A
Dissertation
On

A Near Accurate, Ultra Fast, Early Peak Current Estimator
Requiring Minimum Design Inputs

Submitted in Partial fulfillment of the requirement
for the award of Degree of

MASTER OF ENGINEERING
(Electronics & Communication Engineering)

Submitted By:

ANKIT GUPTA
College Roll No: 03/E&C/09
University Roll No: 8512

Under the Guidance of:

Dr. ASOK BHATTACHARYYA
(PROFESSOR)
Dept. of Electronics & Communication
Delhi College of Engineering, Delhi.
[image:]

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING
DELHI COLLEGE OF ENGINEERING
DELHI UNIVERSITY
2009-2011
CERTIFICATE

	Certified that the thesis work entitled “A Near Accurate, Ultra Fast, Early Peak Current Estimator Requiring Minimum Design Inputs” is bonafied work carried by ANKIT GUPTA (University Roll No: 8512) in partial fulfillment for the award of degree of Master of Engineering in Electronics and Communication Engineering of the University of Delhi during the year 2009-2011. It is certified that all corrections/suggestions indicated for internal assessment have been in corporated in the report deposited in the Departmental Library. The project report has been approved as it satisfied the academic requirements in respect of thesis work prescribed for the Master of Engineering Degree.

Signature of Guide:						Signature of co-guide:

Prof. Asok Bhattacharyya					Mr. Amit Roy
Former H.O.D.						Senior Member Technical Staff
Electronics & Communication Dept.				STMicroelectronics,
Delhi College of Engineering, Delhi.				Greater Noida.

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extend my heartiest felt gratitude to everybody who helped me throughout the course of this project.
It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned supervisor Prof. Asok Bhattacharyya, former H.O.D. Department of Electronics & Communication, Delhi College of Engineering, Delhi and Mr. Amit Roy, Senior Member Technical Staff, STMicroelectronics, Greater Noida, for their invaluable guidance, encouragement and patient reviews. I am very thankful to Prof. Rajiv Kapoor, H.O.D. Department of Electronics & Communication, Delhi College of Engineering, Delhi, who allows me to do project under the Guidance of Prof. Asok Bhattacharyya in collaboration with STMicroelectronics on “A Near Accurate, Ultra Fast, Early Peak Current Estimator Requiring Minimum Design Inputs”. With their continuous inspiration, valuable guidance in carrying out this work under their effective supervision, encouragement, enlightenment and cooperation, it becomes possible to complete this dissertation and all of them kept on boosting me with time, to put an extra ounce of effort to realize this work.
I would also like to take this opportunity to present my sincere regards to all the faculty members of the Department for their support and encouragement.
 	I would also like to thanks the management of STMicroelectronics, Greater Noida, for allowing me to use the necessary tools which are required to complete this project work.
	I am grateful to my parents for their moral support all the time, they have been always around to cheer me up, in the odd times of this work. I am also thankful to my friends for their unconditional support and motivation during this work.

ANKIT GUPTA
M.E. (Electronics & Communication)
College Roll No: 03/E&C/09
University Roll No: 8512
Department of Electronics & Communication Engineering
Delhi College of Engineering, Delhi-110042

ABSTRACT

In today’s complex IC design one of the major points is to estimate a priori the peak current demand of the core logic. It is always desired to know what will be the current consumption of the device during the architecture definition phase of the device. The knowledge of peak current enables the designer to fix the architecture resources like: 1) On chip decoupling capacitance requirement. 2) Regulator specification. 3) Types of clock tree buffer to be kept. 4) EMC estimation, etc… All these resources need to be defined during the costing and architecture exploration phase of design. Any wrong estimation on these critical points can lead to big surprises caught only in very late stage of the design cycle where there are established flow to estimate the peak current. This leads to either re-spinning the entire design cycle to its starting phase or leading to closure of the project in-between.
In this thesis work, we had developed a simple yet very powerful analytical expression for analyzing the peak current. This analytical expression is a general expression and can be applied to the peak current evaluation coming out from either our flow or any other tool.
Finally, a CAD tool called KAPLANA was developed to efficiently determine the peak current of the complex core logic at architectural definition phase. Determination of peak current during the design phase would be extremely beneficial to circuit designers. This would reduce the turn around time for circuits and prevent costly redesign. KALPANA provides a high degree of accuracy as compared to other tools available which can estimate the current at very late phase of the design cycle.

Contents

Certificate										2
Acknowledgement									3
Abstract										4
List of figures										7
1. Introduction									9
	1.1 Motivation								9
	1.2 Contribution of this thesis						11
2. Related Work									12
	2.1 Current estimation techniques						12
		2.1.1 RMS current estimation					13
		2.1.2 Peak current estimation						15
		2.1.3 Current waveform estimation					16
		2.1.4 Other approaches in current estimation			20
	2.2 RTL Level power estimation						22
		2.2.1 Spreadsheet based approaches					22
		2.2.2 Power estimation approaches utilizing power models		24
		2.2.3 Power macro-model based approach				25
		2.2.4 Summary of power estimation research			29
3. Background									30
	3.1 Maxima of supply current in CMOS inverter				30
	3.2 Inverter delay and current model						35
		3.2.1 Inverter with falling input ramp (CP model)			35
		3.2.2 Inverter with rising input ramp (DP model)			41
	3.3 Clock distribution network						43
4. Our Model										49
	4.1 Assumptions								50
		4.1.1 Assumption 1							50
		4.1.2 Assumption 2							51
	4.2 Mathematical Model							52
	4.3 KALPANA (CAD tool)							57
		4.3.1 High level flow of KALPANA					57
		4.3.2 Skeleton of KALPANA					59
5. Results										61
	5.1 Comparison of KALPANA with APACHE				61
	5.2 Detailed Analysis								63
6. Guidelines to reduce power consumption						67
	6.1 Clock gating								67
	6.2 Quad Flip-flop								76
7. Thesis Summary									81
	7.1 Conclusion								81
	7.2 Future Directions								81
Bibliography										83
Appendix A 										88

List of Figures

3.1 Transistor-level model of a CMOS inverter						31
3.2 Inverter current waveform with ramp input voltages					32
3.3 Discharging supply current waveform and the input voltage 	 	
 of an inverter driven by a similar inverter						33
3.4 Variations of inverter current peaks with input transition time			34
3.5 Charging and discharging currents of the inverter shown in
 Fig. 3.1 when driven by another inverter						34
3.6 The time tst for an inverter with Wp=5.6um, Wn=2.0um and
 Lp=Ln=1.2um										36
3.7 Typical simulated iPS and vO versus time						38
3.8 Typical simulated iPS, iP, iN and vO versus time in an inverter
 with a rising input									42
3.9 Clock basics										44
3.10 Common structures of clock distribution networks including
 a trunk, mesh and H-tree								46
3.11 Tree structure of clock distribution n/w						47
3.12 Three level clock distribution n/w							48
4.1 Simulated supply current profile of a buffer driving 10 reg.
 with input as rising ramp signal with Tr = 50 psec.					50
4.2 Skew relation considered between various points in a clock
tree											51
4.3 Switching current profile of one buffer						53
4.4 Switching instances									53
4.5 Graphical view of Eq. (4.8)								56
4.6 Flow of KALPANA									58
5.1 Current estimated at RTL level by KALPANA					62
5.2 Current estimated at tape-out level by APACHE					62
5.3 Current profile generated by KALPANA at skew 50 fsec.
 between the last buffers								64
5.4 Current profile generated by KALPANA at skew 100 fsec.
 between the last stage buffers								65
6.1 The basic clock gating									67
6.2 The signal of clock gating								68
6.3 The latched clock gating								68
6.4 The signal of latched clock gating							68
6.5 Current profile for 100% clock gating at 1,72,000 number of
 flip-flops in the last stage at skew of 50 fsec.						70
6.6 Current profile for 100% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 100 fsec.						71
6.7 Current profile for 30% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 50 fsec.						72
6.8 Current profile for 30% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 100 fsec.						73
6.9 Current profile for 10% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 50 fsec.						74
6.10 Current profile for 10% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 100 fsec.						75
6.11 Logic diagram of Quad flip-flop							76
6.12 Current profiles of the quad flip-flop and the normal flip-flop at skew 50 fsec. between the last stage of the buffers.					77
6.13 Current profiles of the quad flip-flop and the normal flip-flop at skew 100 fsec. between the last stage of the buffers				78
6.14 Current profiles of the quad flip-flop and the normal flip-flop at skew 50 fsec. between the last stage of the buffers and clock gating of 30%.										79
6.15 Current profiles of the quad flip-flop and the normal flip-flop at skew 100 fsec. between the last stage of the buffers and clock gating of 30%.										80

Chapter 1
Introduction
1.1 Motivation
The continuing decrease in feature size and the corresponding increase in chip density and operating frequency have made power consumption a major concern in VLSI design [1], [2]. Modern microprocessors are indeed hot: the Power PC chip from Motorola consumes 8.5 W, the Pentium chip from Intel consumes 16 W and DEC’s alpha chip consumes 30 W. Excessive power dissipation in integrated circuits not only discourages their use in portable environment, but also causes over heating, which degraded performance and reduces chip life-time. To control their temperature levels, high power chips require specialized and costly packaging and heat sink arrangements. This, combined with the recently growing demand for low-power portable communication and computing systems, has created a need to limit the power consumption in many chip designs.
Managing the power of an IC design adds to a growing list of problems that IC designers and design managers have to contend with. Computer Aided Design (CAD) tools are needed to help with the power management tasks. Specifically, there is a need for CAD tools to estimate power dissipation during the design phase in order to meet the power specifications without a costly redesign process.
For CMOS circuits, the overall power dissipation consists of four components: power consumed by (1) steady-state transition current, (2) glitch current, (3) short-circuit current, and (4) static current. The steady-state transition current occurs when the input stimuli causes a node to change its stable state (from high to low, or low to high). This component is recognized as an important factor in power dissipation, and can be calculated by a logic simulator using the zero-delay model. Glitch current occurs when the load capacitance is charged or discharged before the node reaches its stable state. This component is much more difficult to compute because it is very sensitive to the real circuit delay and partial Vdd-ground swing. Short-circuit current occurs whenever a path from Vdd to ground is conducted in a device. Static current is caused by leakage on a device. Thus steady-state transition current is one the major concerning factor, it makes the power dissipation highly dependent on the switching activity inside these circuits. Simply put, a more active circuit will consume more power. This complicates the power estimation problem because the power becomes a moving target – it is input pattern dependent.
Thus the simple and straight-forward solution of estimating power by using a simulator is severely complicated by this patter-dependence problem. Input signals are generally unknown during the design phase because they depend on the system (or chip) in which the chip (or functional block) will eventually be used. Furthermore, it is practically impossible to estimate the power by simulating the circuit for all possible inputs. Recently, several techniques have been proposed to overcome this problem by using probabilities to describe the set of all possible logic signals, and then studying the power resulting from the collective influence of all these signals. This formulation achieves a certain degree of pattern-independence that allows one to efficiently estimate and manipulate the power dissipation.
The goal of this thesis is to investigate a simple model for the estimation of peak current with minimum design inputs to have a far more accurate estimation of power consumption in a design.
1.2 Contributions of this thesis
An overview of existing work in the area of power estimation in early stage of design cycle is presented in Chapter 2. To completely understand the problems in estimation the peak current in CMOS technology, various mechanisms behind it were examined. This is presented in Chapter 3. Our method to accurately estimate the peak current is presented in Chapter 4.
A CAD tool (KALPANA) was developed to efficiently estimate the peak current in a design requiring minimum design inputs. The real power of this tool is its speed for estimating the consumption of current in a design. If an estimate is done only after the design and layout are complete, any redesign would be extremely cumbersome. The KALPANA methodology is described in Chapter 4.
The verification of results given by KALPANA is done in Chapter 5. It is found that the estimation of current with this tool is highly accurate with an error of less than 10% as compared with the commercially available tools such as APACHE (used by STMicroelectronics), which come very late in the design cycle for the estimation of current.
In Chapter 6, we have highlighted the guidelines to reduce the power consumption.
Finally, future work in this area is proposed.

