CERTIFICATE

This is to certify that the major project report entitled "**Compatibility Analysis of Cement with Super-plasticizer**" is bonafide work of under-signed, submitted in partial fulfillment of the requirement for the award of the degree of master of engineering (structural engineering) in the department of Civil and Environmental Engineering, Delhi College of Engineering, Bawana road, Delhi.

This project has been carried out under the Guidance of Er. AMIT KUMAR SHRIVASTAVA (Assistant Professor) and Dr. MUNENDRA KUMAR (Assistant Professor), Delhi College of Engineering, Delhi-110042.

I have not submitted the matter or part of it embodied in this report to any other University or Institution for award of any Degree or Diploma.

AKANCHA SHRIVASTAVA (University Roll No.- 9073)

This is to certify that the statement submitted by the student is correct to best of our knowledge and belief.

Dr. MUNENDRA KUMAR (Assistant Professor)

Er. AMIT KUMAR SHRIVASTAVA (Assistant Professor)

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING DELHI COLLEGE OF ENGINEERING BAWANA ROAD, DELHI-110042 UNIVERSITY OF DELHI

ACKNOWLEDGEMENT

It is my great pleasure to have opportunity to acknowledge and express my heartfelt gratitude to everybody who helped and supported emotionally and technically in completion of this project work.

I would like to express my gratitude to my Guides, Dr. Munendra Kumar and Er. Amit Kumar Shrivastava, for their support, patience, and encouragement throughout my Project work. There continuous inspiration made me successful in completion of this minor project work. They kept me boosting by giving their valuable time. It is not often that one finds a guide that always finds the time for listening to the little problems and roadblocks that unavoidably crop up in the course of performing research. Their technical and editorial advice was essential to the completion of this dissertation and has taught me innumerable lessons and insights on the workings of academic research in general.

My thanks also goes to the Head of the Department, Dr. A.K. Gupta for his valuable support, comments and encouragement which made the presentation and contents of this dissertation possible.

Last, but not least, I would like to thank my father for his understanding for getting the apparatus fabricated in time so that my work is completed in time. His support and encouragement was in the end what made this dissertation possible.

I would also like to thank Mr. Adarsh Kumar for his assistance and time to time suggestions and thoughts.

I am also thankful to all my colleagues, friends and well-wishers for their unconditional support, motivation and encouragement for this work.

AKANCHA SHRIVASTAVA (University Roll No.- 9073)

ABSTRACT

Super-plasticizers have made concrete to reach very high strength and fluidity. Apart from the multitude of chemical admixtures, a number of different types and brands of cement are also available in the market today. With the increasing number of types and brands of cement, as well as variants of the water-reducing chemicals, there are issues that arise related to the compatibility between these two ingredients of concrete. Consequence upon the above; various manufacturers from both the fields have emerged with wide variety of products to serve different purposes of clients of construction world.

Admixtures with many desirable characteristics to serve varied requirements are available in market has created confusion among the users, as there are varied cements with different composition. The cement composition and its properties vary broadly in the world; it has not become an easy task for admixture manufacturer to 'match' its brand products with any specific type of cement. At the same time, no cement manufacturer suggests any specific brand of admixture, which will be most suitable and compatible with their product. As such, it has become very tedious job for users/ clients to select the appropriate combination of cement and admixture to serve his purpose.

Moreover, during the use of super-plasticizers in concrete, there may exist some problems of incompatibility of cement- super-plasticizer; irregularity of slump and loss in workability. Therefore, it becomes an essential part that each admixture combination with cement should be evaluated before it can be practically utilized. All the above problems create a need for research and test of various super-plasticizers with the renowned brands of cement. This study is a step to determine the solution against this difficulty to select the most efficient couple of cement- super-plasticizer.

The cement or super-plasticizer compatibility has not yet been thoroughly understood. Most users apply a trial-and-error approach to these chemicals, often resulting in an unfortunate negative experience and/or low cost-effectiveness, which produce a bias against admixtures in general. This is basically due to an incomplete understanding. Up to now, there have been very few incentives to invest time, effort and money to solve this kind of problem. This study will provide ready to use data and reference to the industries and construction world.

