
`

1

A

Dissertation

On

“N-Gram Driven SMS Based FAQ Retrieval System”

Submitted in Partial fulfillment of the requirement

For the award of Degree of

MASTER OF TECHNOLOGY

Computer Technology and Application

Delhi Technological University, Delhi

SUBMITTED BY

MUKUL JAIN

University Roll No: 11/CTA/2K10

Under the Guidance of:

Mr. Manoj Kumar

Associate Professor

Delhi Technological University

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY

2010-2012

`

2

CERTIFICATE

This is to certify that the work contained in this dissertation entitled “N-Gram Driven

SMS Based FAQ Retrieval System” submitted in the partial fulfillment, for the

award of the degree of M.Tech in Computer Technology and Applications at DELHI

TECHNOLOGICAL UNIVERSITY by MUKUL JAIN, University Roll No.

11/CTA/2K10, is carried out by him under my supervision. The matter and contents

embodied in this project work has not been submitted earlier for the award of any

degree or diploma in any University/Institution to the best of my knowledge and

belief.

 (Mr. MANOJ KUMAR)

 Project Guide

 Associate Professor

 Department of Computer Engineering

 Delhi Technological University

`

3

ACKNOWLEDGEMENT

First of all, let me thank the almighty god and my parents who are the most graceful

and merciful for their blessing that contributed to the successful completion of this

project.

I feel privileged to offer sincere thanks and deep sense of gratitude to Mr. MANOJ

KUMAR, project guide for expressing his confidence in me by letting me work on a

project of this magnitude and providing their support, help & encouragement in

implementing this project.

I would like to take this opportunity to express the profound sense of gratitude and

respect to all those who helped us throughout the duration of this project. Delhi

Technological University, in particular has been the great source of inspiration.

Again, I acknowledge the effort of those who have contributed significantly to this

project.

 MUKUL JAIN

University Roll No.: 11/CTA/2K10

`

4

ABSTRACT

In the present scenario, everyone is looking for a better, efficient and easy way to

access information. Resource availability and its user friendliness are directly

encouraging a large group of people to access information more conveniently. Short

Messaging Service (SMS) is one of the most popularly used services that provide

information access to the people having mobile phones. In India alone, there are

around 811 million mobile subscribers and still growing with a fast rate [3]. So, SMS

based Question Answering (QA) services can be one of the cheapest and easiest ways

to provide information access to the mobile users on move.

However, there are several significant challenges in order to process a SMS query

automatically. Humans have tendency to use abbreviations and shortcuts in their

SMSes. We call these inconsistencies as noise in the SMSes. Existing SMS services

such as service to access Examination result requires user to type the message in some

specific format. These are the unnecessarily constraints to the users who generally

feel it convenient to type a query in a “texting” language (i.e. including abbreviations

and the shortcuts). Some businesses such as “ChaCha” [5] allow their users to make

query through the SMSes without using any specific format. But these services are not

automatic and the SMSes are handled by human experts. Though this kind of system

provides independence to the users in writing the SMS query but this approach is not

an efficient way to handle user‟s queries because the system is limited to handle a

small number of queries proportional to the number of human experts on the business

side. The approach can be efficient if we have a system which automatically handles

the query at business side.

In this thesis work, I presented a novel approach to handle these inconsistencies in the

SMSes efficiently. This approach for SMS based FAQ retrieval system took N-gram

counts into consideration while calculating the score for the question in the corpus.

The experimental results demonstrates that this approach is significantly improves the

accuracy of previous SMS based QA system as proposed by L. Venkata Subramaniam

et al., August 2009 [1]. I demonstrate my algorithm over many real-life FAQ-datasets

from different domains (e.g. Agriculture, Bank, Health, Insurance and Telecom etc.).

`

5

TABLE OF CONTENTS

Cover Page …………………………………………………………..... 1

Certificate ……………………………………………………………... 2

Acknowledgement ……………………………………………………. 3

Abstract ……………………………………………………………….. 4

List of Figures …….…………………………………………………... 8

List of Tables …………………………………………………………. 9

1. Introduction 10

 1.1 Motivation ……………………………………………………... 11

 1.2 Research Objective …………………………………………….. 12

 1.3 Related Work …………………………………………………... 13

 1.4 Scope of the Work ……………………………………………... 14

 1.5 Organization of Thesis …………………………………………. 15

2. Literature Review 16

 2.1 SMS Based Question Answer System Basic Concepts ………... 16

 2.1.1 What is SMS Based Question Answering System? 16

 2.1.2 Introduction to SMS based Question Answering System Techniques 17

 2.1.2.1 Natural Language Processing Based ………………….… 17

 2.1.2.2 Human Intervention Based ……………………………. 17

`

6

 2.1.2.3 Information Retrieval Based ……...….………………... 18

 2.1.2.4 Frequently Asked Question Based ……………...……… 18

 2.2 SMS Based FAQ Retrieval System…………………………….. 19

 2.2.1 Problem Definition ………………………………………….. 19

 2.2.2 SMS Noise …………………………………………………. 20

 2.2.3 Combinational Search Problem ……………………………….. 21

 2.3 Problem Formulation and System Implementation ……………. 22

 2.3.1 Preprocessing ………………………………………………. 23

 2.3.2 Similarity Score ……………………………………………... 24

 2.3.2.1 Weight Function ……………………………………... 25

 2.3.2.1.1 Similarity Measure …………………………………. 26

 2.3.2.1.2 Inverse Domain Frequency ………………………….. 27

 2.3.3 Proximity Score …………………………………………….. 29

 2.3.4 Length Score ………………………………………………... 32

 2.4 Summary………………………………………………………... 33

3. Proposed N-Gram Driven Algorithm 34

 3.1 Proposed Algorithm ……………………………………………. 34

3.1.1 N-Gram Count ………………………………………………. 34

 3.1.2 N-Gram Algorithm ………………………………………….. 36

`

7

 3.2 Advantages ….………………………………………………….. 37

 3.3 Summary………………………………………………..………. 38

4. Implementation & Experimental Results 39

 4.1 Environmental Setup……………..……………………………... 39

 4.2 Datasets ………………………………….……………………... 39

 4.3 Analysis and Results ………………….………………………... 41

 4.4 Summary………………………………………………………... 44

5. Conclusion & Future Scope 45

 5.1 Conclusion …………………………………………….………. 45

 5.2 Future Scope ……………………………………….………...... 46

References 48

Appendix A : Coding

Appendix B : Levenshtein Distance

`

8

List of Figures

Figure 2.1: Similarity Score 25

Figure 2.2: Computation of Similarity Measure 26

Figure 2.3: Inverse Domain Frequency 27

Figure 2.4: Weight Function 27

Figure 2.5: Mapping of SMS tokens with FAQ 29

Figure 2.6: Proximity Score 30

Figure 2.7: Calculation of Proximity Score 31

Figure 2.8: Length Score 32

Figure 2.9: Combined Scoring Function 33

Figure 3.1: N-Gram Score 36

Figure 3.2: New Combined Scoring Function 37

Figure 4.1: FAQ Format 40

Figure 4.2: SMS Format 41

Figure 4.3: Results Graph 44

`

9

List of Tables

Table 4.1: Number of SMS Queries used for Experiments 42

Table 4.2: Experiment Results for threshold (T1= 0.275) 42

Table 4.3: Experiment Results for threshold (T2 = 0.300) 43

Table 4.4: Experiment Results for threshold (T3 = 0.325) 43

`

10

Chapter 1: Introduction

In this era of globalization, information retrieval has become an important part of

everybody‟s life. There are several resources through which users can access

information such as internet, telephone lines, mobile phones, etc. Mobile phones are

the most convenient and easy way to access information on move. Number of mobile

subscription is growing at a very high rate and mobile has become a daily

necessity for most of the people. In India alone, there are around 811 million mobile

subscribers [3]. The popularity of mobile phones is due to its unmatched portability.

This popularity and ease of use encourages the information providers to provide the

access to information through mobile phones. The most popular data application on

mobile phones is SMS text messaging. The number of SMS messages sent in 2010

was 6.9 trillion and for 2011 this number would reach over 8 trillion [7]. SMS

messaging is now used not only for personal communication but also for inquiry,

advertising, marketing, polling, bill payment, banking, etc. SMS based QA service is

one of the good examples of mobile based information retrieval services. Existing

SMS based services such as service to access Examination result (e.g. CBSE

Examination Result) requires user to type the message in some specific format. For

example, to get the result of a particular student, the user has to send a message

CBSE-HS-XXXX (Where XXXX is the Roll number of the student) [4]. These are

the unnecessarily constraints to the users who generally feel it easy and intuitive to

type a query in a “texting” language (i.e. using abbreviations and the shortcuts). Some

businesses such as “ChaCha” [5] allow their users to make query through the SMSes

without using any specific format. But these services are not automatic and handled

`

11

SMSes through human experts. Though this kind of system provides independence to

users in writing SMS query but this is not an efficient way to handle user‟s requests

because the system is limited to handle a small number of queries proportional to the

number of human experts sitting on the business side. This approach can be efficient

if we deduce a system that automatically handles the query at business side. The task

to automate SMS based QA System is one the most challenging as well as

commercially attractive problem in the field of Information Retrieval. L. Venkata

Subramaniam et al., August 2009, IBM India Research Lab, presented a SMS-based

question answering system over a SMS interface [1]. This system enabled user to type

his/her question in SMS texting language. Such questions might contain short forms,

abbreviations, spelling mistakes, phonetic spellings, transliterations etc. The system

handled the noise by formulating the SMS query similarity over the FAQ database.

1.1 Motivation

Because of the simplicity, utility and popularity of SMSes, there has been a growing

interest in providing access to applications, traditionally available on Internet, on

mobile devices using SMSes. The users can file their complaints, ask queries and get

information by just sending an SMS. This mode of communication not only makes

economic sense but also saves the customer from the hassle of arranging resources

such as internet connection and computing devices. These new form of information

access has the potential to cover almost all the audience from everywhere such as

users from different geographical areas and different living‟s classes. Most important

applications among several of SMS based FAQ Retrieval systems are:

 Enquiry system for organizations such as school, college or hospital.

`

12

 Customer support for the companies such as telecom, software, hardware, etc.

 Automatic FAQ support for various activities such as applications,

registrations for an event etc.

 Search engine for small domains.

The anytime anywhere access provided by mobile networks and the portability of

handsets coupled with the strong human urge to quickly find answers has fueled the

growth of information based services on mobile devices. These services can be simple

advertisements, polls, alerts or complex applications such as browsing, search and e-

commerce. The latest mobile devices come equipped with high resolution screen

space, inbuilt web browsers and full message keypads. However, a majority of the

users still use cheaper models that have limited screen space and basic keypad. On

such devices, SMS is the only mode of text communication. This has encouraged

service providers to build information based services around SMS technology. There

is a huge scope of optimizations in the field of SMS based Information services in

terms of accuracy as well as performance.

1.2 Research Objective

This FAQ Retrieval system is designed to find a match from the given set of FAQs for

a query written in SMS language. The problem with questions asked in SMS language

is that the SMS text has a lot of noise such as short forms, abbreviations, spelling

mistakes, phonetic spellings, transliterations etc. This makes SMS processing a

tedious task. Our task is to find the best matching FAQ from the FAQ corpus with

respect to the input SMS query with accuracy.

`

13

In this thesis, my objective is to present a novel approach by developing an N-

gram count based algorithm that takes the count of various N-grams

(monograms, bigrams, trigrams, etc.) into the account in order to calculate the

score of the questions from the corpus in order to calculate the score of the

questions in the corpus. In this way, we can further improve the accuracy of the

SMS based FAQ systems significantly by refining the results of the system using N-

gram count based scoring function.

1.3 Related Work

The study SMS based QA system for information access has not started long ago.

Allowing user to use a “texting” language (i.e. abbreviations and the shortcuts) makes

this task more challenging. L. Venkata Subramaniam et al., August 2009, proposed an

approach named SMS based FAQ retrieval. The proposed system was a SMS based

question answering system in which user is allowed to ask question in the SMS

texting language. The system was provided with a FAQ corpus containing all possible

frequently asked questions (FAQ). The noise in the SMS query was handled by

formulating the query similarity over the FAQ database as a combinatorial search

problem. Anwar D. Shaikh et al., December 2011 [2], proposed an idea of proximity

based score and length based score that take the proximity of tokens and length of the

SMSes into the consideration while calculating the score of each question in the

corpus. Their method improved the result of the system with a significant amount.

