k) * arm.get(k).get(i);

 }

 temp.add(sum);

 }

54 | P a g e

 apm.add(temp);

 }

 Object[][] objARMTemp = new Object[arm.size()][arm.get(0).size()];

 for (int i = 0; i < apm.size(); i++) {

 for (int j = 0; j < apm.get(0).size(); j++) {

 objARMTemp[i][j]=apm.get(i).get(j);

 }

 }

 return objARMTemp;

 }

 public void showAPM() {

 for (int j = 0; j < apm.size(); j++) {

 System.out.println(apm.get(j).toString());

 }

 }

 public ArrayList<Integer> attributeAllocation() {

 if(!aa.isEmpty())

 {

 aa.removeAll(aa);

 }

 for (int i = 1; i < apm.get(0).size(); i++) {

 int min = 0, val = 99999;

 for (int j = 0; j < apm.size(); j++) {

 int temp = apm.get(j).get(i);

 if (temp < val) {

 min = j + 1;

 val = temp;

 }

 }

 aa.add(min);

 }

55 | P a g e

 return aa;

 }

 public void showAA() {

 System.out.println(aa.toString());

 }

 public void createAAM(File input) throws IOException {

 BufferedReader br = new BufferedReader(new FileReader(input));

 String row = null;

 if(!aam.isEmpty())

 {

 aam.removeAll(aam);

 }

 while ((row = br.readLine()) != null) {

 StringTokenizer st = new StringTokenizer(row, " ");

 ArrayList<Integer> temp = new ArrayList<Integer>();

 while (st.hasMoreTokens()) {

 temp.add(Integer.parseInt(st.nextToken()));

 }

 aam.add(temp);

 }

 br.close();

 }

 public void showAAM() {

 for (int j = 0; j < aam.size(); j++) {

 System.out.println(aam.get(j).toString());

 }

 }

 public void createGraph() {

 int a=4;

 int arr[]= new int[aam.size()];

 arr[0]=4;

 HashMap<Integer, Integer> hm=new HashMap<Integer, Integer>();

 hm.put(a, a);

56 | P a g e

 for(int i=1;i<aam.size();i++)

 {

 System.out.println("i="+i);

 int max=0;

 for (int j = 0; j < aam.get(0).size(); j++) {

 if(hm.containsKey(j))

 {

 if(max==j)

 max++;

 continue;

 }

 System.out.println("j="+j);

 System.out.println("max="+aam.get(a).get(max));

 System.out.println("getj="+aam.get(a).get(j));

 if(aam.get(a).get(max)<aam.get(a).get(j))

 max=j;

 }

 hm.put(max, max);

 arr[i]=max;

 a=max;

 System.out.println(max);

 }

 for (int i = 0; i < arr.length; i++) {

 System.out.println(arr[i]+1);

 }

 for (int i = 0,k=0; i < arr.length;k++) {

 int max=i+2;

 ArrayList<Integer> temp = new ArrayList<Integer>();

 for (int j = i+3; j < arr.length; j++) {

 if(aam.get(arr[i]).get(arr[max])<=aam.get(arr[i]).get(arr[j]))

 max=j;

 }

 System.out.println("max="+max+" i="+i);

 for (int j = i; j <= max; j++) {

 System.out.print(" "+(arr[j]+1));

 temp.add(arr[j]);

57 | P a g e

 }

 System.out.println("temp="+temp.get(0).toString());

 frags.add(temp);

 i=max+1;

 }

 System.out.println(frags.get(0).toString());

 }

 public Object[][] createFRM() {

 if(!frm.isEmpty())

 {

 frm.removeAll(frm);

 }

 Object[][] objARMTemp = new Object[arm.size()][frags.size()];

 for (int i = 0; i < frags.size(); i++) {

 for (int j = 0; j < arm.size(); j++) {

 int total=0;

 for (int j2 = 0; j2 < frags.get(i).size(); j2++) {

 total+=arm.get(j).get(frags.get(i).get(j2)+1);

 }

 objARMTemp[j][i]=total;

 System.out.println("Total="+total);

 }

 }

 System.out.println();

 for (int i = 0; i < arm.size(); i++) {

 System.out.println();

 ArrayList<Integer> temp=new ArrayList<Integer>();

 temp.add(i+1);

 for (int j = 0; j < frags.size(); j++) {

 System.out.print(objARMTemp[i][j]+" ");

 temp.add(Integer.parseInt(objARMTemp[i][j].toString()));