iii

TABLE OF CONTENTS

CONTENT		PAGE
CERTIFICATE		i
ACKNOWLEDGE	MENT	ii
ABSTRACT		iii
TABLE OF CONTI	ENTS	iv
LIST OF FIGURES	5	vii
LIST OF TABLES		Х
NOMENCLATURI	Е	xiii
CHAPTER 1: INT		1
1.1 General		1
1.2 Cement		1
1.3 Super P	lasticizer	2
1.4 Objective of work		4
1.5 Organiz	cation of thesis	4
CHAPTER 2: LIT	ERATURE REVIEW	6
2.1 Cement and Admixture- A review		6
2.1.1	Introduction	6
2.1.2	Cement	6
2.1.3	Types of cement	7
2.1.3		7
2.1.3	3.2 Rapid-Hardening Cement	8
2.1.3	3.3 Low Heat Cement	8
2.1.3	3.4 Quick Setting Cement	9
2.1.3	B.5 High Alumina Cement	9
2.1.3	-	9
2.1.3		9

2.1.4	Admixture	10
2.1.4.	1 Super-plasticizer	12
2.1.4.	2 Technical performance of super-plasticizer	12
2.1.4.	3 Dosage level of admixture	13
2.1.5	Different types of super-plasticizer	15
2.2 Cement	– Super-plasticizer compatibility	16
2.2.1	Introduction	16
2.2.2	Mechanism of action of super plasticizer (water reducers)	17
2.2.3	Factors affecting compatibility	19
2.2.3.	1 Effect of cement composition	20
2.2.3.	2 Influence of fineness of cement	23
2.2.3.	3 Effect of admixture type	24
2.2.3.	4 Other issues affecting compatibility	25
2.2.4	Compatibility test for optimum dose	26
2.2.4.	1 Marsh Cone Test	26
2.2.5	Research work performed so far in this field	27
2.2.6	Compatibility Equations	28
2.2.7	Correlation coefficient (R)	28
2.2.8	Coefficient of determination (R^2)	29

CHAPTER	31 3: EXPERIMENTAL MATERIAL AND APPARATUS
3.1	Experimental materials 31
	3.1.1 Super-plasticizers used and its chemical properties 31
	3.1.2Cements (PPC) used33
3.2	Apparatus used and arranged for compatibility test33
СНАРТЕВ	R 4: EXPERIMENTAL PROGRAM 38
4.1	Introduction 38
4.2	Test Procedure38
4.3	Combination of testing 39
4.4	Flow Chart for Experimental program 40
4.5	Pictorial presentation of Experimental Steps 41

CHAPTER 5: RESULTS AND DISCUSSION 47 5.1 Introduction 47 5.2 Observation for C1 (W/C = 0.5) 48 Observation for C2 (W/C = 0.5) 5.3 56 Observation for C3 (W/C = 0.5) 5.4 64 Observation for C1 (W/C = 0.45) 5.5 72 5.6 Observation for C2 (W/C = 0.45) 80

5.7 Observation for C3 (W/C = 0.45) 88

CHAPTER 6	: DEVELOPMENT OF EQUATIONS	96
6.1	Introduction	96
6.2	Compatibility Equations	96
6.3	Compatibility equation for C1 at w/c 0.45	97
6.4	Compatibility equation for C2 at w/c 0.45	100
6.5	Compatibility equation for C3 at w/c 0.45	103
6.6	Compatibility equation for C1 at w/c 0.5	106
6.7	Compatibility equation for C2 at w/c 0.5	109
6.8	Compatibility equation for C3 at w/c 0.5	112
6.9	Summary table for compatibility equations	115
CHAPTER 7	: CONCLUSION AND REMARKS	116
7.1	Introduction	116
7.2	Conclusions	116
7.3	Recommendations and Scope for Future Work	117

REFERENCES

118

LIST OF FIGURES:

Fig 1	Loss of Fluidity with time with different dosage of super plasticizer	14
Fig 2	Mechanism of electrostatic repulsion and steric hindrance	18
Fig 3	Marsh Cone Apparatus	26
Fig 4	Cone parameters	33
Fig 5	Size of metal sheet	34
Fig 6	Dimensions of Marsh Cone orifice	35
Fig 7	Stand to hold the Marsh Cone	36
Fig 8	1.18 mm sieve	37
Fig 9	Flow chart for Experimental program	40
Fig 10	Measuring Super-plasticizer	41
Fig 11	Quantitative measuring of Super-plasticizer with Syringe	41
Fig 12	Mixing of Cement, SP and Water	42
Fig 13	Filtering slurry with sieve	42
Fig 14	Measurement of 1L of slurry	43
Fig 15	Pouring slurry into Marsh Cone Apparatus	43
Fig 16	Slurry held up in Apparatus	44
Fig 17	Apparatus ready for Marsh flow time recording	44
Fig 18	Flow of slurry after opening orifice	45
Fig 19	Recording Marsh Flow Time in Stop-watch	45
Fig 20	Recording Marsh Flow Time in Stop-watch	46
Fig 21	Graph b/w dosage of SP and Marsh flow time for C1-SP1 (w/c =0.5)	48
Fig 22	Graph b/w dosage of SP and Marsh flow time for C1-SP2 (w/c =0.5)	49
Fig 23	Graph b/w dosage of SP and Marsh flow time for C1-SP3 (w/c =0.5)	50
Fig 24	Graph b/w dosage of SP and Marsh flow time for C1-SP4 (w/c = 0.5)	51
Fig 25	Graph b/w dosage of SP and Marsh flow time for C1-SP5 (w/c =0.5)	52
Fig 26	Graph b/w dosage of SP and Marsh flow time for C1-SP6 (w/c =0.5)	53
Fig 27	Graph b/w dosage of SP and Marsh flow time for C1-SP7 (w/c =0.5)	54
Fig 28	Graph b/w dosage of SP and Marsh flow time for C1-SP8 (w/c =0.5)	55
Fig 29	Graph b/w dosage of SP and Marsh flow time for C2-SP1 (w/c =0.5)	56
Fig 30	Graph b/w dosage of SP and Marsh flow time for C2-SP2 (w/c =0.5)	57
Fig 31	Graph b/w dosage of SP and Marsh flow time for C2-SP3 (w/c =0.5)	58
Fig 32	Graph b/w dosage of SP and Marsh flow time for C2-SP4 (w/c =0.5)	59

Fig 33	Graph b/w dosage of SP and Marsh flow time for C2-SP5 (w/c = 0.5) 60
Fig 34	Graph b/w dosage of SP and Marsh flow time for C2-SP6 (w/c = 0.5) 61
Fig 35	Graph b/w dosage of SP and Marsh flow time for C2-SP7 (w/c =0.5) 62
Fig 36	Graph b/w dosage of SP and Marsh flow time for C2-SP8 (w/c = 0.5) 63
Fig 37	Graph b/w dosage of SP and Marsh flow time for C3-SP1 (w/c = 0.5) 64
Fig 38	Graph b/w dosage of SP and Marsh flow time for C3-SP2 (w/c = 0.5) 65
Fig 39	Graph b/w dosage of SP and Marsh flow time for C3-SP3 (w/c = 0.5) 66
Fig 40	Graph b/w dosage of SP and Marsh flow time for C3-SP4 (w/c = 0.5) 67
Fig 41	Graph b/w dosage of SP and Marsh flow time for C3-SP5 (w/c = 0.5) 68
Fig 42	Graph b/w dosage of SP and Marsh flow time for C3-SP6 (w/c = 0.5) 69
Fig 43	Graph b/w dosage of SP and Marsh flow time for C3-SP7 (w/c = 0.5) 70
Fig 44	Graph b/w dosage of SP and Marsh flow time for C3-SP8 (w/c = 0.5) 71
Fig 45	Graph b/w dosage of SP and Marsh flow time for C1-SP1 (w/c = 0.45) 72
Fig 46	Graph b/w dosage of SP and Marsh flow time for C1-SP2 (w/c = 0.45) 73
Fig 47	Graph b/w dosage of SP and Marsh flow time for C1-SP3 (w/c = 0.45) 74
Fig 48	Graph b/w dosage of SP and Marsh flow time for C1-SP4 (w/c = 0.45) 75
Fig 49	Graph b/w dosage of SP and Marsh flow time for C1-SP5 (w/c = 0.45) 76
Fig 50	Graph b/w dosage of SP and Marsh flow time for C1-SP6 (w/c = 0.45) 77
Fig 51	Graph b/w dosage of SP and Marsh flow time for C1-SP7 (w/c = 0.45) 78
Fig 52	Graph b/w dosage of SP and Marsh flow time for C1-SP8 (w/c = 0.45) 79
Fig 53	Graph b/w dosage of SP and Marsh flow time for C2-SP1 (w/c = 0.45) 80
Fig 54	Graph b/w dosage of SP and Marsh flow time for C2-SP2 (w/c = 0.45) 81
Fig 55	Graph b/w dosage of SP and Marsh flow time for C2-SP2 (w/c = 0.45) 82
Fig 56	Graph b/w dosage of SP and Marsh flow time for C2-SP4 (w/c = 0.45) 83
Fig 57	Graph b/w dosage of SP and Marsh flow time for C2-SP5 (w/c = 0.45) 84
Fig 58	Graph b/w dosage of SP and Marsh flow time for C2-SP6 (w/c = 0.45) 85
Fig 59	Graph b/w dosage of SP and Marsh flow time for C2-SP7 (w/c = 0.45) 86
Fig 60	Graph b/w dosage of SP and Marsh flow time for C2-SP8 (w/c = 0.45) 87
Fig 61	Graph b/w dosage of SP and Marsh flow time for C3-SP1 (w/c = 0.45) 88
Fig 62	Graph b/w dosage of SP and Marsh flow time for C3-SP2 (w/c = 0.45) 89
Fig 63	Graph b/w dosage of SP and Marsh flow time for C3-SP3 (w/c = 0.45) 90
Fig 64	Graph b/w dosage of SP and Marsh flow time for C3-SP4 (w/c = 0.45) 91
Fig 65	Graph b/w dosage of SP and Marsh flow time for C3-SP5 (w/c = 0.45) 92
Fig 66	Graph b/w dosage of SP and Marsh flow time for C3-SP6 (w/c = 0.45) 93