Harksoo Kim has studied the problem of FAQ retrieval as it may be seen in [9], where

he presented a trustly way of recovering FAQs by using a clustering of previous query

logs. In fact, he also improved this first approach in [10] by employing latent semantic

`

14

analysis, and also by usinglatent term weights [11]. In [11] it is proposed the use of

machine translation techniques for alignment of questions and answers of a FAQ

corpus, with the aim of constructing a bilingual statistical dictionary which is further

used for expanding the queries introduced in an information retrieval system. In [12]

it is presented an approach for domain specific FAQ retrieval based on a concept

named “independent aspect”. This concept basically consists of extracting terms and

relationships by employing WordNet and Hownet which are then used in a mixture-

based probabilistic model with the aim of analyzing queries and query-answer pairs

by means of independent aspects.

1.4 Scope of the work

There has been little work on SMS-based FAQ Retrieval System for arbitrary topics

due to the initial lack of a well defined business cases. The explosive growth in

prevalence of affordable low-end mobile devices throughout the world has created a

large market for mobile information services. Since mobile users in many parts of the

world use low-end mobile devices with SMS as their primary data transport, SMS-

based search has become a critical problem to address on the path to enabling SMS-

based services.

In this thesis, I have presented an automated SMS-based search response system that

is tailored to work across arbitrary topics. I found that a combination of simple

Information Retrieval Algorithms in conjunction with simple optimization algorithms

can provide reasonably accurate search responses for SMS queries. The use of N-

Gram technique adds to the scalability of the software without adding much to its

complexity. By incorporating various other techniques to the SMS based FAQ

`

15

Retrieval System; it can be further scaled to be used in different areas efficiently and

conveniently. There is a huge scope to improve the accuracy of the system so that it

can answer the user‟s query correctly as well as to improve the performance of the

system so that it can answer the queries in real time.

1.5 Organization of the thesis

In this chapter, I have highlighted the introduction to the SMS Based FAQ Retrieval

System, motivation to do this thesis, my objective, prior work in this field, and scope

to do the work in the same field. Also, this chapter includes various difficulties that

are associated to the SMS processing and various techniques that have been proposed

to counter these difficulties. Chapter 2 provides an overview to the SMS Based

Question Answering System; various strategies to implement SMS based Question

Answering system. This chapter also describes the importance and benefits of

choosing FAQ based Question Answering System. Then it describes the challenges in

processing SMS queries and the strategy used to implement the system. This chapter

also includes the problem formulation and system implementation details. In chapter

3, I presented the proposed algorithm, the idea of N-Gram count and its application in

the algorithm. I also presented the formulas and equations that I have derived while

deducing the algorithm. I also tried to compare my algorithm with other algorithms on

the basis of time as well as space complexity. Chapter 4 includes the implementation

details and the experimental setup. Here, I defined the datasets that I have taken into

the consideration while driving the experimental results. Also, there is a comparative

analysis of the results as concluded through different techniques. Finally, Chapter 5

concludes the thesis and gives some suggestions for future work.

`

16

Chapter 2: Literature Review

2.1 SMS Based Question Answer System Basic Concepts

2.1.1 What is SMS Based Question Answering System?

In this era of globalization, information retrieval has become an important part of

everybody‟s life. Consequently, the methods that make information retrieval systems

convenient become an interesting area of research. Today everyone is looking for a

better and an easy way to access information. There are several resources through

which users can access information such as internet, telephone lines, mobile phones,

etc. With the rapid growth in mobile communication, mobile phone has become a part

and parcel of everyday life. In the present scenario, Short Messaging Service (SMS) is

one of the most popularly used services that provide information access to the people

having mobile phones. In India alone, there are 811 million mobile subscribers and

the number is still growing rapidly. So, the SMS based Question Answering (QA)

services can be one of the cheapest and easiest ways to provide information access to

the mobile users on move. This popularity and ease of use encourages the information

providers to provide the access to information through mobile phones. The most

popular data application on mobile phones is SMS text messaging. The cost of

sending SMS and the easy access to the purchase of mobile phones have made instant

messaging emerge as the preffered communication medium just after spoken media

and e-mails. The number of SMS messages sent in 2010 was 6.9 trillion and for 2011

this number would reach over 8 trillion [7]. SMS messaging is now used not only for

personal communication but also for inquiry, advertising, marketing, polling, bill

`

17

payment, banking, etc. Thus, we can define SMS based question answering system as

the medium to access information in the form of questioning and answering using

SMS service of the mobile phones.

2.1.2 Introduction to SMS based Question Answering System Techniques

The most important data mining techniques are as follows:

2.1.3.1 Natural Language Processing Based:

In these types of systems, the user can send the queries through an SMS in a natural

language. The system then analyzes and processes the query using natural language

processing methods and then generates an answer. This answer is finally sent to the

user. The main disadvantage of these systems is the complexity of the natural

language processing algorithms used. Also, it may not always be possible to

successfully analyze and understand the query since SMS language contains

misspellings, non-standard abbreviations, transliterations, phonetic substitutions and

omissions which make it difficult to build such automated systems around SMS

technologies.

2.1.3.2 Human Intervention Based:

In these systems, the user can send their queries in any natural language. The queries

reach human agents, who then understand the query, find an answer and send the

reply to the user. Human intervention based systems exploit human communities to

answer questions. These systems are interesting because they suggest similar

questions resolved in the past. Other systems like Chacha and Askme use qualified

`

18

human experts to answer questions in a timely manner. Some businesses have

recently allowed users to formulate queries in natural language using SMS. For

example, many contact centers now allow customers to “text” their complaints and

requests for information over SMS. Most of these contact center based services and

other regular services like “AQA 63336” by Issuebits Ltd, GTIP by AlienPant Ltd.,

“Texperts” by Number UK Ltd. and “ChaCha” use human agents to understand the

SMS text and respond to these SMS queries.

2.1.3.3 Information Retrieval Based:

The information retrieval based systems treat question answering as an information

retrieval problem. They search a large corpus of text for specific text, phrases or

paragraphs relevant to a given question. Today, a majority of SMS based information

services require users to type specific codes to retrieve information. For example to

get a duplicate bill for a specific month, says June, the user has to type

DUPBILLJUN. The main disadvantage of this system is that it unnecessarily puts a

constraint on the users who generally find it easy and intuitive to type in a “texting”

language.

2.1.3.4 Frequently Asked Question Based:

In FAQ based question answering, where FAQs provide a ready-made database of

questions and answers, the main task is to find the closest match for a question to

retrieve the relevant answer. In these methods, a database of possible queries is

maintained. Whenever a user sends an SMS asking a query, the database is searched

for that particular query, or something close to it. The answer is returned to the user

`

19

when the appropriate match is found. For example, consider a system where answers

are well documented, like a FAQ database. Unlike other automatic question

answering systems that focus on generating or searching answers, in a FAQ database

the question and answers are already provided by an expert. The task is then to

identify the best matching question-answer pair for a given query.

2.2 SMS Based FAQ Retrieval System

2.2.1 Problem Definition

This FAQ Retrieval system is designed to find a match from the given set of FAQs for

a query written in SMS language. The problem with questions asked in SMS language

is that the SMS text has a lot of noise such as short forms, abbreviations, spelling

mistakes, phonetic spellings, transliterations etc. This makes SMS processing a

tedious task. Our task is to find the best matching FAQ from the FAQ corpus with

respect to the input SMS query with accuracy. In this task, we have a corpus of FAQs

and answers from various domains that have been provided. The corpora of questions

in the database are represented by Q. The goal of the task is to find a question Q*

from the corpora of FAQ‟s Q, that is the best possible match for the SMS query S.

The task of SMS based FAQ retrieval can be categorized into three catagories:

1. Mono-lingual FAQ Retrieval: In this task, we are required to find the best

matching FAQ for a given SMS query where the FAQ corpus and SMS

queries are expressed in the same language.

`

20

2. Cross-lingual: In this task, we are required to find the matching FAQs in a

language different from the SMS queries language. For example, FAQs are

written in Hindi and SMS queries are coming in English.

3. Multi-Lingual: In this task, we are required to find matching FAQs for SMS

queries where both FAQs as well as SMSes can be in any language. For

example, FAQs are written in any one of these languages like English, Hindi

Malyalam, etc and SMSes are coming may also belong to any one of these

languages like English, Hindi, Malyalam, etc.

In this thesis, I have taken Mono-lingual SMS based FAQ retrieval as my question

answering system and proposed the algorithm for this system only.

2.2.2 SMS Noise

Millions of users of instant messaging (IM) services and short message service (SMS)

generate electronic content in a dialect that does not adhere to conventional grammar,

punctuation and spelling standards. Words are intentionally compressed by non-

standard spellings, abbreviations and phonetic transliteration is used. These short

forms, abbreviations, spelling mistakes, phonetic spellings, transliterations

inconsistencies in SMS query are known as noise in the SMS. SMS corpus collected

from FIRE SMS task has following observations for English.

1. The commonly observed patterns include deletion of vowels, addition of

repeated character and truncation. For example, “abt” written after removing

the vowels, “sooo” after repeating characters and “col” after truncating.

`

21

2. The SMS data provided belongs to different domains like telecommunication,

railways, insurance, etc. Some of the frequently used abbreviations in these

areas have been written directly like IRCTC in railways, BSNL in

telecommunication, etc.

3. Substitution of spoken words with the actual spelling of the words popularly

known as phonetic substitution. For example, usage of “bookin” for booking

in turism domain, etc.

4. Informal usage of different words is common in SMS text. Often multiple

words are combined into a single token. For example, “wrt” for with respect

to, etc.

5. Missing words in sentences due to the limitation of text message. SMS query

sometimes give keywords and miss the conjunctions, prepositions and other

words which connect the key words. For example, “sms packs” used instead of

sms packs available for recharge, etc.

Above problems pertaining in the SMS text make it very noisy. This makes SMS

processing a tedious task.

2.2.3 Combinational Search Problem

In computer science and artificial intelligence, combinatorial search studies search

algorithms for solving instances of problems that are believed to be hard in general,

by efficiently exploring the usually large solution space of these instances.

Combinatorial search algorithms achieve this efficiency by reducing the effective size

of the search space or by employing heuristics. Some algorithms are guaranteed to

`

22

find the optimal solution, while others may only return the best solution found in the

part of the state space that was explored. Classic combinatorial search problems

include solving the eight queens‟ puzzle or evaluating moves in games with a

large game tree, such chess. A study of computational complexity theory helps to

motivate combinatorial search. Combinatorial search algorithms are typically

concerned with problems that are NP-hard. Such problems are not believed to be

efficiently solvable in general. However, the various approximations of complexity

theory suggest that some instances (e.g. "small" instances) of these problems could be

efficiently solved. This is indeed the case, and such instances often have important

practical ramifications. Combinatorial search algorithms are normally implemented in

an efficient imperative programming language, in an expressive declarative

programming language such as Prolog, or some compromise, perhaps a functional

programming language such as Haskell, or a multi-paradigm language such as LISP.

In this work, combinatorial search was implemented as the search space for matching

the SMS query to a query in the FAQ database is large. As we shall see in subsequent

chapters, the combinatorial search technique used employs Naive algorithm to reduce

the search space of finding the maximum scoring question.

2.3 Problem Formulation and System Implementation

The objective of this chapter is to define various phases and functions used in the

system. In preprocessing stage, the database is preprocessed in order to make system

work fast at the time of actual computation. In later stages, various scoring functions

`

23

are defined that improves the system accuracy by considering different techniques

from NLP and pattern matching.

2.3.1 Preprocessing

Preprocessing involves the following steps:

1. Indexing: We create a hash table of words W that contains all the words

occurring in all the questions in Q with the keys being characters a-z and

numbers 0-9. Example: „i‟ contains all the words in the set Q that start with „i‟,

like „insurance‟, „improve‟, and so on. The purpose of storing an index is to

optimize speed and performance in finding relevant documents for a search

query. Without an index, the search engine would scan every document in the

corpus, which would require considerable time and computing power. For

indexing the FAQ corpus we have used LUCENE [10].

2. Creating Domain Dictionary: In the preprocessing stage, we develop a

Domain dictionary D consisting of all the terms that appear in the corpus Q.

3. Removing Stop words: Stop words are words which are filtered out prior to,

or after, processing FAQ corpus. The stop words are removed from the SMS

query S. We now call it processed SMS query. The list of stop words that we

have used includes the most common short function words such as the, is, at,

which, on, etc. and common lexical words as well. Stop words are removed as

they almost never contain the relevant or the keywords.

`

24

4. Disemvoweling: The process of removing vowels from a string is known as

disemvowelling and the string from which vowels are removed is said to me

disemvoweled. We apply this process of disemvowelling to the SMS query.

