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ABSTRACT
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The length and the complexity of the software are rising day by day. This rising complexity has increased the demand for techniques that can generate test data effectively.  Test data generation techniques selects from the input domain of the program, those input values that satisfies a pre-defined testing criteria. In this work, we propose a new test data generation algorithm. Our algorithm generates test data using adequacy based testing criteria that aims to generate an adequate test data set by using the concept of mutation analysis. In general, mutation analysis is applied after the test data is generated. But, in this work, we propose an algorithm that applies mutation analysis at the time of test data generation only, rather than applying it after the test data has been generated. Incorporation of mutation analysis at the time of test data generation leads to the generation of test data that is itself adequate and hence we need not check for its adequacy after its generation. This saves significant amount of time (required to generate adequate test cases) as compared to other techniques that applies mutation analysis after the generation of test data as the total time in these techniques is the sum of the time to generate test data and the time to apply mutation analysis. 
We also use genetic algorithms that explore the complete domain of the program to provide near-global optimum test data set. The use of genetic algorithms is also facilitated by the fact that many of the testing problems can be formulated as search problems. In order to analyze our algorithm, we evaluate it using fifty real time programs written in C language. The program set contains programs ranging from 35 to 250 lines of source code and includes from very basic to very complex programs. We compare our algorithm with path testing and condition testing techniques (that uses reliability based testing criteria) for these fifty programs in two categories viz. number of generated test cases and the time taken to generate test cases. The results suggest that our adequacy based algorithm is better than the reliability based path testing and condition testing techniques in both of these categories. Thus this algorithm may significantly reduce the time of test data generation.
HIGHLIGHTS OF THE THESIS
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· We propose a test data generation algorithm based on adequacy based testing criteria. 

· We evaluate our algorithm using fifty real time programs written in C language.

· Our algorithm can reduce the time taken to generate test cases.

· Our algorithm generates less number of test cases than other test data generation techniques.
· There is a significant reduction in number of test cases and significant savings in time taken to generate test cases in our algorithm.
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CHAPTER 1

Introduction
Between 40% and 50% of the software production development cost and time is expended in software testing (Tai, 1980; Ince, 1987; Graham, 1992). It consumes resources and adds nothing to the product in terms of functionality. Time is one of the most important factors to be considered while performing software testing. We generally have only limited amount of time to test and it is very essential to perform testing within the time bounds in order to ensure timely delivery of the software and to face competition in the software market. Therefore much effort has been spent in the development of techniques that can generate test data quickly and efficiently.
In reality, testing only reveals the presence of errors and not their absence (Dijkstra, 1972). One objective of software testing is to find errors and program structure faults. However, a problem might be to decide, when to stop testing the software. A very common fact about software testing is that ‘Exhaustive testing is not possible’ (Aggarwal and Singh, 2006). This is so because there are no limits on how much we can test. If this is the case, then when should we stop testing the software or how long should we test? An answer to this question is ‘testing criteria’. Before we actually perform the process of testing, we should decide upon the testing criteria. We then proceed to generate test data, and continue till we get the test values that satisfy the decided criterion. There are numerous testing criteria that exist in software testing. Different techniques use different testing criteria.
Software testing is one of the main feasible methods to increase the confidence of the programmers in the correctness and reliability of the software (Deason, 1991). Sometimes, programs which poorly tested perform correctly for months and even years before some input sets reveal the presence of serious errors. Incorrect software which is released to market without being fully tested could result in customer dissatisfaction and moreover it is vitally important for software in critical applications that it is free of software faults otherwise it  might lead to heavy financial losses or even endanger lives. Nevertheless, software testing is the most usual technique for error detection in today software industry. The main goal of software testing is to increase one’s confidence in the correctness of the program being tested.

In order to test software, test data have to be generated and some test data are better at finding errors than others. Therefore, a systematic testing technique should be followed to differentiate good (suitable) test data from bad test (unsuitable) data, and to detect good test data if they are generated. Test data which are good for one program are not necessarily appropriate for another program even if they have the same functionality. Though testing does not add anything to the functionality of the software, still it is a very important phase in the software development life cycle. As the use of reusable components have made the design and development of the software very simpler, much focus in software development is laid upon requirements and testing phase. In fact, the organizations follows 40-20-40 rule that states; 40% of the overall effort is given each to requirements and testing phase, while 20% of the effort is given to the design and implementation phase (Royce, 1998). 
1.1 What is Software Testing? 
Software testing is the process of executing a program with the intent of finding errors (Aggarwal and Singh, 2006). It is an investigation that is conducted to provide stakeholders the information about the quality of the product/service under test (Kaner, 2006). Testing is a very complex, yet very important activity. It is one of the most significant means to ensure software quality. Software testing is required in software development life cycle for the following reasons:

1. To check that the application satisfies its requirements

2. To build a quality product

3. To deliver a quality product

4. To provide confidence to the software development company that the software will work satisfactorily in client environment

5. To improve the quality of the software product

6. To reduce the maintenance cost

7. To avoid users to find bugs

8. To keep standing in competition
9. Poor testing can cost anything from life to money

Software testing is essentially defined as the combination of software verification and validation testing. Verification testing involves testing the intermediate work products that are produced during the process of software development. This type of testing includes reviews, walkthroughs, inspections etc. Validation testing involves testing the final end product. It involves functional (black box) and structural (white box) testing. 
1.1.1 Functional Testing
Functional testing involves testing the functionality of the system in terms of input-output relationship. It is also known as specification based testing that test the software product using software specification or black box testing where the internal structure and behavior of the program under test is not considered. This type of testing involves equivalence class testing, random testing etc. Functional testing focuses on testing the functionality of the system using some functional test criteria such as equivalence classes (Duran and Ntafos, 1984), random testing (Duran and Ntafos, 1984) etc. In this type of testing, test data for software are constructed from its specification (Beizer, 1990; Ince, 1987; Frankl and Weiss, 1993). The strength of black box testing is that tests can be derived early in the development cycle. This can detect missing logic faults mentioned by Hamlet (1987). The software is treated as a black box and its functionality is tested by providing it with various combinations of input test data. 
1.1.2 Structural Testing

Structural testing deals with testing the structure of the system based on the information about the source code of that system. It focuses on testing the structure of the system using some structural test criteria such as paths, functions, conditions, branches etc. It is also known as white box testing. In white box testing, the internal structure and behavior of the program under test is considered. The structure of the software is examined by execution of the code. Test data are derived from the program's logic. This is also called program-based testing (Roper, 1994). This method gives feedback e.g. on coverage of the software.

There are several structural (white box) testing based criteria:

1. Reliability based testing criteria: Reliability based criteria aims to generate a set of reliable test cases. A test case set is reliable if its execution ensures that the program is correct on all its inputs (DeMillo and Offutt, 1991). They are used to show the correctness of the program in terms of achieving some coverage that may be either ‘control flow coverage’ or ‘Data flow coverage’. Data flow coverage criteria include all-uses (Ghiduk et al., 2007), all-du paths (Andreou et al., 2007; Girgis, 2005; Laski and Korel, 1983; Rapps and Weyuker, 1985) etc. Control flow coverage criteria include path testing (Chen and Zhong, 2008; Clarke, 1976; Korel, 1990; Mansour and Salame, 2004; Srivastava and Tim, 2009), condition/branch testing (Jones et al., 1996; Khor and Grogono, 2004; Michael et al., 2001), statement testing etc. These levels of testing are explained below:
· Statement Testing: Every statement in the software under test has to be executed at least once during testing. A more extensive and stronger strategy is branch testing. 

· Branch testing: Branch coverage is a stronger criterion than statement coverage. It requires every possible outcome of all decisions to be exercised at least once (Huang, 1975), i.e. each possible transfer of control in the program be exercised. This means that all control transfers are executed (Jin, 1995). It includes statement coverage since every statement is executed if every branch in a program is exercised once. However, some errors can only be detected if the statements and branches are executed in a certain order, which leads to path testing.

· Path testing: In path testing every possible path in the software under test is executed; this increases the probability of error detection and is a stronger method than both statement and branch testing. A path through software can be described as the conjunction of predicates in relation to the software's input variables. However, path testing is generally considered impractical because a program with loop statements can have an infinite number of paths. A path is said to be 'feasible', when there exists an input for which the path is traversed during program execution, otherwise the path is unfeasible

· Condition testing: It is a structural testing technique that involves testing each and every (if-then-else) condition, on both its true and false side, for at least one. Condition testing aims to ensure that the control flow of the program associated with true and false parts of every condition in a program is executed for at least once.

2. Adequacy based testing criteria: It is used to show the adequacy of the test cases in terms of whether or not they can identify faults in the program. DeMillo and Offutt (1991) have rightly stated that “A test case set is adequate if it causes all the incorrect versions of the program to fail to execute successfully. Adequacy requires that the test case set detects faults rather than show correctness”.

One of the major differences between reliability based and adequacy based testing criteria (DeMillo and Offutt, 1991) is that reliability based criteria verify the correctness of the program with regard to a pre-defined testing criteria but does not take into account the identification of faults in the program. On the contrary, adequacy based testing criteria verify the adequacy of the test data. This informs the tester about whether or not there are any faults in the program, so that the quality of the program can be enhanced by focusing upon these faults.
1.2 Test Data Generation

Test data generation is basically the generation of test data using some test data generation technique with the aim of achieving predefined test criteria. It involves two things: (1) selecting some testing criteria and (2) generating test cases that meets the selected testing criteria.
Test data generation has a very important role in software testing. Software testing basically involves generating the test data that can meet a pre defined testing criteria and executing it to ensure that the criterion is met. The research on test data generation is an ongoing activity and it involves generating more and more sophisticated techniques that can generate effective test data to meet the challenges of software testing. A test data generation technique should be able to:

· Efficiently generate an effective test data set.

· Reduce time and effort in generating test data.

· Select good test data that has the highest probability of detecting the fault.

· Measure the progress in testing quantitatively by using an effective testing criterion.

· Adequately generate effective and efficient test data.

· Meet the challenge of time bounds while testing by generating test data in a reasonable amount of time.

· Reduce the maintenance cost of the software.

In general, numerous test cases can be generated for a program under test. But, since we have only limited time to test, it is very essential to generate only those test cases that are effective. Thus a test data generation technique should be able to distinguish between good and bad test cases. A test case is considered to be good if it has a high probability of finding the fault. There has been a significant evolution in the methods of test data generation including random testing, symbolic execution, local search based testing, heuristic search based testing. These techniques are described in the subsequent sections.
1.2.1 Random Test Data Generation

Random testing arbitrarily selects test case values from the input domain of the program and then provides these values to the program under test. In contrast, partition testing partitions the input domain of the program into several partitions and then selects at least one test case values from each partition randomly. Random testing has been used by Duran and Ntafos (1984). In their work, they (1) compared random testing with partition testing; and (2) evaluated the random testing process using various coverage criteria such as segment coverage, branch coverage, path coverage, etc. 
Random testing was especially recommended for the final testing stage of software by Tsoukalas (1993) and Girard and Rault (1973). Duran and Ntafos (1984) recommended a mixed final testing, starting with random testing, followed by a special value testing method. Ince (1986) reported that random testing is a relatively cheap method of generating initial test data.

1.2.2 Symbolic Test Data Generation

Symbolic test data generation involves generating test data by symbolically executing the programs. Clarke (1976) generated the software test data by using symbolic execution. It was a path based testing technique. The idea was to select some target path and then to generate the test case values such that these values executes the target path. This technique was based on performing the static analysis of the target paths, by symbolically executing the paths. Symbolic execution means that instead of assigning the values to the program variables, expressions or symbols are assigned to them. The technique was based on (1) generating a computation table for the target path; (2) building an evolution graph from the computation table; (3) generating the constraints from the evolution graph; (4) finding the test case values that solves these constraints. 

The characteristics of symbolic execution are:

· Symbolic expressions are generated and show the necessary requirements to execute a certain path or branch (Clarke, 1976). The result of symbolic execution is a set of equality and inequality constraints on the input variables; these constraints may be linear or non-linear and define a subset of the input space that will lead to the execution of the path chosen
· If the symbolic expression can be solved the test path is feasible and the solution corresponds to a set of input data which will execute the test path. If no solution can be found then the test path is infeasible

· Manipulating algebraic expressions is computationally expensive, especially when performed on a large number of paths
· Common problems are variable dependent loop conditions, input variable dependent array (sometimes the value is only known during run time).
1.2.3 Search Based Test Data Generation

Local search based testing techniques involves generating test data searching an area through the input domain of the program, to find the desired test case values. These techniques were first used by Korel (1990) to generate test data. Korel (1990) used a dynamic test data generation approach that is based on path testing criteria to locate the values of input variables for which the desired path is traversed. Korel’s method is based on data flow analysis and function minimization approach to generate test data which is based on the execution of the software under test. Since the software under test is executed, values of array indexes and pointers are known at each point in the software execution and this overcomes the problems and limitations of symbolic evaluations. 

In Korel's approach a branch function is formed out of the branch predicates where the control should flow. These functions are dependent on the input variables which can be difficult to represent algebraically, but the values can be determined by program execution. The idea is now to minimize these branch functions which have a positive value when the desired branch is not executed. As soon as the value becomes negative, the branch will be traversed.

Local search based testing techniques are likely to trap in local minima or maxima, thus providing test case values that are not globally optimal. In contrast to local search based testing techniques, heuristic search based testing techniques are based on using the heuristic search techniques to generate test data. Heuristic search techniques are approximations of optimal search techniques. The use of these techniques in testing is based on the fact that the testing problems can be formulated as the problems of searching through the input domain of the program those input values that satisfy predefined testing criteria (Xanthakis, 1992). There has been a lot of research in the use of heuristic search techniques for test data generation, (Michael and McGraw, 1997; Wegener, 2001; Lin and Yeh, 2001; Mansour and Salame, 2004; McMinn, 2004; Harman and Wegener, 2005; Dahal and Hossain, 2007; Bouchachia, 2007; Shen and Wang, 2007; Andreou and Economides, 2007). Moreover, Ali (2010) has presented a detailed survey in the field of search based test data generation. He examined around 122 relevant research papers that have used heuristic search techniques for test data generation. Various search techniques he considered includes genetic algorithms, simulated annealing, particle swarm optimization, ant colony optimization etc. His survey suggests that of all the search techniques, genetic algorithms proves better and efficient than other search techniques for test data generation in terms of number of test data generation, execution time, percentage coverage achieved.   

1.3 Motivation of the Work

Software testing is the most important phase in the software development life cycle. It is an investigation that is conducted to provide stakeholders the information about the quality of the product/service under test (Kaner, 2006). Software tester is a middleman between the developer and the customer and faces the pressure from both the sides. Software testing has many challenges that need to be analyzed, explored, and addressed. These challenges are the ultimate source of inspiration that motivated us to choose testing as the research area.