Chapter 2
Related Work
In this chapter, we briefly discuss the existing techniques in the area of current and power estimation.
2.1 Current Estimation Techniques
In a CMOS static gate, significant supply current flows only when the gate is undergoing a switching event. If the inputs are at stable logic values, the supply current is limited to a very small leakage current. Within the switching time interval of the gate, there is a short time when both pull-up and pull-down groups are on. During this time the current contains a direct (short-circuit) component which flows from Vdd to ground. The value of this component in a CMOS inverter can be as high as 20% of the total supply current if the input and output signal have equal fall and rise times [23]. The slower the input signal compared to the output, the larger is the contribution of the short-circuit current.
In the last few years, the calculation of different measures of current, such as the RMS (root-mean-square), maximum and current waveform itself have been addressed in the literature [3]-[19]. The following sections discuss the existing methods of current estimation. In each case the limitations of the method are discussed.
2.1.1 RMS Current Estimation
The RMS value of current is often used to size the metal power lines in CMOS circuits [3]-[5] to meet the reliability specifications based on metal migration. Computing the RMS value requires the current waveform and its effective frequency (f) of occurrence within a time period.
The method proposed by Martinez [3] calculates the RMS current by approximating the current waveform of a gate with a triangle. The peak (Ip) and the duration (td) of the triangle are computed from:
					Ip ≈ V2DD β					(2.1)
					td ≈ (VDD CT)/Ip				(2.2)
where, β is the gain factor of the transistor and CT represents the total output capacitance.
Using Ip and td, Martinez computes the RMS current from:
					IRMS = R Ip (td f / 3)1/2				(2.3)
where, R is an empirical constant to fit the result to the RMS current obtained from SPICE [20] simulation.
The above method does not take into account the input slope. Furthermore, it requires the effective frequency of the supply current in each gate, which is difficult to obtain in large CMOS circuits. Finally, it is impossible to combine simultaneous or overlapped RMS currents of different gates in a circuit. In this case, only an upper bound can be obtained for the total RMS current, which is not directly useful for power-rail sizing.
Hall et al. [4] developed a program (SPIDER) for sizing the power lines in CMOS circuits. SPIDER employs SPICE [20] for computing transient current waveforms, from which the equivalent RMS currents are derived. Since, SPICE runs slowly for large circuits, especially when the simulation has to be performed for a large number of input patterns, SPIDER is primarily appropriate for circuits of moderate complexity.
Vanoostende et al. [5, 6] also use the RMS current for sizing the supply net in CMOS circuits to avoid electromigration failures. They compute the RMS current associated with each set of input signals using a circuit-level simulator. In this way, a set of RMS current values is constructed, which is used to compute the final RMS current corresponding to a combinational block.
Since an exhaustive simulation of all possible input patterns is not feasible, only a subset of the possible input patterns are considered for circuit-level simulation. The number of the required input patterns depends on the variations of the RMS values obtained from simulations. The larger the variations, the more input patterns are required for accurate estimation of the final RMS current. Moreover, to ensure that the selected input signals adequately represent the switching activity of the circuit and, therefore, the actual current consumption, a register-transfer-level (RTL) simulator is used to determine the input and the output switching activities.
The above approach reduces the number of the required input patterns, without having to propagate the probability and the correlation of the signals. However, a correlation model has to be used for choosing the number of input patterns. Moreover, in VLSI circuits the number of required input patterns can still be quite large, and hence circuit-level simulation is expensive.
2.1.2 Peak Current Estimation
The peak supply current is useful for determining the voltage drop in the metal power lines. Chowdhury et al. [11, 12] compute the maximum current using Shockley’s transistor model. To obtain the current in a CMOS inverter, they apply Kirchoff’s current law at the output node, and employ the Forward-Euler method to solve the equation. Since they rely on numerical integration to obtain the maximum current, the computation time is expensive.
In order to calculate the current in general CMOS gates, they use a collapsing technique which reduces a CMOS gate to an equivalent inverter. Their technique gives pessimistic results when the number of transistors increases.
To compute the maximum current at gate level, a branch and bound algorithm or a heuristic technique is used. This provides the respective input transitions in a CMOS macro model which leads to the largest maximum current, assuming that the inputs are simultaneous. The method is slow on large circuits. Furthermore, the heuristic does not guarantee an upper bound on the maximum current.
Kriplani et al. [13] has concentrated on computing a new measure of the maximum envelop current (MEC) waveform. The value of MEC at any time t is the maximum of all the current values that the circuit can draw at that time. This method is established based on simultaneous switching inputs in a combinational block, and by triangular approximation of the supply current waveform in each switching gate. The peak value of the triangular current has to be specified by the user. Moreover, the delay of each gate is fixed and must be given ahead of time.
For each of the inputs ‘low’, ‘high’, ‘high-to-low’ (HL) and ‘low-to-high’ (LH), Kriplani et al. store a list of time intervals during which a node carries that excitation. Given such information at the inputs of a logic gate, the corresponding information is derived about the output node, assuming that the gate’s input signals are uncorrelated. In this way, it is determined if a gate can switch during a time interval. Then the supply current contribution of the gate is calculated, using the above mentioned triangular approximation. At every gate, there are two possible current waveforms, one due to a LH transition and the other due to a HL transition. The maximum of the two current waveforms at each point is considered to be the worst case supply current. Once the currents associated with different gates have been computed, the total current waveform is determined by adding the individual gate contributions.
The above mentioned ignores the correlation between various inputs, since maintaining information on correlation is very expensive. As a result, this method overestimates the maximum current at each time point.
2.1.3 Current Waveform Estimation
Deng et al. [9] compute the current waveform in CMOS circuits by approximating the current of each gate with a triangle. They use a switch-level simulator (TSIM) to compute the total charge transferred in each node at an event, and the time duration ΔT which it takes to occur. The peak current is computed from:
					Ip = 2 X charge / ΔT 				(2.4)
Then, an isosceles triangle is assumed for the current associated with each node. This triangle starts at the time of the event, has a peak value of Ip, and lasts for the time ΔT.
The speed of this method is primarily determined by the speed of the switch-level simulator. The claimed accuracy is within 20% compared to HSPICE, for relatively small loads. When the output load increases, the current waveform becomes asymmetric, and hence approximating current by a symmetric triangle results in more error.
The work by Wang et al. [10] tries to alleviate the above problem. For instance, in an inverter with a charging output node, they assume 3 regions of operation for the pMOS transistor. The first region is completed when the pMOS transistor leaves saturation or the input reaches the final state. In this region, the current waveform is approximated by an exponential function. In regions 2 and 3, the pMOS transistor is in the triode region, and the two separate exponential functions are used to model the current waveform. For simplicity, it is assumed that the pMOS transistor enters region 3 when the current has fallen to 70% of the peak value. A similar method is used for obtaining the current waveform of an inverter with a discharging output node.
The peak current Ip and the three time constant τ1, τ2 and τ3 required for the above 3 regions are determined from simulation, for each logic gate under various input vectors. Then, empirical functions are established to determine Ip, τ1, τ2 and τ3. these are functions of the load, the aspect ratios of MOS transistors, the slopes of input signals, and the input switching order. When an event occurs, a suitable function is chosen to compute the current waveform associated with the event.
Although this method handles larger loads compared to the one developed by Dang et al. [9] and slightly improves the CPU time [10], its accuracy is still limited to relatively fast inputs. Furthermore, it requires a lot of preprocessing to establish proper empirical functions for the peak current and the time constants explained above. Finally, it is limited to the circuits which contain the same gates as those used at the presimulation stage.
The work by Stark et al. [7, 8] concentrated on developing efficient techniques for calculating voltage drops in power supply networks. These techniques are used in ARIEL [8], which is a program based on RSIM simulator. In brief ARIEL computes the load currents as follows: RSIM records which node changed, what the final value was, when the event ended, and what the transition time ttr was. Given this and the total capacitance CT of a node, ARIEL considers a current equal to CTVDD/ttr for that node, which flows from the source of the respective transistor. The accuracy and the speed of this program are primarily determined by the RSIM simulator.
Rouatbi et al. [17] used a piece-wise linear approximation to classify the forms that the capacitive and short-circuit components of the supply current waveform of a CMOS gate can have. Their approach is based on a timing simulator to determine the time of occurrence of a switching event, with current models developed for both short-channel and long-channel devices, using a symbolic software package to solve for the model parameters. In particular, each capacitive current is modeled based on three segments, and each short-circuit current is approximated by a triangle.
The required parameters in each gate’s capacitive current waveform are obtained through a collapsing technique, which reduces the series-connected transistors in the gate to two transistors. One is the transistor with the trigger input, and the other one is an equivalent transistor which replaces the transistors with stable logic values at their inputs. Moreover, the gate is reduced to an equivalent inverter to compute the parameters associated with its short-circuit current.
The technique for reducing series transistors is similar to that in [21]. Also, to compute the peak of each short-circuit current, an approach similar to that in [22] is used. In this approach, an analytical equation is derived for the output voltage by neglecting the transistor which draws short-circuit current. This equation is then used to calculate the output voltage at each time step, from which the short-circuit current is computed. Therefore, a number of time steps is required to determine the peak of the short-circuit current and the respective time point. The same problem exists in computing the delay and the output fall/rise times, because the corresponding equations are not in closed-form.
The above method is primarily appropriate for gates with single input transitions and for relatively fast signals. Furthermore, in reducing series transistors, it requires recomputing the velocity saturation index [21] when the sizes of the transistors or the position of the switching transistor changes.
SIMCURRENT [18] also calculates the current waveform of CMOS circuits. It uses a logic simulator along with a data base, which contains the current waveforms for two reference gates (inverting and non-inverting) of each type of gate, under representative load conditions 0% to 100% of the maximum load. According to the ratio of the output load to maximum load in a gate, a reference current shape is interpolated from the shapes in the data base. Because the direct current is implicitly included in this current, the zero-percent shape is subtracted from it. Then, the result is weighted with a factor of load capacitance to compute the actual load current.
In order to include the actual direct current, SIMCURRENT uses a switching capacitance Csw, which is defined as the mean of current consumption of the rising and falling edges of the output. The switching capacitance Csw is obtained for each gate when characterizing the gate during the creation of a cell library [18].
The above method neglects the variation of short-circuit current with load [23]. Although the speed improvement exceeds 3 orders of magnitude compared to HSPICE, it requires a large data base for each technology. In addition, it is restricted to standard cell-based design and to the input slope by which the cells have been characterized.
2.1.4 Other Approaches in Current Estimation
Najm et al. [14, 15] use a probabilistic approach to compute the supply current in CMOS circuits. This employs the probability of the waveform at each node, rather than the actual waveform. Given the probability of the waveforms at the primary nodes, the probability at the internal node is computed. This method has been implemented in CREST [14, 15], which is primarily a program for analyzing median time-to-failure (MTF) of the metal lines in CMOS circuits. It computes the total expected current waveform of a CMOS circuit whose value at any given time is the weighted average of all possible current values at that time. The expected waveform of each gate or sub-circuit is approximated by a triangle. The peak value of the triangle is computed by modeling each transistor with a linear resistor, whose value is independent of the gate voltages’s rise/fall times.
Since the mean value of the charge transferred to (from) a node is easily obtained, the time τ which is the duration of the triangle current in an event j is determined from:

				Τ = 2 x 					(2.5)
where E is the expected value operator, q is the charge, pk represents the peak current. Finally, adding the expected triangle currents of different gates (or sub-circuits) in a circuit, for a period of simulation, results in the total expected current waveform of the circuit.
The above approach is independent of input patterns. However, it may not give a real current waveform, since the current shape in a gate depends on the input patterns and signal slopes. CREST also neglects short-circuit current and the correlation between the current waveforms.
Recently, CREST was extended to calculate the variance current waveforms of the power/ground currents [16]. This is used in computing the MTF of the metal lines, which requires both expected and variance waveforms. The variance waveform of the current in a gate is modeled by a triangular pulse, whose parameters are computed by replacing each transistor with a switch and a conductance. Once the variance pulses of individual gates are known, the variance of the current of a set of interconnected gates is derived by assuming that the current waveforms of the gates are uncorrelated. Based on the same assumption as above, the variances of the bus branch currents are also determined.
Since, in computing MTF, the variance waveforms are of secondary importance [16], it is often reasonable to neglect the correlation between the currents. However, in general, there are cases where neglecting the correlation between different current waveforms becomes a poor assumption. An example of these cases is clocked circuits, in which different parts of the circuits may switch simultaneously in response to a central clock [16]. In addition, the same problem exists if the above method is being used for computing worst case voltage drops in power buses.
Krodel [19] developed a program, PowerPlay, to obtain the instantaneous power waveform. In this method, input vectors are applied to a gate-level description by a logic simulator. Then the results are used by PowerPlay as a post-processor, which associates a certain amount of energy with each transient input in every gate. A simple linear model, which takes into account the net capacitance and the transition type (rising/falling), converts the transition energy into an equivalent waveform. This waveform is a rectangular wave, whose peak value represents the peak power dissipation of the gate, and whose pulse width is such that the area under the rectangular pulse is equal to the energy dissipated for that logic transition. The information required in the above waveform is obtained from a database, which is established using a circuit-level simulator. By forming the power dissipation waveforms for all the transitions and by adding up these waveforms, a waveform which represents the dynamic power dissipation of the entire circuit is produced.
The above method uses a smaller database compared to that used in [18]. However, it is limited to cell-based designs, and to the input slopes by which the cells have been characterized.
2.2 RTL Level Power Estimation
Accurate power estimation at RTL level is very important for any successful design methodology. In this section, we capture some research advancements relevant to this thesis, which include spread sheet based approach, power model and macro-model based approach and gate-level power estimation.
2.2.1 Spreadsheet Based Approaches
Spreadsheets are very useful in the early stage of design process, when initial planning is going on and a lot of important decisions are being taken [24]. One of the biggest advantage of spreadsheet based analysis is that the user does not really need to learn any complex/sophisticated tool for taking design decisions. One of the basic application of spreadsheet is area estimation. Designers generally have a fair idea of the building blocks for a big design. He/She can easily get an estimate on area by using datasheets from intellectual property (IP) provider, library cell estimates, etc. Spreadsheet provides a capability to capture such information, which can be utilized for quick area estimation. Similarly, some decisions to control power can also be taken using spreadsheet based approach. Power budgeting approaches using spreadsheets are very helpful for printed circuit board (PCB), power supplies, voltage regulators, heat sink and cooling systems.
Spreadsheet tools vary from utilizing excel sheets, word processors to Unified Modeling Language (UML) [25] etc. In industry, spreadsheet is being advocated by Field Programmable Gate Array (FPGA) vendors such as Xilinx [26], Altera [27]. Power analysis needs to be done very efficiently especially for FPGA’s, where basic building blocks are fixed (for example fixed size lookup tables and switch matrices). These power estimation tools provide current (I) and power (P) estimation for the different family of FPGA’s. Power number associated to each block in these spreadsheets are very much dependent on the architectural features such as clock network, memory blocks, digital signal processing (DSP) blocks. User can enter operating frequency, toggle rates and other parameters in the early power estimator spreadsheet to estimate the design’s power consumption. Spreadsheet based approach is useful for project planning but may not be able to provide accurate guidance for the block-level hardware power estimation and reduction. This motivates a need to provide a power model, which can perform accurate yet efficient power analysis early in the design flow. Next subsection provides an overview of some of model based approaches for power estimation purposes.

2.2.2 Power Estimation Approaches utilizing Power Models
One of the first works in the area of model based power estimation was proposed by Tiwari et al. [28] for the architecture level power estimations of microprocessors. They provide a method to estimate power/energy number of a given program on a given processor. The way they have approached the problem was interesting, they have used a hypothesis for their work. This hypothesis states “By measuring the current drawn by the processor as it repeatedly executes certain instructions or short instruction sequences, it is possible to attain most of the information that is needed to evaluate the power cost of a program for that processor” [28].
Power consumption of a microprocessor can be represented as P=VCC*I, where VCC is operating voltage and I is the current drawn by the microprocessor. In their approach, they measured the current drawn by the processor and then utilize it for power measurement purpose. They assumed that during the computation, the operating voltage for the processor will not change. For average power estimation purpose they had first estimated energy over different cycles and then averaged it. To conclude with, they have proposed a way in which one can gauge the impact on average current from the execution of an instruction. Their approach also proposed a way to measure inter-instruction effects on current values. To calculate the average power consumption of a processor while executing a software program, they utilized these values.
Power modeling for the instruction of VLIW (Very Large Instruction Word) processors is discussed in [29]. Approach discussed by Tiwari et al. in [28] might not be applicable to the processors where number of instructions are reaching to a few thousand. Characterization of power instruction based model can be very time consuming and may take several months. Tiwari et al. in [28] propose a technique for VLIW processors for reducing the complexity of power models by using the clustering approach. They try to make cluster of instructions having energy number in the same range (individual as well as sequence of instructions). They propose an approach to reduce the complexity of characterization from exponential to quadratic. There are many other approaches that have been discussed in the literature for doing power modeling of processor instructions. More details on power estimation utilizing instruction level power models and its variants are available in [30, 31, 32].
Most of the approaches for power models are proposed for CPU or micro architecture of processors. In an ASIC design flow where mainly design stage starts at RTL and mostly design is represented as a Finite State Machine with Datapath (FSMD), similar approach may not be useful. In the literature this is often termed as macro-model based approach. The subsection 2.1.3, we present an overview of existing macro-model based power estimation approaches.
2.2.3 Power Macro-Model based Approach
Power macro-models [33] generally consist of n-dimensional table to estimate the power consumed in a circuit for a given statistics, where n represent different variables/components capturing the relationship of power and dependent variables such as input probability, transition density etc. [33] present an automation methodology, in which such a table is automatically generated. Three variants in their model are average input signal probability, average input transition density, and average output zero-delay transition density. Power macro-model is a function of these variants, as shown in equation 2.1.
				Pz = f(Pin, Din, Dout) 				(2.6)
Where Pz represents the entry for the average power corresponding to the average input signal probability Pin, average input transition density Din and average output zero delay transition density Dout.
Signal probability Pi at input node xi is defined as the average fraction of the clock cycle in which final value of xi is high. Similarly, transition density Di at an input node is defined as the average fraction of the cycles in which the node makes a logic transition (final and initial value should not be the same for logical transition). Equation 2.2 represents the relationship between Pi and Di.
			 Di/2 ≤ Pi ≤ 1 – Di/2						(2.7)
Using the relationship discussed in equation 2.2 and equation 2.1 characterization of models is being done and the accuracy of these macro-models is evaluated. For characterization purposes they assume that input nodes are output of latches or flip-flops and make at most one transition per clock cycle. Also, sequential design is single clock system and clock skew is ignored in their analysis hence all inputs switch simultaneously.
Bogliolo et al. [34] have proposed a methodology for creating power macro-models based on linear egressions but their flow is specific to the structural RTL macros and power estimation is done at the gate level. Their analysis is restricted to structural RTL representation whose leaf components are combinational logic blocks. This approach is based on (a) offline characterization in which they compute the power of the RTL macro based on certain tests, (b) online characterization, in which they do it adaptively for error minimization. Their approach utilizes all the inputs, outputs, transition functions of inputs and outputs on the successive cycles, and then they interpolate the relationship with energy consumption.
Potlapally et al. [35] present a technique in which they do cycle-accurate power macro modeling of the RTL component. This technique is based on the fact that RTL components exhibits different “power behavior” for different input scenarios. They create power macro model for each of these behaviors also known as power modes. Their framework chooses the appropriate power mode from the input trace in each cycle and then apply power macro-modeling technique discussed by Bogliolo et al. to get an estimate on power numbers. The technique discussed in [35] covers non-trivial scenarios as well.
Negri et al. [36] have proposed a power simulation framework of communication protocols (Bluetooth and 802.11) using StateC. StateC is used to model the hierarchical state machines. Their flow is mainly targeted for simulator generation in SystemC. This flow is good for power exploration of protocol modeling. They have mainly targeted wireless protocols in which relevant contribution to the power consumption of a node is due to the communication and not due to datapath (computation) activity. Their learning phase requires execution of the real chip and cannot easily be integrated to any ASIC/FPGA design flow. Also for practical purposes, it is difficult to create power model of the partial design or smaller part of the whole chip because current measured includes a lot of contribution from other parts of the chip and isolation of the desired unit for power model purposes requires quite a lot of effort.
In [37], authors attempt to lift power estimation to higher levels than the RTL, and their choice for high level modeling was Cycle-Accurate Functional Description (CAFD) of the design. They create virtual components for each design block and attach then to the CAFD model of the design block, and compute the power consumption dynamically as the CAFD is simulated. Since this additional overhead to the CAFD simulation causes inefficiency, they also allow periodic turning off of some of the virtual components during some cycles of the simulation. During those cycles, they estimate power based on the history of the power consumption for the turned off components. So even though, the abstraction at which they estimate power is cycle accurate modeling level, their power estimation is not based on regression based technique, and the simulation of CAFD is slower due to the overhead of virtual components.
Caldari et al. presented a relative power analysis methodology [38] for system-level models of the Advanced Micro-controller Bus Architecture (AMBA) and Advanced High-performance Bus (AHB) from ARM. It relies on creating macro-models from the knowledge of the possible implementations. Similarly, Bansal et al. presented a framework in [39], which uses the power models of the components available at the system-level simulation stage by observing them at run time. It selects the most suitable power-model for each component by making efficiency and accuracy trade-offs. In [40], the presented framework employs co-simulation techniques for power estimation with the capability of performing accuracy and efficiency trade-offs. They utilize multiple power estimation engines concurrently and have proposed several speed-up techniques to eliminate the overhead of co-simulation.
SEAS [41] presents a system and framework for analyzing SoC’s in early design stage. Power Analysis in this system works at a granularity of a processor cores, where pre-characterized data for power is utilized based on the power state of the design. Power states of the cores are high level states based on the workload such as active, idle, sleep states in today’s processors. By utilizing these high level states of the SoC an early power estimation can be performed which is more efficient and accurate than the traditional spread sheet based approach.
Shin et al. have proposed a methodology [42] for power estimation of operation modes but their analysis is done at logic-level and proposes a way to crate power models based on the switching frequencies. [43, 44, 45, 46, 47, 48] utilize the similar approach for power estimation purposes and provide various accuracy and efficiency trade-offs based on the quality of inputs and power modeling. Power estimation accuracy can be significantly increased but generally it impacts the efficiency of power estimation procedure.
2.2.4 Summary of Power Estimation Research
 Techniques discussed above show that power modeling of a hardware block can be very complex and application dependent. As we increase level of abstraction, power estimation of a hardware block becomes difficult. Various techniques at different abstraction levels exist to obtain the power consumption starting from spread-sheet, power model to macro-model based power estimation. The most popular approaches in industry are mainly power model based approach or by performing power estimation at RTL/gate-level description of a hardware design. While, at the lower level of abstraction, commercial tools provide good accuracy with respect to silicon, but as we go to higher levels of abstraction accuracy of the power estimation methodologies reduces.
In an ASIC design flow, most of the mentioned power-estimation solutions either rely on the creation of power macro-models from lower level descriptions of the designs or on the availability of power consumption information for different simulation scenarios. Previous approaches in this area are focused on creating macro-models for the design based on input activity and relationship with the corresponding power. Such input and output patterns help in modeling power of the design but design is considered as blackbox in most of the cases.