Fig 67	Graph b/w dosage of SP and Marsh flow time for C3-SP7 (w/c = 0.45)) 94
Fig 68	Graph b/w dosage of SP and Marsh flow time for C3-SP8 (w/c = 0.45)) 95
Fig 69	Graph showing trend line for $C1 - PCE$, $w/c = 0.45$	97
Fig 70	Graph showing trend line for $C1 - SNF$, $w/c = 0.45$	115
Fig 71	Graph showing trend line for $C1 - SNP$, $w/c = 0.45$	116
Fig 72	Graph showing trend line for $C2 - PCE$, $w/c = 0.45$	117
Fig 73	Graph showing trend line for $C2 - SNF$, w/c = 0.45	118
Fig 74	Graph showing trend line for $C2 - SNP$, w/c = 0.45	119
Fig 75	Graph showing trend line for $C3 - PCE$, $w/c = 0.45$	120
Fig 76	Graph showing trend line for $C3 - SNF$, $w/c = 0.45$	121
Fig 77	Graph showing trend line for C3 – SNP, w/c = 0.45	122
Fig 78	Graph showing trend line for $C1 - PCE$, $w/c = 0.45$	123
Fig 79	Graph showing trend line for $C1 - SNF$, $w/c = 0.45$	124
Fig 80	Graph showing trend line for $C1 - SNP$, $w/c = 0.45$	125
Fig 81	Graph showing trend line for $C2 - PCE$, $w/c = 0.45$	126
Fig 82	Graph showing trend line for $C2 - SNF$, $w/c = 0.45$	127
Fig 83	Graph showing trend line for $C2 - SNP$, $w/c = 0.45$	128
Fig 84	Graph showing trend line for $C3 - PCE$, $w/c = 0.45$	129
Fig 85	Graph showing trend line for $C3 - SNF$, $w/c = 0.45$	130
Fig 86	Graph showing trend line for C3 – SNP, w/c = 0.45	131

LIST OF TABLE:

Table 1	Different combination of testing	39
Table 2	Marsh flow time readings for C1-SP1 (W/C = 0.5)	48
Table 3	Marsh flow time readings for C1-SP2 (W/C = 0.5)	49
Table 4	Marsh flow time readings for C1-SP3 (W/C = 0.5)	50
Table 5	Marsh flow time readings for C1-SP4 (W/C = 0.5)	51
Table 6	Marsh flow time readings for C1-SP5 (W/C = 0.5)	52
Table 7	Marsh flow time readings for C1-SP6 (W/C = 0.5)	53
Table 8	Marsh flow time readings for C1-SP7 (W/C = 0.5)	54
Table 9	Marsh flow time readings for C1-SP8 (W/C = 0.5)	55
Table 10	Marsh flow time readings for C2-SP1 (W/C = 0.5)	56
Table 11	Marsh flow time readings for C2-SP2 (W/C = 0.5)	57
Table 12	Marsh flow time readings for C2-SP3 (W/C = 0.5)	58
Table 13	Marsh flow time readings for C2-SP4 (W/C = 0.5)	59
Table 14	Marsh flow time readings for C2-SP5 (W/C = 0.5)	60
Table 15	Marsh flow time readings for C2-SP6 (W/C = 0.5)	61
Table 16	Marsh flow time readings for C2-SP7 (W/C = 0.5)	62
Table 17	Marsh flow time readings for C2-SP8 (W/C = 0.5)	63
Table 18	Marsh flow time readings for C3-SP1 (W/C = 0.5)	64
Table 19	Marsh flow time readings for C3-SP2 (W/C = 0.5)	65
Table 20	Marsh flow time readings for C3-SP3 ($W/C = 0.5$)	66
Table 21	Marsh flow time readings for C3-SP4 (W/C = 0.5)	67
Table 22	Marsh flow time readings for C3-SP5 (W/C = 0.5)	68
Table 23	Marsh flow time readings for C3-SP6 (W/C = 0.5)	69
Table 24	Marsh flow time readings for C3-SP7 (W/C = 0.5)	70
Table 25	Marsh flow time readings for C3-SP8 (W/C = 0.5)	71
Table 26	Marsh flow time readings for C1-SP1 (W/C = 0.45)	72
Table 27	Marsh flow time readings for C1-SP2 (W/C = 0.45)	73
Table 28	Marsh flow time readings for C1-SP3 (W/C = 0.45)	74
Table 29	Marsh flow time readings for C1-SP4 (W/C = 0.45)	75
Table 30	Marsh flow time readings for C1-SP5 (W/C = 0.45)	76
Table 31	Marsh flow time readings for C1-SP6 (W/C = 0.45)	77
Table 32	Marsh flow time readings for C1-SP7 (W/C = 0.45)	78