5. Replacing digits occurring in the SMS with words: Digits occurring in

SMS token are replaced by a string based on a manually designed digit-to-

string mapping (“8”→“eight”).

6. Removing single character words: Single character words in the SMS

query are removed.

2.3.2 Similarity Score

The system views the SMS as a sequence of tokens. Each question in the FAQ corpus

views as a list of terms. The goal is to find a question from the FAQ corpus that best

matches with the SMS query and return the answer of the selected FAQ as a response

of the user query (SMS). SMS string is bound to have misspellings and other

distortions, which needed to be taken care of while performing the match. A domain

dictionary is created containing all the terms that are present in the FAQ corpus in the

developed system. For each term t in the dictionary and each token si in the SMS

query, a similarity measure α(t, si) is defined that measures how closely the term t

matches with the SMS token si. It is believed that the term t was a variant of si, if α(t,

si) > 0. A weight function ω(t, si) is defined by combining the similarity measure and

the inverse document frequency (idf) of t in the corpus, Based on the weight function,

a scoring function is defined for assigning a score to each question in the corpus Ǫ

with respect to given SMS query. The score measures how closely the FAQ matches

`

25

the SMS string S. FAQ having the highest score is believed to be best matches with

SMS query. The equation is given as:-

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑆𝑐𝑜𝑟𝑒 𝑄 = maxt∈Q and t~si ω (t, si)
𝑛

𝑖=1

Figure 2.1: Similarity Score

Consider a question Q Ǫ. For each token si in SMS string S, the scoring function

chooses the term having the maximum weight from Q. Summation of the weight of n

chosen terms results in score of question Q. The goal was to find the question Q
+

having the maximum score.

2.3.2.1 Weight Function

The weight for a term t in the dictionary w.r.t. a given SMS token si is calculated. The

weight function is a combination of Similarity Measure between t and si and Inverse

Document Frequency (idf) of t. The next two subsections explain the calculation of

the similarity measure and the idf in detail.

`

26

2.3.2.1.1 Similarity Measure

Let D be the dictionary of all the terms in the corpus Q. For term t 2 D and token si of

the SMS, the similarity measure α(t, si) between them is:-

α t, si =

 𝐿𝐶𝑆 𝑅𝑎𝑡𝑖𝑜 𝑡,𝑠𝑖

𝐸𝑑𝑖𝑡 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡 ,𝑠𝑖
 𝑖𝑓 𝑡 𝑎𝑛𝑑 𝑠𝑖 𝑠𝑎𝑟𝑒

 𝑠𝑎𝑚𝑒 𝑓𝑖𝑟𝑠𝑡 𝑐𝑎𝑟𝑎𝑐𝑡𝑒𝑟

0 𝑜𝑡𝑒𝑟𝑣𝑖𝑠𝑒

Figure 2.2: Computation of Similarity Measure

Where 𝐿𝐶𝑆 𝑅𝑎𝑡𝑖𝑜 𝑡, 𝑠𝑖 =
𝐿𝑒𝑛𝑔𝑡 (𝐿𝐶𝑆 𝑡 ,𝑠𝑖)

𝑙𝑒𝑛𝑔𝑡 (𝑡)
 and LCS(t,si) stands for largest common

subsequence between t and si.

The Longest Common Subsequence Ratio (LCSR) of two strings is the ratio of the

length of their LCS and the length of the longer string. Since in SMS text, the

dictionary term will always be longer than the SMS token, the denominator of LCSR

is taken as the length of the dictionary term. We call this modified LCSR as the LCS

Ratio.

The Edit Distance shown in above equation compares the Consonant Skeleton of the

dictionary term and the SMS token. If the consonant keys are similar, i.e. the

Levenshtein distance between them is less; the similarity measure defined in Equation

will be high. We explain the rationale behind using the EditDistance in the similarity

measure α(t, si) through an example. For the SMS token “gud” the most likely correct

`

27

form is “good”. The two dictionary terms “good” and “guided” have the same

LCSRatio of 0.5 w.r.t “gud”, but the EditDistance of “good” is 1 which is less than

that of “guided”, which has EditDistance of 2 w.r.t “gud”. As a result the similarity

measure between “gud” and “good” will be higher than that of “gud” and “guided”.

2.3.2.1.2 Inverse Domain Frequency

The Inverse Document Frequency is a measure of whether the term is common or

rare across all documents. It is obtained by dividing the total number of documents by

the number of documents containing the term, and then taking the logarithm of

that quotient. If f number of documents in corpus Q containing a term t and the total

number of documents in Q is N, then the Inverse Document Frequency (idf) of t is:

𝑖𝑑𝑓 𝑡 = 𝑙𝑜𝑔
𝑁

𝑓

Figure 2.3: Inverse Domain frequency

Mathematically the base of the log function does not matter and constitutes a constant

multiplicative factor towards the overall result. Combining the similarity measure and

the idf of t in the corpus, they define the weight function ω(t, si) as:

ω(t, si) = α(t, si) * idf(t)

Figure 2.4: Weight Fucntion

The objective behind the weight function is

1. It is preferred that terms having high similarity measure i.e. terms that are

similar to the SMS token. Higher the LCSRatio and lower the EditDistance,

`

28

higher will be the similarity measure. Thus for example, for a given SMS

token “byk”, similarity measure of word “bike“ is higher than that of “break”.

2. It is preferred that words that are highly discriminative i.e. words with a high

idf score. The rationale for this stems from the fact that queries, in general, are

composed of informative words. Thus for example, for a given SMS token

“byk”, idf of “bike” will be more than that of commonly occurring word

“back”. Thus, even though the similarity measure of “bike” and “back” are

same w.r.t. “byk”, “bike” will get a higher weight than “back” due to its idf.

These two objectives are combined into a single weight function multiplicatively.

`

29

2.3.3 Proximity Score

Anwar D. Shaikh et al., December 2011 [2], stated that the relative position of words

in a sentence plays an important role. They preferred a sentence over other sentences

having same words but in different proximity using the proximity score. So, In order

to find the best match, they have included the proximity of words in their score

calculations. I have explained the working of our proximity search technique with an

example given in figure 1 and figure 2.

Figure 2.5: Mapping of SMS tokens with FAQ

Relative position of words in a sentence plays an important role; it allows us to

differentiate this sentence with various other possible sentences – which have same

words but in different order. So while finding a best match, we must consider the

proximity of words. In the proposed solution we do not check proximity of a token

with all remaining tokens, but we only consider two consequent words. In proximity

search process, we store the positions of the matched SMS tokens and FAQ tokens,

`

30

stop words are removed before storing position of tokens. Based on the distance

between two consecutive tokens in SMS text and FAQ the calculation of Proximity

Score is done. The proximity score can be calculated as:

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦_𝑆𝑐𝑜𝑟𝑒 =
𝑚𝑎𝑡𝑐𝑒𝑑𝑇𝑜𝑘𝑒𝑛

((𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 1) ∗ 𝑡𝑜𝑡𝑎𝑙𝐹𝑎𝑞𝑇𝑜𝑘𝑒𝑛𝑠)

Figure 2.6: Proximity score

Where totalFaqTokens = number of tokens in FAQ

matchedToken = number of matched token of SMS in FAQ

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
absolute difference between adjacent token
pairs in SMS and corresponding pair in FAQ

𝑛

𝑘=0

Where n = number of matched adjacent pairs in SMS

Figure 2 describes the calculation of Proximity Score with an example SMS and FAQ

question. For calculating the value of distance we have taken only absolute value of

distance as we believe that if two tokens were swapped their positions than in most of

the cases the meaning of the SMS and FAQ question is unchanged. Unlike the Length

Score, Proximity Score is always positive.

`

31

Figure 2.7: Calculation of Proximity Score

I have explained the significance of proximity search through an example. Let's say,

the SMS query is “hw to buk ticket on internet”. Base system will find the same score

for both FAQ 1 “How to use Internet reservation facility to book the Ticket?” and

FAQ 2 “How to cancel the Ticket which I have booked through the Internet?” because

their system only considered the Similarity_Score. Improved version of the base

system solved this problem by considering the Proximity_Score along with the

Similarity_Score. This system selects FAQ 1 over FAQ 2 since Proximity_Score of

FAQ 1 is greater than that of FAQ 2.

`

32

2.3.4 Length Score

Anwar D. Shaikh et al. [2], took the length of the FAQ as well as the SMS query into

the account while calculating the score. This approach helped them to achieve better

accuracy than earlier by assigning less priority to the long length questions and high

priority to the short length questions. They have formularized the Length score is

given below.

𝐿𝑒𝑛𝑔𝑡_𝑆𝑐𝑜𝑟𝑒(𝑄) =
𝑡𝑜𝑡𝑎𝑙𝐹𝐴𝑄𝑇𝑜𝑘𝑒𝑛 −𝑚𝑎𝑡𝑐 𝑒𝑑𝑇𝑜𝑘𝑒𝑛

1+𝑡𝑜𝑡𝑎𝑙𝑆𝑀𝑆𝑇𝑜𝑘𝑒𝑛 −𝑚𝑎𝑡𝑐 𝑒𝑑𝑇𝑜𝑘𝑒𝑛

=
𝑢𝑛𝑚𝑎𝑡𝑐𝑒𝑑 𝐹𝐴𝑄 𝑇𝑜𝑘𝑒𝑛

𝑢𝑛𝑚𝑎𝑡𝑐𝑒𝑑 𝑆𝑀𝑆 𝑇𝑜𝑘𝑒𝑛

Figure 2.8: Length Score

Where totalFAQToken=total number of Tokens in FAQ question.

totalSMSToken= total number of Tokens in SMS query.

matchedToken=number of SMS which matched from tokens of FAQ question.

I have explained the significance of Length_Score through an example. Let's say, the

SMS query is “hw mch b4 d journey I cn buk e-ticket”. If we consider only

Similarity_Score than the system will find the same score for both FAQ 1 “To book a

tatkal ticket through Internet, how much days before it open?” and FAQ 2 “How

much days before a ticket can be booked?”.But if we consider the Length Score

along with the Similarity Score than FAQ 2 will be preferred over FAQ 1 since

Length Score of FAQ 2 is greater than the Length Score of FAQ 1.

`

33

2.4 Summary

The system consists of various stages and scoring function. If we combine all the

scoring functions together i.e similarity score, proximity score and length score then it

improves the results of the system with a significant amount. They have formulized

the score as explained below:

𝑆𝑐𝑜𝑟𝑒 𝑄 = 𝑊1 ∗ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑆𝑐𝑜𝑟𝑒(𝑄) + 𝑊2 ∗ 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦_𝑆𝑐𝑜𝑟𝑒(𝑄)

+ 𝑊3 ∗ 𝐿𝑒𝑛𝑔𝑡_𝑆𝑐𝑜𝑟𝑒(𝑄)

Figure 2.9: Combined Scoring Function

Where Q is the FAQ for which we are calculating the score. W1, W2 and W3 are real

valued weights. Their values determine the weights of Similarity Score, Proximity

Score and Length Score from the overall score of the FAQ question. W1, W2 and W3

are adjusted such that their sum is 1.0 (or 100%). More than half weightage is given to

Similarity score. W3 is assigned comparatively less value, as it tries to reduce the

overall score if there are variations in the length of SMS and FAQ text.

`

34

Chapter 3: Proposed N-Gram Driven Algorithm

The objective of this chapter is to introduce my approach to compute the score of the

candidate FAQ by considering the frequency of N-Grams (Unigrams, Bigrams and

Trigrams). This algorithm is based upon N-Grams frequencies and is completely

different from previously existing algorithms.

In the fields of computational linguistics and probability, an N-Gram is a contiguous

sequence of n items from a given sequence of text or speech. The items in question

can be phonemes, syllables, letters, words or base pairs according to the application.

N-Grams are collected from a text or speech corpus. An n-gram of size 1 is referred to

as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size 3 is a

"trigram". Larger sizes are sometimes referred to by the value of n, e.g., "four-gram",

"five-gram", and so on. N-Grams can be used for efficient approximate matching. By

converting a sequence of items to a set of N-Grams, it can be embedded in a vector

space, thus allowing the sequence to be compared to other sequences in an efficient

manner. We know empirically that if two strings of real text have a similar vector

representation (as measured by cosine distance) then they are likely to be similar.

3.1 Proposed Algorithm

In this work, I have presented a novel approach by developing an N-gram count based

algorithm that takes the count of various N-grams (monograms, bigrams, trigrams,

etc.) into the account in order to calculate the score of the questions in the corpus. In

this way, we can further improve the accuracy of the SMS based FAQ system

significantly by refining the results of the system using N-gram count based scoring.