Chapter 3
Background
In this chapter, the characteristics of the supply current in a CMOS inverter are examined. In particular, Section 3.1 examines the maxima in the supply current waveforms of an inverter for both charging and a discharging output node. Section 3.2 presents inverter models for calculating the delay and the positive of the supply current for a falling and a rising input.
3.1 Maxima of supply current in CMOS inverters
In this section, the charging and discharging supply currents in a CMOS inverter are examined, and the observed maxima are interpreted using a transistor-level model of the inverter. Figure 3.1 illustrates such a model, in which the parasitic capacitances are shown explicitly.
These are modeled by equivalent constant capacitances. CP (CN) includes both the drain-to-bulk capacitance of the pMOS (nMOS) transistor and the effect of the input capacitance of the loading gate(s). CGP (CGN) accounts for the gate-to-source and the gate-to-bulk capacitances of the pMOS (nMOS) transistor. Moreover, the capacitance CM includes the gate-to-drain capacitances of both the pMOS and the nMOS transistors. This capacitance can be neglected when its value is relatively small compared to the output load (i.e. CM << CP + CN). The supply current ips will be computed in terms of the three branch currents iGP, iP and iCP for both rising and falling input transitions.
 (
Vin
VDD
iPS
iCP
iCN
iN
iGN
GND
iM
nMOS
Cn
Cgn
Cm
iGP
Cgp
Vo
iP
Cp
pMOS
)
Fig. 3.1: Transistor-level model of a CMOS inverter
Figure 3.2 shows HSPICE [50] simulations of both the charging and the discharging supply current of a CMOS inverter driven by a ramp with a transition time Ti = 5ns. The main focus in on three peaks labeled DN, DP and CP. The discharging negative peak (DN) is associated with a rising input transition (i.e. a negative iGP) and is due to feed-forward effect through CM which forces the output voltage above VDD, and hence results in negative of iP and iCP. A discharging positive peak (DP) also occurs during the rising input transitions. The small peak at point C is due to rapid changes of both the gate-to-source and gate-to-bulk capacitances in the HSPICE model when the pMOS transistor enters the sub-threshold region [50]. The peak at point D is an artifact due to the discontinuity in the slope of the ideal input ramp used in the simulation.
 (
Time (ns)
) (
Current (
uA
), Voltage (volts x 10)
)			[image:]
					
Fig. 3.2: Inverter current waveform with ramp input voltages (scaled by a factor of 10)

When the input signal is not an ideal ramp (e.g. the inverter is driven by another inverter), the points C and D will disappear as shown in Figure 3.3. This is because, the slope of the input signal is relatively small after the time when the pMOS transistor enters the sub-threshold region, and therefore the capacitive current iGP is negligible. The charging current positive peaks (CP in Fig. 3.2), which corresponding to a falling input transition, is dominated by iP and in the case of a relatively fast ideal ramp input, iGP also contributes.
Figure 3.4 presents the variations of the DN, DP and CP peaks with input transition time for an inverter, obtained using HSPICE. As this figure indicates, for the rising input transition, a shorter Ti results in a larger branch current iGP and therefore leads to a larger DN. On the other hand, with increasing Ti, DP increases because the short-circuit current iP becomes larger. In a falling input transitions, a shorter Ti results in a larger CP since iP approaches the maximum saturation current corresponding to vSG = vSD = VDD.

 (
Time (ns)
) (
Current (
uA
), Voltage (volts x 10)
) 		 [image:]
							
Figure 3.3: Discharging supply current waveform and the input voltage of an inverter driven by a similar inverter.

As illustrated in Fig. 3.4, when the rising and falling input transitions are the same, CP is the peak with the largest magnitude.
In reality, input signals are of course not ideal ramps. For instance, when the inverter shown in Fig. 3.1 is driven by another inverter, iGP is no longer a constant current as Fig. 3.5 illustrates. In this figure, the variations of iPS, iGP and iCP are shown, for both charging and the discharging output node. This figure indicates that iGP is negligible at CP and DP, but it dominates for DN. Hence, in an inverter with a real input signal, we may neglect its branch current iGP when calculating the supply current positive peaks DP and CP. However, for DN the branch current iGP is the dominant component of iPS. In this case, we compute iGP using the effective slope of the input ramp.
 [image:]
Figure 3.4: Variations of inverter current peaks with input transition time, Ti.
It should be noted that the above simplifications for DP and CP are only correct when we compute the peak currents for a single inverter. However, in a chain of inverters, at the time when the chain’s total supply current attains a maximum, iGP of each inverter can be significant. Therefore, in computing the total current (maximum or current waveform) of a chain, iGP of each inverter must be accounted for.
 [image:]
Figure 3.5: Charging and discharging currents of the inverter shown in Fig. 3.1 when driven by another inverter. iPS (-), iGP (o) and iCP (--).
3.2 Inverter delay and current model
This section presents an inverter model for computing the delay and the positive supply current peak (maximum) for both a rising and a falling input transition. Given the trends in today’s VLSI circuits, the emphasis in modeling is placed upon small-geometry devices.
3.2.1 Inverter with falling input ramp (CP model)
The analytical model for computing the maximum current as well as the delay time in a CMOS inverter by a ramp input is presented here for a falling input signal (CP model). The total delay τ between the time when the input voltage, vIN, falls to VDD/2 and the time when the output voltage, vO, attains the same value, VDD/2. The time tst for the pMOS device to leave the saturation region. From this, the time tm when the supply current reaches its maximum, as well as the value of the maximum, iPS(tm), are easily determined. Then, the approximate linearity of vO(t) in the region of tm is exploited to determine the remaining time after tm for vO to reach VDD/2.
Suppose that the inverter in Fig. 3.1 is driven by a falling input ramp with a transition time Ti. Let Vtp be the threshold voltage of the pMOS transistor. When the inverter’s input falls from VDD to VDD - |Vtp|, the pMOS transistor enters saturation region. The supply current iPS which consists of iP, iGP and iCP is dominated by iP. The branch current iCP is proportional to the output voltage derivative, which can be approximated by:

					
Since iP is much greater than iN in an inverter with a charging output node, it follows that iCP tracks iP. Now iP reaches its maximum before the pMOS transistor enters the triode region, but not later than the time when its source-to-gate voltage attains a maximum (i.e. vSG = VDD). For this reason, and also because iGP goes to zero when the input transition is completed, the maximum in iPS must occur when whichever of the following two conditions is satisfied first: (i) the p-channel MOSFET leaves the saturation region at tst, (ii) vIN(t) = 0 at t = Ti. Therefore, if tst can be computed, tm can be obtained from:
					tm = min(tst,Ti) 				 (3.1)

For relatively fast inputs tm = Ti and hence, we only need a model which can accurately predict the time tst for relatively slow inputs. Figure 3.6 illustrates the variations of tst for an inverter driving different loads. It appears that tst is linearly proportional to Ti, and its derivative w.r.t. Ti is almost independent of the capacitive load. This indicates that tst can be expressed in the form .
			 [image:]
Figure 3.6: The time tst for an inverter with Wp=5.6um, Wn=2.0um and Lp=Ln=1.2um CL=100fF(--), 500fF(-) amd 1pF(…). Circles show the actual HSPICE simulated values in each case.
Since we only need vO(tst) and not its derivative, we may approximate vO(t) in any convenient manner, provided that the approximation yields an accurate value at tst. As in Figure 3.7, assume that the value of vO at tst lies on a ramp which starts at t=0 and whose duration is To given by:

			 					(3.2)
Where IP is the pMOS drain current corresponding to vSG=vSD=VDD, and the coefficients a and b are empirical constants. The rationale for (3.2) is that when Ti is very short, the rate at which vO changes is limited by the capacitive load CN+CP and the pMOS transistor’s drain current IP, which are accounted for by the second term in (3.2). Note that VDD(CP+CN) represents the total charge transferred to the output node, and IP represents the driving capability of the pMOS transistor. Therefore, the ratio of the total charge to IP can account for the effect of the output load and the transistor size on the charging rate of the output node. On the other hand, for relatively slow input signals, vO makes its transition in a time which is proportional to Ti. The transition To will be linear combination of the two, as given by Eq. (3.2). an equation similar in form to Eq. (3.2) was used in [1] and [2] to compute the delay time directly.
Now at pinch-off (i.e. the time tst), the source-to-drain voltage of the pMOS transistor corresponds to:

								(3.3)
where vDSATP is the pMOS transistor’s drain saturation voltage, given by:

							 (3.4)
in the HSPICE MOS-3 model [50]. Here vC is the critical voltage for carrier velocity saturation, computed from:

										 (3.5)
[image:]
Figure 3.7: Typical simulated iPS and vO versus time. Dotted lines show construction for computing tst.

and vX is given by:

									 (3.6)
where Vtp is the threshold voltage, FBP is a technology constant, Vmaxp is the maximum drift velocity of the carriers, LP denotes the effective length, and vsp is the effective surface mobility for the pMOS transistor. At the limit of infinite Vmaxp, vDSATP approaches vX, which corresponds to the channel pinch-off of a long-channel device [29].