Table 33	Marsh flow time readings for C1-SP8 (W/C = 0.45)	79
Table 34	Marsh flow time readings for C2-SP1 ($W/C = 0.45$)	80
Table 35	Marsh flow time readings for C2-SP2 ($W/C = 0.45$)	81
Table 36	Marsh flow time readings for C2-SP3 ($W/C = 0.45$)	82
Table 37	Marsh flow time readings for C2-SP4 ($W/C = 0.45$)	83
Table 38	Marsh flow time readings for C2-SP5 ($W/C = 0.45$)	84
Table 39	Marsh flow time readings for C2-SP6 ($W/C = 0.45$)	85
Table 40	Marsh flow time readings for C2-SP7 (W/C = 0.45)	86
Table 41	Marsh flow time readings for C2-SP8 ($W/C = 0.45$)	87
Table 42	Marsh flow time readings for C3-SP1 ($W/C = 0.45$)	88
Table 43	Marsh flow time readings for C3-SP2 ($W/C = 0.45$)	89
Table 44	Marsh flow time readings for C3-SP3 ($W/C = 0.45$)	90
Table 45	Marsh flow time readings for C3-SP4 ($W/C = 0.45$)	91
Table 46	Marsh flow time readings for C3-SP5 ($W/C = 0.45$)	92
Table 47	Marsh flow time readings for C3-SP6 ($W/C = 0.45$)	93
Table 48	Marsh flow time readings for C3-SP7 ($W/C = 0.45$)	94
Table 49	Marsh flow time readings for C3-SP8 ($W/C = 0.45$)	95
Table 50	Optimum Dosage for PCE based SP for C1, $w/c = 0.45$	97
Table 51	Optimum Dosage for SNF based SP for C1, $w/c = 0.45$	98
Table 52	Optimum Dosage for SNP based SP for C1, $w/c = 0.45$	99
Table 53	Optimum Dosage for PCE based SP for C2, $w/c = 0.45$	100
Table 54	Optimum Dosage for SNF based SP for C2, $w/c = 0.45$	101
Table 55	Optimum Dosage for SNP based SP for C2, $w/c = 0.45$	102
Table 56	Optimum Dosage for PCE based SP for C3, $w/c = 0.45$	103
Table 57	Optimum Dosage for SNF based SP for C3, $w/c = 0.45$	104
Table 58	Optimum Dosage for SNP based SP for C3, $w/c = 0.45$	105
Table 59	Optimum Dosage for PCE based SP for C1, $w/c = 0.5$	106
Table 60	Optimum Dosage for SNF based SP for C1, $w/c = 0.5$	107
Table 61	Optimum Dosage for SNP based SP for C1, $w/c = 0.5$	108
Table 62	Optimum Dosage for PCE based SP for C2, $w/c = 0.5$	109
Table 63	Optimum Dosage for SNF based SP for C2, $w/c = 0.5$	110
Table 64	Optimum Dosage for SNP based SP for C2, $w/c = 0.5$	111
Table 65	Optimum Dosage for PCE based SP for C3, $w/c = 0.5$	112
Table 66	Optimum Dosage for SNF based SP for C3, $w/c = 0.5$	113

Table 67	Optimum Dosage for SNP based SP for C3, $w/c = 0.5$	114
Table 68	Table of constants for compatibility equations	115

NOMENCLATURE

C1	PPC Based Cement 1
C2	PPC Based Cement 2
C3	PPC Based Cement 3
C-SP	Cement – Super-Plasticizer couple
PCE	Poly Carboxylate Ether (PCE)
R	Correlation coefficient
\mathbf{R}^2	Coefficient of Determination
SNF	Modified Sulphonated Naphthalene Formaldehyde
SNP	Sulphonated Naphthalene Polymer
SP	Super-plasticizer
W/C	Water-Cement ratio