 }

 frm.add(temp);

 }

 return objARMTemp;

58 | P a g e

 }

 public void showFRM() {

 for (int j = 0; j < frm.size(); j++) {

 System.out.println(frm.get(j).toString());

 }

 }

 public Object[][] createFPM() {

 if(!fpm.isEmpty())

 {

 fpm.removeAll(fpm);

 }

 for (int j = 0; j < tcfm.size(); j++) {

 ArrayList<Integer> temp = new ArrayList<Integer>();

 temp.add(j+1);

 for (int i = 1; i < frm.get(0).size(); i++) {

 int sum = 0;

 for (int k = 0; k < tcfm.size(); k++) {

 sum += tcfm.get(j).get(k) * frm.get(k).get(i);

 }

 temp.add(sum);

 }

 fpm.add(temp);

 }

 Object[][] objARMTemp = new Object[frm.size()][frm.get(0).size()];

 for (int i = 0; i < fpm.size(); i++) {

 for (int j = 0; j < fpm.get(0).size(); j++) {

 objARMTemp[i][j]=fpm.get(i).get(j);

 }

 }

 return objARMTemp;

59 | P a g e

 }

 public void showFPM() {

 for (int j = 0; j < fpm.size(); j++) {

 System.out.println(fpm.get(j).toString());

 }

 }

 public ArrayList<Integer> fragmentAllocation() {

 if(!fa.isEmpty())

 {

 fa.removeAll(fa);

 }

 for (int i = 1; i < fpm.get(0).size(); i++) {

 int min = 0, val = 99999;

 for (int j = 0; j < fpm.size(); j++) {

 int temp = fpm.get(j).get(i);

 if (temp < val) {

 min = j + 1;

 val = temp;

 }

 }

 fa.add(min);

 }

 return fa;

 }

 public void showFA() {

 System.out.println(fa.toString());

 }

}

60 | P a g e

package start;

import java.awt.BorderLayout;

import java.awt.Checkbox;

import java.awt.CheckboxGroup;

import java.awt.EventQueue;

import java.awt.FlowLayout;

import java.awt.Graphics;

import java.awt.Image;

import java.awt.MediaTracker;

import java.awt.Toolkit;

import javax.swing.JButton;

import javax.swing.JFileChooser;

import javax.swing.JFrame;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JTable;

import javax.swing.JTextField;

import javax.swing.border.EmptyBorder;

import java.awt.CardLayout;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.ItemEvent;

import java.awt.event.ItemListener;

import java.io.File;

import java.io.IOException;

import java.util.ArrayList;

import javax.swing.JLabel;

import tables.TableCreator;

import java.awt.Color;

public class CardGrid extends JFrame {

 private JPanel contentPane;

 private JTextField txt_aufm;

 private JTextField txt_tcfm;

 private JTextField txt_aam;

 private Checkbox graphP;

 private Checkbox heuristicP;

 private Checkbox costGraphP;

 private CheckboxGroup cbg;

61 | P a g e

 JButton btnCreateAPM;

 JButton btnBack_2;

 JButton btnAA;

 JButton btnBack_1;

 JButton btnStartNew;

 JButton btnBack;

 private int action = -1;

 String filename = null;

 ArrayList<String> column = null;

 JFileChooser fc;

 File aufm;

 File tcfm;

 File aam;

 private JButton btnCreateARM;

 // private JTable table;

 TableCreator tc;

 // Object[][] objARM;

 private JTable table_1;

 Image bgimage = null;

 CardLayout card;

 class ContentPanel extends JPanel {

 Image bgimage = null;

 ContentPanel() {

 MediaTracker mt = new MediaTracker(this);

 bgimage = Toolkit.getDefaultToolkit()

 .getImage("molecule-world.png");

 mt.addImage(bgimage, 0);

 try {

 mt.waitForAll();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 protected void paintComponent(Graphics g) {

 super.paintComponent(g);

 int imwidth = bgimage.getWidth(null);

 int imheight = bgimage.getHeight(null);

 g.drawImage(bgimage, 500, 300, null);

62 | P a g e

 }

 @Override

 public void paint(Graphics g) {

 // TODO Auto-generated method stub

 super.paint(g);

 int imwidth = bgimage.getWidth(null);

 int imheight = bgimage.getHeight(null);

 g.drawImage(bgimage, 500, 300, null);

 }

 }

 /**

 * Launch the application.