`

35

3.1.1 N-Grams count

As I have explained in earlier section that the system view SMS as a sequence of

tokens. I have denoted these tokens as monograms. In this way, we can denote any

two adjacent tokens as bigram and three consecutive tokens as trigram and so on. For

example, For given SMS query, “hw 2 bk ttkal tkt on net”, system first remove the

stop words and consider “hw bk ttkal tkt net” for further calculation of score. The

matched terms from the dictionary would be: how, use, internet, tatkal, and

reservation. The N-grams for above example would be:

 Monograms :- { how, use, internet, tatkal, reservation }

 Bigrams:- { [how, use], [use, internet], [internet, tatkal], [tatkal, reservation] }

 Trigrams:- { [how, use, internet], [use, internet, tatkal], [internet, tatkal,

reservation] }

 And so on…

N-grams count corresponding to a question in the FAQ corpus is the count of total

number of N-grams present in the SMS that matches with the N-grams in the

question. For example, the FAQ is “How to use the internet reservation facility to

book Tatkal ticket?” and after removing the stop words it would become “How use

internet reservation facility book Tatkal ticket”. The N-gram counts corresponding to

given FAQ are:

 Monograms :- { how, use, internet, reservation, facility, book, tatkal, ticket }

 Bigrams:- { [how, use], [use, internet], [internet, reservation], [reservation,

facility], [facility, book], [book, tatkal], [tatkal, ticket] }

`

36

 Trigrams:- { [how, use, internet], [use, internet, reservation] , [internet,

reservation, facility], [reservation, facility, book], [facility, book, tatkal],

[book, tatkal, ticket]}

 And so on…

In order to measure the counts for each N-gram we can simply compare the SMS N-

gram set with the corresponding FAQ N-gram set. From the above example, we can

conclude:

 Monogram count = 5;

 Bigram count = 2;

 Trigram count = 1;

 And so on…

3.1.2 N-Grams Algorithm

After the calculation of N-gram counts corresponding to a question in the corpus, I

have calculated the score of the question using these counts. As score is based upon

the counts of N-grams, therefore I refer this score as N-gram_Score. In order to

calculate the N-gram_Score for a given question I have deduced the following

equation:

𝑁_𝑔𝑟𝑎𝑚_𝑆𝑐𝑜𝑟𝑒(𝑄) =
(L1 + L2 2 + L3 3 + … + LNN)

(T + T − 1 2 + T − 2 3 + … + [T − N]N)

Figure 3.1: N-Gram Score

`

37

L1, L2 and L3 are the monograms (matchedToken), bigrams, and trigrams counts

respectively corresponding to a given question Q, LN is theN-gram count,. T is the

total number of tokens in the SMS query having a matching FAQ term. As SMS

queries are short in nature, we could expect bigrams and trigrams occurrences in a

SMS corresponding to a FAQ.

After N-gram score into consideration, I define the new scoring function for a

question Q as:

𝑆𝑐𝑜𝑟𝑒 𝑄 = 𝑊1 ∗ 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦_𝑆𝑐𝑜𝑟𝑒(𝑄) + 𝑊2 ∗ 𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦_𝑆𝑐𝑜𝑟𝑒(𝑄)

+ 𝑊3 ∗ 𝑁_𝐺𝑟𝑎𝑚_𝑆𝑐𝑜𝑟𝑒(𝑄)

Figure3.2: New Combined Scoring Function

Where Q is the FAQ for which we are calculating the score. W1, W2 and W3 are real

valued weights. Their values determine the weights of Similarity Score, Proximity

Score and N-gram Score from the overall score of the FAQ question. W1, W2 and W3

are adjusted such that their sum is 1.0 (or 100%).This score function evaluates the

score of the question Q under consideration in order to find the best match. If the

score is above certain predefined threshold, then it is considered as match. Value of

threshold can be selected based on the system requirement. Threshold value impacts

the In Domain and Out Domain queries in opposite manner. Decreasing the threshold

may improve the In Domain results and degrade the out domain results and vice-

versa.

`

38

3.2 Advantages

The two core advantages of N-Gram Models (and algorithms that use them) are

relative simplicity and the ability to scale up – by simply increasing n a model can be

used to store more context with a well-understood space–time tradeoff, enabling small

experiments to scale up very efficiently. Some of the other advantages are:

 Language independence and simplicity: Character level N-gram models are

applicable to any language, and even to non-language sequences such as music

or gene sequences.

 Robustness: Character level N-gram models are relatively insensitive to

spelling variations and errors, particularly in comparison to word features.

 Completeness: The vocabulary of character tokens is much smaller than any

word vocabulary and is normally known in advance. Therefore, the problem of

sparse of data is much less serious in character N-gram models of the same

order.

3.3 Summary

In this chapter I have presented a novel approach based on N-gram counts to improve

the accuracy of the SMS based QA system. Since the SMS are short in nature, I have

considered occurrence of bigrams and trigrams. This approach is an effective and

simple approach that potentially improves the accuracy of the SMS based FAQ

Retrieval Syastem.

http://en.wikipedia.org/wiki/Space%E2%80%93time_tradeoff

`

39

Chapter 4: Implementation and Experimental Results

4.1 Environmental Setup

I have used the following configuration while finding the experimental results

4.1.1 Hardware Configuration

Processor : Intel Core 2 Duo

Processor Speed : 2.20GHz

Main Storage : 4GB RAM

Hard Disk Capacity : 80GB

Monitor : Dell 17”5‟ Color

 4.1.2 Software Configuration

Operating System : Windows 7

Front end : Java

Back end : Datasets (explained in 4.2)

4.2 Datasets

Dataset used for evaluation was taken from FIRE [6] (Forum for Information

Retrieval Evaluation), it contains data from many domains viz. - Agriculture,

Banking, Career, General Knowledge, Health, Insurance, Online railway reservation,

Sports, Telecom, Tourism. The SMS queries were also provided by the FIRE in order

to test the system accuracy. SMS queries were categorized as in domain if the query

`

40

belongs to the Domains present in the dataset and out domain otherwise. We have

considered 497 in domain and 777 out domain SMS queries for evaluation.

Dataset format:

The data is in an XML-based format. FAQs are placed in the input FAQ xml file and

SMS queries are placed in SMS query xml file. The two formats are:

<FAQ>

<FAQID>ENG_CAREER_1</FAQID>

<DOMAIN>CAREER</DOMAIN>

<QUESTION>What is career counseling?</QUESTION>

<ANSWER> Career counseling is a process designed to help clients

discover their passion, choose satisfying careers, build career management

skills, and improve their ability to market and sell themselves in the job

market. We utilize a holistic approach to career counseling and are

interested in helping you achieve greater satisfaction in your life and align

your career goals to match your personal goals. Career counseling is not a

job placement or recruitment service although we can help you find one

depending on the career path you select.

</ANSWER>

</FAQ>

Figure 4.1: FAQ Format

`

41

<SMS>

<SMS_QUERY_ID>ENG_SMS_QUERY_I1</SMS_QUERY_ID>

<SMS_TEXT>whats need 2 change name on pport after a

marriage</SMS_TEXT>

<MATCHES>

<ENGLISH>ENG_VISA_47</ENGLISH>

</MATCHES>

</SMS>

Figure 4.2: SMS Format

4.3 Analysis and Results

In current experiments I have considered the similarity, proximity and N-Gram

occurrences as the attributes for evaluation. Four different experiments were

conducted. In first experiment I have only considered the Similarity between SMS

token and FAQ terms, In Second experiment Proximity score along with Similarity

measure was considered and in Third experiment N-Gram score along with Similarity

measure was considered. Finally I have observed that when I combine our N-gram

approach with the Proximity and Similarity score than the accuracy of the system

improved by a great extent.

I have repeated these four experiment three times by taking three different score

thresholds. This score threshold determines whether to consider the match of a FAQ

with SMS or not. In this way, I observed the percentage correctness of queries in each

case. For a given SMS query accuracy was tested based on the top three FAQ returned

by the system, if the required FAQ is present in the top three then the answer is

`

42

marked as true. Table 1 to Table 4 shows the results of our four experiments repeated

with three different score thresholds.

I have evaluated our system for three different threshold values T1=0.275, T2=0.300

and T3=0.325. Table 2, 3 AND 4, shows the results for the In-Domain and Out-

Domain queries obtained using different threshold values. Figure 1, shows the overall

results under different threshold values. From above experiments it is observed that

the threshold T2 provides more In-Domain accuracy while threshold T2 provides

more Out-Domain accuracy.

Table 4.1: Number of SMS Queries used for Experiments

 In

Domain

Out Domain Total

Total

Queries

497 777 1274

Table 4.2: Experiment Results for threshold T1.

 In Domain Out Domain Total

Correct

Similarity 394 223 617

Similarity+Proximity 380 388 768

Similarity+N Gram 346 377 723

Smilarity + Proximity + N Gram 343 539 882

`

43

Table 4.3: Experiment Results for threshold T2.

 In Domain Out Domain Total

Correct

Similarity 390 257 647

Similarity+Proximity 369 441 810

Similarity+N Gram 364 430 794

Smilarity + Proximity + N Gram 344 561 905

Table 4.4: Experiment Results for threshold T3.

 In Domain Out Domain Total

Correct

Similarity 386 293 679

Similarity+Proximity 366 487 853

Similarity+N Gram 369 449 818

Smilarity + Proximity + N Gram 322 602 924

`

44

Figure 4.3: Results Graph

4.4 Summary

In this chapter I have introduced the environmental setup which I have used while

making the experimental results. In addition to this I have also explain the types of

dataset which I have used and explain them in detail. Various experiments were

conducted to test the accuracy of various matching techniques. From the experimental

results, I can conclude that this approach is able to significantly outperform the

previous state-of-the-arts SMS based QA system, particularly in case of out domain

queries, the results are best accurate.

`

45

Chapter 5: Conclusion & Future Scope

5.1 Conclusion

There has been little work on SMS-based search for arbitrary topics due tothe initial

lack of a well defined business cases. The explosive growth in prevalence of

affordable low-end mobile devices throughout the world has created a large market

for mobile information services. Since mobile users in many parts of the world use

low-end mobile devices with SMS as their primary data transport, therefore, SMS-

based search becomes a critical problem to address on the path to enabling SMS-

based services.

In this Thesis, I have presented an automated SMS-based search response system that

is tailored to work across arbitrary topics. The use of N-Gram technique adds to the

scalability of the software without adding much to its complexity. I have presented a

novel approach based on N-gram count to improve the accuracy of the SMS based

QA system. Since the SMS are short in nature, I have considered occurrence of

bigrams and trigrams to improve the accuracy of the system. Various experiments

were conducted to test the accuracy of various matching techniques. From the

experimental results, we can conclude that this approach is able to significantly

outperform the current state-of-the-art SMS based QA system, particularly in case of

out domain queries the results are more accurate.

Using queries across arbitrary topics from a real world SMS question/answering

service with human-in-the-loop responses, I show that this software is able to answer

up to 75.527% of the queries in the above test set. Although more powerful IR and

`

46

NLP techniques are bound to improve performance, this work represents a foray into

an open and practical research domain.

5.2 Future Scope

5.2.1 Stemming

In most cases, morphological variants of words have similar semantic interpretations

and can be considered as equivalent for the purpose of IR applications. For this

reason, a number of so-called stemming Algorithms, or stemmers, have been

developed, which attempt to reduce a word to its stem or root form. Thus, the key

terms of a query or document are represented by stems rather than by the original

words. This not only means that different variants of a term can be conflated to a

single representative form – it also reduces the dictionary size, that is, the number of

distinct terms needed for representing a set of documents. A smaller dictionary size

results in a saving of storage space and processing time.

For IR purposes, it doesn't usually matter whether the stems generated are genuine

words or not – thus, "computation" might be stemmed to "compute" – provided that

(a) different words with the same 'base meaning' are conflated to the same form, and

(b) words with distinct meanings are kept separate. An algorithm which attempts to

convert a word to its linguistically correct root ("compute" in this case) is sometimes

called a lemmatizer.

Examples of products using stemming algorithms would be search engines such as

Lycos and Google, and also thesauruses and other products using NLP for the purpose

`

47

of IR. Stemmers and lemmatizers also have applications more widely within the field

of Computational Linguistics.

5.2.2 Inverse Bigram Frequency

Like Inverse domain frequency, we can measure inverse bigram frequency in the

preprocessing stage. I believe this will improve the N-Gram score of the question

hence improve the accuracy of the system.

5.2.3 Caching the Results

Caching the results would help the system in answering the repetitive queries. In this

case, system needs not to search the FAQ in the full corpus every time instead it can

first check the question similarity the cache if not found then go to the corpus. In

general, it is the common to have a particular set of queries at particular time. For

example, during admission time in a university, most of the queries would be related

to the admission only.