From (3.6), vDSATP is given by:

					 		 	(3.7)
where Vtpo denotes the threshold voltage of the pMOS transistor corresponding to ETA=0 and vXo represents the respective value of vX.
combining Eqs. (3.3) and (3.7) yields a relationship between the inverter’s input and output voltages at time tst:

								(3.8)
We can now solve for tst, using

				
and

				
which yields:
										(3.9)
Since tst is known from Eq. (3.9), and because both the delay and the maximum supply current are of interest, we first obtain the time tm and iPS(tm), and then the remaining time for vO to reach VDD/2. Once tm is known, vIN(tm) is readily obtained, the pMOS transistor;s voltage vSD is computed from (3.3) and vOm = vO(tm) is calculated from (3.2). Then, the corresponding values of iP and iN are computed, from which we can determine dvO/dt at time tm. Since vO(t) can be approximated by a ramp as a function of time in the vicinity of VDD/2 and because the maximum current occurs when vO is in this linear region (Figure 3.7), the following can be used to calculate the delay:
									(3.10)
where,
 							(3.11)
The currents in CP and CGP at tm are given by:
				,

and the maximum supply current is determined from:
				
The slope αm is also used for the ramp approximation of the output voltage to compute the delay and maximum current of the driven gates.

3.2.2 Inverter with rising input ramp (DP model)
In this section a model (similar to CP model) is presented to compute the delay and the maximum supply current (DP) in an inverter with a rising input. The same three branch currents iP, iGP and iCP are used to calculate the discharging current as explained before. When the inverter’s input start switching from low to high, the pMOS transistor is in triode region, and the nMOS transistor enters saturation when the input exceeds its threshold voltage. In this case the supply current iPS is dominated by the short-circuit current iP, especially for a slow input, for which DP is relatively large (see Figure 3.4). Thus, iPS attains its positive peak DP when iP is a maximum (see Figure 3.10). Since iP in the saturation region is larger than iP in the triode region, and because the pMOS transistor switches off for a rising input, the maximum iP must occur at the beginning of the saturation region, i.e. at the pinch-off point where vSG (in saturation) is a maximum. Therefore, the time tm when the maximum supply current occurs is obtained from:

where tmp is the time when iP attains its maximum.
However, as shown in Figure 3.8, at time tmp, the output voltage usually has not reached its linear region in the vicinity of VDD/2. Therefore, it is the time tstn, when the nMOS transistor leaves the saturation region, that is needed to obtain the delay. This can be understood considering the analogy between the nMOS and pMOS transistors discharging and charging the output node, respectively. At the time tstn, the output voltage variation can approximately be taken as linear. Thus, we use tstn, iN(tstn), and iP(tstn) to calculate the delay described below.

[image:]
Figure 3.8: Typical simulated iPS(-), iP(*), iN(o) and vO(---) versus time in an inverter with a rising input. Here DP is iPS at t=tmp.
					
To determine the time tmp (which corresponds to the pinch-off condition of the pMOS transistor), we proceed in the same manner as in Section 3.2.1. It is assumed that vO(tmp) lies on a ramp with transition time To1 given by:
									(3.12)
From (3.6) and (3.12) the time tmp (or tm) is determined as follows:
									(3.13)
To obtain tstn we use;
									(3.14)
which similarly results in:
										(3.15)
In the above equation, Vtno is the threshold voltage corresponding to ETA=0, FBn is a HSPICE level-3 technology constant for the nMOS transistor, and IN is its drain current at vGS = vDS = VDD.
The delay can also be computed from expressions similar to (3.10) and (3.11). Thus:
				 					(3.16)
where
				
and
				 		(3.17)
Here, is used as a ramp approximation of the output voltage, and also as an input ramp for the loading gates(s).
3.3 Clock Distribution Network
Synchronous clocking continues to be the dominant strategy for commercial microprocessors with clock frequencies now exceeding 1 GHz. Large high-performance server microprocessors require global clock distribution with very low uncertainty in clock arrival times. Any uncertainty in the clock arrival times between two points, especially if these points are nearby, can limit clock frequency, or cause functional errors. The difference in clock arrival time between two points is called clock skew as shown in Figure 3.9.

			[image:]
			
			 Figure 3.9: Clock basics

Clock skew generally refers to undesired or unexpected differences in clock arrival time. When data is launched by late clock signal, or captured by an early clock, there is insufficient time for the data signal to arrive before the clock, which limits the maximum clock frequency. This type of failure is called long-path error. Functional errors can also occur when the launching clock is early relative to capturing clock. In this case, new data arrives before the clock closes the receiving latch for the previous cycle, overwriting the correct data. Such a clock race condition is sometimes called a short-path or early-mode fail, and is an especially costly because it cannot be avoided by slowing down the clock frequency.

Local Skew
Since data signals that must travel longer distances are inevitably delayed by buffers and interconnect delays, it is primarily nearby points on the chip that are susceptible to short-path errors caused by clock skew. Thus it is especially important for the clock distribution to achieve low skew between nearby points. The skew between nearby points is referred to as local skew.
Many global clock distribution strategies seek to reduce local skew within subsets of the design, accepting larger skew between these subsets. When buffered tree networks are used, this can be accomplished by designing a small independent tree for each unit. In this case, the local skew within each unit can be reduced, but there can still be significant skew between points driven by different trees due process and model uncertainties.
Low skew over larger distances is of course also desirable, but for the largest, highest performance microprocessors, there may be no signals that travel across the whole chip in a single cycle.
Jitter
Undesired variations in the cycle period are called jitter as shown in Figure 3.9. Jitter reduces performance because some cycles are short, and the chip frequency must be slowed to avoid long-path errors. Generally, a PLL is used to generate a low-jitter clock on chip. In the past, much of clock jitter came from the PLL and its sensitivity to power-supply noise. However, PLL designs have continued to improve such that PLL jitter has scaled well with chip cycle time.

Known Skew
It is important to note the difference between known clock skew and unexpected clock skew. Skew from modeling errors or process variations is unexpected clock skew, and is always undesired. However, known differences in clock signal arrival times can be tolerated. In fact, skew can even be beneficial if cleverly designed and accurately modeled. For example, by carefully introducing clock skew, it may be possible to allow a specific logic and circuit implementation to run faster, and have improved timing margins on many paths. However, if adding skew can improve performance and margins significantly, this probably means that the logic between latches is not well balanced. In most cases, restructuring the logic or circuit tuning can achieve timing improvements similar to adding skew.
There are various available structures for the implementation of clock distribution network. Some common structures are shown in Figure 3.10.

		[image:]

Figure 3.10: Common structures of clock distribution networks including a trunk, tree, mesh and H-tree.

Buffered Clock Distribution Trees
The most common strategy for distributing clock signals in VLSI based systems is to insert buffers either at the clock source and/or along a clock path, forming a tree structure. Thus, the unique clock source is frequently described as the root of the tree, the initial portion of the tree as the trunk, individual paths driving each register as branches and the registers being driven as the leaves as shown in Figure 3.11.

			[image:]

			Figure 3.11: Tree structure of clock distribution n/w
If the interconnect resistance of the buffer at the clock source is small as compared to the buffer output resistance, a single buffer is often used to drive the entire clock distribution network. An alternative approach to using only a single buffer at the clock source is to distribute buffers throughout the clock distribution network. This approach requires additional area but greatly improves the precision and control of the clock signal waveforms. A three level buffer clock distribution network is shown in Figure 3.12.
		 [image:]

			Figure 3.12: Three-level clock distribution network
The number of buffer stages between the clock source and each clocked register depends upon the total capacitive loading, in the form of registers and interconnect, and the permissible clock skew [51]. The maximum number of buffers driven by a single buffer is determined by the current drive of the source buffer and the capacitive load of the destination buffers.
				

Chapter 4
Our Model
In a typical non-clock gated microcontroller based SOC, statistically 60-70% of the total power consumption occurs in clock tree and sequential logic which are part of clock tree. On top of this, clock tree elements are the major contributor in the peak current of the SOC. Knowledge of peak current enables the designer to fix the architecture resources viz.
1. On-chip de-cap requirement to mitigate the dynamic IR drop problem
2. Regulator specification
3. Correct package selection and optimization of power pins
4. EMC estimation
5. Types of clock tree buffer to be kept
6. Types of flip-flop in the design
7. Percentage of clock gating to be kept
8. Local as well as Global Skew to be kept

4.1 Assumptions
We have taken the following assumptions while developing this model:
4.1.1 Assumption 1
We have assumed that the current profile of the supply current drawn by a buffer (consisting of two CMOS inverters) driving certain set of registers to a triangular approximation. Out this assumption can be proved by a simulation result shown in Figure 4.1. This simulation is done by using SPICE MOS model at 55nm technology, a buffer driving 10 registers and the input is the rising input ramp with the transition time, Tr = 50 psec.
[image: graph1]

Figure 4.1: Simulated supply current profile of a buffer driving 10 registers with input as rising ramp signal with Tr = 50 psec.
4.1.2 Assumption 2
As shown in Figure 4.2, we have assumed that the time at which the clock signal arrives at the point 1, 2 and 3 from point A is same, i.e., there is no skew between these points. All the clock signals arrive at the same time and all the registers switch their states simultaneously with the arrival of clock signal.
The time at which the clock signal arrives at point A, B and C from point X is different, i.e., all these points are skewed from each other. We have given user the full control on this parameter so that he can modify the current profile as per his requirement.
[image:]

	Figure 4.2: Skew relation considered between various point in a clock tree
4.2 Mathematical Model
We have developed a simple yet very powerful analytical expression for analyzing the peak current. This analytical expression is a general expression and can be applied to the peak current evaluation coming out from either our flow or any other tool.
The beauty of this flow is that it requires minimum design input as the case is since it is coming during the starting phase of the design. These minimum design inputs are number of flip-flops in the design, desired input and output transition times and local skew between the buffers available in the design. Then to have more accurate estimation some more information (although not necessary) is required like number of clock domains, how these flip-flops will be distributed among them and clock activity ratio.
While developing this flow we kept in mind that this flow should be user friendly with user defined variables. Playing with these variables such as transition time, local skew, fan-out will lead to different current profiles. Then using the analytical expression the user can analyze the different current profiles. Once the analysis is done, the designer can then generate the early design constraints which lead to the chosen peak current profile. These design constraints could be
1. On-chip de-coupling capacitance requirement
2. Transition time
3. Types of clock tree buffer to be kept
4. Types of flip-flop in the design
5. Percentage of clock gating to be kept
6. Local and Global skew to be kept
7. EMC estimation, etc…
With Assumption 1 as discussed before, we had assumed the current profile of 1 buffer as triangular approximation, which can be shown in Figure 4.3.