 */

 public static void main(String[] args) {

 EventQueue.invokeLater(new Runnable() {

 public void run() {

 try {

 CardGrid frame = new CardGrid();

 frame.setVisible(true);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 });

 }

 /**

 * Create the frame.

 */

 public CardGrid() {

 setTitle("Fragmentor");

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 setBounds(50, 50, 1000, 700);

 final ContentPanel cp = new ContentPanel();

 contentPane = new JPanel();

 cp.setBorder(new EmptyBorder(5, 5, 5, 5));

 setContentPane(cp);

 card = new CardLayout();

 boolean b_aufm = false;

 boolean b_tcfm = false;

63 | P a g e

 cp.setLayout(card);

 final JPanel panel = new JPanel();

 panel.setBackground(new Color(153, 0, 255));

 cp.add(panel, "panel");

 final JPanel panel1 = new JPanel();

 panel1.setBackground(new Color(153, 0, 255));

 cp.add(panel1, "panel1");

 final JPanel panel2 = new JPanel();

 panel2.setBackground(new Color(153, 0, 255));

 cp.add(panel2, "panel2");

 final JPanel panel3 = new JPanel();

 panel3.setBackground(new Color(153, 0, 255));

 cp.add(panel3, "panel3");

 panel.setLayout(null);

 panel1.setLayout(null);

 panel2.setLayout(null);

 panel3.setLayout(null);

 btnBack = new JButton("Back");

 btnBack.setBounds(679, 522, 106, 23);

 panel3.add(btnBack);

 btnBack.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 card.previous(cp);

 }

 });

 btnStartNew = new JButton("Start New");

 btnStartNew.setBounds(811, 522, 106, 23);

 panel3.add(btnStartNew);

 btnStartNew.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 txt_aam.setText("");

 txt_aufm.setText("");

 txt_tcfm.setText("");

 card.first(cp);

 }

 });

64 | P a g e

 tc = new TableCreator();

 filename = File.separator + "tmp";

 fc = new JFileChooser(new File(filename));

 txt_aufm = new JTextField();

 txt_aufm.setBounds(168, 38, 223, 25);

 panel.add(txt_aufm);

 txt_aufm.setColumns(10);

 JLabel lblChosseAufmFile = new JLabel("Chose AUFM file");

 lblChosseAufmFile.setBounds(28, 43, 184, 14);

 panel.add(lblChosseAufmFile);

 JButton btnBrowseAUFM = new JButton("Browse");

 btnBrowseAUFM.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 fc.showOpenDialog(new JFrame());

 aufm = fc.getSelectedFile();

 txt_aufm.setText(aufm.toString());

 try {

 column = tc.createAUFM(aufm);

 tc.showAUFM();

 if (!(txt_tcfm.getText().equals("")))

 btnCreateARM.setEnabled(true);

 } catch (IOException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 }

 });

 btnBrowseAUFM.setBounds(413, 39, 89, 23);

 panel.add(btnBrowseAUFM);

 JLabel lblChoseTcfmFile = new JLabel("Chose TCFM file");

 lblChoseTcfmFile.setBounds(28, 87, 184, 14);

 panel.add(lblChoseTcfmFile);

 txt_tcfm = new JTextField();

 txt_tcfm.setBounds(168, 82, 223, 25);

 panel.add(txt_tcfm);

 txt_tcfm.setColumns(10);

 JButton btnBrowseTCFM = new JButton("Browse");

 btnBrowseTCFM.addActionListener(new ActionListener() {

65 | P a g e

 public void actionPerformed(ActionEvent e) {

 fc.showOpenDialog(new JFrame());

 tcfm = fc.getSelectedFile();

 txt_tcfm.setText(tcfm.toString());

 try {

 tc.createTCFM(tcfm);

 tc.showTCFM();

 if (!(txt_aufm.getText().equals("")))

 btnCreateARM.setEnabled(true);

 } catch (IOException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 }

 });

 btnBrowseTCFM.setBounds(413, 83, 89, 23);

 panel.add(btnBrowseTCFM);