5.2.4 Extend our work from monolingual (English) to multilingual (English,

Hindi, Malayalam, Tamil, etc)

`

48

REFERNCES

[1] GovindKothar, SumitNegi, Tanveer A. Faruquie, Venkatesan T. Chakaravarthy,

L. Venkata, “SMS based interface for FAQ retrieval,” Proceedings of the 47th

Annual Meeting of the ACL and the 4
th

 IJCNLP of the AFNLP, pages 852–860,

Suntec, Singapore, 2-7 August 2009.

[2] Anwar Shaikh, Rajiv Ratn Shah, Mukul Jain, Mukul Rawat, Manoj Kumar,

“Improving accuracy of SMS based FAQ retrieval,” Proc. Forum for

Information Retrieval Evaluation (FIRE 2011), to be published in Springer

LNCS unpublished.

[3] TRAI Annual report -

http://www.trai.gov.in/annualreport/English_Front_Page.pdf.

[4] SMS service- http://results.icbse.com/cbse-result-class-10/

[5] ChaCha - http://www.chacha.com/

[6] FIRE - http://www.isical.ac.in/~clia/

[7] Global mobile statistics 2012 - http://mobithinking.com/mobile-marketing-

tools/latest-mobile-stats

[8] Kim H., Seo J., High-Performance FAQ retrieval using an automatic clustering

method of query logs. Inf. Process. Manage. 42, 2006, 650-661

[9] Kim H., Lee H., Seo J., A reliable FAQ retrieval system using a query log

classification technique based on latent semantic analysis, Inf. Process. Manage.

43, 2007, 420-430.

[10] Kim H., Seo J., Cluster-based FAQ retrieval using latent term weights. IEEE

Intelligent Systems 23, 2008, 58-65.

[11] Riezler S., Vasserman A., Tsochabtaridis I., Mittal V., Liu Y., Statistical

machine translation for query expansion in answer retrieval. In proceedings pf

45
th
 Annual Meeting of the Association of Computational Linguistic, 2007, 464-

471.

[12] Wu C. H., Yeh J. F., Chen M. J., Domain Specific FAQ retrieval using

independent aspects, ACM Transactions on Asian Language Information

Proceeding (TALIP) 4, 2005, 1-17.

[13] Sreangsu Acharya, Sumit Negi, L. V. Subramaniam, Shourya Roy. 2008.

Unsupervised learning of multilingual short message service (SMS) dialect from

http://www.isical.ac.in/~clia/
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats

`

49

noisy examples, In Proceedings of the second workshop on Analytics for noisy

unstructured text data.

[14] E. Prochasson, Christian Viard-Gaudin, Emmanuel Morin. 2007. Language

Models for Handwritten Short Message Services, In Proceedings of the 9th

International Conference on Document Analysis and Recognition.

[15] Jeunghyun Byun, Seung-Wook Lee, Young-In Song, Hae-Chang Rim. 2008.

Two Phase Model for SMS Text Messages Refinement, Association for the

Advancement of Artificial Intelligence. AAAI Workshop on Enhanced

Messaging.

[16] Aiti Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A phrase-based statistical

model for SMS text normalization, In Proceedings of COLING/ACL, pages

33−40.

[17] W. Song, M. Feng, N. Gu, and L. Wenyin. 2007. Question similarity calculation

for FAQ answering, In Proceeding of SKG 07, pages 298−301.

[18] E. Sneiders. 1999. Automated FAQ Answering: Continued Experience with

Shallow Language Understanding,Question Answering Systems. Papers from

the 1999 AAAI Fall Symposium. Technical Report FS-99−02, November 5−7,

North Falmouth, Massachusetts, USA, AAAI Press, pp.97−107

[19] Monojit Choudhury, Rahul Saraf, Sudeshna Sarkar, Vijit Jain, and Anupam

Basu. 2007. Investigation and Modeling of the Structure of Texting Language,

In Proceedings of IJCAI-2007 Workshop on Analytics for Noisy Unstructured

Text Data, Hyderabad.

[20] Sunil Kumar Kopparapu, Akhilesh Srivastava and Arun Pande. 2007. SMS

based Natural Language Interface to Yellow Pages Directory, In Proceedings of

the 4th International conference on mobile technology, applications, and

systems and the 1st International symposium on Computer human interaction in

mobile technology, Singapore.

`

50

APPENDIX A: CODING

FAQ_INDEXER.java

package faqIndexing;
import java.io.File;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.WhitespaceAnalyzer;
import org.apache.lucene.document.*;
import org.apache.lucene.document.Field.Index;
import org.apache.lucene.document.Field.Store;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.index.IndexWriter.MaxFieldLength;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.store.LockObtainFailedException;
import org.apache.lucene.util.Version;
public class FAQ_INDEXER
{
 IndexWriter indexWriter;
 public FAQ_INDEXER(String index_dir) throws CorruptIndexException,
LockObtainFailedException, IOException
 {
 File indexDir = new File(index_dir);
 Directory fsDir = FSDirectory.open(indexDir);
 //Analyzer an = new StandardAnalyzer(Version.LUCENE_30);
 Analyzer an = new WhitespaceAnalyzer();
 indexWriter= new
IndexWriter(fsDir,an,MaxFieldLength.UNLIMITED);
 }
 public void add_question(String faq_id,String domain,String
question,String answer) throws IOException
 {
 question=question.replace('"','
').replace("""," ").toLowerCase().trim();
 answer=answer.replace('"',' ').replace(""","
").toLowerCase().trim();
 question =question.replace('?',' ').replace('*','
').replace('<',' ').replace('>',' ').replace('%',' ').replace('&', '
').replace(';',' ').replace('-',' ').replace("'"," ").replace('[','
').replace('{',' ').replace(']',' ').replace('}',' ').replace('!','

`

51

').replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', '
').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', '
').trim().toLowerCase();
 answer=answer.replace('?',' ').replace('*',' ').replace('<','
').replace('>',' ').replace('%',' ').replace('&', ' ').replace(';','
').replace('-',' ').replace("'"," ").replace('[',' ').replace('{','
').replace(']',' ').replace('}',' ').replace('!',' ').replace('(', '
').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '
').replace('#', ' ').replace(':', ' ').replace('"', '
').trim().toLowerCase();
 //create document for question
 Document doc=new Document();
 doc.add(new Field("faq_id",faq_id,Store.YES,Index.ANALYZED));
 doc.add(new Field("domain",domain,Store.YES,Index.ANALYZED));
 doc.add(new
Field("question",question,Store.YES,Index.ANALYZED));
 doc.add(new Field("answer",answer,Store.YES,Index.ANALYZED));

 //add document to index
 indexWriter.addDocument(doc);
 }
 public void add_domain_term(String term,String synset) throws
CorruptIndexException, IOException
 {
 term =term.replace('?',' ').replace('*','
').replace('<',' ').replace('>',' ').replace('%',' ').replace('&', '
').replace(';',' ').replace('-',' ').replace("'"," ").replace('[','
').replace('{',' ').replace(']',' ').replace('}',' ').replace('!','
').replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', '
').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', '
').trim().toLowerCase();
 //do not replace comma in synset
 synset=synset.replace('?',' ').replace('*','
').replace('<',' ').replace('>',' ').replace('%',' ').replace('&', '
').replace(';',' ').replace('-',' ').replace("'"," ").replace('[','
').replace('{',' ').replace(']',' ').replace('/', ' ').replace('#', '
').replace(':', ' ').replace('"', ' ').trim().toLowerCase();
 term=replaceSpecialChar(term);
 synset=replaceSpecialChar(synset);
 if(term.equalsIgnoreCase("sum"))
 {final int a=3;}
 if(term.length()>0)
 {
 //create document for question
 Document doc=new Document();
 doc.add(new
Field("term",term,Store.YES,Index.ANALYZED));
 doc.add(new
Field("synset",synset+"",Store.YES,Index.ANALYZED));
 //add document to index
 indexWriter.addDocument(doc);
 }
 }
 public void destructor() throws CorruptIndexException, IOException
 {
 //print the number of documents in index

`

52

 int numDocs = indexWriter.numDocs();
 System.out.println("Number of Documents INDEXED = "+numDocs);
 //optimize it
 indexWriter.commit();
 indexWriter.optimize();
 indexWriter.close();
 }
 String replaceSpecialChar(String str)
 {
 return str.replace('/',' ').replace('\\','
').replace('~',' ').replace('?',' ').replace('$',' ').replace('<','
').replace('>',' ').replace('%',' ').replace('&', ' ').replace(';','
').replace('-',' ').replace("'","").replace('[',' ').replace('{','
').replace(']',' ').replace('}',' ').replace('!',' ').replace('(', '
').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '
').replace('#', ' ').replace(':', ' ').replace('"', ' ').replace('+', '
').trim().toLowerCase();
 }
 public void removeDuplicates() throws ParseException, IOException
 {
 File tempIndex = new
File(System.getProperty("DomainIndexDirCopy"));
 Directory fsDir = FSDirectory.open(tempIndex);
 IndexReader tmpReader =
IndexReader.open(fsDir);
 IndexSearcher tmpSearcher = new
IndexSearcher(tmpReader);
 Analyzer analyzer = new WhitespaceAnalyzer();
 QueryParser parser = new
QueryParser(Version.LUCENE_30,"term",analyzer);
 for(int i=0;i<tmpSearcher.maxDoc();i++)
 {
 String domainTerm,synSet;
 domainTerm=tmpSearcher.doc(i).get("term");
 synSet=tmpSearcher.doc(i).get("synset");
 Query q;
 if(domainTerm.equalsIgnoreCase("sum"))
 { int a=3;
 a++;}
 if(synSet.length()==0)
 {
 q =
parser.parse("term:"+domainTerm);
 }
 else
 {
 q =
parser.parse("term:"+domainTerm+" AND synset:"+synSet);
 indexWriter.deleteDocuments(q);
 add_domain_term(domainTerm,synSet);

 }
 destructor();
 }
}

`

53

FAQ_Search.java

package faqIndexing;
import java.io.File;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.WhitespaceAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.queryParser.QueryParser;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.store.LockObtainFailedException;
import org.apache.lucene.util.Version;
import similarity.IDF;
import similarity.similarity;
import smsProcessing.TextPreprocessing;
public class FAQ_Search {
 private static final double WEIGHT_THRESHOLD = 0.6;
 IndexSearcher searcher;
 QueryParser parser;
 int maxHits=20000;
 double numDocs;
 boolean debug=false;
 private static final double SYNONYM_WEIGHT_THRESHOLD=0.75;
 //static IDF idf;
 public FAQ_Search(String directory_path) throws
CorruptIndexException, LockObtainFailedException, IOException
 {
 File indexDir = new File(directory_path);
 Directory fsDir = FSDirectory.open(indexDir);
 //Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);
 Analyzer analyzer = new WhitespaceAnalyzer();
 IndexReader reader = IndexReader.open(fsDir);
 searcher = new IndexSearcher(reader);
 String defaultField = "question";
 parser = new
QueryParser(Version.LUCENE_30,defaultField,analyzer);
 numDocs = reader.numDocs();
 }
 public DictionarySearchResult searchDomainDictionary(String token)
throws ParseException, IOException
 {
 IDF idfObject = new IDF(System.getProperty("FAQIndexPath"));
 if(debug)
 System.out.println("Searching DOmain dictionary for :
"+token);

`

54

 token=token.replace('?',' ').replace('*',' ').replace('<','
').replace('>',' ').replace('%',' ').replace('&', ' ').replace(';','
').replace('-',' ').replace("'"," ").replace('[',' ').replace('{','
').replace(']',' ').replace('}',' ').replace('!',' ').replace('(', '
').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '
').replace('#', ' ').replace(':', ' ').replace('"', '
').trim().toLowerCase();
 //search DOmain dictionary
 Query q;
 if(token.trim().getBytes("UTF-8")[0]!=-17)
 q =
parser.parse("term:"+token.trim().charAt(0)+"*");//search for similar first
character
 else
 q =
parser.parse("term:"+token.trim().charAt(1)+"*");//search for similar
first character
 TopDocs hits = searcher.search(q,maxHits);
 ScoreDoc[] scoreDocs = hits.scoreDocs;
 if(debug)
 System.out.println("number of mtching
terms:"+scoreDocs.length);
 DictionarySearchResult result= new
DictionarySearchResult(token,scoreDocs.length);
 //loop over all the searched document
 for (int n = 0; n < scoreDocs.length; ++n)
 {
 ScoreDoc sd = scoreDocs[n];
 int docId = sd.doc;
 Document d = searcher.doc(docId);
 String domainTerm = d.get("term");
 String syn=d.get("synset");
 if(similarity.lcs(token,domainTerm)>1)
 {
 //calculate weight
 double
weight=idfObject.calcWeight(token,domainTerm);
 if(weight>WEIGHT_THRESHOLD)
 {
 result.addNewTerm(domainTerm, weight);
 if(debug)
 System.out.println(n+"]
"+domainTerm+"="+syn);
 }
 }
 }
 return result;
 }
 public SynonymSearchResult searchSynonymDictionary(String token,
HashTable hashTable) throws ParseException, IOException
 {
 if(debug)
 System.out.println("Searching Synonym dictionary for :
"+token);
 token= token.replace('*',' ').replace('?',' ').replace('$','
').replace('<',' ').replace('>',' ').replace('%',' ').replace('&', '