Some of the most widely recognized challenges are:
· Exhaustive testing is not possible: We can never test software to the completion. Hence, it is necessary to quantify the process of testing. One of the most common ways to do this is to use testing criteria. We generally decide upon certain test criteria before starting to generate test cases. Selection of appropriate test criteria is a bigger challenge.

· Testing is time consuming: Testing is a time consuming process and it alone consumes about 50% of the total development time. Hence, some effective means to perform testing is necessary to ensure on time delivery of product, simultaneously maintaining the quality of the product.

· Poor testing increases maintenance cost: If testing is not done to a desirable extent, then defects will arise during usage of the product. Hence, maintenance cost will increase.

When we started surveying in this field, we found several research papers related to this field. After reading these papers, we found that test criteria can be broadly classified in two categories viz. reliability based test criteria and adequacy based test criteria. Reliability based testing criteria intends to generate reliable test cases that verify the correctness of the program in terms of satisfying certain criteria. Adequacy based criteria intends to generate adequate test cases that causes incorrect versions of the program to fail to execute successfully. Hence, reliability based criteria show correctness while adequacy based criteria identify faults in the program (and also verify correctness). Since the intent of testing is to find faults in the program, we can say that adequacy based criteria are more beneficial than reliability based test criteria as they ensure both adequacy and reliability. We found that much of the work has been done on reliability based test criteria, while very less work has been done on adequacy based criteria. Hence, in our work, we have focused upon adequacy based testing criteria for test data generation.

The use of genetic algorithms in software testing is also appealing (Xanthakis, 1992). It is facilitated by the fact that the software testing problem can be formulated as a problem of searching through the input domain of the program, the test case values that can satisfy predefined testing criteria. According to Goldberg (1989), genetic algorithms are the most effective heuristic search techniques. They outperform other heuristic search techniques for generating test data in terms of number of test cases generated, execution time and percentage coverage achieved (Ali, 2010). Thus we decided to use genetic algorithms in our work.
1.4 Goals of the Thesis
The overall aim of this thesis is to propose a new test data generation algorithm based on adequacy based testing criteria and to investigate the effectiveness of adequacy based testing criteria over the reliability based testing criteria. The goals of the thesis are to:

· Check the adequacy of the test cases by using the concept of mutation analysis. In general mutation analysis is applied after the test data has been generated. However, in this work, we apply mutation analysis at the time of generating test data only. This has two significant benefits:

· The test data set generated is assured to be adequate. Hence, we need not apply mutation analysis after the test data is generated.

· The total time required to generate test data includes only the time taken to generate test data and not the time to check its adequacy. This is so because the generated test data is assured to be adequate. This has an advantage over other techniques that are based on reliability based testing criteria as in these techniques, the total time required for generating test cases is the sum of the time taken to generate test data and the time taken to check its adequacy.

· Use genetic algorithms (a heuristic based search procedure) in the process of test data generation because of their ability to generate near global optimum solution and their widespread use in the literature of heuristics. 

· Investigate the effectiveness of adequacy based testing criteria over the reliability based testing criteria. In order to do this, we validate our algorithm (based on adequacy testing criteria) on fifty real time programs developed in C language and compare it with path testing technique and condition testing techniques (based on reliability testing criteria) for these programs in two categories viz. (1) number of generated test cases; (2) time taken to generate test cases. 

Software testing is about searching and generating certain test data in a domain to satisfy the test criteria. Since GAs are an established search and optimization process, the basic aim of this thesis is to generate test cases which will satisfy an adequacy testing criteria or which will kill a pre-identified set of mutants, for a program under test

1.5 Organization of the Thesis
Following this introductory chapter, Chapter 2 reviews various testing methods. This chapter presents the related work that has been done in the field of test data generation. It shows that different researchers have used different testing criteria while testing. This chapter also presents a testing criteria classification framework that has been derived from the related works presented. 
Chapter 3 describes the key concepts of this research work. The work presented in this thesis uses two key concepts viz. mutation analysis and genetic algorithms. The details of these two concepts are provided in this chapter. An introduction to genetic algorithms and how and why they work is explained. Different operators are explained which are used in genetic algorithm. The strengths and limitations of genetic algorithms are described. Also, the basic concept of mutation analysis and rules for mutant generation are described.

Chapter 4 describes the proposed test data generation algorithm in detail. The algorithm along with the necessary details of each of its steps is provided in this chapter. A suitable example is chosen to explain the steps of the algorithm clearly. The parameter settings of the GA tool used to generate test cases are also presented in this chapter. 

Chapter 5 discusses with the help of a program, the application of the proposed algorithm. The program along with its control flow graph is presented. The program is written in C language. All the steps of the algorithm are explained for the program chosen. The results of applying each step of the algorithm on the program are shown in detail in this chapter. 

Chapter 6 presents the empirical validation of the proposed algorithm. The analysis framework for the validation of the proposed algorithm, empirical data collection, research procedure, and the analysis results are presented in this chapter. The validation is done on a set of real time subject programs that are chosen for this purpose and are written in C language. The brief description of all the programs is given. The proposed algorithm is compared with other test data generation techniques for these programs. The results obtained are presented in appropriate tables and are included in Malhotra and Garg (2011).

Chapter 7 provides an overall conclusion of the work done. The results of the work are summarized in this chapter. Applications of the work are mentioned. Contributions to the published literature are also included. Further, the future scope of the work is presented in this chapter.

Chapter 7 is followed by the references of various research papers (published in national and international conferences and journals) and books that have been gone through during the course of this thesis. References are followed by two appendices that describe the software and tool used in this thesis. Appendix A gives an introduction to the MATLAB software and Appendix B includes the description of the GA optimization tool of MATLAB.
CHAPTER 2

Literature Survey

Testing criteria has an important role in the process of software testing. It limits the process of testing. It enables us to quantify the testing process. Meeting a testing criterion marks an end to the testing activity. There has been a tremendous research in the field of test data generation. This chapter provides a detailed view of the works done in the literature in the field of test data generation using different testing criteria. The results of the literature survey are summarized and a framework for classifying the testing criteria is presented in this chapter. 
2.1 Studies carried out in Literature
There has been a tremendous research in the field of “Test Data Generation”. Different researchers have conducted the research in this field from their point of view. In all the research work that has been done in this field; certain testing criteria have been used. This testing criterion quantifies the process of testing, i.e. it enables the tester to measure the progress that has been achieved during testing. Different researchers have used different testing criteria while performing testing.
Clarke (1976) generated the software test data by using ‘Path coverage testing criteria’. The idea was to select some target path and then to generate the test case values such that these values executes the target path. It was a black box based random testing approach. His technique was based on performing the static analysis of the target paths, by symbolically executing the paths. Symbolic execution means that instead of assigning the values to the program variables, expressions or symbols are assigned to them. The technique was based on (1) generating a computation table for the target path; (2) building an evolution graph from the computation table; (3) generating the constraints from the evolution graph; (4) finding the test case values that solves these constraints. One advantage of this technique was that it enabled finding the infeasible paths in the program. This technique had certain disadvantages in assigning the expressions, especially when arrays are used. This is so because the array indices are dependent on the input variables. Since in this technique, expressions rather than values are assigned to the variables, handling expressions instead of values for array indices is quite difficult.

Duran and Ntafos (1984) generated the software test data using random testing technique. In their work, they (1) compared random testing with partition testing; and (2) evaluated the random testing process using various coverage criteria such as segment coverage, branch coverage, path coverage, etc. Random testing arbitrarily selects test case values from the input domain of the program and then provides these values to the program under test. Partition testing partitions the input domain of the program into several partitions and then selects at least one test case values from each partition. In this work, random testing and partition testing are compared on the basis of expected number of errors that are likely to produce in the generated test cases. Er represents the expected number of errors for random testing and Ep represents the expected number of errors for partition testing. The results shows that number of trials in which Er > Ep are less than the number of trials in which Er < Ep. This indicates that random testing can perform better in some cases, especially when the programs are less complex. Moreover, the evaluation of random testing using various coverage measures revealed that random testing achieves better coverage than partition testing, on several programs such as Binary search, Sorting, Triangle classification problem, etc. DURAN and NTAFOS concluded that though random testing could perform better in some cases, but as the complexity of the program increases, this testing strategy does not prove very fruitful.

Korel (1990) focused on generating software test data using path coverage testing criteria. It was a dynamic path testing technique that generates test cases by executing the program with different possible test case values, in an attempt to obtain the desired test case value that can execute the desired path. Korel emphasized on dividing the goal of generating test case values to execute the target path into various sub goals. The overall goal is then achieved by solving the sub goals. In his work, he used a local search technique to find the desired test case values. This search was basically a combination of two types of moves viz. exploratory moves and planetary moves. Exploratory moves are small moves that are made in the search space, while the planetary moves are the big jumps in the search space. Using exploratory moves, the aim is to find the desired direction to move. Once it is obtained, planetary moves are made. Since the technique involved formulating sub goals and solving these to generate the test case values, it is better than random testing, as number of useless trials made while generating test values are minimized. However, as this approach is based on using local search technique to generate test values, it is susceptible to the problem of local minima/local maxima.

DeMillo and Offutt (1991) focused on generating test case values using relative adequacy based testing criteria to generate test case values. DeMillo identified two broad categories of test criteria. These are reliability based test criteria and adequacy based test criteria. Reliability based test criteria verify the correctness of the program in terms of achieving some coverage that may be path coverage, branch coverage, statement coverage, dataflow coverage, pair wise coverage etc. Adequacy based test criteria shows the adequacy of the test cases. A test case is adequate if it causes all incorrect versions of the programs to fail to execute successfully. In adequacy based test criteria, the focus is on adequacy, and not on reliability. The major difference between these criteria is that reliability based test criteria only show correctness of the program but does not identify the faults. On the contrary, adequacy based test criteria identifies faults in the program, hence provides better analysis of the program. DeMillo identified that it is not feasible to identify all the incorrect versions of the program. Thus, he proposed an alternative of adequacy based test criteria, which is known as relative adequacy test criteria. This test criteria aims to generate test cases that causes not all but some pre-identified set of incorrect versions of the program to fail to execute successfully. This technique uses   mutation analysis that is the only known and most widely used technique to check the adequacy of the test cases. It has several advantages viz. (1) the generated test cases are guaranteed to be adequate, hence there is no need to apply mutation analysis, after the test cases are generated; (2) the overall time to generate test cases is very less as compared to some other technique which is not based on adequacy test criteria.

Xanthakis, Ellis, Skourlas, Le Gall, Katsikas, and Karapoulios (1992) discussed about application of genetic algorithm in software testing.
Michael and McGraw (1997) identified the application of heuristic search techniques in solving various software engineering problems. This is facilitated by the fact that many of the software engineering problems can be stated as the search problems. For instance, the testing problem can be stated as the problem of searching, through the input domain of the program, for the test case values, that can satisfy the pre defined testing criteria. In their work, Michael and McGraw compared genetic algorithms, a heuristic search technique with random testing technique by applying them on various programs to generate test data. The set of programs they used includes Binary search, Bubble sort, Number of days between two dates, Euclidean GCD, Insertion sort, Computing the median, Quadratic formula, War shall algorithm, Triangle classification problem. Condition coverage has been used as the testing criteria. The results show that Genetic algorithm performed better than the random testing in terms of achieving the condition coverage.

Michael and McGraw (2001) proposed a technique for automated test data generation using branch coverage as the testing criteria. They used genetic algorithm to generate the test cases. Hamming distance was as the fitness function. Michael and McGraw generated a tool named GADGET to generate test data. The tool makes use of a branch table that keeps a track of all the branch conditions for both of their true and false parts. The technique works by transforming the inequalities in the branch conditions into equalities by introducing auxiliary variables. For instance, the condition a > b can be written as X=a-b. When some test case value (including the values for program variables and auxiliary variables) is input to the program, a pair of values containing the LHS and RHS of each branch condition is calculated and is converted into binary format. The hamming distance is then calculated by taking the sum of the positions where the corresponding bits differ. The technique was compared with random testing and several heuristic search techniques. The results revealed that Genetic algorithms achieved maximum branch coverage among all the other techniques. Moreover, the time taken to generate test cases was also less in case of genetic algorithms as compared to other techniques.

Wegener (2001) focused on generating test data by using several structural test coverage criteria using evolutionary approaches like genetic algorithms. They identified that all the test data generation technique focus on single test criteria at a time. In his work, Wegener has considered all the test coverage criteria and has provided an effective classification of the structural test coverage criteria. This work classifies structural test criteria into four classes viz. Node oriented methods, path oriented methods, Node-Path oriented methods, and Node-Node oriented methods. Node oriented methods includes statement and branch coverage. Path oriented methods includes path coverage. Node-Path oriented methods include execution of some node and a specific path from that node. Node-Node oriented methods include all-def, all-uses coverage criteria. This technique has several benefits: (1) An evolutionary approach to generate test data is an effective method to solve testing problem as it provides a globally optimum solution and has a better tendency to exhaustively explore the search space; (2) It divides the overall aim into partial aims, each of which is solved one at a time. This simplifies the testing process. For instance; if there are 3 target paths to follow, then generating test data for each path is considered as a partial aim that is solved separately.
Lin and Yeh (2001) discussed about automatic test data generation using ‘path testing criteria’ and genetic algorithms.
Mansour and Salame (2004) focused on generating software test data using path coverage testing criteria and hamming distance as a fitness function. This work was based on generating the test case values that can satisfy a path predicate. A program can be represented by a flow graph. The graph has nodes (assignment nodes and decision nodes) and edges. Each decision node has a branch predicate associated with it. A path is essentially a concatenation of branches. Hence, a path predicate is represented as a concatenation of the branch predicates lying on that path. This work involves transforming all the inequalities in the branch conditions into equalities. For a target path, the test case values are then provided as an input to the program and a pair of values (containing the LHS and RHS of the branch conditions) is recorded for each branch condition lying on the target path. These values are converted to the binary format. The hamming distance is then calculated by summing the positions where the bits differ. The value of hamming distance is calculated for each branch condition. The value of fitness function for the target path is then calculated by taking the summation of the hamming distance values for all the branch conditions lying on the target path. The technique was implemented using genetic algorithm and simulated annealing. The results show that genetic algorithm performs better than simulated annealing in terms of path coverage achieved and execution time (ms/trial) taken to generate test cases.
McMinn (2004), Harman and Wegener (2005) discussed about search based software test data generation.
Dahal and Hossain (2007) identified three major sources of test data generation. These were experience of testers, source program, and software specification. In this work, software test data was generated using UML based software specifications and genetic algorithm. The technique basically focuses upon generating test case values from UML state diagrams. State diagrams represent behavior of the system in terms of states and transition of system from one state to another. The test criteria used in this technique was transition coverage level that identifies the transitions fired on receiving events. The sequence of events represents the candidate test case values. The number of transitions that are fired on receiving a certain sequence of events is used as a fitness function. The quality of the test data is determined by the number of transitions that are fired. More the number of transitions that are fired, better is the quality of the generated test data. This technique is beneficial as UML specifications are standard specifications that are universally followed. Developers and tester are very much familiar with these UML specifications; hence it is simpler for them to follow these specifications to generate test cases.  