 JLabel lblChoseAamFile = new JLabel("Chose AAM file");

 lblChoseAamFile.setBounds(28, 131, 184, 14);

 panel.add(lblChoseAamFile);

 txt_aam = new JTextField();

 txt_aam.setBounds(168, 126, 223, 25);

 panel.add(txt_aam);

 txt_aam.setColumns(10);

 JButton btnBrowseAAM = new JButton("Browse");

 btnBrowseAAM.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 fc.showOpenDialog(new JFrame());

 aam = fc.getSelectedFile();

 txt_aam.setText(aam.toString());

 try {

 tc.createAAM(aam);

 tc.showAAM();

 tc.createGraph();

 // btnCreateARM.setEnabled(true);

 } catch (IOException e1) {

 // TODO Auto-generated catch block

 e1.printStackTrace();

 }

 }

 });

 btnBrowseAAM.setBounds(413, 127, 89, 23);

66 | P a g e

 panel.add(btnBrowseAAM);

 cbg = new CheckboxGroup();

 graphP = new Checkbox("Graph", false, cbg);

 heuristicP = new Checkbox("Heuristic", false, cbg);

 costGraphP = new Checkbox("Cost Graph", false, cbg);

 graphP.setBounds(60, 180, 89, 23);

 panel.add(graphP);

 heuristicP.setBounds(160, 180, 89, 23);

 panel.add(heuristicP);

 costGraphP.setBounds(260, 180, 89, 23);

 panel.add(costGraphP);

 graphP.addItemListener(new ItemListener() {

 public void itemStateChanged(ItemEvent itemEvent) {

 action = 0;

 }

 });

 heuristicP.addItemListener(new ItemListener() {

 public void itemStateChanged(ItemEvent itemEvent) {

 action = 1;

 }

 });

 costGraphP.addItemListener(new ItemListener() {

 public void itemStateChanged(ItemEvent itemEvent) {

 action = 2;

 }

 });

 btnCreateARM = new JButton("Create Requst Matrix");

 btnCreateARM.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 panel1.removeAll();

 panel1.add(btnBack_2);

 panel1.add(btnCreateAPM);

 panel1.validate();

 if (action == 2) {

 System.out.println("action 2");

67 | P a g e

 tc.createARM();

 Object[][] objFRM = tc.createFRM();

 String[] clm = { "Fragment1", "Fragment2", "Fragment3" };

 System.out.println(objFRM.toString());

 JTable table = new JTable(objFRM, clm);

 table.setBounds(10, 50, 800, 300);

 JScrollPane scrollPane = new JScrollPane(table);

 table.setVisible(true);

 scrollPane.setVisible(true);// scrollPane.setBounds(640,

 // 437,

 // -631, -259);

 table.setToolTipText("Fragment Request Matrix");

 JLabel lbl = new JLabel("Fragment Request Matrix");

 lbl.setBounds(28, 27, 184, 14);

 panel1.add(lbl);

 scrollPane.setBorder(new EmptyBorder(0, 0, 0, 0));

 scrollPane.setBounds(15, 50, 850, 600);

 scrollPane.getViewport().setBackground(

 new Color(153, 0, 255));

 panel1.add(scrollPane);

 card.show(cp, "panel1");

 } else {

 Object[][] objARM = tc.createARM();

 System.out.println(objARM.toString());

 JTable table = new JTable(objARM, column.toArray());

 table.setBounds(10, 50, 800, 300);

 JScrollPane scrollPane = new JScrollPane(table);

 table.setVisible(true);

 scrollPane.setVisible(true);// scrollPane.setBounds(640,

 // 437,

 // -631, -259);

 table.setToolTipText("Attribute Request Matrix");

 JLabel lbl = new JLabel("Attribute Request Matrix");

 lbl.setBounds(28, 27, 184, 14);

 panel1.add(lbl);

68 | P a g e

 scrollPane.setBorder(new EmptyBorder(0, 0, 0, 0));

 scrollPane.setBounds(15, 50, 850, 600);

 scrollPane.getViewport().setBackground(

 new Color(153, 0, 255));

 panel1.add(scrollPane);

 card.show(cp, "panel1");

 }

 }

 });

 btnCreateARM.setEnabled(false);

 btnCreateARM.setBounds(225, 242, 178, 23);

 panel.add(btnCreateARM);

 btnCreateARM.setVisible(true);

 btnCreateAPM = new JButton("Create Pay Matrix");

 btnCreateAPM.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 panel2.removeAll();

 panel2.add(btnBack_1);

 panel2.add(btnAA);

 panel2.validate();

 if (action == 2) {

 tc.createAPM();