`

55

').replace(';',' ').replace('-',' ').replace("'"," ").replace('[','
').replace('{',' ').replace(']',' ').replace('}',' ').replace('!','
').replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', '
').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', '
').trim().toLowerCase();
 //search DOmain dictionary
 Query q = parser.parse("synset:"+token+"~");
 TopDocs hits = searcher.search(q,maxHits);
 ScoreDoc[] scoreDocs = hits.scoreDocs;
 if(debug)
 System.out.println("number of mtching
terms:"+scoreDocs.length);
 SynonymSearchResult result= new
SynonymSearchResult(token,scoreDocs.length*3);//CHECK IT
 //loop over all the searched document
 for (int n = 0; n < scoreDocs.length; ++n)
 {
 ScoreDoc sd = scoreDocs[n];
 int docId = sd.doc;
 Document d = searcher.doc(docId);
 String domainTerm = d.get("term");
 String synset = d.get("synset");
 //check if the DOmain term is already processed or not
 if(result.isProcessed(domainTerm)==true)
 continue;
 //get synset tokens separated by Comma
 StringTokenizer que_tok = new StringTokenizer(synset,"
");
 int total=que_tok.countTokens();
 double alpha,weight;
 for(int i=0;i<total;i++)
 {
 String synonym=que_tok.nextToken();
 if(synonym.equalsIgnoreCase(domainTerm))
 continue;
 //separate out the tokens
 if(similarity.lcs(token,synonym)>2)
 {
 alpha=similarity.similarityMeasure(synonym,token);
 weight=alpha*hashTable.getValueFromHT(domainTerm);
 if(weight>SYNONYM_WEIGHT_THRESHOLD)
 {
 if(debug)
 System.out.println(domainTerm+"="+synonym);
 result.addNewTerm(domainTerm,
weight,synonym);
 }
 }
 }
 }
 return result;
 }
 public QuestionSearchResult searchQuestionAnswer(String query)
throws IOException, ParseException
 {

`

56

 query= query.replace('*',' ').replace('?',' ').replace('*','
').replace(' ',' ').replace('$',' ').replace('<',' ').replace('>','
').replace('%',' ').replace('&', ' ').replace(';',' ').replace('-','
').replace("'"," ").replace('[',' ').replace('{',' ').replace(']','
').replace('}',' ').replace('!',' ').replace('(', ' ').replace('.', '
').replace(')', ' ').replace(',', ' ').replace('/', ' ').replace('#', '
').replace(':', ' ').replace('"', ' ').trim().toLowerCase();
 Query q = parser.parse("question:"+query+" OR answer:"+query);
 //Query q = parser.parse("question:"+query);
 TopDocs hits = searcher.search(q,maxHits);
 ScoreDoc[] scoreDocs = hits.scoreDocs;
 //calculate IDF
 int docFreq = scoreDocs.length;
 double idf = 1+ Math.log10(numDocs/(docFreq+1));
 if(debug)
 {
 System.out.println("Query = "+query+" Found ="+docFreq+" IDF
="+idf);
 }
 //variable to return the results
 QuestionSearchResult result=new
QuestionSearchResult(scoreDocs.length);
 //loop over all the searched document
 for (int n = 0; n < scoreDocs.length; ++n)
 {
 ScoreDoc sd = scoreDocs[n];
 float score = sd.score;
 int docId = sd.doc;
 Document d = searcher.doc(docId);
 String faq_id = d.get("faq_id");
 String faq_text = d.get("question");
 if(System.getProperty("removeStopWords").equals("true"))
 {
 if(System.getProperty("smsLanguage").equals("Hindi"))
 faq_text=TextPreprocessing.removeHinidStopWords(faq_text);
 else
if(System.getProperty("smsLanguage").equals("English"))
 faq_text=TextPreprocessing.removeEnglishStopWords(faq_text);
 }
 result.addResult(faq_id,faq_text);
 if(debug)
 {
 String question= d.get("question");
 //String answer = d.get("answer");
 String domain = d.get("domain");
 System.out.println("-----------------
FAQ_ID="+faq_id+" Domain="+domain+" Score="+score+"------------------------
--");
 System.out.println("Question="+question);
 //System.out.println("ANswer="+answer);

 }
 }
 return result;
 }

`

57

 public String getQuestionByFaqID(String faqID) throws IOException,
ParseException
 {
 /** NOTE: the ANALYZER is CHANGED **/
 IndexSearcher searcher;
 QueryParser parser;
 File indexDir = new
File(System.getProperty("FAQIndexPath"));
 Directory fsDir = FSDirectory.open(indexDir);
 //Analyzer analyzer = new
StandardAnalyzer(Version.LUCENE_30);
 Analyzer analyzer = new WhitespaceAnalyzer();
 IndexReader reader = IndexReader.open(fsDir);
 searcher = new IndexSearcher(reader);
 String defaultField = "question";
 parser = new
QueryParser(Version.LUCENE_30,defaultField,analyzer)
 /** END NOTE **/
 Query q = parser.parse("faq_id:"+faqID.toUpperCase());
 try{
 TopDocs hits = searcher.search(q,maxHits);
 ScoreDoc[] scoreDocs = hits.scoreDocs;
 int docFreq = scoreDocs.length;
 if(debug)
 {
 System.out.println("Query = "+faqID);
 System.out.println("Found ="+docFreq);
 }
 ScoreDoc sd = scoreDocs[0]; //get first doc as there is
only one matching question;
 int docId = sd.doc;
 Document d = searcher.doc(docId);
 String question = d.get("question");
 return question;
 }
 catch(Exception e)
 {
 return "NOT FOUND";
 }
 }
 public static void main(String[] args)
 {
 System.setProperty("smsLanguage","English");
 System.setProperty("considerSynonym","true");
 System.setProperty("removeStopWords","true");
 System.out.println(""test"".replace(""", ""));
 try {
 FAQ_Search a = new
FAQ_Search(System.getProperty("DomainIndexPath"));
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
}

`

58

smsparser.java

package parsing;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;
import org.xml.sax.Attributes;
import org.xml.sax.InputSource;
import org.xml.sax.SAXException;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.XMLReader;
import faqIndexing.FAQ_Search;
import smsProcessing.faqRetrieval;
import java.util.StringTokenizer;
public class smsparser extends DefaultHandler{
 static FAQ_Search srch;
 static String queryid;
 static String text;
 static String matchenglish;
 static int score;
 static int sum=0;
 static int totalSMScount=0;
 boolean queryFlag = false;
 boolean textFlag = false;
 boolean matchenglishFlag = false;
 boolean test = false;
 boolean debug =true;
 /* The main class smsparser. This class parses an XML file consisting
of all the sms.
 * The sms queryid , the text and the resulting answers are extracted.
Then the queryid and text
 * are sent to the naive algorithm. The resulting answers are matched
with the expected answers
 * and the score is calculated.
 */
 public smsparser(){
 properties.load("English");
 if(System.getProperty("OUTPUT_NOTHING").equalsIgnoreCase("true"))
 debug=false;
 System.out.println(" Object Created ");
 try {
 srch=new FAQ_Search(System.getProperty("FAQIndexDir"));
 } catch (Exception e1) {
 }
 }
/*
 * This event marks the start of the XML document
 */
 public void startDocument() throws SAXException {
 System.out.println("SMS XML BEGINS HERE ");
 }
 /*
 * This event marks the start of an element in the XML document,
 * we match out required elements here
 */

`

59

 public void startElement(String uri, String localName,
 String qName, Attributes attributes)
 throws SAXException {
 if (qName.equalsIgnoreCase("SMS_QUERY_ID")) {
 queryFlag = true;
 }
 if (qName.equalsIgnoreCase("SMS_TEXT")) {
 textFlag = true;
 }
 if
(qName.equalsIgnoreCase(System.getProperty("smsLanguage"))) {
 matchenglishFlag = true;
 }
 }
 /*
 * This marks the end of element in the XML document.
 */
 public void endElement(String uri, String localName,
 String qName)
 throws SAXException {
 // Here we check wether the SMS element has ended or not.
 if(qName == "SMS"){
 //We are here checking for the start of
 if(System.getProperty("smsLanguage").equals("Hindi"))
 test=queryid.startsWith("HIN");
 else
if(System.getProperty("smsLanguage").equals("English"))
 test=queryid.startsWith("ENG");
 else
 test=queryid.startsWith("MAL");
 if(test == true){
 String result = "";
 //Here we are calling the naive algorithm
 try {
 result =
faqRetrieval.getMatchingQuestion(queryid,text);
 } catch (Exception e){ System.out.println(e); }
 //print the question id and the question
 StringTokenizer st = new
StringTokenizer(result,",");
 int totalResults = st.countTokens();
 if(debug)
 {
 System.out.println("Expected
Result:"+matchenglish);
 System.out.println("Generated Result:"+result);
 }
 //The compute score algorithm is called here
 score=computescore(result,matchenglish);
 totalSMScount++;
 if(debug)
 {
 System.out.println(queryid+":"+text+(score==0?"
:[False]":" :[True]"));
 System.out.println("Correct="+sum+"\t
Total="+totalSMScount);

`

60

 //System.out.println("**
******************");
 }
 }
 }
 }
 //For each required element, the string is stored here
 public void characters(char ch[], int start, int length)
 throws SAXException {
 if (queryFlag) {
 queryid=new String(ch, start, length);
 queryFlag = false;
 }
 if (textFlag) {
 text=new String(ch, start, length);
 textFlag = false;
 }
 if (matchenglishFlag) {
 matchenglish=new String(ch, start, length);
 matchenglishFlag = false;
 }
 }

 /* generate output as per given format */
 /* The compute score algorithm. Here we match the returned
result with the
 * stored answers. For exact matches a 1 is returned otherwise
a 0 is returned.
 */
 int computescore(String result, String matchenglish){
 int expLen,actLen;
 String x,y;
 StringTokenizer generated = new StringTokenizer(result,",");
 StringTokenizer expected = new
StringTokenizer(matchenglish,",");
 actLen = generated.countTokens();
 expLen = expected.countTokens();
 // expected result is NONE but actual is not
 if(expLen==0 && actLen!=0)
 return 0;
 //number of results are not equal
 boolean yMatchesX = false;
 //expected result
 y=expected.nextToken().toLowerCase();
 for(int i=0;i<actLen;i++)
 {
 //check if the current expected result is present in
the actual result
 x=generated.nextToken().toLowerCase();
 //match found
 if(x.equals(y))
 { yMatchesX=true; sum++; break ;}

 }

`

61

 if(yMatchesX==false)
 return 0;
 return(1);
 }

/*
 * Marks the end of the document. Here we print the final sum of scores.
 */
 public void endDocument(){
 System.out.println("Total SMS queires "+ totalSMScount);
 System.out.println(" The Final score is "+ sum);
 }
 public static void main(String args[]){
 XMLReader xmlReader = null;
 try {
 SAXParserFactory spfactory =
SAXParserFactory.newInstance();
 spfactory.setValidating(false);
 SAXParser saxParser = spfactory.newSAXParser();
 xmlReader = saxParser.getXMLReader();
 xmlReader.setContentHandler(new smsparser());
 xmlReader.setErrorHandler(new smsparser());
 InputSource source;
 source = new
InputSource(System.getProperty("SMSInputPath"));
 xmlReader.parse(source);
 } catch (Exception e) {
 System.err.println(e);
 System.exit(1);
 }