	[image:]
		Figure 4.3: Switching current profile of one buffer
where, x(t) is the current profile of one clock buffer approximated as a triangle.

	[image:]
			 Figure 4.4: Switching instances

Figure 4.4 can be written mathematically as following:

				(4.1)
If we convolve h(t) with x(t), we will get the total current as given in Eq. (4.2) due to various switching happening at the delta time, i.e., skew.

					(4.2)
Using the convolution theorem, which is given by Eq. (4.3),

						(4.3)
So, the equation of finding the current will be given as Eq. (4.4),

						(4.4)
Pushing the integral inside, because of the linear property of the equation and re-writing the equation as Eq. (4.5),

							(4.5)
Since, we have to find the maximum or peak current, so i(t) is maximum when,

			
So, from Eq. (4.5), by doing differential and equating it to zero.

						(4.6)
Eq. (4.6) follows the linear property, so the differential operator can be pushed inside which results in Eq. (4.7)

						(4.7)

It is very difficult to solve the Eq. (4.7) analytically to find a closed form expression. The assumption is that all the are equal.
After taking the assumption and using the well known convolution integral expression the Eq. (4.7) is reduced to as shown below:

			

								(4.8)
Graphically the above expression is shown in Figure 4.5,

[image:]
Figure 4.5: Graphical view of Eq. (4.8)

So, the final closed form expression in given as,

			Width of the current pulseΔt
This expression shows a very interesting point.

If the ratio is an integer then the total sum current will be zero, but if it is not an integer then it will not go to zero and will be added to the forthcoming switching current.
This means that the Δt which is the skew, has to be the integer multiple of the width of the current.
4.3 KALPANA (CAD tool)
Chapter 2 presented a survey of other approaches to predict the peak current. A full SPICE transistor level simulation yields the most accurate results; however it is impractical for most circuits as the run-time increases rapidly with circuit complexity. For typical circuits, full transistor level simulations taken on the orders of weeks to simulate and most often do not converge.
There exist several tools that can be used to predict the peak current. However, none of these are flexible enough to work at any stage in the design cycle. These tools can only be used at the final stage of the design cycle. However, a tool that is capable to provide the current consumption in an IC at a very early stage of the design can permit changes in both the design and the layout.
4.3.1 High Level Flow of KALPANA
The high-level flow of KALPANA is shown in Figure 4.6.

[image:]
			Figure 4.6: Flow of KALPANA
A shown in the Figure 4.6, with the estimation of current a designer is able to estimate
			1. Skew
			2. Slew Rate
			3. De-coupling capacitance
			4. EMC, etc…	
with which he is able to decide the design constraints for his design.
As shown in the Figure 4.6, for the estimation of current by this tool we only need to provide minimum number of inputs.
4.3.2 Skeleton of KALPANA
KALPANA is totally designed on UNIX platform and is completely scripted in PERL language. It is a fully automated tool, i.e., user just need to provide the inputs and else the CAD tool will do everything else on its own and in the end shows user the current profile according to the inputs provided by him.
KALPANA uses ELDO simulator in background to extract the current profile of a single buffer driving certain set of flip-flops which is calculated by the fan-out of the load to the fan-in of a single flip-flop.
We had designed KALPANA to give flexibility to the user so that he can generate the required current profile by just changing certain parameters like local skew, transition time of input and output signal and also he can choose the desired flip-flops as well as buffers for his design.
Steps
Step 1: Invoke the tool at UNIX platform.
Step 2: Choose the output and input transition time.
Step 3: Choose the type of buffer you want in your design.
Step 4: Enter the flip-flop count you want to have in the last stage of your design.
Step 5: Choose the type of flip-flop.
Step 6: Enter the local skew between the buffers.
With all these data provided the tool will form a circuit (.cir) file which includes the SPICE definition of the transistor as per the technology (we had tested our tool on 90nm and 55nm technology), stimuli, path for the corner file and the input signal with the chosen transition time.
With the chosen transition times the tool will look the .lib file to find the values of the capacitances for both the buffer and the flip-flops and calculate the number of buffer stages which can drive the given number of last stage flip-flops.
This generated .cir file is then simulated with ELDO simulator which generates a file with extension .chi, with this file the tool will extract the time and current values for one buffer driving the calculated number of flip-flops.
These extracted values are then processed by the developed expression with the values of local skew and the calculated number of last stage buffers.
The tool will display the current profile and will ask the user whether he wants to modify the profile or not by changing the value of local skew.
This current profile can be used to estimate various design parameters, such as:
1. De-coupling capacitance
2. EMC estimation, etc…

Chapter 5
Results
In this chapter we will discuss the results which we got from KALPANA. In section 5.1, we will compare the result with of our tool with the industry standard tool called RedHawk APACHE which comes very late in the design cycle just before the tape out of the design. In section 5.2 we will do the analysis of the results which we got at different transition time and at different local skew between last stage buffers.
5.1 Comparison of KALPANA with APACHE
The current profile generated by KALPANA is shown in Figure 5.1, i.e. current estimated at RTL level and the current profile generated by APACHE is shown in Figure 5.2 which is generated just before the tape-out of the design.

 (
Time in
nsec
.
) (
Current in Amp.
)[image:]
	 Figure 5.1: Current estimated at RTL level by KALPANA

[image: \\samba\data\eeprom\amit\TEM_CELL_PICTUS\current.jpg]
 Figure 5.2: Current estimated at tape-out level by APACHE
The design is on 90nm CMOS technology and is having 70,000 flip-flops in the last stage. The total number of buffer stages for driving 70,000 flip-flops was 1404 buffers and the skew between each of them is 1 psec.
As seen in Figure 5.1 and Figure 5.2 KALPANA estimates the current consumption at very early stage of the design cycle with accuracy between 5-10%, the current profile is almost the same in both the cases and the peak as seen in both the figures also occur at the same time.
5.2 Detailed Analysis
In this section, we will analyze more results generated by KALPANA on a design at 55nm CMOS technology having 1,72,000 flip-flops in the last stage by varying the transition time and the skew between the last stage buffers.
In the figures given below the upper graph in both the Figure 5.3 and Figure 5.4 is for the rising input ramp type signal and the lower graph is for the falling input ramp type signal.
The current profiles in both the figures are plotted for transition time, Tr = 100, 150 and 300 psec.
As shown in the graph the naming convention is shown on the right hand side of each graph for example, I_pos_tskw50fs_tr_100ps means that the plotted current profile is for rising input ramp signal with transition time of 100 psec. and the skew between last stage buffers is 50 fsec.
[image: single-flop_100%of40%_tskw_50fs]
 Figure 5.3: Current profiles generated by KALPANA at skew 50 fsec. between the last stage buffers

[image: single-flop_100%of40%_tskw_100fs]
Figure 5.4: Current profiles generated by KALPANA at skew 100 fsec. between the last stage buffers.

As can be seen in Figure 5.3 and Figure 5.4, the current consumption in the design is drastically reduced in the second case by just doubling the skew from 50 fsec. to 100 fsec. and at the same the duration of current is also increased.
Hence, it can be concluded from both the above figures is that if the designer wants to reduce the current consumption in his device he has to skewed his design’s last stage buffers with a fast input signal, i.e., a signal having smaller value of transition time.

Chapter 6
Guidelines to reduce power consumption
In this chapter we will discuss certain guidelines which will be helpful for the designer to reduce the consumption of power in the design.
6.1 Clock Gating
To decrease the dynamic power consume by the sequential circuit, clock gating is one of the most successful method.
The sequential logic component which is connected with clock changes the value when the clock is triggered. And the component consumes lots of dynamic power during the operation. When the clock is triggered, the power is still consume by the component, even when the value remains unchanged. It comes out the waste of the power. If the circuit uses clock gating and changes the value only when the value is changed, the dynamic power will be decreased.
[image:]
	 Figure 6.1: The basic clock gating
 [image:]
			 Figure 6.2: The signal of clock gating

	 [image:]
			
			 Figure 6.3: The latched clock gating

 [image:]

			 Figure 6.4: The signal of latched clock gating

To implement the clock gating technique, an AND gate or a Latch will be added in-front of the register or the unit. The output signal will stay unchanged before the enable signal is triggered. When the enable signal is false, the register or the unit will not get the clock signal or so called gated clock signal.
The results for the clock gating of the design containing 1,72,000 flip-flops in the last stage on 55 nm CMOS technology for 100%, 30% and 10% clock gating is shown if Figures 6.5 - 6.10.

[image: single-flop_100%of40%_tskw_50fs]
Figure 6.5: Current profile for 100% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 50 fsec.
[image: single-flop_100%of40%_tskw_100fs]
Figure 6.6: Current profile for 100% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 100 fsec.
[image: single-flop_30%of40%_tskw_50fs]
Figure 6.7: Current profile for 30% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 50 fsec.
[image: single-flop_30%of40%_tskw_100fs]Figure 6.8: Current profile for 30% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 100 fsec.

[image: single-flop_10%of40%_tskw_50fs]Figure 6.9: Current profile for 10% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 50 fsec.

[image: single-flop_10%of40%_tskw_100fs]Figure 6.10: Current profile for 10% clock gating at 1,72,000 number of flip-flops in the last stage at skew of 100 fsec.

6.2 Quad Flip-Flop
To reduce power we can use a special type of flip-flop which has four flip-flops clubbed together. For the datasheet of quad flip-flop see Appendix A.

[image:]
Figure 6.11: Logic diagram of Quad flip-flop. (Courtsey datasheet of M74HC175, STMicroelectronics)
The results of the current consumption by the quad flip-flop and the normal flip-flop at 50 fsec. and 100 fsec. skew between last stage buffers and the number of flip-flops in the last stage of the design is 1,72,000 are shown in Figures 6.12 and 6.13.
Now if we combine the quad flip-flop phenomenon with that of clock gating we will get substantial reduction. The current profiles for 30% clock gating for the design having 1,72,000 number of flip-flops with 50 fsec and 100 fsec. skew between last stage buffers is shown in Figures 6.14 and 6.15.

[image: comb_tskw_50fs_100%of40%]Figure 6.12: Current profiles of the quad flip-flop and the normal flip-flop at skew 50 fsec. between the last stage of the buffers.
[image: comb_tskw_100fs_100%of40%]Figure 6.13: Current profiles of the quad flip-flop and the normal flip-flop at skew 100 fsec. between the last stage of the buffers.
[image: comb_tskw_50fs_30%of40%]Figure 6.14: Current profiles of the quad flip-flop and the normal flip-flop at skew 50 fsec. between the last stage of the buffers and clock gating of 30%.
[image: comb_tskw_100fs_30%of40%]Figure 6.15: Current profiles of the quad flip-flop and the normal flip-flop at skew 100 fsec. between the last stage of the buffers and clock gating of 30%.