 Object[][] objFPM = tc.createFPM();

 String[] clm = { "Site","Fragment1", "Fragment2", "Fragment3" };

 System.out.println(objFPM.toString());

 JTable table = new JTable(objFPM, clm);

 table.setBounds(10, 10, 800, 300);

 JScrollPane scrollPane = new JScrollPane(table);

 table.setVisible(true);

 scrollPane.setVisible(true);// scrollPane.setBounds(640,

 // 437,

 // -631, -259);

 table.setToolTipText("Fragment Pay Matrix");

 JLabel lbl = new JLabel("Fragment Pay Matrix");

 lbl.setBounds(28, 27, 184, 14);

 panel2.add(lbl);

 scrollPane.getViewport().setBackground(

 new Color(153, 0, 255));

 scrollPane.setBorder(new EmptyBorder(0, 0, 0, 0));

69 | P a g e

 scrollPane.setBounds(15, 50, 850, 600);

 panel2.add(scrollPane);

 card.next(cp);

 } else {

 Object[][] objAPM = tc.createAPM();

 System.out.println(objAPM.toString());

 JTable table = new JTable(objAPM, column.toArray());

 table.setBounds(10, 10, 800, 300);

 JScrollPane scrollPane = new JScrollPane(table);

 table.setVisible(true);

 scrollPane.setVisible(true);// scrollPane.setBounds(640,

 // 437,

 // -631, -259);

 table.setToolTipText("Attribute Pay Matrix");

 JLabel lbl = new JLabel("Attribute Pay Matrix");

 lbl.setBounds(28, 27, 184, 14);

 panel2.add(lbl);

 scrollPane.getViewport().setBackground(

 new Color(153, 0, 255));

 scrollPane.setBorder(new EmptyBorder(0, 0, 0, 0));

 scrollPane.setBounds(15, 50, 850, 600);

 panel2.add(scrollPane);

 card.next(cp);

 }

 }

 });

 btnCreateAPM.setBounds(366, 230, 178, 23);

 panel1.add(btnCreateAPM);

 btnBack_2 = new JButton("Back");

 btnBack_2.setBounds(180, 230, 114, 23);

 panel1.add(btnBack_2);

 btnBack_2.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 card.previous(cp);

 }

 });

 btnAA = new JButton("Allocation");

 btnAA.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

70 | P a g e

 panel3.removeAll();

 panel3.add(btnStartNew);

 panel3.add(btnBack);

 panel3.validate();

 if (action == 2) {

 ArrayList<Integer> al = tc.attributeAllocation();

 Object[][][] sites = new Object[4][][];

 for (int i = 1; i < 5; i++) {

 int j = 1;

 for (int k = 0; k < al.size(); k++) {

 if (al.get(k) == i)

 j++;

 }

 sites[i - 1] = new Object[j][1];

 System.out.println(j);

 }

 int row[] = { 0, 0, 0, 0 };

 for (int k = 0; k < al.size(); k++) {

 int temp = al.get(k) - 1;

 sites[temp][row[temp]][0] = column.get(k + 1);

 row[temp]++;

 System.out.println(temp);

 System.out.println(row[temp]);

 }

 String[] clm = { "Attribute" };

 JLabel site1 = new JLabel("Site 1");

 site1.setBounds(45, 5, 50, 25);

 panel3.add(site1);

 JTable table = new JTable(sites[0], clm);

 table.setBounds(20, 10, 100, 200);

 JLabel site2 = new JLabel("Site 2");

 site2.setBounds(345, 5, 50, 25);

 panel3.add(site2);

 JTable table2 = new JTable(sites[1], clm);

71 | P a g e

 table2.setBounds(310, 10, 100, 200);

 JLabel site3 = new JLabel("Site 3");

 site3.setBounds(45, 285, 50, 25);

 panel3.add(site3);

 JTable table3 = new JTable(sites[2], clm);

 table3.setBounds(10, 310, 100, 200);

 JLabel site4 = new JLabel("Site 4");

 site4.setBounds(345, 285, 50, 25);

 panel3.add(site4);

 JTable table4 = new JTable(sites[3], clm);

 table4.setBounds(310, 310, 100, 200);

 JScrollPane scrollPane = new JScrollPane(table);