 }

}

`

62

CandidateSet.java

package smsProcessing;
import java.io.IOException;
import java.text.DecimalFormat;
import java.util.StringTokenizer;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.store.LockObtainFailedException;
import similarity.IDF;
import similarity.similarity;
import faqIndexing.FAQ_Search;
import faqIndexing.HashTable;
import faqIndexing.QuestionSearchResult;
import faqIndexing.SynonymSearchResult;
/*
 * Consider proximity for scoring
 * sms tokens -> T1
 * Matching tokens -> M
 * Score = score + (T1-M)/(T2-M)*(1/[sum of distance between faq
terms+1])* 100
 *
 */
public class CandidateSet {
 private static final boolean debug = false;
 private static final boolean coding =false;
 //TODO for English it is 0.9
 //TODO for hindi it is 0.8
 //private static final double SCORE_THRESHOLD =0.9;;
 //private static final double SCORE_THRESHOLD =0.8;
 private static double SCORE_THRESHOLD;
 //TODO for english SIMILARITY 0.17
 //TODO for HINDI SIMILARITY 0.09
 private static double SIMILARITY_THRESHOLD;
 //private static final double SIMILARITY_THRESHOLD = 0.09;
 String[] faq_id;
 int[] faq_numberOfTokens;
 String[][] faq_term;
 String[][] faq_term_synonym;
 double[] score;
 String[] smsTokens;
 String smsText;
 int matchedFAQTokenPosition[];
 int smsProximityArray[];
 int totalSmsTokens;
 int totalFaqTokens;
 int matchedToken;
 String smsID;
 int count;
 static int MAXQUESTIONS = 3000;
 FAQ_Search srch;
 //Replaced IDF call with HASHTABLE
 //static IDF idf;
 HashTable htable;

`

63

 //Constructor to initialize strings
 public CandidateSet(String sms_id,String smsText,int
smsProximityArrayArg[],HashTable hashTable) throws CorruptIndexException,
LockObtainFailedException, IOException
 {
 htable=hashTable;
 faq_id=new String[MAXQUESTIONS];
 faq_term=new String[MAXQUESTIONS][30];
 faq_term_synonym=new String[MAXQUESTIONS][30];
 faq_numberOfTokens=new int[MAXQUESTIONS];
 count=0;
 smsID=sms_id;
 srch=new FAQ_Search(System.getProperty("FAQIndexDir"));
 //Replaced IDF call with HASHTABLE
 //idf=new IDF(System.getProperty("FAQIndexDir"));
 //separate out question tokens
 StringTokenizer que_tok = new StringTokenizer(smsText," ");
 totalSmsTokens=que_tok.countTokens();
 smsTokens=new String[totalSmsTokens];
 for(int i=0;i<totalSmsTokens;i++)
 {
 smsTokens[i]=que_tok.nextToken();
 }
 initThreshold();
 this.smsText = smsText;
 smsProximityArray = smsProximityArrayArg ;
 if(debug)
 for(int i=0;i<totalSmsTokens;i++)
 {
 System.out.println(i+"="+smsProximityArray[i]);
 }
 }
 void initThreshold()
 {

 // SCORE_THRESHOLD = 0.9;
 //formula 10 & 16
 //--- this is latest
 //SCORE_THRESHOLD = 0.5;

 //formula 26
 //SCORE_THRESHOLD = 0.1;
 SCORE_THRESHOLD =
Float.parseFloat(System.getProperty("SCORE_THRESHOLD")) ;

 //-------------------------------------- SIMILARITY_THRESHOLD

 //formula 10 to 19
 //SIMILARITY_THRESHOLD = 0.2;

 //formula 22
 //SIMILARITY_THRESHOLD = 0.17;
 SIMILARITY_THRESHOLD =
Float.parseFloat(System.getProperty("SIMILARITY_THRESHOLD")) ;
 }
 void addCandidate(String que_id)

`

64

 {
 if(count>=MAXQUESTIONS)
 {
 //System.err.println("Candidate set exceeds maximum
number of questiosn");
 return;
 }
 //check if que is repeated
 for(int i=0;i<count;i++)
 {
 if(faq_id[i].equals(que_id))
 {
 return;
 }

 }
 faq_id[count]=que_id;
 faq_numberOfTokens[count]=0;
 count++;
 }
 void addCandidate(String que_id, String domain_term, String synonym)
 {
 if(count>=MAXQUESTIONS)
 {
 //System.err.println("Candidate set exceeds maximum
number of questiosn");
 return;
 }
 //check if que is repeated
 for(int i=0;i<count;i++)
 {
 if(faq_id[i].equalsIgnoreCase(que_id))
 {
 for(int j=0;j<faq_numberOfTokens[i];j++)
 {

 if(faq_term[i][j].equalsIgnoreCase(domain_term)&&faq_term_synonym[i]
[j].equalsIgnoreCase(synonym))
 {
 return;
 }
 }
 //add new term and synonym
 faq_term[i][faq_numberOfTokens[i]]=domain_term;

 faq_term_synonym[i][faq_numberOfTokens[i]]=synonym;

 faq_numberOfTokens[i]++;
 return;
 }
 }
 //add new FAQ ID, term and Synonym
 faq_id[count]=que_id;
 faq_term[count][faq_numberOfTokens[count]]=domain_term;
 faq_term_synonym[count][faq_numberOfTokens[count]]=synonym;

`

65

 faq_numberOfTokens[count]++;
 count++;
 }
 public void generateCandidateSet(SynonymSearchResult LIST) throws
CorruptIndexException, LockObtainFailedException, IOException,
ParseException
 {
 //for dictionary lookup
 QuestionSearchResult srchResult;
 //for each term in question - find out the corresponding
question
 for(int i=0;i<LIST.getCount();i++)
 {
 if(LIST.getSynonymAt(i) == null)
 {
 srchResult=srch.searchQuestionAnswer(LIST.getTermAt(i));
 // add all search results to the Candidate set
 for(int j=0;j<srchResult.getCount();j++)
 {
 addCandidate(srchResult.getFaqIdAt(j));
 }
 }
 else
 {
srchResult=srch.searchQuestionAnswer(LIST.getTermAt(i));
 // add all search results to the Candidate set
 for(int j=0;j<srchResult.getCount();j++)
 {
 //String faq;
 //faq=srchResult.getFaqTextAt(j).replace(LIST.getTermAt(i),
LIST.getSynonymAt(i));
 addCandidate(srchResult.getFaqIdAt(j),LIST.getTermAt(i),LIST.getSyno
nymAt(i));
 }
 }
 }
 }
 String replaceSpecialChar(String str)
 {
 return str.replace('?',' ').replace('$',' ').replace('<','
').replace('>',' ').replace('%',' ').replace('&', ' ').replace(';','
').replace('-',' ').replace("'","").replace('[',' ').replace('{','
').replace(']',' ').replace('}',' ').replace('!',' ').replace('(', '
').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '
').replace('#', ' ').replace(':', ' ').replace('"', '
').trim().toLowerCase();
 }
 double calculateScore(int faqID) throws IOException, ParseException
 {
 String faq=srch.getQuestionByFaqID(this.faq_id[faqID]);
 faq=replaceSpecialChar(faq);
 if(System.getProperty("removeStopWords").equals("true"))
 {
 if(System.getProperty("smsLanguage").equals("Hindi"))
 faq=TextPreprocessing.removeHinidStopWords(faq);
 else if(System.getProperty("smsLanguage").equals("English"))

`

66

 faq=TextPreprocessing.removeEnglishStopWords(faq);
 }
 StringTokenizer faq_tok = new StringTokenizer(faq," ");
 totalFaqTokens=faq_tok.countTokens();
 String[] faq_tokens=new String[totalFaqTokens];
 if(coding)
 {
 System.out.println("SMS:\t"+smsText);
 System.out.println("FAQ:\t"+faq);
 }
 //copy the FAQ tokens
 for(int i=0;i<totalFaqTokens;i++)
 {
 faq_tokens[i]=replaceSpecialChar(faq_tok.nextToken());
 }
 double score=0;
 String smsToken;
 String faqToken;
 matchedToken=0;
 //int matchedFAQTokenPosition[]=new int[totalSmsTokens];
 matchedFAQTokenPosition=new int[totalSmsTokens];
 //1.For each sms token
 for(int i=0;i<totalSmsTokens;i++)
 {
 smsToken = smsTokens[i];
 matchedFAQTokenPosition[i]=-1;
 smsToken = replaceSpecialChar(smsToken);
 double maxWeight=0;
 double weight = 0;
 boolean matchFound=false;
 //2. compare it with each Term present in the question.
 // get the maximum weight of the term and smsToken
 int j;
 double alpha;
 double IDF = 0;
 for(j=0;j<totalFaqTokens;j++)
 {
 faqToken=faq_tokens[j];

 faqToken = replaceSpecialChar(faqToken);

 boolean synonymExists=false;
 String synonym = null;
 //check if synonym exists
 for(int k=0;k<faq_numberOfTokens[faqID];k++)
 {
 if(faqToken.equalsIgnoreCase(replaceSpecialChar(faq_term[faqID][k]))
)
 {
 synonymExists=true;
 synonym =
faq_term_synonym[faqID][k];
 }
 }
 if(synonymExists)

`

67

 {
 alpha=similarity.similarityMeasure(synonym,smsToken);
 }
 else
 {
 alpha=similarity.similarityMeasure(faqToken,smsToken);
 }
 if(alpha>SIMILARITY_THRESHOLD)
 {
 //TODO - change this formula
 //Replaced IDF call with HASHTABLE
 //double IDF1=idf.getIDF(faqToken);
 IDF= htable.getValueFromHT(faqToken);
 //if(IDF1!=IDF)
 // System.err.println("MISMATCH-
"+IDF+","+IDF1);
 weight=alpha*IDF;
 //weight=alpha;
 if(weight>maxWeight)
 {
 maxWeight=weight;
 matchedFAQTokenPosition[i]=j;//
store the matched FAQ's position
 }
 matchFound=true;
 }
 score=score+maxWeight;
 if(matchFound)
 {
 matchedToken++;
 }
 }
 if(matchedToken>0)
 matchedToken--;
 //print the Token positions
 if(debug)
 {
 System.out.println("SMS:\t"+smsText);
 System.out.println("FAQ:\t"+faq);
 System.out.println("matched:\t"+matchedToken);
 for(int i=0;i<totalSmsTokens;i++)
 {
 System.out.println(matchedFAQTokenPosition[i]);
 }
 }
 // Forumula 1 : consider length score
 // double NormalizedScore =
2.0*(score*matchedToken/(totalSmsTokens*totalSmsTokens)) -
0.2*(totalFaqTokens-matchedToken)/(totalSmsTokens-matchedToken);
 // Forumula 2 : No length score
 double NormalizedScore =
2.0*(score*matchedToken/(totalSmsTokens*totalSmsTokens));
 //System.out.println("Score:"+NormalizedScore);
 return NormalizedScore;
 }
 void sortByScore()

`

68

 {
 double tempScore;
 String tempFaqID;
 for(int i=0;i<count;i++)
 for(int j=i+1;j<count;j++)
 {
 if(score[i]<score[j])
 {
 tempScore=score[i];
 score[i]=score[j];
 score[j]=tempScore;

 tempFaqID=faq_id[i];
 faq_id[i]=faq_id[j];
 faq_id[j]=tempFaqID;

 }
 }
 }
 public void printCandidateSet()
 {
 System.out.println("Candidate set of questions ="+count);

 for(int i=0;i<count;i++)
 {
 if(i%5==0)
 System.out.println();
 System.out.print("\t"+faq_id[i]);
 }
 }
 String NaiveAlgorithm() throws IOException, ParseException
 {
 //initialize score variable
 score=new double[count];
 double proximityScore = 0;//[]=new double[count];
 int checkProximity=0;
 if(System.getProperty("CONSIDER_PROXIMITY").equalsIgnoreCase("true")
)
 checkProximity=1;
 else
 checkProximity=0;
 //calculate score of all candidate questions
 double similarityScore=0;
 for(int i=0;i<count;i++)
 {
 similarityScore=this.calculateScore(i)/1.5;
 if(checkProximity==1 ||
System.getProperty("BIAGRAM_TRIGRAM").equalsIgnoreCase("true"))
 {
 //if there is only 1 token then proximty is zero
 if(matchedToken>2)
 {
 proximityScore=this.calculateProximity(checkProximity);
 }
 else
 proximityScore=0;

`

69

 if(debug)
 System.out.println("SCORE:"+similarityScore);
 if(debug)
 System.out.println("PROX:"+proximityScore);