Chapter 7
Thesis Summary
7.1 Conclusion
The main contributions of this thesis are two-fold. First, we had developed a simple yet powerful analytical expression through which we can analyze the current profiles generated by the CAD tool we had developed or from any other tool.
The second and the most important contribution of this thesis was in the development of a CAD tool (KALPANA) that can be used in the very early stage of the design to estimate the current consumption by the device within an accuracy of 5-10%. The tool is very fast, flexible and user-friendly, allows user to play with certain parameters to modify the current profile as per his requirements. With this estimation of current the designer can formulate various design parameters for his design.
7.2 Future Directions
We can atomize this tool to calculate various design parameters such as calculation of de-coupling capacitance, skew, slew rate and EMC so that the designer does not have to take any pain to calculate all such design constraints separately.
We can also make this tool to operate on various operating conditions and give designer more flexibility with another parameter to modify his needed current profile.

Bibliography
[1] R.W. Brodersen, A. Chandrakasan, and S. Sheng, “Technologies for personal
 communications”, 1991 Symp. VLSI Circuits, Tokyo, Japan, pp. 5-9, 1991.
[2] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-power CMOS digital design”,
 IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473-484, April 1992.
[3] A.M. Martinez, “Quick estimation of transient currents in CMOS integrated circuits”, IEEE
 J. Solid-State Circuits, vol. 24, no. 2, pp. 520-531, April 1989.
[4] J.E. Hall, Dale E. Hocevar, Ping Yang, and Michael J. McGraw, “SPIDER – a CAD system
 for modeling VLSI metallization patterns”, IEEE Trans. on Computer-Aided Design, vol.
 CAD-6, no. 6, pp. 1023-1031, November 1987.
[5] P. Vanoostende, P. Six, J. Vandewalle, and H.J. De Man, “Current calculation for the design
 of reliable CMOS VLAI”, Proc. European Conf. on Circuit Theory and Design, pp. 1103-
 1112, September 1991.
[6] P. Vanoostende, P. Six, J. Vandewalle, and H.J. De Man, “Estimation of typical power of
 synchronous CMOS circuits using a hierarchy of simulators”, IEEE J. Solid-State Circuits,
 vol. 28, no. 1, pp. 26-39, January 1993.
[7] D. Stark and M. Horwitz, “Tecniques for calculating currents and voltages in VLSI power
 supply networks”, IEEE Trans. on Computer-Aided Design, vol. 9, no. 2, pp. 126-132,
 February 1990.
[8] D. Stark and M. Horwitz, “Analyzing CMOS power supply networks using ARIEL”, Proc.
 IEEE Design Automation Conf., pp. 460-464, June 1988.
[9] A. Deng, Y. Shiau and K. Loh, “Time domain current waveform simulation of CMOS
 circuits”, Proc. IEEE Conf. on Computer-Aided Design, pp. 208-211, November 1988.
[10] J.H. Wang, J.T. Fan and W.S. Feng, “A novel current model for CMOS gates”, Proc. IEEE
 Symp. On Circuits and Systems, pp. 2132-2135, May 1992.
[11] S. Chowdhury and J.S. Barkatullah, “Current estimation in MOS IC logic circuits”, Proc.
 IEEE Conf. on Computer-Aided Design, pp. 212-215, November 1988.
[12] S. Chowdhury and J.S. Barkatullah, “Estimation of maximum currents in MOS IC logic
 circuits”, IEEE Trans. on Computer-Aided Design, vol. 9, no. 6, pp. 642-654, June 1990.
[13] H. Kriplani, F. Najm, and I. Hajj, “ Maximum current estimation in CMOS circuits”, Proc.
 IEEE Design Automation Conf., pp. 2-7, June 1992.
[14] F. Najm, R. Burch, P. Yang, and I. Hajj, “CREST – a current estimator for CMOS circuits”,
 IEEE Conf. on Computer-Aided Design, pp. 204-207, November 1988.
[15] F. Najm, R. Burch, P. Yang, and I. Hajj, “Probabilistic simulation for reliability analysis of
 CMOS VLSI circuits”, IEEE Trans. on Computer-Aided Design, vol. 9, no. 4, pp. 439-450,
 April 1990.
[16] F. Najm, P. Yang, and I. Hajj, “An extension of probabilistic simulation for reliability
 analysis of CMOS VLSI circuits”, IEEE Trans. on Computer-Aided Design, vol. 10, no.
 11, pp. 1372-1381, November 1991.
[17] F. Rouatbi, B. Haroun, and A.J. Al-Khalili, “Power estimation tool for sub-micron CMOS
 VLSI circuits”, Proc. IEEE Conf. on Computer-Aided Design, pp. 204-209, November
 1992.
[18] U. Jagau, “SIMCURRENT – an efficient program for the estimation of the current flow of
 complex CMOS circuits”, IEEE Conf. on Computer-Aided Design, pp. 396-399, November
 1990.
[19] T.H. Krodel, “Power-Play – fast dynamic power estimation based on logic simulation”,
 IEEE Conf. on Computer Design, pp. 96-100, October 1991.
[20] L.W. Nagle, “SPICE 2: A computer program to simulate semiconductor circuits”, Ph.D.
 dissertation, Univ. Calif. At Berkeley, May 1975.
[21] T. Sakurai and A.R. Newton, “Alpha-Power law MOSFET model and its applications to
 CMOS inverter delay and other formulas”, IEEE J. Solid-State Circuits, vol. 25, no. 2, pp.
 584-593, April 1990.
[22] N. Hendestierna and K.O. Jeppson, “CMOS circuit speed and buffer optimization”, IEEE
 Trans. on Computer-Aided Design, vol. CAD-6, pp. 270-281, March 1987.
[23] H.J.M. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the
 design of buffer circuits”, IEEE J. Solid-State Circuits, vol. SC-19, no. 4, pp. 468-473,
 August 1984.
[24] W. Wolf, “Household hints for embedded system designers”, IEEE Computer Society
 Press, 2002.
[25] “Unified modeling language”, http://www.uml.org/.

[26] “X Power Estimator (XPE), Xilinx Inc.”,
 http://www.xilinx.com/products/design_resources/power_central/.
[27] “PowerPlay Early Power Estimator, Altera Inc.”,
 http://www.altera.com/literature/hb/qts/qts_qii53006.pdf.
[28] V. Tiwari, S. Malik, and A. Wolfe, “Power analysis of embedded software: a first step
 towards software power minimization”, ICCAD ’94: Proc. of the 1994 IEEE/ACM Int.
 Conf. on Computer-Aided Design, Los Alamitos, CA, USA: IEEE Computer Society Press,
 1994, pp. 384-390, 1994.
[29] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria, and R. Zafalon, “Reducing the
 complexity of instruction-level power models for vliw processors”, Design Automation for
 Embedded Systems, vol. 10, no. 1, pp. 49-67, July 2006.
[30] J. Russel and M. Jacome, “Software power estimation and optimization for high
 performance, 32-bit embedded processors”, Proc. IEEE Int. Conf. on Computer Design:
 VLSI Computer and Processors, ICCD’98, pp. 328-333, 1998 .
[31] V. Tiwari, S. Malik, A. Wolfe, and M. Lee, “Instruction level power analysis and
 optimization of software”, Journal of VLSI signal processing, Kluwer Academic
 Publishers, Boston, pp. 1-18, 1996.
[32] L.Benini, D. Bruni, M. Chinosi, C. Silvano, V. Zaccaria and R. Zafalon, “A power
 modeling and estimation framework for vliw-based embedded systems”, Proc. of Int.
 Workshop-Power and Timing Modeling, Optimization and Simulation, PATMOS’01,
 2001.
[33] S. Gupta and F.N. Najm, “Power macromodeling for high level power estimation”, Proc. of
 34th IEEE Design Automation Conf., pp. 365-370, 1997.
[34] A. Bogliolo, L. Benini, and G.D. Micheli, “Regression-based rtl power modeling”, ACM
 Trans. Des. Automation Electron. Syst., vol. 5, no. 3, pp. 337-372, 2000.
[35] N.R. Potlapally, A. Raghunathan, G. Lakshminarayana, M. Hsiao, and S.T. Chakradhar,
 “Accurate power macro-modeling techniques for complex rtl components”, in Proc. of Int.
 Conf. On VLSI Design Banglore, India, pp. 235, Jan. 2001.
[36] L. Negri and A. Chiarini, “Power simulation of communication protocols with statec”,
 Applications of Specification and Design Languages for SoCs, pp. 277-294, Springer
 Netherlands, 2006.
[37] L. Zhong, S. Ravi, A. Raghunathan, and N.K. Jha, “Power estimation for cycle-accurate
 functional descriptions of hardware”, IEEE Int. Conf. on Computer-Aided Design, 2004,
 ICCAD-2004, pp. 668-675.
[38] M. Caldari, M. Conti, M. Coppola, P. Crippa, S. Orcioni, L. Pieralisi, and C. Turchetti,
 “System level power analysis methodology applied to the amba ahb bus”, in Proc. of the
 Conf. on Design Automation and Test in Europe (DATE), 2003, IEEE Computer Society,
 pp. 32-37.
[39] N. Bansal, K. Lahiri, A. Raghunathan, and S.T. Chakradhar, “Power monitors: A
 framework for system level power estimation using heterogeneous power models”, IEEE
 18th Int. Conf. on VLSI Design , 2005, pp. 579-585.
[40] M. Lajolo, A. Raghunathan, S. Dey and L. Lavagno, “Efficient power co-estimation
 techniques for system-on-chip design”, in IEEE Proc. on Design, Automation and Test in
 Europe Conf. and Exhibition, 2000, pp. 27-34.
[41] R.A. Bergamaschi, Y. Shin, N. Dhanwada, S. Bhattacharyya, W.E. Dougherty, I. Nair, J.
 Darringer and S. Paliwal, “Seas – a system for early analysis of SoCs”, in CODES+ISS’03,
 Proc. of the 1st IEEE?ACM?IFIP Int. Conf. on Hardware/Software Code Design and
 System Synthesis, New York, USA, pp. 150-155, 2003.
[42] H. Shin and C. Lee, “Operation mode based high-level switching activity analysis for
 power estimation of digital circuits”, in IEICE Trans. on Comm., E90-B(7), pp. 1826-1834,
 2007.
[43] A. Bogliolo, L. Benini, and G.D. Micheli, “Adaptive least mean square behavioral power
 modeling”, IEEE Proc. on European Design and Test Conf., 1997, pp. 404-410.
[44] A. Bogliolo, L. Benini, and G.D. Micheli, “Characterization free behavioral power
 modeling”, Proc. in Design, Automation and Test in Europe, pp. 767-773, 1998.
[45] A. Bogliolo, I. Colonescu, E. Macii, and M. Poncino, “An rtl level power estimation tool
 with on-line model building capabilities”, Int. Workshop Power Timing Modeling,
 Optimization Simulation Yverdon-les-Bains, Switzerland, 2001.
[46] S. Gupta and F.N. Najm, “energy and peak current per-cycle estimation at rtl”, IEEE Trans.
 on VLSI Systems, vol. 11, no. 4, pp. 525-537, 2003.
[47] H. Mehta, R.M. Owens and M.J. Irwin, “Energy characterization based on clustering”, 33rd
 Design Automation Conf. Proc., pp. 702-707, 1996.
[48] M. Nemani and F.N. Najm, “Towards a high level power estimation capability”, IEEE
 Trans. Computer-Aided Design Int. Circuits Systems, vol. 15, no. 6, pp. 588-598, 1996.
[49] M. Shoji, CMOS Digital Circuit Technology, Prentice Hall, 1988.
[50] HSPICE Users’ Manual, H9001, Meta-Software, Inc. 1990.
[51] D. Mijuskovic, “Clock distribution in application specific integrated circuits”,
 Microelectron. J., vol. 18, pp. 15-27, July/Aug. 1987.
[52] E.G. Friedman, “Clock distribution in synchronous digital integrated circuits”, IEEE Proc.,
 vol. 89, no. 5, pp. 665-692, 2001.