Bouchachia (2007) proposed a modification to genetic algorithm by incorporating immune operators to it. Condition coverage was used as testing criteria in this approach. In general, the genetic algorithm includes three main operators viz. selection, cross over, and mutation. In immune genetic algorithm, one more operator known as re-selection is added to the genetic algorithm. Thus, immune genetic algorithm includes four operator viz. selection, cross over, mutation, and re-selection. The re-selection operator is known as an immune filter (IF) operator. The IF operator is realized as two steps: Immune Elitism (child chromosomes having less fitness value than the corresponding parent is replaced by the parent) and Proportionate Selection (Each chromosome is selected on the basis of the proportionate probability of that chromosome in the whole population). Proportionate fitness of a chromosome in the whole population is used as the fitness function. The techniques genetic algorithm and immune genetic algorithm are compared using several programs viz. Triangle classification, GCD etc. The results show that immune genetic algorithm performs better than the genetic algorithm in terms of achieving the amount of condition coverage.

Shen and Wang (2007) proposed the hybrid scheme of genetic algorithm and tabu search that came to known as GATS algorithm. Function coverage is used as testing criteria. Tabu search is a local search technique and in this work, it has been used as a mutation operator in the genetic algorithm. The tabu search is a local search technique that searches in the neighborhood region of some candidate solution x. It iteratively traverses from one solution x to another solution x’, in the neighborhood region of x, until some termination criteria is met. The termination criteria can be the time, or maximum number of iterations, etc. This technique improves the performance of local search method by not allowing already traversed solutions to be traversed again. It uses a memory structure known as ‘tabu list’. This list contains the solutions that have been traversed in the recent past. These are marked as taboo. By using tabu search as a mutation operator, it maintains diversity among the population, by not allowing previously generated chromosomes to be generated again. This serves the purpose of mutation. The GATS algorithm was compared with the normal genetic algorithm and the results show that GATS performs better than genetic algorithm in terms of function coverage.

Andreou and Economides (2007) focused on using data flow coverage criteria in test data generation. They generated test data using all-du-paths test coverage criteria. Proportion of du paths covered in total number of du paths is used as fitness function. A du path with respect to some variable ‘v’ is defined as a sequence of nodes from a defining node of ‘v’ to the usage node of ‘v’. The defining node of a variable is the node or a statement where the variable receives value, while a usage node of a variable is a statement fragment where the value of the variable is used. The du path testing ensures that the variables that are defined are also used in the program. In their work, Andreou and Economides stated that ‘test cases that covers new paths are more important than test cases that covers already covered paths’ and ‘test cases that covers rarely covered paths are more important than the test cases that covers frequently covered paths’. The observations show that as the LOC increases, the number of test cases and the execution time to generate test cases also increases.
Ghiduk and Harrold (2007) proposed one another approach to generate test data using du paths coverage testing criteria. In their work, they focused upon generating the dominance tree from the control flow graph of the program. The dominance tree is a tree with nodes and edges. The root node is the head of no edge. Each other node is the head of just one edge. The dominance path of some node n represented as dom(n), is the sequence of nodes from root node to n. The dominance path of a node n identifies all the nodes in the dominance tree that are dominant to n and must be executed to reach node n. For a target du path (d,u,v), the test case values that covers all or most of the nodes of dom(d) and dom(u) represents the final test case values. The fitness function used is defined as: ½ * (|cdom(d)|/|dom(d)| + |cdom(u)|/|dom(u)|). |dom(d)| and |dom(u)| are the number of nodes in the dominance path of d and u. |cdom(d)| and |cdom(u)| are the number of nodes of dom(d) and dom(u) traversed by a test case value. This technique is compared with random testing and gradient descent search in terms of time, %coverage, number of test cases, on various programs. The results show that genetic algorithm performs better than other techniques.

Harman (2007) focused on automated test data generation using search based software engineering. Automated test data generation using genetic algorithm is a part of search based software engineering. He identified that many of the software engineering problems can be formulated as the search problem and hence search algorithms can be used to solve them. The software engineering problems that can be solved using search heuristics include requirements engineering, project planning, cost estimation, maintenance, reverse engineering, refactoring, program comprehension, service oriented software engineering, quality assessment, testing, etc.
Ahmed and Hermadi (2007) attempted to generate test data for multiple paths using genetic algorithm.
Srivastava and Kim (2009) proposed a technique for generating test cases using path coverage testing criteria and genetic algorithm. This technique was based on considering the criticality of the path. In this technique, the control flow graph of the program is assigned weights. More weights are assigned to the edges belonging to the critical paths. Each node receives some input credit that is the sum of the credits of all the incoming edges of that node. Each node distributes its credit to its outgoing edges using 80-20 rule. Weights are assigned in a way that 80% of the input credit of a node is assigned to the edges belonging to lops and conditions, and 20% of the input credit of a node is assigned to the edges belonging to sequential statement. Since loops and conditions are quite critical and hence must be tested, the edges belonging to loops and conditions are considered to be more critical as compared to the edges belonging to the sequential statement. The fitness function is calculated by taking the sum of the weights of all the edges of a particular path. The path with maximum value of fitness function is the most critical. The aim is to generate the test cases that could lead to the execution of most critical path.
Rauf and Anwar (2010) proposed a technique to generate software test data using GUI based test criteria. GUI applications are event driven. It receives events as input from the user and follows certain path as a result of receiving that event. This technique uses genetic algorithm to generate software test data. The sequence of events represents the candidate test case values. Number of paths followed in the total number of paths is used as fitness function. GUI is one of the very important parts of a software system. It adds an additional value to software systems as it makes application quite understandable. The testing of GUI application is very important. It requires a huge effort to test GUI due to inherent complexities in the software system. 

Ali, Briand, Hemmati and Panesar-Walawege (2010) conducted a detailed survey on search based test case generation. They found nearly 450 articles, which after reading abstracts, resulted in 122 relevant articles published over the years 1996-2007. All these articles pertained to search based software test data generation. In their survey work, they compared different search strategies such as genetic algorithm, simulated annealing, ant colony optimization, particle swarm optimization etc. They compared these techniques on several programs. More they have also classified these techniques on the basis of the papers in which these are referred. The analysis show that on average genetic algorithms have proven to be most beneficial algorithms both in terms of their performance (number of test cases, execution time, %coverage achieved) and preference given by the researchers in their research work.
2.2 Summary of the Literature Survey 

This section summarizes the literature survey presented above. The summarized results are given in Table 2.1.
	Author  Name & Year
	Testing Criteria / Testing Strategy Focused

	Clarke, 1976
	Static Path Analysis. Symbolic Testing.

	Duran and Ntafos, 1984
	Random Testing vs. Partition Testing

	Korel, 1990
	Dynamic Path Testing using local search technique.

	DeMillo and Offutt, 1991
	Constrained based automated test data generation.

	Xanthakis, Ellis, Skourlas, Le Gall, Katsikas, Karapoulios, 1992
	GA based software testing.

	Michael and McGraw, 1997
	Search based software testing in general.

	Michael and McGraw, 2001
	Branch coverage testing using genetic algorithm. Hamming distance the fitness function. A tool GADGET was developed.

	Wegener, 2001
	Identified multiple test coverage criteria. Four classes of test criteria were identified:

Node oriented methods, path oriented methods, Node-Path oriented methods, and Node-Node oriented methods.

	Lin and Yeh, 2001
	Path testing using genetic algorithms.

	Mansour and Salame, 2004
	Path testing using genetic algorithm. Hamming distance is the fitness function.

	McMinn, 2004
	Search based testing

	Harman and Wegener, 2005
	Search based testing

	Dahal and Hossain, 2007
	Test dada generation using UML specification. Genetic algorithm was used. Sequence of events represents test cases and transitions coverage is used as test criteria. Number of transitions fired is the fitness function.

	Bouchachia, 2007
	Hybrid of genetic algorithm and immune operators.

	Shen and Wang, 2007
	Hybrid of genetic algorithm and Tabu search. Tabu search is used as mutation operator.  Function coverage is used as test criteria.

	Andreou and Economides, 2007
	Data flow coverage testing. ‘all-du paths’ is the test criteria. Number of du paths covered is the fitness function.

	Ghiduk and Harrold, 2007
	Data flow testing. ‘all-du paths’ is the test criteria. Dominance tree is used. For the target du path (d,u,v), number of nodes in dom(d) and dom(u) is the fitness function.

	Harman, 2007
	Search based testing

	Ahmed and Hermadi, 2007
	Path testing using genetic algorithms

	Srivastava and Kim, 2009
	Path coverage testing using genetic algorithm. Criticality of the path is taken into account. Control flow graph is weighted and the sum of the weights for the path is the fitness function.

	Rauf and Anwar, 2010
	GUI based testing using genetic algorithm. Sequence of events is the test case, and the number of paths traversed is the fitness function.

	Ali, Briand, Hemmati and Panesar-Walawege, 2010
	A detailed survey on search based software testing. Various heuristic search techniques are compared.


Table 2.1: Summary of literature survey
2.3 Testing Criteria Classification Framework

On the basis of the summary of the literature work presented in section 2.2, we have derived a framework for the classification of testing criteria. This framework is shown in Figure 2.1. The framework is also included in our paper Malhotra and Garg (2011).
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Figure 2.1: Classification framework of test generation criteria

The adequacy based test criteria have the following benefit over the reliability based test criteria:

‘Test cases that are generated using reliability based criteria can only show the correctness of the program, but cannot identify faults. Hence, a test case even if it is reliable may not be adequate. However, test cases that are generated using adequacy based criteria can identify faults in the program and can also show correctness of the program’.
The analysis of the above literature survey suggests that much of the work has been done in reliability based test criteria while very less work has been done in adequacy based test criteria. But in this thesis, we propose a test data generation algorithm that is based on adequacy based testing criteria. We also use genetic algorithms to add its benefits in our work. The aim is to prove the effectiveness of adequacy based testing criteria over the reliability based testing criteria.
CHAPTER 3

Research Background

This chapter discusses about two key concepts viz. mutation analysis and genetic algorithms. Mutation analysis is used to check the adequacy of the test cases. It tells the tester that whether generated set of test cases is adequate or not. Genetic algorithms are the heuristic search technique that searches the entire domain of search space and provides the globally optimum solution. The details of both the concepts are given in the subsequent sections.

3.1 Mutation Analysis

Mutation Analysis is basically a structural based approach to measure the adequacy of the test data. It is also known as ‘Fault Seeding’ technique. The technique is basically based on seeding or inputting certain faults in the program and then checking if the generated test data can find these faults or not. If it can, the test data is considered to be adequate, else it is inadequate. Faults are introduced by making some changes to the original program. A changed copy of the program is called a mutant. 
3.1.1 Mutant Generation

In mutation analysis, faults are seeded in the program. This means that some syntactic changes are made to the program statements. The changed program is called a mutant. “One most important property of mutation analysis is that during execution, the mutant should follow different path than the original program, following the execution of the changed statement”.
The changes are made or mutants are generated using mutation operators. A variety of mutation operators have been explored by researchers. Some of them include:

· Statement deletion

· Replace each Boolean sub-expression with true or false.   

· Replace each arithmetic operation with another one e.g. + with * and – with /.

· Replace each Boolean relation with another one, e.g. > with >=, ==, and <=.

· Replace each variable with another variable declared in the same scope.

Mutants are identified by following certain rules. Hutchins et al. (1994) described the procedure used by Siemens to generate mutants - we paraphrase that description here. The Siemens procedure involves identifying mutants by manually seeding faults in the programs. It involves incorporating (mostly) the single line changes in the program to generate mutants. The same procedure was also used by Rothermel et al. (1997) in order to induce mutants in their proposed regression test selection technique. Following the Siemens procedure, we create and follow the following rules for mutant identification (Malhotra and Garg, 2011):

1.  Only first order mutants are generated. First order mutants are mutants that contain a single change. In general, only first order mutants are sufficient and are used in testing practically. Second and higher order mutants (that contain multiple changes) make it difficult to manage the mutants, thus adding to complexity. Thus, only first order mutants are generated.

2.  In general, there are no limits on the number of mutants that can be generated. To circumvent this problem, we restrict the domain of mutation operators. We generate mutants by applying mutation operators from this domain only. The domain of mutation operators that we use are:



Operand Replacement operator: 

Replace a single operand with another operand or a constant. 


E.g. if(x>y){} original statement 



     if(5>y){}mutated statement generated by re placing x by a constant 5


Expression Modification Operator: 

Replace an operator with some other operator or insert new operator. 


E.g. if(x==y){} original statement 


        if(x>=y){}mutated statement generated by replacing == by >=


Statement Modification Operator: 

Delete the entire if-else statement. 


Replace a line by a return statement, etc.

3.1.2 General Approach to Mutation Analysis

· Generate mutants of the original program using the mutation operators.

· The original program and mutants are executed against the generated test data. If the test data can kill the mutants, then it is considered to be adequate, else inadequate. The killing of mutants is judged by examining the output of the original as well as mutated program against the test data. First of all, the original program is executed against the test data to get the value of actual output. Then mutant is executed against the test data. If the output of mutant is different from the actual output, mutant is considered killed, else it is alive.

· At the end of mutation analysis, we can have following two types of possibilities: 

· If all the generated mutants are killed, our test data is adequate (or effective). We can use this test data over testing of practical problems.

· If some of the mutants remain alive, then our generated test data is not adequate (or is ineffective). In such a case, we must add some more test cases, such that the additional test cases make the test data adequate.

The most common measure used by mutation analysis to measure the adequacy of the test data is ‘mutation score’. The mutation score measures the proportion of killed mutants in the complete set of generated mutants.

3.2 Genetic Algorithms
Optimization problems arise in almost every field, especially in the engineering world. As a consequence many different optimization techniques have been developed. However, these techniques quite often have problems with functions which are not continuous or differentiable everywhere, multi-modal (multiple peaks) and noisy. Therefore, more robust optimization techniques are under development which may be capable of handling such problems. In the past biological and physical approaches have become of increasing interest to solve optimization problems, including for the former neural networks, genetic algorithms and evolution strategies (ESs) and for the second simulated annealing (Hills and Barlow, 1994; Rayward-Smith and Debuse, 1994; Bayliss, 1994; Hoffmann et al., 1991; Osborne and Gillett, 1991).

Other optimization techniques are:

· Tabu search (Glover, 1989; Reeves et al., 1994; Rayward-Smith and Debuse, 1994);

· Simplex method (Box, 1965);

· Hooke Jeeves (Hooke and Jeeves, 1961);

· Gradient method (Donne et al., 1994).

