A

Major Project Report II

On

NOVEL SCHEME OF FEATURES EXTRACTION & CLASSIFICATION OF BRAIN TUMOR INFECTED MRI IMAGE USING NEURAL NETWORK

Submitted in Partial fulfillment of the requirement

For the award of the degree of

MASTER OF TECHNOLOGY

In

(Signal Processing and Digital Design)

Submitted by

Vishal Sharma

DTU/M.Tech/175

Under the Guidance of

Associate Prof. M.S. Choudhary

Department of Electronics and Communication Engineering

DEPARTMENT OF ELECTRONICS & COMMUNIATION ENGINEERING DELHI TECHNOLOGICAL UNIVERSITY BAWANA ROAD, DELHI- 110042 July 2012

DECLARATION BY THE CANDIDATE

July 2012

Date: _____

I hereby declare that the work presented in this dissertation entitled "Novel Scheme of Features Extraction & Classification of Brain Tumor Infected MRI Image using Neural Network" has been carried out by me under the guidance of Mr. M.S. Choudhary, Associate Professor, Department of Electronics & Communication Engineering, Delhi Technological University, Delhi and hereby submitted for the partial fulfillment for the award of degree of Master of Technology in Signal Processing & Digital Design at Electronics & Communication Department, Delhi Technological University, Delhi.

I further undertake that the work embodied in this major project has not been submitted for the award of any other degree elsewhere.

> Vishal Sharma DTU/M.Tech/175 M.Tech (SP&DD)

CERTIFICATE

It is to certify that the above statement made by the candidate is true to the best of my knowledge and belief.

Mr. M.S. Choudhary Associate Professor Electronics & Communication Department Delhi Technological University, Delhi-42

Dated:------

ACKNOWLEDGEMENTS

At this point I would like to thank the people that helped me producing this dissertation. First, I thank **Dr. Rajiv Kapoor** Head of Department (Electronics and Communication Engineering, DTU), and **Mr. M.S. Choudhary** for giving me the opportunity to write this dissertation and supporting me along the way. Next, I would like to say thanks to all my seniors and friends for their goodwill and support that helped me a lot in successful completion of this dissertation.

> Vishal Sharma DTU/M.Tech/175 M.Tech (SP&DD)

ABSTRACT

Magnetic resonance (MR) imaging has been playing an important role in neuroscience research for studying brain images where MR's soft tissue contrast and non invasiveness are clear advantages. MR images can also be used to determine normal and abnormal types of brain. Moreover, the MRI characteristics will help the doctor to avoid the human error in manual interpretation of medical content. Computer-based classification has remained largely experimental work with approaches. Here a work is done by simulating a method in Matlab using artificial neural network to automatically classify brain MRI images. The diagnosis method consists of three stages firstly feature extraction using discrete wavelet transforms. Wavelets seem to be a suitable tool for this task, because they allow analysis of images at various levels of resolution. Then the features are reduced using principal component analysis (PCA). In the last stage artificial neural network (ANN) is used as a multi class classification technique to classify between normal & brain tumor infected MRI Images & also classify different brain tumor images according to the different location of Tumor in the brain. We obtain good classification rate with the less number of features. The results show that the method is robust and effective.

Keywords–Magnetic Resonance Imaging, wavelet transform, classification, neural network.

CONTENTS

Ack	nowle	ledgements		iii
Abs	tract	t		iv
1.	Intro	roduction		1
	1.1	Magnetic Resonance Imaging		3
		1.1.1 MRI Analysis using Image Processing		7
	1.2	Previous Work		9
	1.3	Thesis Objective		10
	1.4	Thesis Outline		11
2.	The	e Basics of MRI		12
	2.1	The Brain in a magnetic field		12
	2.2	Application of the radiofrequency pulse		14
	2.3	Relaxation		15
	2.4	When it all comes together		15
	2.5	T2* and the spin-echo pulse cycle		16
	2.6	Overview of MRI Imaging sessions		20
		2.6.1 Preparation		20
		2.6.2 Acquisition		20
		2.6.3 Processing		23
3.	MR	RI Image Processing		24
	3.1	Wavelet Transform		24
		3.1.1 Continuous Wavelet Transform		26
		3.1.2 Discrete Wavelet Transform		28
		3.1.3 Segmentation & Features Extraction Using I	Discrete Wavelet	32
		transform in 2-D Image		
		3.1.4 Wavelet Families		36
	3.2	Principal Component Analysis		37
		3.2.1 PCA Theory		38
		3.2.2 PCA algorithm		40
	3.3	Artificial Neural Network		41
		3.3.1 Activation Function		43

	Bibliograph	ıy	63
5.	Conclusion	& Future Scope	62
4.	Simulation	Results	52
	3.3.5	Multi-class pattern classification using neural networks	49
	3.3.4	Back propagation Learning	48
	3.3.3	Neural Network Learning	46
	3.3.2	Neural Network Architecture	45

LIST OF FIGURES

1.1	MRI machine	4
1.2	A sequence of MR image slices	5
1.3	Normal & Abnormal MRI images	6
1.4	Brain Tumor Infected M.R.I Image	7
2.1	Precession of the MDM	13
2.2	Tipping of an MDM into x-y plane during application of the RF-pulse	14
2.3	Cycle of precession of 3 MDM.s that are in phase & not in phase	17
3.1	Morlet Wavelet	25
3.2	Two channel filter bank	29
3.3	Three level analysis filter bank	31
3.4	Three level synthesis filter bank	32
3.5	Sub-images generated at two levels	33
3.6	The analysis filter banks of discrete wavelet transform	34
3.7	Discrete wavelet transform of one example MR image	35
3.8	DWT schematically	35
3.9	Wavelet families	36
3.10	Biological neuron	42
3.11	A Non linear model of a neuron as a processing device	42
3.12	Single-hidden-layer feed forward neural network with one output	45
3.13	Perceptron, computing unit of ANN, analogous to a biological neuron	47
3.14	A Feed-forward network with back propagation learning	49
3.15	Different neural network architectures for implementing K-class pattern	
	classification	50
3.16	Schematic Diagram of Brain MRI classification overview	51
4.1	Training data set	56
4.2	Testing data set	60
4.3	Confusion Matrix	61

LIST OF TABLES

2.1 Overview of imaging sessions for MRI data collection
--