8

image3.png
- +- Churging soc.
— Discharging case:

image4.png

image5.png
Current (UA)

L]
0

1

1: Charging positive maximum (CP)

2: Discharging negative niximum (DN)

3: Discharging positive maximum (DP)

10 20 30 40 S0 60 70 K0 90

Input transition time T, (ns)

100

image6.png
Current (uA)

[

Time (ns)

A

16

image7.wmf
Cn

Cp

in

ip

dt

dvo

+

-

»

oleObject2.bin

image8.wmf
L

st

C

B

Ti

A

t

×

+

×

=

oleObject3.bin

image9.png
Thetime 14 (ns)

10 30 30 40 S0 60 70 80 % 100
Input transition time T (ns)

image10.wmf
P

P

N

DD

I

C

C

V

b

aTi

To

)

(

+

+

=

oleObject4.bin

image11.wmf
DSATP

O

DD

SD

v

v

V

v

=

-

=

oleObject5.bin

image12.wmf
C

X

C

X

DSATP

v

v

v

v

v

2

2

+

-

+

=

oleObject6.bin

image13.wmf
sp

p

P

C

v

V

L

v

max

=

oleObject7.bin

image14.png
To

LET

Time

2deiop ¢ waun)

image15.wmf
P

tp

IN

DD

X

FB

V

v

V

v

+

-

-

=

1

oleObject8.bin

image16.wmf
P

tp

IN

DD

Xo

DSATP

FB

V

v

V

v

v

+

-

-

=

=

1

oleObject9.bin

image17.wmf
P

tpo

st

IN

DD

st

O

DD

FB

V

t

v

V

t

v

V

+

-

-

=

-

1

)

(

)

(

oleObject10.bin

image18.wmf
)

1

(

)

(

Ti

t

V

t

v

st

DD

st

IN

-

=

oleObject11.bin

image19.wmf
st

O

DD

st

O

t

T

V

t

v

=

)

(

oleObject12.bin

image20.png
T

oy

oBerjop wosm)

Time

image21.png
Ref
Clk

End
Clk

thigh ' tiow

image22.emf

image23.emf

image24.emf

image25.jpeg
st

o0

s

“ton.u

-1s0.0u

2000w

Current (A)

-2s0.0u

“300.0u

-350.00

—an.u

-as0.0u

“sonau

0n

02n

0an

08

02n
Time (s)

Lin

L2n

Lan

Ln

1 oDy

image26.png
@ additional
Parallel
Buffers

O N R O

LG S — i = B = B

image27.png
(1)

image28.png
h()

Switching time
showed

image29.wmf
å

D

-

=

i

i

t

t

t

h

)

(

)

(

d

oleObject13.bin

image30.wmf
å

Ä

D

-

=

Ä

=

i

i

t

x

t

t

t

x

t

h

t

i

)

(

)

(

)

(

)

(

)

(

d

oleObject14.bin

image31.wmf
ò

-

=

Ä

t

t

t

d

t

y

x

t

y

t

x

)

(

)

(

)

(

)

(

oleObject15.bin

image32.wmf
ò

å

-

D

-

=

i

i

d

t

x

t

t

t

i

t

t

d

)

(

)

(

)

(

oleObject16.bin

image33.wmf
å

-

D

-

=

i

i

d

t

x

t

t

t

i

t

t

d

)

(

)

(

)

(

oleObject17.bin

image34.wmf
0

)

(

)

(

=

t

d

t

di

oleObject18.bin

image35.wmf
0

)

(

)

(

)

(

=

-

D

-

=

å

ò

dt

d

t

x

t

t

d

dt

t

di

i

i

t

t

d

oleObject19.bin

image36.wmf
0

)

(

)

(

)

(

=

-

D

-

=

å

t

t

d

d

dt

t

dx

t

t

dt

t

di

i

i

oleObject20.bin

image37.wmf
t

D

oleObject21.bin

image38.wmf
å

=

D

-

0

)

(

dt

t

t

dx

i

oleObject22.bin

image39.wmf
å

D

=

D

-

=

t

t

i

dt

t

i

t

dx

0

)

(

oleObject23.bin

image40.png
3
5

& (- 2M)
ﬂ

ax(t-A0)

Current is zero if the ratio is

)

image1.png
NI L

ORI TS WoRe™

image41.wmf

oleObject24.bin

image42.png
Flip-Flop Count Technology

Clktree/sequential
element contributes.

max on dynamic current

NOK.

Estimation of current|

Design
Constraint|

OK

De-Cap
stimation

Package

e\ecu

image43.png
01

08

12

14

15

18

image44.jpeg
Current (4)

9000

800.0m|

700.0m|

600.0m|

]
.9

300.0m|

200.0m|

100.0m|

0.0

24280

245.6n

24520

2ban

2560
Time

258 2480n
(s

24h2n

2dhan

2

image45.jpeg
Current (A)

Current (A)

ET

a0

a5

sa

q

02

00|
02
04
05
RS
Lo
FES
L4
L5
e
20|
22
24
25
28
ETE
32
En

ob ok
Time (s)

1.pos_tskw_50fs_tr_100ps
12pos_tskw_50fs_1r_150ps
1Zpos_tskw_50fs_tr_300ps

Ineg_tskw_50fs_tr_100ps
LZneg_tskw_5 Ofs_tr_150ps

image46.jpeg
Current (A)

Current (A)

00—

RES

Lo

FES

20

Er

ET

Er

02

00|

2]

04

05

0s-]

Lo

2]

4]

5]

L]

20

22

T
Lon

Time (s)

1pos_tskw. 100f5_tr_100ps
12pos_tskw_ 100f5_tr_150ps
1Zpos_tskw_100fs_tr_300ps

I.neg_tskw. 100f5_tr_100ps
IZneg_tskw_ 100f5_tr_150ps
IZneg_tskw_100fs_tr_300ps

image47.png
EN
CLK GATED_CLK

image48.png
CLK

«—————» Region of Stability

COUNT

GATED_CLK

image49.png
EN

CLK

Latch

} GATED_CLK

image2.wmf
]

,

[

]

[

j

pk

E

q

E

image50.png
CLK

<4—> Region of Stability

COUNT

GATED_CLK

image51.jpeg
Current (A)
e

T
0

Time (s)

1.pos_tskw_50fs_tr_100ps
12pos_tskw_50fs_1r_150ps
1Zpos_tskw_50fs_tr_300ps

Ineg_tskw_50fs_tr_100ps
IZneg_tskw_50fs_1r_150ps
IZneg_tskw_50fs_tr_300ps

image52.jpeg
Current (A)

Current (A)

04]

a5

s]

o]

2]

4]

5]

]

E

22

[T

001
1]
02|
03]
04|
05|
05|
07|
03]
03|
1o
e
12|

13

T
Lin

Tirme (s)

1pos_tskw. 100f5_tr_100ps
12pos_tskw_ 100f5_tr_150ps
1Zpos_tskw_100fs_tr_300ps

I.neg_tskw. 100f5_tr_100ps
I2neg_tskw_ 100f5_tr_150ps
IZn3g._tskw_100fs_tr_300ps

image53.jpeg
Current (A)

s0.0m—

oom 1

“s0om-|

“10n.om]|

-150.0m |

—200.0m]

~2s00m]|

“300.0m]|

“350.0m |

~sonom |

-as00m]|

“sonom-|

“ss0.0m-—|

“so0.om_]|

T
0

Time (s)

1.pos_tskw_50fs_tr_100ps
12pos_tskw_50fs_1r_150ps
1Zpos_tskw_50fs_tr_300ps

Ineg_tskw_50fs_tr_100ps
LZneg_tskw_5 Ofs_tr_150ps

image54.jpeg
Current (A)

stom

oom|

“s0om—|

“10n.om |

“150.0m |

—200.0m |

~250.0m |

“300.0m |

“350.0m |

~s0nom |

—4s0.0m |

“sonom-—|

-ss0.om_]|

T
0n

Time (s)

1pos_tskw. 100f5_tr_100ps
12pos_tskw_ 100f5_tr_150ps
1Zpos_tskw_100fs_tr_300ps

I.neg_tskw. 100f5_tr_100ps
IZneg_tskw_ 100f5_tr_150ps
IZneg_tskw_100fs_tr_300ps

image55.png
CLOCK

n
k1]

image56.jpeg
05,

00|

a5

o]

15

20

25

ETE

Current (A)

ErE

a0

a5

e

e

0an

Time (s)

I uad tskw_50fs_1r_100ps
1Zquad tskw_50fs_1r_150ps
1Zquacl_tskw_5 0fs_tr_300ps

I.single_tskw_50fs_tr_100ps
single_tskw_50fs_tr_ 15005
IZsingle_tskw_50fs_tr_300ps

image57.jpeg
Current (A)

Current (A)

1Zquad_tskw_ 1005 tr_150ps

I quad tskw_ 10015 tr_1000s
IZquadl_tskw_100fs_tr_300ps

single_tskw_ 100f5_tr_150ps

IZsingle_tskw_100fs_tr_300ps

05 ILsingle_tskw_100fs_tr_100ps
00

a5

o]

15

20

25

ETE

Er

a0

T T T T T T T T T T T T T T T T
ton 1o Lan L
Time (s)

image58.jpeg
Current (A)

Current (A)

00

RS

04

05

R

o]

FES

L4

L5

02
00

2]
04
6]
03]
T
12
4]
15
TS
20-]
22
24
26

28

I uad tskw_50fs_1r_100ps
1Zquad tskw_50fs_1r_150ps
1Zquacl_tskw_5 0fs_tr_300ps

I.single_tskw_50fs_tr_100ps
single_tskw_50fs_tr_ 15005
IZsingle_tskw_50fs_tr_300ps

image59.jpeg
Current (A)

Current (A)

EEE

R

05

RS

Lo

FES

14

il

02

00|

2]

04

05

0s-]

Lo

2]

4]

5]

L]

20

22

T
0

Time (s)

I quad tskw_ 10015 tr_1000s
1Zquad_tskw_ 1005 tr_150ps
IZquadl_tskw_100fs_tr_300ps

I.single_tskw_ 100f5_tr_100ps
single_tskw_ 100f5_tr_150ps
IZsingle_tskw_100fs_tr_300ps

oleObject1.bin