3.2.1 Introduction to Genetic Algorithms

Genetic algorithms are the heuristic search algorithms that are used to solve a variety of optimization problems (Goldberg, 1989). The use of genetic algorithms in software testing is facilitated by the fact the many of the testing problems can be formulated as an optimization problem.
Genetic algorithms mimic the process of natural biological evolution and the Darwin’s principal of the survival of the fittest. As the biological organisms evolve naturally from the parent generation to child generation, so the genetic algorithms causes a population of individuals to evolve from one generation to another, each time allowing the best characteristics of one generation to pass to the next generation.  In essence, Genetic Algorithms are a computer model of biological evolution.

Genetic Algorithms are heuristic in nature. They are generally good, but they, sometimes may not be better. But on an average, they improve the quality of the search that we perform and are one of the widely used heuristic algorithms in numerous applications.

3.2.2 Basics of Genetic Algorithms

GAs offers a robust non-linear search technique that is particularly suited to problems involving large numbers of variables. The GA achieves the optimum solution by the random exchange of information between increasingly fit samples and the introduction of a probability of independent random change. Compared to other search methods, there is a need for a strategy which is global, efficient and robust over a broad spectrum of problems. The strength of GAs is derived from their ability to exploit in a highly efficient manner, information about a large number of individuals. This search method is modeled on natural selection by Holland (1992) whose motivation was to design and implement a robust adaptive system. GA’s are being used to solve a variety of problems and are becoming an important tool in machine learning and function optimization (Goldberg, 1989). Natural selection is used to produce adaptation. 

GAs derives their name from the fact that they are loosely based on models of genetic change in a population of individuals, in order to affect a search mechanism with surprising power and speed. These algorithms apply genetically inspired operators to populations of potential solutions in an iterative fashion, creating new populations while searching for an optimum solution. The key word here is population. The fact; many points in the space are sampled in parallel, shows that genetic algorithms are a global optimization technique. GA’s do not make incremental changes to a single structure, but maintain a population of structures from which new structures are created using genetic operators. The evolution is based on two primary operators: mutation and crossover. The power of genetic algorithms is the technique of applying a recombination operator (crossover and mutation) to a population of individuals. Despite their randomized nature, GA is not a simple random search. GAs takes advantage of the old knowledge held in a parent population to generate new solutions with improved performance. Thereby, the population undergoes simulated evolution at each generation. Relatively good solutions reproduce; relatively bad ones die out and are replaced by fitter offspring.

An important characteristic of genetic algorithms is the fact that they are very effective when searching or optimizing spaces that is not smooth or continuous. These are very difficult or impossible to search using calculus based methods, e.g. hill climbing.

GA’s are iterative procedures that produce new populations at each step. A new population is created from an existing population by means of performance evaluation, selection procedures, recombination and survival. These processes repeat themselves until the population locates an optimum solution or some other stopping condition is reached, e.g. number of generation or time.

The initial population comprises a set of individuals generated randomly or heuristically. The selection of the starting generation has a significant effect on the performance of the next generation. In most GAs, individuals are represented by a fixed-length string over a finite alphabet. The binary alphabet is one of many possible ways of representing the individuals. GAs work directly with this representation and they are difficult to fool because they are not dependent upon continuity of the parameter space and existence of a derivative.

The process is similar to a natural population of biological creatures where successive generations are conceived, born and raised until they themselves are ready to reproduce. This population-by-population approach is very different from the more typical search methods of engineering optimization. In many search methods, we move gingerly from a single point in the decision space to the next, using some decision rule to tell us how to get to the next point (hill climbing). This point-by-point method is dangerous because it often locates local peaks in the search space. GAs works from a population of points (individuals), simultaneously climbing many peaks in one generation (parallel), thus reducing the probability of finding a local optimum. To get a starting population, we can generate a number of strings at random, or if we have some special prior knowledge of good regions of the decision space, we may plant seeds within the population to help things along. Regardless of the starting population, the operators of genetic algorithm have found members of high fitness quickly in many applications studied to date. A string of a population can be considered as concatenated sub-strings (input variables) to represent a chromosome. The individual bits of the string represent genes. The length of a string is S and a population of strings contains a total of PSZ strings.
Once the initial population has been created the evaluation phase begins. The Gas requires that members of the population can be differentiated according to the string's fitness. The parameter combinations are then processed by a model of the system under test. The relative fitness of each combination is determined from the model's output. Fitness is defined as a non negative function which is to be maximized. An increase in the population average fitness is the overall effect of genetic algorithms.

The members that are fitter are given a higher probability of participating during the selection and reproduction phases and the others are more likely to be discarded. Fitness is measured by decoding a chromosome in the corresponding variables to an objective function (which is specific to the problem being solved). The value returned by the objective function is used to calculate a fitness value. The fitness is the only feedback facility which maintains sufficient selective differences between competing individuals in a population stated by DeJong (1993). The genetic algorithms are blind; they know nothing of the problem except the fitness information.

In the selection phase, chromosomes of the population may be chosen for the reproduction phase in several ways: for example, they may be chosen at random, or preference may be given to the fitter members.

During the reproduction phase, two members are chosen from the generation. The evolutionary process is then based on the genetic or recombination operators, crossover and mutation, which are applied to them to produce two new members (offspring) for the next generation.

The crossover operator couples the items of two parents (chromosomes) to generate two similar offspring, which are created by swapping corresponding substrings of its parents. The idea of crossover is to create better individuals by combining genetic material (genes) of fitter parents. The mutation operator alters one or more genetic cells (genes) of a selected structure with a low probability. This ensures certain diversity in the genetic chromosomes over long periods of time and prevents stagnation near a local optimum. This means a complete new population of offspring is formed. A predefined survival strategy determines which of the parent and offspring survive.

The whole process is repeated generation by generation until a global optimum is found or some other stopping condition is reached. One of the disadvantages can be the excessive number of iterations required and therefore the amount of computational time.

3.2.3 Characteristics of Genetic Algorithms

GAs are quite successful in solving problems of the type that are too constrained for more conventional strategies like hill climbing and derivative based techniques. A problem is to maximize a function of the kind f(x1, x2, ..., xm) where (x1, x2, ..., xm) are variables which have to be adjusted towards a global optimum. The bit strings of the variables are then concatenated together to produce a single bit string (chromosome) which represents the whole vector of the variables of the problem. In biological terminology, each bit position represents a gene of the chromosome, and each gene may take on some number of values called alleles.

The following characteristics of GA’s differentiate them from other heuristic search procedures:
· GA’s works on the encoding of the parameters (variables), not directly on the parameter values.
· GA’s starts from an initial population of individuals, not from a single one. Initial population, here, refers to the collection of input variable values that are selected randomly from the search space or input domain of the program.
· GA’s does not require any knowledge of the search space, hence are considered to be blind. The only information required is the fitness function and the parameter encoding.
GA’s are random in nature rather than deterministic. They use the concept of random number generation for making choices at various steps in the algorithm. Random numbers are used to explore different choices, so as to provide a better performance on an average.

3.2.4 Block Diagram 

The block diagram of genetic algorithms is shown in Figure 3.1.
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Figure 3.1: Block diagram of genetic algorithms

3.2.4.1 Initializing

The Initializing phase requires generating the initial population of individuals or chromosomes that is the starting point of genetic algorithms. A population is like a list of several guesses (database). It consists of information about the individuals. As in nature, a population in GAs has several members in order to be a healthy population. If the population is too small inbreeding could produce unhealthy members. DeJong (1988) mentioned that the population size should be generally in the range of 50 - 100 members. The population changes from one generation to next. The individuals in a population represent solutions. The advantage of using a population with many members is that many points in a space are searched in one generation. GA’s are therefore highly suited for parallel processing (Robertson, 1987; Mühlenbein, 1989; Georges-Schleuter, 1989; Goldberg, 1989). This sets the GAs apart from other search methods.

Chromosome refers to a set of the values of the input variables that are obtained from the input domain. The initial population can either be generated randomly other through seeding.
Seeding: In order to start the optimization method, the first population has to be generated. It can be seeded with a set of parameter values which can influence the search through the space. It can help to speed up the location of an optimum. Some systems have used parameter values from the previous experiments to provide a portion of the initial population. Alternatively values can be used which the user believes are in the right area of the search space to find an optimum faster. Normally the seeding is performed by random selection which means that random data are generated. If a user has some knowledge of the search space, he can seed some values in the initial population that are more likely to produce the global optimum solution quickly. This speeds up the process of Genetic Algorithms. This knowledge might be obtained by the analysis of the previous similar types of problems where the GA’s would have been applied.

Representation of Initial Population:
DeJong (1993) found out that the representation of the chromosome can itself affect the performance of a GA-based function optimizer. There are different methods of representing a chromosome in the genetic algorithm, e.g. using binary, Gray, integer or floating data types.

GA’s works on the encoding of the parameter set. This requires the chromosome to be encoded in an appropriate fashion. Commonly used forms include binary, integer, floating, Gray codes, double vector etc. GA’s commonly uses binary representation to represent the initial population. However, the use of any particular representation scheme depends upon the application. For instance; we use double vector data type (supported by GA Tool) in our work, to capture the real values of the test data. 

The most common representation, invented by Holland (1975), is the bit format. The variable values are encoded as bit strings, composed of characters copied from the binary alphabet {0, 1}. This kind of representation has turned out to be successful and was applied by Holland. In binary representation, each variable value is encoded as bit string. Each bit is called a gene and can take on value from {0, 1}.  A chromosome is a concatenation of the bit strings corresponding to each input variable value. The benefit of using binary representation is attributed to the following reasons:

· It is easier for computers to implement the binary formats.

· According to Holland, GA’s works well if each gene takes on small number of values. With binary formats, each gene can take on either o or 1. This keeps the things simple and does not to the complexity of the algorithms.

For e.g. suppose a program has three variables A, B, C that can take on values between 1 and 100. Let at any instance A is 5, B is 8 and C is 9. Then the combination 010110001001 represents a chromosome.

3.2.4.2 Evaluation (Calculating Fitness

The evaluation involves calculating the fitness value of each chromosome. The fitness is a measure of goodness of each chromosome relative to the global optimum solution. It measures how close a chromosome is towards a global optimum solution. The chromosome with higher fitness value is closer towards the global optimum as compared to the chromosome with less fitness value. Selecting an appropriate fitness function that can calculate the fitness value of each chromosome is very important.
Example: For an optimization problem: maximize f(A) = A^2 ( A = [0,15], let the fitness function be the same i.e. fitness = A^2. The sample chromosomes, their input values and the corresponding fitness values are shown in Table 3.1.
	Chromosome
	Input value
	Fitness value (f) = A^2

	C1
	5
	25

	C2
	3
	9

	C3
	6
	36


Table 3.1: Chromosome representation

Since fitness (6) = 36 is maximum, the value 6 is closest to the global optimum (15) relative to all the three chromosomes.

3.2.4.3 Selection (Reproduction)

Selection is simply a replication of some chromosomes from the current population based upon their fitness value. 
The basic philosophy of selection is that “highly fit chromosomes survive while the worst fit dies out”. This ensures that only the best characteristics are transmitted from the current generation to the next generation. The output of selection is a mating pool that contains the chromosomes that mate with each other to generate off springs. 

The selection occurs with a selection probability, pselect. The value of pselect is given as:
“pselect (i) = fitness (i)/sum(fitness of all chromosomes in a population).”
There are various methods for selection. Most common of them include:

I. Stochastic Sampling

II. Deterministic Sampling

I. Stochastic Sampling

Stochastic Sampling is also known as Roulette Wheel Selection. 
A Roulette Wheel is essentially a weighted wheel where each chromosome in a population is assigned a portion in a wheel according to its pselect value. The wheel has a selector attached to it. Since the chromosomes are assigned the slots according to their proportionate fitness, the ones having higher fitness will be having higher area in the wheel and thus has a higher chance of being selected by the selection procedure.
Procedure:
· For a population of n strings, the wheel is rotated n times.

· Each time when a wheel stops after rotation, we see to which slot of the wheel the selector points to. The chromosome corresponding to this slot is given one sample in the mating pool.

· The procedure continues for a total of n times, each time we get some chromosome, for which the count of samples in the mating pool is increased.

II. Deterministic Sampling

This technique is based on calculating the expected count of samples for each chromosome in a population.
Procedure:
· The pselect values for each chromosome are calculated as before.

· The expected count for each chromosome is given by: 


expsel (i) = n * pselect (i)
· Firstly, the integer part of expsel for each chromosome gives a count of sample for that chromosome.

· Secondly, the chromosomes are sorted according to their fractional part, in the decreasing order. The chromosomes are then selected from the top of this sorted structure, till the mating pool if full. 
3.2.4.4 Crossover

Once a mating pool is obtained, crossover comes into play. It is essentially a random exchange of genetic material between two chromosomes as determined by a cross-over site. 
Crossover is a 2 step process:
       1. Mating: 2 chromosomes from the mating pool are selected at random. These are the pairs that will be mating to produce off springs.

       2. Exchange of genes: Once the chromosome mates are selected, these mates exchange a part of their string as determined by a cross-over site (k).

Types of Crossover operators:
· Single Point Crossover: A single crossover site is selected at random. The parent chromosomes exchange a sub string lying after the cross-over site to produce off springs. This is shown in Figure 3.2 (a).

[image: image13.emf]Figure 3.2 (a): Single point crossover

· Two Point Crossover: Two cross over sites are selected at random. The parent chromosomes then exchange the sub string lying between the two cross over sites. This is shown in Figure 3.2 (b).

[image: image14.emf]Figure 3.2 (b): Two point crossover

· Uniform Crossover: It extends the 1-point crossover to n-point crossover. Each gene of the parents can be selected according to some probability to be exchanged. This is shown in Figure 3.2 (c).


[image: image15.emf]




          Figure 3.2 (c): Uniform crossover
3.2.4.5 Mutation

Mutation is an occasional but an important concept of genetic algorithm. Mutation is a random change of a gene in a chromosome i.e. flipping of a bit from 0(1 or 1(0 as shown in Figure 3.3.

[image: image16.emf]
Figure 3.3 Mutation
Why Mutation?
1. Mutation is used to maintain diversity among the population. A Genetic Algorithm may converge pre-maturely if the chromosomes in a population get similar to each other.

a. This means that if the fitness value of the chromosomes becomes closer, the chromosomes become similar to each other. This causes the algorithm to trap in local optimum, hence converging pre-maturely.

b. In order to keep the chromosomes different from each other, the concept of mutation is used. Mutation introduces random changes in the chromosomes, thus preventing them from getting similar to each other.

2. Mutation also prevents the loss of important genetic material that has not been generated yet.

How Mutation occurs?
1. Mutation occurs with a mutation probability pm. 

2. For each gene:

a. A random number between 0 and 1 is generated. If the number is less than or equal to pm, the gene is mutated.