 //give 50% weight age to SCORE and 50% to
PROXIMITY
 }
 score[i]=similarityScore*0.5 + proximityScore*0.5;
 if(debug)
 System.out.println("Final SCORE:"+score[i]);
 }
 //sort the questions
 this.sortByScore();
 String result="NONE";
 //show the matching questions
 //this.showMatchingQuestions();
 result=generateFIREOutputFormat();
 if(debug)
 System.out.println("Result = "+result);
 return result;
 }
 private double calculateProximity(int checkProximity) {
 // TODO Auto-generated method stub
 if(debug)
 {
 System.out.println("Faq tokens:"+totalFaqTokens);
 System.out.println("Matched:"+ matchedToken);
 System.out.println("SMS distance:");
 for(int i=0;i<totalSmsTokens;i++)
 {
 System.out.println(this.smsProximityArray[i]);
 }
 System.out.println("Matching FAQ token position:");
 for(int i=0;i<totalSmsTokens;i++)
 {
 System.out.println(this.matchedFAQTokenPosition[i]);
 }
 }
 //find the total distance
 int faqProximity[]=new int[matchedToken+1];
 int smsProximity[]=new int[matchedToken+1];
 int f1=0,f2=0;
 int index=0;
 //store the distance into another array
 for(int i=0;i<totalSmsTokens;i++)
 {
 if(matchedFAQTokenPosition[i]!=-1)
 {
 faqProximity[index]=matchedFAQTokenPosition[i];
 smsProximity[index]=smsProximityArray[i];
 index++;
 }
 }
 //find the actual distance
 int distance=0;

`

70

 double proximityScore=0;
 if(checkProximity==1)
 {
 for(int i=0;i<matchedToken-1;i++)
 {
 int currentDistance=Math.abs(
(faqProximity[i+1] - faqProximity[i]) - (smsProximity[i+1] -
smsProximity[i]));
 distance = distance + currentDistance;
 }
 /*
 * Consider proximity for scoring
 * sms tokens -> T1
 * FAQ tokens -> T2
 * Matching tokens -> M
 * Proximity Score = (T1-M)/(T2-M)*(1/[sum of
distance between faq terms+1])* 100
 *
 */
 //FORMULA 10 this.SCORE_THRESHOLD = 5
 proximityScore =1.0* matchedToken / ((distance +1)*
totalFaqTokens) ;
 f1=1;
 };
 double nGramScore=0;
 double totalScore=0;
 //Consider Bigram and Trigram Occurance
 if(System.getProperty("BIAGRAM_TRIGRAM").equals("true"))
 {
 int bigrams=0,trigrams=0;
 bigrams=bigramOccurance(faqProximity,smsProximity);
 trigrams=trigramOccurance(faqProximity,smsProximity);

 //new formula 12-feb-2012
 nGramScore = (matchedToken+ Math.pow(bigrams, 2)+
Math.pow(trigrams, 3)) / (totalSmsTokens + Math.pow(totalSmsTokens-1, 2)
+ Math.pow(totalSmsTokens-2, 3));
 f2=1;
 }
 else
 totalScore=proximityScore+nGramScore;

 if(f1==1&&f2==1)
 totalScore/=2;
 //print array
 if(debug)
 {
 for(int i=0;i<matchedToken;i++)
 {
 System.out.println("faq = "+faqProximity[i]);
 System.out.println("sms = "+smsProximity[i]);
 }

 System.out.println("Distance = "+distance);
 System.out.println("Proximity Score =
"+proximityScore);

`

71

 }
 return totalScore;
 }
 private int bigramOccurance(int faqProximity[],int smsProximity[])
 {
 //check for bigrams
 int totalBiagrams=0;
 // store biagram starting position in array
 for(int i=0;i<matchedToken-1;i++)
 {
 if((faqProximity[i+1]-faqProximity[i])==1 &&
(smsProximity[i+1] - smsProximity[i])==1)
 {
 totalBiagrams++;
 }
 }
 return totalBiagrams;
 }
 private int trigramOccurance(int faqProximity[],int smsProximity[])
 {
 //check for tri grams
 int totalTrigrams=0;

 // store trigrams starting position in array
 for(int i=0;i<matchedToken-2;i++)
 {
 if((faqProximity[i+1]-faqProximity[i])==1 &&
(faqProximity[i+2]-faqProximity[i+1])==1 && (smsProximity[i+1] -
smsProximity[i])==1 && (smsProximity[i+2] - smsProximity[i+1])==1)
 {
 totalTrigrams++;
 }
 }
 return totalTrigrams;
 }
 private String generateFIREOutputFormat() throws IOException,
ParseException
 {
 int top=3;
 if(count<3)
 top=count;
 String output="";
 String result="";
 int higerScore=0;
 DecimalFormat df = new DecimalFormat("#.###############");
 if(top>0)
 for(int i=0;i<top;i++)
 {
 if(score[i]<SCORE_THRESHOLD)
 break;
 output=output+","+df.format(score[i]);
 result=result+","+faq_id[i].trim();
 higerScore++;
 }
 else
 {

`

72

 output=output+",NULL";
 result="NONE";
 }
 if(top>0 && higerScore==0)
 {
 output=output+",NULL";
 result="NONE";
 }
 if(!System.getProperty("OUTPUT_NOTHING").equalsIgnoreCase("true"))
 System.out.println("SCORE: "+output);
 return result;
 }
 private void showMatchingQuestions() throws IOException,
ParseException
 {
 System.out.println();
 System.out.println("----------------------------------Matched
Question---------------------------------------");
 //4-feb
 // int top=5;
 int top=3;
 if(count<top)
 top=count;
 for(int i=0;i<top;i++)
 {
 //System.out.println(i+"."+faq_id[i]+" "+score[i]+"%
"+srch.getQuestionByFaqID(faq_id[i]));
 if(score[i]>0)
 System.out.println(i+"."+faq_id[i]+"
"+Math.round(score[i])+"% "+/*srch.getQuestionByFaqID(faq_id[i]));
 System.out.println(*/TextPreprocessing.removeEnglishStopWords(srch.g
etQuestionByFaqID(faq_id[i])));
 }
 }
 public static void main(String[] args)
 {
 System.out.println(TextPreprocessing.removeEnglishStopWords("the how
what are there is anwar"));
 }
}

`

73

faqRetrieval.java

package smsProcessing;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.queryParser.ParseException;
import org.apache.lucene.store.LockObtainFailedException;
import parsing.properties;
import faqIndexing.FAQ_Search;
import faqIndexing.HashTable;
public class faqRetrieval
{
 static boolean debug=false;
 static HashTable hashTable=new HashTable();
 public static String getMatchingQuestion(String sms_id,String sms)
throws CorruptIndexException, LockObtainFailedException, IOException,
ParseException
 {
 if(debug)
 System.out.println("SMS Query:"+sms);
 sms = sms.replace('?',' ').replace('*',' ').replace('<','
').replace('>',' ').replace('%',' ').replace('&', ' ').replace(';','
').replace('-',' ').replace("'"," ").replace('[',' ').replace('{','
').replace(']',' ').replace('}',' ').replace('!',' ').replace('(', '
').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '
').replace('#', ' ').replace(':', ' ').replace('"', '
').trim().toLowerCase();
 //String original_smstext=sms;
 //for dictionary lookup
 FAQ_Search srch=new
FAQ_Search(System.getProperty("DomainIndexPath"));
 String question = null;
 //remove single characters
 String smsText=listcreation.removeSingleLetters(sms);
 if(debug)
 System.out.println("Single Char removed :"+smsText);
 if(System.getProperty("removeStopWords").equals("true"))
 {
 //replace the stop words
 if(System.getProperty("smsLanguage").equals("Hindi"))
 smsText=TextPreprocessing.removeHinidStopWords(smsText);
 else if(System.getProperty("smsLanguage").equals("English"))
 smsText=TextPreprocessing.removeEnglishStopWords(smsText);
 if(debug)
 System.out.println("Stop word removed:"+smsText);
 }
 int smsProximityArray[];
 smsProximityArray = findSmsProximity(sms,smsText);
 //replace number by string
 smsText =
listcreation.replaceNumByWord(smsText.toLowerCase());
 if(debug)
 System.out.println("Number Replacement :"+smsText);

`

74

 //create list of tokens
 question=listcreation.createList(sms_id,sms,smsText,srch,smsProximit
yArray,hashTable);
 //retrieve matching questions
 return question;
 }
 private static int[] findSmsProximity(String smsOriginal, String
smsProcessed) {
 // TODO Auto-generated method stub
 //separate out question tokens
 StringTokenizer original = new StringTokenizer(smsOriginal,"
");
 StringTokenizer processed = new StringTokenizer(smsProcessed,"
");
 String tokenProcessed,tokenOriginal;
 int totalProcessed=processed.countTokens();
 int smsProximity[]=new int[totalProcessed] ;
 int OriginalCount=0;
 for(int
ProcessedCount=0;ProcessedCount<totalProcessed;ProcessedCount++)
 {
 tokenProcessed = processed.nextToken();
 tokenOriginal = original.nextToken();
 while(!tokenOriginal.equalsIgnoreCase(tokenProcessed))
 {
 OriginalCount++;
 tokenOriginal = original.nextToken();
 }
 smsProximity[ProcessedCount]= OriginalCount;
 OriginalCount++;
 if(debug)
 System.out.println(smsProximity[ProcessedCount]);
 }
 //calculate distance between two consecutive terms
 if(debug)
 {
 System.out.println(smsOriginal);
 System.out.println(smsProcessed);
 }
 return smsProximity;
 }
 public static void main(String[] args)
 {
 try {
 properties.load("English");
 getMatchingQuestion("ENG_SMS_QUERY_C157","who ws the
1st indian ldy chief minstr?");
 getMatchingQuestion("ENG_SMS_QUERY_C157","where can i
find information about pesticide establishment registration and
reporting");
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
}

`

75

APPENDIX B: LEVENSHTEIN DISTANCE

The Levenshtein distance between two strings is defined as the minimum number of

edits needed to transform one string into the other, with the allowable edit operations

being insertion, deletion, or substitution of a single character. For example, the

Levenshtein distance between "kitten" and "sitting" is 3, since the following three

edits change one into the other, and there is no way to do it with fewer than three

edits:

1. kitten → sitten (substitution of 's' for 'k')

2. sitten → sittin (substitution of 'i' for 'e')

3. sittin → sitting (insertion of 'g' at the end).

APPLICATIONS

In approximate string matching, the objective is to find matches for short strings, for

instance, strings from a dictionary, in many longer texts, in situations where a small

number of differences is to be expected. Here, one of the strings is typically short,

while the other is arbitrarily long. This has a wide range of applications; for

instance, spell checkers, correction systems for optical character recognition, and

software to assist natural language translation based on translation memory.

The Levenshtein distance can also be computed between two longer strings, but the

cost to compute it, which is roughly proportional to the product of the two string

lengths, makes this impractical. Thus, when used to aid in fuzzy string searching in

`

76

applications such as record linkage, the compared strings are usually short to help

improve speed of comparisons.

Levenshtein distance is not the only popular notion of edit distance. Variations can be

obtained by changing the set of allowable edit operations: for instance,

 Length of the longest common subsequence is the metric obtained by allowing

only addition and deletion, not substitution;

 The Damerau–Levenshtein distance allows addition, deletion, substitution, and

the transposition of two adjacent characters;

 The Hamming distance only allows substitution (and hence, only applies to

strings of the same length).

Edit distance in general is usually defined as a parametrizable metric in which a

repertoire of edit operations is available, and each operation is assigned a cost

(possibly infinite). This is further generalized by DNA sequence alignment algorithms

such as the Smith–Waterman algorithm, which make an operation's cost depend on

where it is applied.

COMPUTING LEVENSHTEIN DISTANCE

Computing the Levenshtein distance is based on the observation that if we reserve

a matrix to hold the Levenshtein distances between all prefixes of the first string and

all prefixes of the second, then we can compute the values in the matrix by flood

filling the matrix, and thus find the distance between the two full strings as the last

value computed. A straightforward implementation, as pseudo code for a

`

77

function LevenshteinDistance that takes two strings, s of length m, and t of length n,

and returns the Levenshtein distance between them:

intLevenshteinDistance(char s[1..m], char t[1..n])

{

// for all i and j, d[i,j] will hold the Levenshtein distance between

// the first i characters of s and the first j characters of t;

// note that d has (m+1)x(n+1) values

declareint d[0..m, 0..n]

for i from 0 to m

d[i, 0] := i // the distance of any first string to an empty second string

for j from 0 to n

d[0, j] := j // the distance of any second string to an empty first string

for j from 1 to n

{

for i from 1 to m

{

if s[i] = t[j] then

d[i, j] := d[i-1, j-1] // no operation required

else
d[i, j] := minimum

 (

d[i-1, j] + 1, // a deletion

d[i, j-1] + 1, // an insertion

d[i-1, j-1] + 1 // a substitution

)

}

}

return d[m,n]

}