 JScrollPane scrollPane1 = new JScrollPane(table2);

 JScrollPane scrollPane2 = new JScrollPane(table3);

 JScrollPane scrollPane3 = new JScrollPane(table4);

 // table.setVisible(true);

 // scrollPane.setVisible(true);// scrollPane.setBounds(640,

 // 437,

 // -631, -259);

 /*

 * scrollPane.setBounds(5, 5, 550, 600);

 * scrollPane.add(table); scrollPane.add(table2);

 * scrollPane.add(table3); scrollPane.add(table4);

 *

 * scrollPane.repaint();

 *

 * panel3.add(scrollPane);

 */

 scrollPane.setBounds(5, 25, 110, 210);

 scrollPane1.setBounds(305, 25, 110, 210);

 scrollPane2.setBounds(5, 305, 110, 210);

 scrollPane3.setBounds(305, 305, 110, 210);

 panel3.add(scrollPane);

 panel3.add(scrollPane1);

 panel3.add(scrollPane2);

 panel3.add(scrollPane3);

 card.next(cp);

72 | P a g e

 } else {

 ArrayList<Integer> al = tc.attributeAllocation();

 Object[][][] sites = new Object[4][][];

 for (int i = 1; i < 5; i++) {

 int j = 1;

 for (int k = 0; k < al.size(); k++) {

 if (al.get(k) == i)

 j++;

 }

 sites[i - 1] = new Object[j][1];

 System.out.println(j);

 }

 int row[] = { 0, 0, 0, 0 };

 for (int k = 0; k < al.size(); k++) {

 int temp = al.get(k) - 1;

 sites[temp][row[temp]][0] = column.get(k + 1);

 row[temp]++;

 System.out.println(temp);

 System.out.println(row[temp]);

 }

 String[] clm = { "Attribute" };

 JLabel site1 = new JLabel("Site 1");

 site1.setBounds(45, 5, 50, 25);

 panel3.add(site1);

 JTable table = new JTable(sites[0], clm);

 table.setBounds(20, 10, 100, 200);

 JLabel site2 = new JLabel("Site 2");

 site2.setBounds(345, 5, 50, 25);

 panel3.add(site2);

 JTable table2 = new JTable(sites[1], clm);

 table2.setBounds(310, 10, 100, 200);

 JLabel site3 = new JLabel("Site 3");

 site3.setBounds(45, 285, 50, 25);

 panel3.add(site3);

 JTable table3 = new JTable(sites[2], clm);

73 | P a g e

 table3.setBounds(10, 310, 100, 200);

 JLabel site4 = new JLabel("Site 4");

 site4.setBounds(345, 285, 50, 25);

 panel3.add(site4);

 JTable table4 = new JTable(sites[3], clm);

 table4.setBounds(310, 310, 100, 200);

 JScrollPane scrollPane = new JScrollPane(table);

 JScrollPane scrollPane1 = new JScrollPane(table2);

 JScrollPane scrollPane2 = new JScrollPane(table3);

 JScrollPane scrollPane3 = new JScrollPane(table4);

 // table.setVisible(true);

 // scrollPane.setVisible(true);// scrollPane.setBounds(640,

 // 437,

 // -631, -259);

 /*

 * scrollPane.setBounds(5, 5, 550, 600);

 * scrollPane.add(table); scrollPane.add(table2);

 * scrollPane.add(table3); scrollPane.add(table4);

 *

 * scrollPane.repaint();

 *

 * panel3.add(scrollPane);

 */

 scrollPane.setBounds(5, 25, 110, 210);

 scrollPane1.setBounds(305, 25, 110, 210);

 scrollPane2.setBounds(5, 305, 110, 210);

 scrollPane3.setBounds(305, 305, 110, 210);

 panel3.add(scrollPane);

 panel3.add(scrollPane1);

 panel3.add(scrollPane2);

 panel3.add(scrollPane3);

 card.next(cp);

 }

 }

 });

 btnAA.setBounds(366, 230, 178, 23);

 panel2.add(btnAA);

 btnBack_1 = new JButton("Back");

74 | P a g e

 btnBack_1.setBounds(180, 230, 114, 23);

 panel2.add(btnBack_1);

 btnBack_1.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 card.previous(cp);

 }

 });

 }

}

	OLE_LINK2
	OLE_LINK3