3. The value of pm is determined randomly. 

a. If pm is too low, it will not introduces sufficient changes, and hence not be able to 
prevent the algorithm from converging pre-maturely.

b. If pm is too high, it will introduce more than sufficient changes, and hence will delay the discovery of global optimum.

c. There is no criterion to select the value of pm. It is purely a random basis.

Table 3.2 shows with the help of an example chromosome, the procedure of mutation.

	Chromosome
	Random Numbers

	0 1 0 0
	0.01
	0.607
	0.253
	0.893


Table 3.2: Mutation Procedure
     
3.2.5 Stopping Condition
The Genetic Algorithm is an iterative procedure that runs through several iterations of selection, crossover, and mutation, until some stopping condition is satisfied.
The stopping condition can be:
· Maximum number of generations is reached. 

· At this point, the algorithm may or may not have converged to the global optimum solution.

· The global optimum if found.

· Continuing further does not lead to any improvement.

· The genetic algorithms are driven by an increase in average fitness of each successive generation. At each next generation, the average fitness of the population should increase relative to the previous generation.

· If there is no improvement in the average fitness of the population over successive generations, the algorithm terminates.

If any of the above condition is satisfied, the algorithm terminates.
3.2.6 Strengths and Limitations

Strengths:
· GA’s starts from a population of individuals rather than a single individual thus are more likely to produce a global optimum solution.

· GA’s works on an encoding of parameter space. This makes them independent of the problem.

· Deciding upon the encoding scheme and the fitness function is problem dependent. Once these 2 parameters are decided, the Genetic Algorithm then performs independently of the problem. This makes them suitable for every type of problem (with continuous or non-continuous parameter space).

Limitations:
· The performance of the algorithm is highly dependent upon the derived fitness function.

· Deciding upon a fitness function is a challenging task. If the fitness function is not selected properly, the algorithm may not produce a global optimum solution.

· The values of pc and pm must be selected appropriately. Since there are no specific criteria to decide for these values, the values must be selected carefully. Selecting both too low and too high values are inefficient for the algorithm.

In the next chapter, we describe the proposed test data generation algorithm in detail.
CHAPTER 4

Test Data Generation Algorithm

This chapter describes the proposed test data generation algorithm in detail. The algorithm uses the concept of mutation analysis to generate an adequate test data set. It also makes use of genetic algorithms to find an optimal test data set. The overview of the algorithm, steps of the algorithm and the details of each step are provided in this chapter.

4.1 Overview of the Proposed Algorithm
In this section, we present an overview of the proposed algorithm. In the proposed algorithm, we generate software test data using adequacy based testing criteria and genetic algorithm. One of the most common ways to generate a set of adequate test cases is mutation analysis. In general, mutation analysis is applied after the test data is generated, to check whether the generated test data is adequate or not. However, in the proposed algorithm, we apply mutation analysis at the time of generating test cases only rather than applying it after the test data is generated. This will lead to the generation of adequate test cases only, and hence we need not check for the adequacy of test cases again.

The test cases with respect to mutation analysis can be of two types viz. adequate and inadequate. A test case is adequate if it can identify faults in the program, else it is inadequate. The idea is to separate the adequate test cases from the inadequate ones at the time of test data generation only and to output only those test cases that are adequate. This is done by means of generating certain constraints. Once the constraints are generated, we apply genetic algorithm to solve these constraints. These solutions represent the test case values. In order to solve the constraints using genetic algorithms, we derive a fitness expression from these constraints (using an appropriate fitness function). 

Broadly, the proposed algorithm follows the below mentioned steps:

· Identify a set of mutants for the program under test, using the rules mentioned in chapter 3, section 3.1.

· Identify the constraints (between original program and mutant) such that solving these constraints ensures that the mutants are killed.

· Solve the constraints using genetic algorithms. These solutions represent the test cases.

In the proposed algorithm, we build a mutation table to keep track of all the mutants that are generated. The table contains several fields such as: Mutant_Id, Parent statement, Mutated Statement and Status. This is shown in Table 4.1.

	Mutant_Id
	Parent Statement
	Mutated Statement
	Status

	
	
	
	


Table 4.1: Mutation Table

· Mutant_Id is a symbol Mi followed by the statement number that is mutated. The symbol and statement number are separated by a colon (:). 

· Parent statement is a statement in the original program that is targeted to be changed in the mutant. 

· Mutated statement is the changed statement. 

· Status can be processed (if mutant is killed) or unprocessed (if mutant is alive)

4.2 Proposed Algorithm

In this section, we present the proposed test data generation algorithm.

	Algorithm 1: Proposed Test Data Generation Algorithm



	1:  Initialization:
a) Identify program mutants. 
b) Build mutation table. Initialize the status field of all mutants to the value ‘unprocessed’.
c) Make initial settings of the genetic algorithm software. 
2:  Repeat until the value of status field for all mutants is not processed.
3:  Select an unprocessed mutant from the mutation table.
4: Generate a constraint between original statement and mutated statement of the   selected mutant.
5:  Construct a fitness function from the generated constraint.
6: Input the fitness function to the genetic algorithm software and generate test case   values. Update the status field of the corresponding mutant to the value ‘processed’.
7: Check if the generated test cases could also kill other mutants in the mutation table. If yes THEN 


7.1: Update the status field of these mutants to ‘processed’. END IF
8: End repeat until

	


This algorithm fits well to any number of inputs. There are no bounds on the number of input variables. The only requirement is to properly generate the constraints and to use them to construct the fitness function in terms of input variables. We explain the steps of the above mentioned algorithm in detail in subsequent sections.

4.3 Mutant Identification
Mutants are identified by following certain rules. Hutchins et al. (1994) described the procedure used by Siemens to generate mutants - we paraphrase that description here. The Siemens procedure involves identifying mutants by manually seeding faults in the programs. It involves incorporating (mostly) the single line changes in the program to generate mutants. The same procedure was also used by Rothermel et al. (1997) in order to induce mutants in their proposed regression test selection technique. Following the Siemens procedure, we create and follow the following rules for mutant identification:

1. Only first order mutants are generated. First order mutants are mutants that contain a single change. In general, only first order mutants are sufficient and are used in testing practically. Second and higher order mutants (that contain multiple changes) make it difficult to manage the mutants, thus adding to complexity. Thus, only first order mutants are generated.

2. In general, there are no limits on the number of mutants that can be generated. To circumvent this problem, we restrict the domain of mutation operators. We generate mutants by applying mutation operators from this domain only. The domain of mutation operators that we use are operand replacement operator, expression modification operator, statement modification operator.

4.4 Constraint Generation
The constraints are generated between the correct statement of the original program and the changed statement of the mutated program. The idea is to generate the constraints such that the solutions of these constraints are guaranteed to kill the mutants. These solutions represent effective test case values.

An important property that must be kept in mind before generating constraints is that they should be generated such that they cause the mutants to follow a different execution path than the original program, after the execution of the mutated statement. This means that though the execution path followed by an original program and a mutant is same till the execution of the mutated statement, it should be different after the execution of the mutated statement. It is only then the mutant will generate different output as compared to the original program and hence is considered to be killed. The constraints are represented in Disjunctive Normal Form (DNF).

Example: Let us consider the following program (to find the GCD of two numbers) and a mutant for it as shown in Figure 4.1.

	Original Program
	Mutated Program

	1.void GCD(int a, int b)

2.{

3. while(a!=b)

4.  {

5.    if(a>=b-1)

6.       a=a-b;    

7.    else if(a<b-1)  

8.       b=b-a;

9.   }

10. printf(“\nGCD=%d”,a);

11.}
	1.void GCD(int a, int b)

2.{

3. while(a!=b)

4.  {

5.    if(a<b-1).    
6.       a=a-b;

7.    else if(a<b-1)

8.        b=b-a;

9.   }

10. printf(“\nGCD=%d”,a);

11.}

	
	


Figure 4.1: An example program and its mutant

Referring to Table 4.1, we can build a mutation table for the mutant generated in Figure 4.1. This is shown in Table 4.2.

	Mutant_Id
	Parent Statement
	Mutated Statement
	Status

	M1:5
	a>=b-1
	a<b-1
	unprocessed (means mutant is alive)


Table 4.2: Mutation Table for mutant generated in Figure 4.1

The table contains only single entry as only one mutant is generated. In Table 4.2, M1:5 represents mutant M1 corresponding to statement 5 of program in Figure 4.1, (a>=b-1) represents original statement, (a<b-1) represents mutated statement. The value unprocessed in status column specifies that mutant is still alive.

The constraints are generated between the correct statement of the original program and the changed statement of the mutated program such that both the statements generate different outputs. Thus, we generate the following constraint between the original and the mutated statement, mentioned in Table 4.2:

(a >=b-1)! = (a<b-1)  i.e. statements a>=b-1 and a<b-1 should produce different outputs   

We have made a general assumption that, E1 and E2 represents the expression on LHS and RHS of the ‘not equal to’ operator and ~E1 and ~E2 represents negation of E1 and E2. Thus, for the above identified constraint: 

E1: (a >=b-1),   ~E1: (a<b-1),   E2: (a < b-1),   ~E2: (a>=b-1)

Now, to cause E1 and E2 to produce different outputs, we want that either (E1 is true and E2 is false) or (E1 is false and E2 is true). Thus the above constraint can be more formally represented (in DNF) as:

(E1 and ~E2) or (~E1 and E2)

Each of the expression E in the constraints generated above may contain single or multiple conditions.

4.5 Fitness Function Construction
As discussed in section 4.3, solutions to the constraints that are generated represent the effective test case values. We solve constraints using genetic algorithm. Genetic algorithms require fitness function. The fitness function is a measure of goodness of each input value relative to the global optimum solution. It measures how close an input value is towards a global optimum solution. The generation of fitness function is a very crucial step. An effective and efficient fitness function cause genetic algorithm to perform better. Generation of fitness function is a problem dependent activity. Once a fitness function is generated and provided as an input to the genetic algorithm, the algorithm then works independent of the underlying problem. 
In this algorithm, we construct fitness function from the generated constraints, using an appropriate fitness function concept. The fitness function concept that we use here is same as proposed in Chen and Zhong (2008). This concept is actually based on calculating the difference between values of program variables, such that the difference is minimized. Our aim is to generate test case values that can minimize the value of fitness function. The fitness functions are created using the MATLAB software editor. The functions are created as MATLAB files with extension ‘.m’. The description of MATLAB software is provided in Appendix A.

Table 4.3 represents the fitness function concept and is shown below:

	Field No.
	C (Condition)
	f (C) : fitness value

	1
	a == b
	abs(a - b)

	2
	a ! = b
	- abs(a - b)

	3
	a > b
	(b - a)

	4
	a < b
	(a - b)

	5
	C1 and C2 / C1 && C2
	f(C1) + f(C2)

	6
	C1 or C2 / C1 || C2
	min{f(C1), f(C2)}


Table 4.3: Fitness function 

Adhering to the effectiveness of the fitness function concept proposed in Chen and Zhong (2008), we have used the same here. We can use both min as well as max fitness function. But since we are using GA Optimization Tool of MATLAB as our genetic algorithm software, we are using min fitness function. This is so because GA tool is implicitly configured for minimizing the fitness function value. However, if still max fitness function is to be used, we can easily do that by generating the fitness function and taking its negative.

Steps to construct fitness function from the constraints:

1. Compute the fitness values for each of E1, ~E1, E2, ~E2 (identified in section 4.4) using Table 4.3. 

2. Generate a fitness function for the entire constraint by combining fitness values computed in the first step using Table 4.3. 

For the example program in Figure 4.1, the following constraint was identified in section 4.2:

(E1 and ~E2) or (~E1 and E2) where, E1: a >= b-1, E2: a < b-1, ~E1: a<b-1, ~E2: a>=b-1

Referring to the steps mentioned in section 4.5, the fitness function can be constructed from the above constraint as follows:

1. Compute fitness values for E1, ~E1, E2, ~E2 as: 

f(E1)=b-1-a,  f(E2)=a-(b-1),  f(~E1)=a-(b-1),  f(~E2)=b-1-a.

2. Generate fitness function by combining the fitness values as:

f: min{[(b-1-a) + (b-1-a)], [(a-(b-1)) + (a-(b-1))]}  (refer to row 5 and 6 of Table 4.3)

Once a fitness function is constructed, we input it to the genetic algorithm software (GA optimization tool of MATLAB) and generate test case values.

4.6 GA Optimization Tool Settings
We have used GA optimization tool of MATLAB as our genetic algorithm software to generate test case values. The description of this tool is provided in Appendix B. The initial settings of the optimization tool that we have used in our algorithm are mentioned in Table 4.4.

	Parameter
	Value

	Genetic Algorithm Software
	GA Optimization Tool of MATLAB

	Selection Technique
	Roulette Wheel

	Cross over Rate
	80% (or 0.8)

	Mutation Rate
	0.01

	Representation Scheme
	Double Vector

	Cross over Technique
	Single Point Cross Over

	Initial Population Size
	100

	Maximum no. of Generations
	100


Table 4.4: Genetic Algorithm Software Settings

These settings have been commonly used in almost all the works described in section 2.

In the next chapter, we explain the algorithm using an example program. The triangle classification program is used as an example program for explaining the proposed algorithm.
CHAPTER 5

The Application of Algorithm on an Example Program
This chapter discusses the application of the proposed test data generation algorithm on an example program. The triangle classification program is used as an example program in this chapter. The program, its control flow graph, constraint generation and fitness function construction and the test case results for the triangle classification program are described in the subsequent sections of this chapter.

5.1 Triangle Classification Program 

The triangle classification program is used to classify a triangle as equilateral, isosceles, or scalene. The input of the program is a triple of three positive numeric variables, say (a, b, c). Each of these variables has some range of allowed values. The output of the program is one of these; ‘equilateral triangle’, ‘isosceles triangle’, ‘scalene triangle’, ‘invalid input values entered’, or ‘values out of range’. The program is shown below:   
	1. #include <stdio.h>

	2. #include <conio.h>

	3. void main()

	4. {

	5. 
int a, b, c;

	6. 
printf(“Enter the sides of the triangle”);

	7. 
scanf(“%d %d %d”, &a, &b, &c);

	8. 
if ((a>0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100))

	     9. 
{

	10. 

If (((a + b)>c) && ((b + c)>a) && ((c + a)>b))

	11. 

{

	12.


if ((a == b) && (b == c))

	13.


{

	14.



printf(“Equilateral Triangle”);

	15.


}

	16.


else if ((a == b) || (b == c) || ( c == a))

	17.


{

	18.



printf(“Isosceles Triangle”);


	19.                                   }

	20.


else

	21.


{

	22.



printf(“Scalene Triangle”);

	23.


}

	24.

}

	25.

else

	26.

{

	27.


printf(“Invalid sides of a triangle”);

	28.

}

	29.
}

	30.
else

	31.
{

	32.

printf(“Input values out of range”);

	33.
}

	34. getch();

	35. }


5.2 Control Flow Graph for the Triangle Program
The control flow graph for the program in section 5.1 is shown in Figure 5.1.
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Figure 5.1: Control flow graph for the triangle classification program

5.3 Mutant Generation
Let us suppose we generate mutants corresponding to statements 8, 10, and 12 of the program described in section 5.1. The following mutation table shown in Table 5.1 represents these mutants.
	Mutant_Id
	Parent Statement
	Mutated Statement
	Status

	M1:8
	[(a>0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ]
	[(a==0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ]
	unprocessed

	M2:10
	[((a + b)>c) && ((b + c)>a) && ((c + a)>b) ]
	[((a + b)<=c) && ((b + c)>a) && ((c + a)>b) ]
	unprocessed

	M3:12
	[ (a == b) && (b == c) ]
	[ (a > b) && (b == c) ]
	unprocessed


Table 5.1: Mutation Table for the program described in section 5.1

Though only one of the conditions of the entire statement is mutated, we consider the complete statement while generating constraints. In column 2 of Table 5.1, we have mutated variable ‘a’ for mutant id 8. But this is not a restriction. We can mutate any variable among a, b or c. In fact, multiple mutants can be generated corresponding to a single mutant id. The only thing to remember is that the mutants should be generated following the rules for mutant generation (refer to section 3.1). The same thing applies well to mutant id 10 as well as 12 of Table 5.1.

5.4 Constraint Generation
For Mutant_Id 8:
Let E1: [ (a>0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ] and
E2: [ (a==0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ]

Constraint: E1 ! = E2 or [(E1 and ~E2) or (~E1 and E2)]

Similarly, the constraints can be generated for the other 2 mutants.

5.5 Fitness Function Construction
1. Compute fitness values for E1, ~E1, E2, ~E2.

E1 has 6 conditions. For E1 to be true, all the 6 conditions needs to be true as these are connected via && operator. Let these 6 conditions are represented as:

E11: (a>0), E12: (a<=100), E13: (b>0), E14: (b<=100), E15: (c>0), E16: (c<=100)

Since all these conditions need to be true, we compute the following fitness values using Table 4.3:

f(E11)= -a,  f(E12)= a - 100,  f(E13)= -b,  f(E14)= b - 100,  f(E15)= -c,  f(E16)= c – 100

(f(E1) = f(E11) + f(E12) + f(E13) + f(E14) + f(E15) + f(E16) (refer to row 5 of Table 4.3) 

(f(E1)= (-a) + (a - 100) + (-b) + (b - 100) + (-c) + (c - 100)

Similarly, we can compute value of f(~E1), f(E2), f(~E2). The values are:
(f(~E1) = min{a, (100 - a), b, (100 - b), c, (100 - c)}

(f(E2) = abs(a – 0) + (a - 100) + (-b) + (b - 100) + (-c) + (c - 100)

(f(~E2) = min{-abs(a - 0), (100 - a), b, (100 - b), c, (100 - c)}

2. Generate fitness function by combining the fitness values (computed in above step).

f = min {(f(E1) + f(~E2)), (f(~E1) + f(E2))}

f = min { [ {(-a) + (a - 100) + (-b) + (b - 100) + (-c) + (c - 100)} + { min{-abs(a - 0), (100 - a), b, (100 - b), c, (100 - c)} } ], [{min{a, (100 - a), b, (100 - b), c, (100 - c)}} + { abs(a – 0) + (a - 100) + (-b) + (b - 100) + (-c) + (c - 100)} ] }

Similarly, we can compute the fitness function for Mutant_Id 10 and 12. We have computed the fitness functions for these two mutants. The final results for all the 3 mutants are shown in Table 5.2


	Mutant_Id
	Fitness Function

	M1:8
	min { [ {(-a) + (a - 100) + (-b) + (b - 100) + (-c) + (c - 100)} + { min{-abs(a - 0), (100 - a), b, (100 - b), c, (100 - c)} } ], [{min{a, (100 - a), b, (100 - b), c, (100 - c)}} + { abs(a – 0) + (a - 100) + (-b) + (b - 100) + (-c) + (c - 100)} ] }

	M2:10
	min { [ {(c - (a + b)) + (b - (c + a)) + (a – (b + c))} + {min {(c – (a + b)), (c + a - b), (b + c - a)} } ], [ {min {(a + b -c), (c + a - b), (b + c - a)} } + {(a + b - c) + (b – (c + a)) + (a – (b + c))} ] }

	M3:12
	min {[{abs(a - b) + abs(b - c)} + {min{(a - b), -abs(b - c)}}], [{min{-abs(a - b), -abs(b - c)}} + {(b - a) + abs(b - c)}]}


Table 5.2: Fitness function for the mutants identified in Table 5.1
5.6 Test Case Results 

For the program, let 5 mutants are identified. These are shown in Table 5.3. For each of these, generate constraints and fitness function using the procedure described in section 5.4 and 5.5. Once the fitness functions are generates, input these fitness functions to the GA optimization tool one be one to generate test case values. A total of 10 runs are carried out for each mutant. (There is no specific rule to select only 5 mutants. We can select any number of mutants for analysis. But, since there are large numbers of possible mutants in a program, we have selected only few for the sake of simplicity.)

	Mutant_Id
	Parent Statement
	Mutated Statement
	Status

	M1:8
	[(a>0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ]
	[(a==0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ]
	unprocessed

	M2:8
	[(a>0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ]
	[(a==0) && (a<=100) &&(b>0) && (b>100) && (c>0) && (c<=100) ]
	unprocessed

	M3:8
	[(a>0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c<=100) ]
	[(a==0) && (a<=100) &&(b>0) && (b<=100) && (c>0) && (c>100) ]
	unprocessed

	M4:10
	[((a + b)>c) && ((b + c)>a) && ((c + a)>b) ]
	[((a + b)<=c) && ((b + c)>a) && ((c + a)>b) ]
	unprocessed

	M5:10
	[((a + b)>c) && ((b + c)>a) && ((c + a)>b) ]
	[((a + b)>c) && ((b + c)>a) && ((c + a)==b) ]
	unprocessed


Table 5.3: Mutation table for the mutants identified from the program in section 5.1

The fitness function for the mutants identified in Table 5.3 is constructed using the technique described in section 5.5. Once the fitness functions are constructed, we input the functions one by one for all mutants to the GA optimization tool of MATLAB and record the test case results. The test case results are shown in Table 5.4.

	Runs
	Mutants

	
	M1:8
	M4:10

	1
	13
	3

	2
	5
	4

	3
	2
	3

	4
	2
	4

	5
	4
	3

	6
	3
	3

	7
	5
	3

	8
	1
	2

	9
	2
	1

	10
	5
	2

	Total
	42
	28

	Average
	4.2
	2.8

	Approximate no. of test cases
	4
	3

	
	7



Table 5.4: Experimental Results for the mutants identified in table 5.3

Cells in Table 5.4 represent the number of test cases that were generated. For e.g. 13 in the first cell indicates that among 100 test values that were generated, there were 13 unique test case values.(100 test values were generated because initial population is set to size 100.)  The experimental observations showed that test cases generated for mutant M1:8 also killed mutants M2:8 and M3:8, and test cases generated for mutant M4:10 also killed mutant M5:10. Thus we did not generate the test cases for M2:8, M3:8, and M5:10.

In the next chapter, we describe the empirical validation of the proposed algorithm.
CHAPTER 6 

Empirical Validation of the Algorithm
This chapter explains the empirical validation of the proposed algorithm. In order to validate our algorithm, we apply it on fifty real time programs written in C language and compare it with path testing and condition testing techniques (based on reliability testing criteria) for these programs in two categories viz. number of generated test cases and time taken to generate test cases. We have chosen path testing and condition testing technique because these two are profoundly used in the field of software testing. In fact, path testing technique alone can detect almost 65% of the errors in the program.

6.1 Analytical Evaluation and Comparison
Software test data generation is a very crucial and important task and it can be done in a variety of ways. Some of the test data generation techniques are based on generating test data on the basis of program specifications (known as functional testing) including equivalence class testing, random testing, etc., while others are based on generating test data on the basis of information about the code of the program (known as structural testing) including path testing, branch testing, du-path testing, etc. Our algorithm generates test data on the basis of source code of the program and the modified version of the program known as mutant. Our test data generation algorithm is basically based on the adequacy test criteria that incorporate mutation analysis at the time of test data generation only. This leads to the generation of test cases that are adequate. This has an advantage over other test data generation techniques that first generates test data and then applies mutation analysis to check its adequacy.  

We compare our algorithm with two other testing techniques: path testing and condition testing. We have chosen these two techniques as they are profoundly used in the field of software testing (Chen and Zhong, 2008; Clarke, 1976; Korel, 1990; Mansour and Salame, 2004; Srivastava and Tim, 2009; Jones et al., 1996; Khor and Grogono, 2004; Michael et al., 2001). Path testing involves testing the paths (especially the critical paths) of the program. It covers almost all the components of the program including statements, conditions, loops etc. In fact path testing alone can detect almost 65% of the errors in the program (Kernighan and Plauger, 1982). Condition testing involves testing each condition for both its true and false counterparts for at least once. The idea is to show the advantage of adequacy based proposed algorithm over reliability based path testing and condition testing techniques.

To discuss the advantage of our algorithm over other techniques, we develop an analytical framework. This framework evaluates our algorithm and compares it with other techniques in two categories: time taken to generate test cases, and number of generated test cases.  

Time taken to generate test cases: Time is one of the most crucial factors in any phase of the software development life cycle. Software testing is also no exception. It alone accounts for nearly 50% of the total development cost and time of the software. Due to the growing competition in the software market and the need to deliver the superior quality software quickly, we generally have only limited amount of time to generate test cases for testing software. Thus, it is very important to generate good quality test cases in a reasonable amount of time. In this category, we evaluate our algorithm by computing the percentage savings in time (taken to generate test cases) achieved in our algorithm over path testing and condition testing technique. 

The notations for computing percentage savings in time are given in Table 6.1. 
       

	Symbol
	Description

	M
	No. of mutants considered for testing

	Ma
	No. of mutants actually tested

	P
	No. of paths considered for testing

	Pa
	No. of paths actually tested

	C
	No. of conditions considered for testing

	Ca
	No. of conditions actually tested


Table 6.1: Notations for computing %savings in time

In Table 6.1, M=P=C i.e. number of mutants, paths and conditions considered for any program under test is kept to the same.

The values for percentage savings in time are computed as:

For our algorithm vs. path testing technique:

%savings in time =   [image: image19.png]B (or )




For our algorithm vs. condition testing technique:

%savings in time =   [image: image21.png]C(ora)




Number of generated test cases: The number of test cases that are generated in any testing technique is one of the important means to ensure the effectiveness of that testing technique. No. of generated test cases is directly related to the amount of time required to execute those test cases. Furthermore, we cannot test endlessly as we generally have limited testing resources (cost and time) and we have to test within those bounds only. Thus to meet time bounds, it is very important that a test data generation technique should generate a reasonable number of test cases and it is quite obvious to say that a technique that generates less number of good test cases is more effective than a technique that generates comparatively more number of test cases. We evaluate our algorithm in this category by comparing the number of test cases that are generated in our algorithm and comparing it with number of test cases that are generated in path testing and condition testing technique. We also compute the percentage reduction achieved (in number of test cases) in our algorithm over path and condition testing technique. The values for percentage reduction are calculated as:

For our algorithm vs. path testing technique:
%reduction in no. of test cases = [image: image23.png]no.of test cases in path testing tachnique —no.of test cases in our algorithm
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For our algorithm vs. condition testing technique:
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6.2 Empirical Data Collection
Evaluating the performance of any technique requires selecting certain subject programs which forms the basis for evaluation. To evaluate the performance of our proposed algorithm and to compare it with other techniques, we have selected fifty real time programs written in C language. The subject programs we have chosen are described in Table 6.2. The programs range from 35 to 250 lines of source code. We have selected a large program base that contains programs ranging from very basic such as computing the grade of student, finding the biggest of three numbers to very complex such as implementing the binary search tree and finding the intersection of two linked lists. We have chosen a diversified range of programs including mathematical problems such as finding roots of quadratic equation, triangle classification problem, computing the median of the triangle; general logical problems such as checking for the armstrong number, magic number, palindrome number; business problem such as payroll system, commission problem, credit risk analysis; data structures such as linked list, sorting (insertion sort, selection sort, bubble sort, merge sort, heap sort, quick sort, shell sort), searching (linear search, binary search) etc. All the programs are written in standard C language that makes it easier to work with these programs.         

	Subject Program
	Description

	SP1
	To find grade of a student

	SP2
	To find bigger of three numbers

	SP3
	Payroll System

	SP4
	Primality checking

	SP5
	To guess a number and then check whether it is even or odd 

	SP6
	Calculator Implementation

	SP7
	Leap year detection

	SP8
	To find number of odd days in a given year

	SP9
	Reverse of a number

	SP10
	To read a number and calculate its square root if it is a perfect square

	SP11
	To display a 3-digit number that is 3 times the sum of its digits

	SP12
	To display a three digit number after adding 1 to each of its digits.

	SP13
	To check for a palindrome number

	SP14
	To check for 3 digit Armstrong number

	SP15
	To read two numbers and check whether they are co-prime

	SP16
	To guess a number and then check whether it is a single digit number

	SP17
	Credit Risk Analysis : To estimate the amount of risk involved in granting a loan to a person given his income and savings

	SP18
	To guess a number and then check whether it is the magic number

	SP19
	Linear Search

	SP20
	Binary Search

	SP21
	Insertion Sort

	SP22
	Selection Sort

	SP23
	Bubble Sort

	SP24
	To find smallest and biggest number from a list of numbers

	SP25
	To find number of days between two dates

	SP26
	To read a number and find the sum of its digits

	SP27
	To find area of an equilateral triangle

	SP28
	Previous Date Problem: To find the previous date of a given date

	SP29
	To find roots of a quadratic equation

	SP30
	Triangle Classification Problem

	SP31
	To compute the median of the triangle

	SP32
	Commission Problem

	SP33
	To compute GCD of two numbers

	SP34
	Singly Linked List implementation

	SP35
	Doubly Linked List implementation

	SP36
	To find the intersection of two linked list

	SP37
	Quick Sort

	SP38
	Merge Sort

	SP39
	Shell Sort

	SP40
	Heap Sort

	SP41
	Binary Search Tree

	SP42
	Stack implementation using array

	SP43
	Queue implementation using array

	SP44
	To read a number and display it in words

	SP45
	Breadth First Search

	SP46
	Depth First Search

	SP47
	Transposition Cipher Implementation

	SP48
	Play-Fair Cipher Implementation

	SP49
	Implementation of 8-Puzzle problem

	SP50
	Implementation of perceptron (a simple neural network)


Table 6.2: Subject programs description

6.3 Research Procedure
In this section, we describe the procedure that we have used to evaluate the performance of our proposed algorithm and to compare our algorithm with other test data generation techniques. We have compared our algorithm with path testing technique and condition testing technique and all three are based on genetic algorithm. The path testing technique is described in Chen and Zhong (2008) and the condition testing technique is described in Jones et al. (1996). The research procedure for the evaluation is described below:

In our algorithm; for each subject program, we identify some mutants. After that we identify the constraints and generate fitness function for each mutant using the procedure described in section 3. In the path testing technique, we identify some paths using the control flow graph of the program and follow the approach described in Chen and Zhong (2008) to generate the fitness functions. In the condition testing technique, we select some conditions and follow the approach described in Jones et al. (1996) to generate the fitness functions. For any subject program under consideration, the number of mutants identified, number of paths identified and the number of conditions selected must be the same. The number of mutants, paths and conditions selected may vary from one program to another program depending upon its size and complexity. Once the fitness functions for mutants (in our algorithm), paths (in path testing technique), and conditions (in condition testing technique) are generated, we input these fitness functions one by one  to the GA optimization tool of the MATLAB and generate the test case values. For each of the mutants, paths and conditions, we generate and record the test case values 10 times and then average the result for better analysis.

6.4 Analysis Results
In this section, we describe the experimental analysis results in detail as an evidence to show the advantage of our proposed algorithm over other techniques. The results are based on fifty real time C programs. As mentioned in section 6.1, we evaluate our algorithm in terms of number of generated test cases and percentage savings obtained in time taken to generate test cases. Section 6.4.1 presents the results for number of test cases. Section 6.4.2 presents the results for percentage savings in time taken to generate test cases. 

6.4.1 Results for Number of Test Cases

We compute the number of test cases in our algorithm, path testing technique and condition testing technique. We also calculate the values of percentage reduction achieved in number of test cases in our algorithm over path testing and condition testing technique. These values are computed using the performance evaluation measures given in section 6.1. Section 6.4.1.1 presents the results for our proposed algorithm vs. path testing technique. Section 6.4.1.2 presents the results for our proposed algorithm vs. condition testing technique.

6.4.1.1 Proposed Algorithm vs. Path Testing Technique

Table 6.3 presents the results for the number of generated test cases and the percentage reduction achieved in number of test cases in our algorithm over path testing technique. 

	S. No
	Program
	No. of test cases in  our algorithm
	No. of test cases in   path  testing technique
	%reduction in no. of test cases

	1
	SP1
	8
	12
	33.33%

	2
	SP2
	5
	5
	0%

	3
	SP3
	5
	8
	37.5%

	4
	SP4
	2
	4
	50%

	5
	SP5
	3
	4
	25%

	6
	SP6
	3
	7
	57.14%

	7
	SP7
	2
	4
	50%

	8
	SP8
	2
	4
	50%

	9
	SP9
	1
	2
	50%

	10
	SP10
	2
	4
	50%

	11
	SP11
	3
	4
	25%

	12
	SP12
	3
	3
	0%

	13
	SP13
	2
	2
	0%

	14
	SP14
	3
	3
	0%

	15
	SP15
	4
	8
	50%

	16
	SP16
	1
	3
	66.66%

	17
	SP17
	4
	5
	20%

	18
	SP18
	3
	4
	25%

	19
	SP19
	8
	9
	11.11%

	20
	SP20
	5
	11
	54.54%

	21
	SP21
	6
	7
	14.28%

	22
	SP22
	6
	7
	14.28%

	23
	SP23
	4
	5
	20%

	24
	SP24
	11
	19
	42.11%

	25
	SP25
	17
	29
	41.38%

	26
	SP26
	8
	9
	11.11%

	27
	SP27
	18
	19
	5.26%

	28
	SP28
	5
	17
	70.58%

	29
	SP29
	7
	13
	46.15%

	30
	SP30
	7
	61
	88.52%

	31
	SP31
	4
	23
	82.60%

	32
	SP32
	5
	7
	28.57%

	33
	SP33
	3
	5
	40%

	34
	SP34
	3
	5
	40%

	35
	SP35
	4
	7
	42.85%

	36
	SP36
	5
	6
	16.66%

	37
	SP37
	5
	13
	61.53%

	38
	SP38
	5
	11
	54.54%

	39
	SP39
	4
	3
	-33.33%

	40
	SP40
	7
	8
	12.5%

	41
	SP41
	2
	3
	33.33%

	42
	SP42
	1
	3
	66.66%

	43
	SP43
	5
	7
	28.57%

	44
	SP44
	5
	8
	37.5%

	45
	SP45
	4
	6
	33.33%

	46
	SP46
	5
	6
	16.66%

	47
	SP47
	9
	14
	35.71%

	48
	SP48
	7
	10
	30%

	49
	SP49
	2
	5
	60%

	50
	SP50
	5
	6
	16.66%


Table 6.3: Number of test cases in our algorithm and path testing technique

The values in Table 6.3 shows that the number of test cases that are generated is less in our algorithm as compared to path testing technique for most of the programs with the exception of some where it is equal or more in our algorithm as compared to path testing technique. For e.g. the value -33.33% in row 39 of Table 6.3 signify that the number of test cases is more in our algorithm as compared to path testing technique for the shell sort program. Positive value of percentage reduction indicates that number of test cases is less in our algorithm. Negative value indicates that number of test cases is less in path testing technique. Zero value indicates that the number of test cases is same in both the techniques. The bar chart depicting the number of test cases in our algorithm and path testing technique is shown in Figure 6.1.
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Figure 6.1: Chart showing number of test cases in our algorithm and path testing technique

It is clear from Figure 6.1 that the number of generated test cases is less in our algorithm as compared to path testing technique. The bar chart depicting the percentage reduction in number of test cases achieved in our algorithm over path testing technique is shown in Figure 6.2. 
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   Figure 6.2: Chart showing %reduction in our algorithm over path testing technique
From Table 6.3 and Figure 6.2, we observe that there is 11.11% to 88.52% reduction in number of test cases in our algorithm over path testing technique.

6.4.1.2 Proposed Algorithm vs. Condition Testing Technique

Table 6.4 presents the results for the number of generated test cases and percentage reduction achieved in number of test cases in our algorithm over condition testing technique. 

	S. No
	Program
	No. of test cases in  our algorithm
	No. of test cases in  condition testing technique
	%reduction in no. of test cases

	1
	SP1
	8
	19
	57.89%

	2
	SP2
	5
	7
	28.57%

	3
	SP3
	5
	13
	61.53%

	4
	SP4
	2
	6
	66.66%

	5
	SP5
	3
	6
	50%

	6
	SP6
	3
	7
	57.14%

	7
	SP7
	2
	8
	75%

	8
	SP8
	2
	8
	75%

	9
	SP9
	1
	3
	66.66%

	10
	SP10
	2
	7
	71.42%

	11
	SP11
	3
	5
	40%

	12
	SP12
	3
	7
	57.14%

	13
	SP13
	2
	3
	33.33%

	14
	SP14
	3
	7
	57.14%

	15
	SP15
	4
	16
	75%

	16
	SP16
	1
	5
	80%

	17
	SP17
	4
	15
	73.33%

	18
	SP18
	3
	5
	40%

	19
	SP19
	8
	8
	0%

	20
	SP20
	5
	6
	16.66%

	21
	SP21
	6
	13
	53.84%

	22
	SP22
	6
	13
	53.84%

	23
	SP23
	4
	8
	50%

	24
	SP24
	11
	29
	62.06%

	25
	SP25
	17
	21
	19.04%

	26
	SP26
	8
	15
	46.66%

	27
	SP27
	18
	20
	10%

	28
	SP28
	5
	31
	83.87%

	29
	SP29
	7
	33
	78.78%

	30
	SP30
	7
	22
	68.18%

	31
	SP31
	4
	15
	73.33%

	32
	SP32
	5
	41
	87.80%

	33
	SP33
	3
	7
	57.14%

	34
	SP34
	3
	9
	66.66%

	35
	SP35
	4
	9
	55.55%

	36
	SP36
	5
	6
	16.66%

	37
	SP37
	5
	22
	77.27%

	38
	SP38
	5
	5
	0%

	39
	SP39
	4
	9
	55.55%

	40
	SP40
	7
	14
	41.17%

	41
	SP41
	2
	2
	0%

	42
	SP42
	1
	4
	75%

	43
	SP43
	5
	14
	64.28%

	44
	SP44
	5
	13
	61.53%

	45
	SP45
	4
	16
	75%

	46
	SP46
	5
	10
	50%

	47
	SP47
	9
	25
	64%

	48
	SP48
	7
	19
	63.15%

	49
	SP49
	2
	5
	60%

	50
	SP50
	5
	11
	54.54%


Table 6.4: Number of test cases in our algorithm and condition testing technique

The values in Table 6.4 shows that the number of test cases that are generated is less in our algorithm as compared to condition testing technique for most of the programs with the exception of some where it is equal in both the techniques. For e.g. the value 0% in row 38 of Table 6.4 signifies that the number of test cases is equal in our algorithm as well as condition testing technique for the merge sort program. The bar chart depicting the number of test cases in our algorithm and condition testing technique is shown in Figure 6.3.
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Figure 6.3: Chart showing number of test cases in our algorithm and condition testing technique

It is clear from Figure 6.3 that the number of generated test cases is less in our algorithm as compared to condition testing technique. The bar chart depicting the percentage reduction in number of test cases achieved in our algorithm over condition testing technique is shown in Figure 6.4.
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       Figure 6.4: Chart showing %reduction in our algorithm over condition testing technique
From Table 6.4 and Figure 6.4, we observe that there is 10% to 87.80% reduction in number of test cases in our algorithm over condition testing technique.
6.4.2 Results for Percentage Savings in Time Taken to Generate Test Cases

Table 6.5 presents the results for the percentage savings in time (taken to generate test cases) obtained in our algorithm over path testing and condition testing technique. The values for percentage savings in time are calculated using the performance evaluation measures given in section 6.1.

	S. No
	Program
	No. of mutants, paths and conditions considered for

 testing
	%savings in our algorithm over path testing 
	%savings in our algorithm over condition testing 

	1
	SP1
	4
	25%
	25%

	2
	SP2
	4
	nil
	nil

	3
	SP3
	4
	25%
	25%

	4
	SP4
	2
	50%
	50%

	5
	SP5
	2
	nil
	-50%

	6
	SP6
	2
	50%
	50%

	7
	SP7
	2
	50%
	50%

	8
	SP8
	2
	50%
	50%

	9
	SP9
	4
	nil
	nil

	10
	SP10
	4
	50%
	nil

	11
	SP11
	4
	50%
	50%

	12
	SP12
	5
	50%
	50%

	13
	SP13
	4
	nil
	nil

	14
	SP14
	4
	50%
	50%

	15
	SP15
	4
	50%
	25%

	16
	SP16
	2
	nil
	nil

	17
	SP17
	3
	33.33%
	33.33%

	18
	SP18
	4
	50%
	50%

	19
	SP19
	4
	nil
	-50%

	20
	SP20
	3
	66.66%
	33.33%

	21
	SP21
	5
	nil
	nil

	22
	SP22
	5
	nil
	nil

	23
	SP23
	5
	nil
	nil

	24
	SP24
	4
	50%
	50%

	25
	SP25
	5
	20%
	20%

	26
	SP26
	2
	nil
	nil

	27
	SP27
	3
	33.33%
	33.33%

	28
	SP28
	3
	66.66%
	66.66%

	29
	SP29
	5
	60%
	60%

	30
	SP30
	5
	60%
	40%

	31
	SP31
	4
	50%
	50%

	32
	SP32
	3
	66.66%
	66.66%

	33
	SP33
	3
	66.66%
	33.33%

	34
	SP34
	4
	50%
	25%

	35
	SP35
	4
	50%
	25%

	36
	SP36
	3
	nil
	-33.33%

	37
	SP37
	3
	66.66%
	66.66%

	38
	SP38
	3
	66.66%
	nil

	39
	SP39
	5
	nil
	nil

	40
	SP40
	5
	nil
	nil

	41
	SP41
	4
	50%
	nil

	42
	SP42
	4
	50%
	50%

	43
	SP43
	3
	33.33%
	33.33%

	44
	SP44
	3
	33.33%
	33.33%

	45
	SP45
	3
	33.33%
	33.33%

	46
	SP46
	3
	33.33%
	33.33%

	47
	SP47
	3
	nil
	nil

	48
	SP48
	4
	50%
	25%

	49
	SP49
	2
	50%
	50%

	50
	SP50
	2
	nil
	nil


Table 6.5: % savings in time in our algorithm over path testing and condition testing technique

The values in Table 6.5 indicate that there is a significant saving in time taken to generate test cases in our algorithm over other techniques for most of the programs with the exception of few where no savings are obtained and yet another few where savings are obtained in other techniques and not in our algorithm.  

The value 66.66% in row 20, column 4 of Table 6.5 indicates that for the binary search program, we generated test cases for only one mutant out of the 3 identified mutants in our algorithm whereas we had to generate test cases for all the 3 identified paths in path testing technique. Thus, there is a 66.66% saving in time in our algorithm over path testing technique (refer to section 6.1 for the equation to calculate % savings). This occurred because for the binary search program, the test case that we generated for one mutant also killed other two mutants in our algorithm, but in path testing technique, a test case generated for one path did not cover any other path, thus we had to generate test cases for all the three paths. The value nil in row 21, column 4 and 5 of Table 6.5 indicates that there is no saving in terms of time i.e. we generated test cases for all the 5 mutants, paths and conditions. The value -50% in row 19, column 5 of Table 6.5 indicates that there is a 50% savings in time taken to generate test cases. But negative sign indicates that savings is in other direction i.e. 50% savings is obtained in condition testing technique and not in our algorithm.

The bar charts depicting the percentage savings in time taken to generate test cases in our algorithm over path testing technique and condition testing technique are shown in Figure 6.5 and Figure 6.6 respectively.
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Figure 6.5: Chart showing % savings in time in our algorithm over path testing technique
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  Figure 6.6: Chart showing % savings in time in our algorithm over condition testing technique
From Table 6.5, Figure 6.5 and Figure 6.6, we observe that there is 20% to 66.66% savings in time (taken to generate test cases) in our algorithm over path testing and condition testing technique. 

Thus, overall the experimental results from Table 6.3, Table 6.4 and Table 6.5 suggests that there is a significant reduction (11.11% - 88.52%) in number of test cases in our algorithm over the path testing technique and significant reduction (10% - 87.80%) in number of test cases in our algorithm over the condition testing technique. There is also significant savings (20% - 66.66%) in time taken to generate test cases in our algorithm over the path testing and condition testing techniques.

In the next chapter, the analysis performed and the results obtained are reviewed and conclusions are drawn from them.
CHAPTER 7

Conclusion and Future Work

In this chapter, the detailed review of each chapter of the thesis is presented, the results of the thesis are summarized, applications of the work are discussed, contributions to the published literature are mentioned and the future directions of the work are described. 

7.1 Review of the Thesis
Chapter 1 provided the basic introduction of the thesis. Motivation of the work, basics of software testing, test data generation and goals of the thesis are presented in this chapter. The basic motivation of the thesis is derived from the need to address the emerging challenges in the field of software testing viz. non-exhaustiveness and time consuming nature of testing. There has been a significant evolution in the field of test data generation methods. Earlier random testing was used, then symbolic execution came into existence. After this the concept of search based testing emerged. In its infancy, local search techniques were used to search the input domain of the program for the desired test case values. But, since local techniques are likely to be trapped in local minima or maxima, heuristic search techniques were used to generate test cases. The overall goal of this thesis is to propose a new test data generation algorithm that is based on adequacy based testing criteria and that uses genetic algorithms. We also aim to investigate the effectiveness of the adequacy based testing criteria over the reliability based testing criteria.

Chapter 2 presented the literature survey in the field of test data generation using different testing criteria. In the literature, different researchers have focused upon different testing criteria while performing testing. This chapter described the work done by different researchers for generating test data using one or the other testing criteria. All the works that are presented are summarized in a tabular format that includes author name, publication year and the testing criteria focused in the corresponding work. We have derived a framework for the classification of testing criteria from the presented works done in the literature. The framework and the summary of the literature work suggests that large amount of work has been done on reliability based testing criteria, while very less work has been done on adequacy based testing criteria. This motivated us to choose adequacy based testing criteria in our work.

Chapter 3 described the key research concepts of the work. These are mutation analysis and genetic algorithms. Mutation analysis is used to check the adequacy of the test cases. It tells the tester that whether generated set of test cases are adequate or not. This chapter discussed the rules for mutant generation and the basic approach of mutation analysis. We have derived our own rules for mutant generation that are included in Malhotra and Garg (2011).  Basically we generated mutants following ‘Siemens policy’ that is also used by Hutchins (1994) and Rothermel (1997). Since an extremely large number of mutants may be generated for a program, we restricted the number of mutants by bounding the mutation operators that are used to generate mutants. Genetic algorithms are the heuristic search technique that searches the entire domain of search space and provides the globally optimum solution. This chapter discussed the basic procedure of genetic algorithm that includes initialization, selection, crossover and mutation phases. It also described the strengths and limitations of the genetic algorithms.

Chapter 4 described the proposed test data generation algorithm in detail. The algorithm used the concept of mutation analysis to generate an adequate test data set. It also makes use of genetic algorithms to find an optimal test data set. The overview of the algorithm, steps of the algorithm and the details of each step are provided in this chapter. Broadly the proposed algorithm followed three steps viz. mutant identification, constraint generation and fitness function construction. Mutants were identified following the rules for mutant generation. Constraints were generated such that the execution path followed by an original program and a mutant is different after the execution of the mutated statement. The fitness function concept that we have used is based on calculating the difference between the values of the program variables such that the difference is minimized. We have used GA optimization tool of the MATLAB as our genetic algorithm software. The tool settings were provided in the chapter.    

Chapter 5 discussed with the help of an example program, the application of the proposed test data generation algorithm. The triangle classification program was used as an example program. The program, its control flow graph, constraint generation, fitness function construction and the test case results for the triangle classification program were described in this chapter. Five mutants were selected for the triangle classification program. For these mutants the constraints were generated and the fitness functions were constructed. The results for these mutants were also shown. These results were obtained by inputting the constructed fitness functions to the GA optimization tool of the MATLAB that is used as our genetic algorithm software. The results showed the number of test cases that are generated. For better analysis, we perform ten runs for each inputted fitness function and then average the test case values.   

Chapter 6 explained the empirical validation of the proposed algorithm. In order to validate our algorithm, we have applied it on fifty real time programs written in C language and have compared it with path testing and condition testing techniques (based on reliability testing criteria) for these programs in two categories viz. number of generated test cases and time taken to generate test cases. The description of these programs was provided in the chapter. We have chosen path testing and condition testing technique because these two are profoundly used in the field of software testing. In fact, path testing technique alone can detect almost 65% of the errors in the program (Kernighan and Plauger, 1982). The experimental results showed that there is a significant reduction (11.11% - 88.52%) in the number of test cases in the proposed algorithm over the path testing technique and significant reduction (10% - 87.80%) in the number of test cases in the proposed algorithm over the condition testing technique. There is also significant savings (20% - 66.66%) in time taken to generate test cases in the proposed algorithm over the path testing and condition testing techniques. 
7.2 Summary of the Results
In this work, we have focused upon two basic aspects i.e. generation of adequate test cases and application of genetic algorithms in generating test cases. We have basically emphasized upon generating the test cases such that these are adequate and hence need not be subjected to mutation analysis after they are generated. This is done by integrating the mutation analysis with the test data generation. We have also applied genetic algorithms for generating the test cases in order to incorporate the benefits of genetic algorithms in our test data generation algorithm. Hence, by integrating mutation analysis with test data generation, we reduce the additional effort that is required to guarantee the adequacy of the test cases. Moreover, application of genetic algorithm is also promising as it provides the results that are globally optimum as compared to other local techniques. 
The results obtained from the analysis of the proposed algorithm can be summarized as follows:

· The proposed algorithm can reduce the time taken to generate test cases. This has significant benefits as time is one of the very important factors to be considered while performing testing and it is very important to test efficiently in as much minimum time as possible.

· The proposed algorithm generates less number of test cases as compared to other test data generation techniques. 

· There exist some programs for which the proposed algorithm offers little in terms of savings. However, for most of the programs the results are very promising.
· The effectiveness of test data generation algorithms depends upon certain factors such as program size, program structure, type of mutants introduced etc.

· In this work, we focus on using efficient testing criteria to generate test cases. But we use the same fitness function concept as that used in other test data generation techniques.
The overall conclusion of this thesis is that the proposed algorithm (based on adequacy testing criteria) is better than the path testing and condition testing techniques (based on reliability testing criteria) in terms of both number of generated test cases and the time taken to generate test cases. The conclusion is based on the results obtained from the analysis of the proposed algorithm. Hence the software practitioners can use the proposed algorithm to generate an adequate test data set in comparatively less amount of time than other test data generation techniques that are based on reliability based testing criteria. 
7.3 Application of the Work
After design and evaluation of the proposed algorithm for generating adequate test data, we can conclude that the work in this thesis will allow researchers and software professionals to:

1. Use the proposed algorithm to efficiently and quickly generate an adequate test data set.

2. Reduce time and effort in generating test data.

3. Adequately generate effective and efficient test data. 

4. Use and adapt genetic algorithm in generating test data.

5. Meet the challenge of time bounds while testing by generating test data in a reasonable amount of time.

6. Reduce the maintenance cost of the software by testing it effectively using effective testing criteria. 

7. Reduce the effort involved in adequate test data generation by integrating mutation analysis at the time of generating test data only.  
7.4 Contribution to Published Literature
During the period of the research, details and results of this investigation have been communicated in the following journals:
I. Malhotra R., Garg M.: ‘An adequacy based test data generation technique using genetic algorithms’, Journal of Information Processing Systems, Korea, Accepted for publication in March 2011.
II. Malhotra R., Garg M.: ‘Development and empirical validation an efficient test data generation algorithm based on adequacy based testing criteria’, Journal of System and Software, Elsevier, communicated in April 2011.

7.5 Future Work
While the analysis results shown in this work are encouraging, further analysis would be useful and would add to the strength of the proposed algorithm. Future directions involve validating the proposed algorithm on more larger and complex applications and projects. In general, there are no limits on the number of applications on which an algorithm may be validated. Validating an algorithm on larger, complex and sophisticated real time projects and applications would add to the strength of the algorithm and would increase the acceptability of the algorithm among the clients. Though validating on all possible projects may not be possible, but still validating the proposed algorithm on as many projects as possible, would make the algorithm more trustworthy and acceptable for the users.
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Appendix A

An Introduction to MATLAB
MATLAB is a high performance language for technical computing. It integrates computation, visualization and programming in an easy-to-use environment where problems and solutions are expresses in familiar mathematical notation. Typical uses include: 

1. Math and computation 

2. Algorithm, simulation and prototyping 

3. Modeling, simulation and prototyping 

4. Data analysis, exploration and visualization 

5. Scientific and engineering and visualization 

6. Application development, including graphical user interface building 

MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows you to solve many technical computing problems, especially those with matrix and vector formulations in a fraction of the time it would take to write a program in a scalar non interactive language such as C or FORTRAN. 

The name MATLAB stands for Matrix Laboratory. MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects. Today MATLAB uses software developed by the LAPACK and ARPACK projects, which together represent the state-of-the-art in software for matrix computation. 

MATLAB has evolved over a period of years with input from many users. In university environments, it is the standard instructional tool for introductory and advanced courses in mathematics, engineering and science. In industry, MATLAB is the tool of choice for high-productivity research, development and analysis. 

MATLAB features a family of application-specific solutions called toolboxes. Very important to most users of MATLAB toolboxes allow you to learn and apply specialized technology. Toolboxes are comprehensive collections of MATLAB functions (M-files) that extend the MATLAB environment to solve particular classes of problems. Areas in which toolboxes are available include signal processing, control system neural networks, fuzzy logic, wavelets, simulation and many others. 

FILE TYPES 

MATLAB can read and write several types of files. There are mainly two different types of files used in MATLAB which are used for storing data or programs. 

1. M-FILES- They are the standard ASCII files, with a .m extension to the file name. There are basically two types of files and they are SCRIPT and FUNCTION file. In general, mostly MATLAB files are saved as M-FILES.
2. MAT-FILES- They are the binary data-files, with a .mat extension to the filename. These files are created when you save the MATLAB data with the save command. The data which you save in MATLAB can only be read by mat lab as it save in a special format. 
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Appendix B

GA Optimization Tool of MATLAB
The GA optimization tool of MATLAB is used to solve problems by mimicking the principles of biological evolution, repeatedly modifying a population of individual points using rules modeled on gene combinations in biological reproduction. Due to its random nature, the genetic algorithm improves your chances of finding a global solution. It enables you to solve unconstrained, bound-constrained, and general optimization problems, and it does not require the functions to have any specific characteristics like differentiability or continuity.

The GA optimization tool is shown below:
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The GA tool window is divided into two main parts:

1. Problem Setup and Results

2. Options
1. Problem Setup and Results
This part contains the features for specifying the problem and constraints that are imposed on the problems. It also has the feature of executing the problem to generate the results. The problem to be solved is formulated in terms of a fitness function. This function is provided as an input to the tool. Once the function is provided, we can start the execution of this function to generate the result values. In our case, these result values signify the test case values as we are using the GA tool for generating test cases.

The problem setup and results part contain three basic features:

a. Problem: This enables the user to specify a problem. It contains two elements:

· Fitness Function: It is the objective function you want to minimize. You can specify the function as a function handle of the form @fn_name, where fn_name.m is a ‘.m’ file corresponding to this function, created in the editor of MATLAB. 

· Number of variables: It specifies the number of independent variables for the fitness function.

b. Constraints: It enables the user to specify the constraints on the problem. It contains two elements:

· Lower Bound: It enables you to specify the lower bound on the values of the independent variables for the problem.

· Upper Bound: It enables you to specify the upper bound on the values of the independent variables for the problem.

c. Run Solver and View Results: It enables the user to the start the execution of the inserted fitness function and to view the results. It contains two options:

· Start: It starts the execution of the fitness function. When the execution terminates, results are generated that are displayed in the results panel in the form of grid.

· Use random states from previous run: This option, when made enabled by checking the check box, causes the genetic algorithm to use random numbers generated in the previous run as the members of the initial population for the current run. This causes the values from the previous run to be seeded in the initial population of the current run that enhances the performance of the algorithm.

2. Options
This part enables the user to set the values for various parameters of the genetic algorithms. The parameter options available in the options part of the GA tool are:

a. Population: This enables the user to specify the options for the population of the genetic algorithm. It contains:

· Population type: It specifies the type of the input to the fitness function. Population type can be double vector, bit string or custom. If you select Custom, you must write creation, mutation, and crossover functions that work with your population type, and specify these functions in the fields Creation function, Mutation function, and Crossover function, respectively.

· Population size: It specifies the number of individuals in each generation. 

· Creation function: It specifies the function that creates the initial population. It has four options viz. ‘Use constraint dependent default’, ‘Uniform’, ‘Feasible’ and ‘Custom’. ‘Use constraint dependent default’ chooses ‘uniform’ if there are no constraints and ‘’feasible’ if there are constraints on the problem. Custom enables you to provide your own creation function, which must generate data of the type that you specify in Population type. 

b. Selection: The selection function chooses parents for the next generation on the basis of fitness function values. You can specify the function that performs the selection in the Selection function field. You can choose from the following functions: 
· Remainder: It assigns parents deterministically from the integer part of each individual's scaled value and then uses roulette selection on the remaining fractional part.
· Uniform: It selects parents at random from a uniform distribution using the expectations and number of parents. This results in an undirected search. Uniform selection is not a useful search strategy, but you can use it to test the genetic algorithm.
· Shift linear: It scales the raw scores so that the expectation of the fittest individual is equal to a constant, which you can specify as Maximum survival rate, multiplied by the average score.
· Roulette: It simulates a roulette wheel with the area of each segment proportional to its expectation. The algorithm then uses a random number to select one of the sections with a probability equal to its area.
· Tournament: It selects each parent by choosing individuals at random, the number of which you can specify by Tournament size, and then choosing the best individual out of that set to be a parent.
· Custom: It enables you to write your own selection function. 
c. Crossover: Crossover combines two individuals, or parents, to form a new individual, or child, for the next generation. You can specify the function that performs the crossover in the Crossover function field. You can choose from the following function:

· Single Point Crossover: A single crossover site is selected at random. The parent chromosomes exchange a substring lying after the cross-over site to produce off springs. 

· Two Point Crossover: Two cross over sites are selected at random. The parent chromosomes then exchange the sub string lying between the two cross over sites to produce the off springs.
· Uniform Crossover: It extends the 1-point crossover to n-point crossover. Each gene of the parents can be selected according to some probability to be exchanged. The number of genes exchanged is on average (S/2) for the length of the chromosome being equal to S.
· Custom: It enables to you specify your own crossover function.

d. Mutation: Mutation functions make small random changes in the individuals in the population, which provide genetic diversity and enable the genetic algorithm to search a broader space. This option enables you to specify the type of mutation function viz. uniform, adaptive etc. that will be used in the genetic algorithm to maintain population diversity. 
e. Stopping criteria: It determines what causes the algorithm to terminate. There can be several options:

· Generations: It specifies the maximum number of iterations the genetic algorithm performs.

· Time limit: It specifies the maximum time in seconds the genetic algorithm runs before stopping.

· Fitness limit: If the best fitness value is less than or equal to the value of Fitness limit, the algorithm stops.
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